- 1.— En \mathbb{R}^3 se considera el campo $X = \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} 3 \frac{\partial}{\partial z}$.
 - (a) Calcular su flujo.
 - (b) Encontrar una carta (U, φ) de \mathbb{R}^3 , tal que $X = \frac{\partial}{\partial \varphi_1}$ en U.
- 2.— Si $f: \mathbb{R}^n \to \mathbb{R}$ es una función diferenciable, se define el gradiente de f, como el campo de vectores sobre \mathbb{R}^n

$$grad f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial}{\partial x_i}.$$

Comprobar que $D_v f(p) = \langle v, (grad f)(p) \rangle$, donde $D_v f(p)$ denota la derivada direccional de f en la dirección de v en p. Si $g: \mathbb{R}^n \to \mathbb{R}$ es otra función diferenciable, calcular [grad f, grad g].

- 3.– Estudiar si son involutivas o no las siguientes distribuciones:
 - (a) En $\mathbb{R}^3 \{0\}$ la dada por $D(x) = \{v \in \mathbb{R}^3 / (x_1^2 + x_2^2)v_1 + x_3^2v_3 = 0\}$
 - (b) En \mathbb{R}^4 la dada por $D(x) = \{v \in \mathbb{R}^4 / 2x_1x_4v_1 + 2x_2x_4v_2 + 2x_3x_4v_3 + (x_1^2 + x_2^2 + x_3^2 + 1)v_4 = 0\}$
 - (c) En \mathbb{R}^3 la engendrada por los campos

$$X_1 = \frac{\partial}{\partial x_1} + x_2^2 \frac{\partial}{\partial x_3}$$
, $X_2 = \frac{\partial}{\partial x_2} + \cos(x_1 x_2) \frac{\partial}{\partial x_3}$.

4.- Sea

$$X = f \frac{\partial}{\partial x} + g \frac{\partial}{\partial y} + h \frac{\partial}{\partial z}$$

un campo sobre \mathbb{R}^3 .

(a) Demostrar que si el campo X no tiene ceros, entonces determina la distribución X^{\perp} , que en cada punto p es el subespacio ortogonal a X(p), y que esta distribución es involutiva si y solamente si

$$\langle X, rot | X \rangle = 0.$$

- (b) Emplear este resultado para resolver los apartados (a) y (c) del ejercicio anterior.
- 5.– Sean $f, g: \mathbb{R}^3 \to \mathbb{R}$ dos funciones diferenciables dadas por

$$f(x, y, z) = x$$
, $g(x, y, z) = y + h(x, z)$

siendo $h: \mathbb{R}^2 \to \mathbb{R}$. Definamos D como la distribución de \mathbb{R}^3 generada por los gradientes de f y g. Expresar, en función de h, una condición necesaria y suficiente para que la distribución anterior sea involutiva.