Departamento de Álgebra, Geometría y Toplogía. Universidad de Málaga

Ejercicios de álgebra¹ Cuarto curso (2003/04)

Relación 10. Descomposición primaria

Profesor de la asignatura:

José Antonio Cuenca Mira

¹Los anillos serán siempre supuestos conmutativos y unitarios, salvo mención expresa en sentido contrario. Asimismo, se supondrá que los homomorfismos entre ellos conservan las unidades. Además, a través de esta serie de relaciones de ejercicios, los anillos se supondrán no nulos, si bien este hecho se recalcará explícitamente en algunos lugares.

10 Descomposición primaria

- 10.1 Sea A un anillo, \mathfrak{q} un ideal primario de A y \mathfrak{a} , \mathfrak{b} dos ideales tales que $\mathfrak{ab} \subset \mathfrak{q}$. Demostrar que $\mathfrak{a} \subset r(\mathfrak{q})$ o $\mathfrak{b} \subset \mathfrak{q}$.
- 10.2 Describir las descomposiciones primarias irreducibles de los ideales propios de \mathbb{Z} .
- 10.3 Sea F un cuerpo y $A = F[X, Y, Z]/(XY Z^2)$. Sea x (resp. z) la clase de X (resp. Z). Mostrar que $\mathfrak{p} = (x, z)$ es un ideal primo de A y que \mathfrak{p}^2 no es primario.
- 10.4 Dar Ass M para el \mathbb{Z} -módulo $M = \mathbb{Z} \oplus [\mathbb{Z}/(3)]$.
- 10.5 Sea F un cuerpo y A = F[X, Y]. Dar una descomposición primaria irredundante del ideal (X^2, XY) de A.
- 10.6 Mostrar que en un anillo noetheriano la condición de que para un ideal $\mathfrak a$ se tenga que $r(\mathfrak a)$ sea primo no implica el carácter primario de $\mathfrak a$.
- 10.7 Sea A un anillo noetheriano, $M \neq 0$ un A-módulo finitamente generado y $\mathfrak a$ un ideal de A. Comprobar que $\mathfrak a$ contiene algún elemento que no es divisor de cero para M o $\mathfrak a$ está constituido por divisores de cero de algún elemento no nulo de M.
- 10.8 Sea A un anillo noetheriano, x un elemento de A que no es ni divisor de cero ni inversible. Demostrar que para todo entero $n \ge 1$ se tiene

$$\operatorname{Ass}_A(A/xA) = \operatorname{Ass}_A(A/x^nA).$$

- 10.9 Mostrar que existen ideales primarios de anillos noetherianos que no son potencias de ideales maximales.
- 10.10 Sea A un anillo noetheriano y M un A-módulo finitamente generado. Sea $\mathfrak a$ un ideal de A que consta únicamente de divisores de cero de M. Mostrar que existe algún $x \in M$, $x \neq 0$ tal que $\mathfrak a x = 0$.
- 10.11 Sea A un anillo noetheriano, $\{M_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ una familia de A-módulos. Supóngase que $M=\bigoplus_{{\alpha}\in\mathcal{A}}M_{\alpha}$ es un A-módulo finitamente generado. Demostrar que Ass $M=\bigoplus$ Ass M_{α} .
- 10.12 Sea A un anillo noetheriano y M un A-módulo finitamente generado. Supóngase que M_1 y M_2 son submódulos de M tales que $M=M_1+M_2$. ¿ Se verifica Ass M= Ass $M_1\cup$ Ass M_2 ?
- 10.13 Sea $M \neq 0$ un A-módulo finitamente generado sobre un anillo noetheriano A. Demostrar que existe entonces alguna cadena de submódulos

$$M = M_0 \supset M_1 \supset \cdots \supset M_n = 0$$

tal que cada cociente M_i/M_{i+1} es isomorfo a algún A-módulo del tipo A/\mathfrak{p}_i , con los \mathfrak{p}_i ideales primos de A. Obtener de aquí que $\mathrm{Ass}\,M$ es finito.

- 10.14 Demostrar que los ideales maximales del anillo total de fracciones de un anillo noetheriano constituyen un conjunto finito.
- 10.15 Sea A un anillo noetheriano, M un A-módulo de generación finita, S un subconjunto multiplicativo de A y $\iota:A\longrightarrow S^{-1}A$ el homomorfismo canónico. Demostrar que

$$\operatorname{Ass}_{S^{-1}A}S^{-1}M=\{\iota_S(\mathfrak{q})S^{-1}A:\ \mathfrak{q}\in Ass_AM\ \mathrm{y}\ \mathfrak{q}\cap S=\emptyset\}$$

10.16 Sea A un anillo noetheriano, M y N A-módulos finitamente generados. Demostrar que ${\rm Hom}(M,N)$ es también finitamente generado y que

$$\operatorname{Ass} \operatorname{Hom}_A(M,N) = \operatorname{Sop} M \cap N.$$

[Indicación. Para establecer la igualdad anterior considerar primero en el caso de un anillo local con ideal maximal \mathbf{m} . Utilizar alguna de las consecuencias del lema de Nakayama para comprobar que \mathbf{m} pertenece a Ass $\operatorname{Hom}_A(M,N)$ si y sólo si está en $\operatorname{Sop} M \cap N$]

- 10.17 Sea A un anillo noetheriano y M un A-módulo finitamente generado. Demostrar que si \mathfrak{a} es un ideal tal que todo elemento de Sop M contiene a \mathfrak{a} , existe entonces algún entero n > 0 tal que $\mathfrak{a}^n M = 0$.
- 10.18 Sea A un anillo noetheriano y \mathfrak{a} un ideal de A tal que $\mathrm{Sop}(A/\mathfrak{a})$ consta únicamente de ideales maximales. Demostrar que \mathfrak{a} se escribe de modo único como un producto finito de ideales primarios.
- 10.19 (I. Kaplansky) Sea A un anillo noetheriano y M un A-módulo finitamente generado. Sea S_0 el subconjunto de A de los elementos que están en el anulador de algún elemento no nulo de M. Sea \mathcal{T} la familia de pares del tipo (\mathfrak{p},x) , donde \mathfrak{p} es un ideal maximal en el conjunto de los ideales que son anuladores de elementos de M y $x \in M$ es tal que $\mathfrak{p} = \operatorname{Ann} x$. Sea N el submódulo generado por los elementos que aparecen como segunda componente en \mathcal{T} y $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ la familia de ideales que aparecen como primera componente de pares de \mathcal{T} asociados con un sistema finito de generadores x_1, \ldots, x_r de N. Mostrar que $S_0 = \bigcup_{i=1}^r \mathfrak{p}_i$, y así que S_0 es unión finita de ideales primos.