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Abstract

This paper surveys the main properties of the model and realization functors,

sset dgl
〈−〉
oo

L //

which are based in the cosimplicial complete differential graded Lie algebra L∆• .
This let us extend the Quillen approach to rational homotopy theory to non simply
connected spaces and to any complete differential graded Lie algebra.

Introduction

In his celebrated and seminal paper [32], D. Quillen developed the “Lie” approach to
rational homotopy theory. It is based in the construction of a couple of functors,

sset1
λ //

dgl1
〈−〉Q
oo

between the categories of reduced or simply connected simplicial sets, those with only
one simplex in dimensions 0 and 1, and that of reduced dgl’s, that is, differential graded
Lie algebras positively graded. These functors are defined as the composition of several
pairs of adjoint functors (the upper arrow denotes left adjoint), in fact Quillen pairs,
with respect to the corresponding model category structures,

λ : sset1
G //

sgp0
W

oo
Q̂ //

sch0
G

oo
oo Û

sla1//
P

oo N
∗

dgl1 : 〈−〉Q.//
N

Here, sgp0, sch0 and sla1 denote respectively the categories of connected simplicial
groups, connected complete Hopf algebras, and reduced simplicial Lie algebras. Each
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of these pairs induces Quillen equivalences on the corresponding homotopy categories
when localizing on the family of rational homotopy equivalences in sset1, sgp0, and on
the family of quasi-isomorphisms in sch0, sla1, dgl1 [32, Thm. I].

The complexity of the functors λ and Quillen realization 〈−〉Q strongly contrasts
with the conceptual simplicity of the pair of adjoint functors in which the Sullivan
“commutative” approach to rational homotopy theory is based [5, 33]. These are defined
by the PL-forms A (−) on simplicial sets and the Sullivan realization functor 〈−〉S on
commutative differential graded algebras (cdga’s henceforth):

sset
A (−) //

cdga .
〈−〉S
oo

Explicitely, given a cdga A, its realization is

〈A〉S = Homcdga(A,A•)

where A• = A (∆•) is the simplicial set of PL-forms on the standard simplices. In other
words, 〈A〉S is “corepresentable” by A•.

In fact, the lack of an Eckmann-Hilton dual of the simplicial A• has puzzled rational
homotopy theorist since the birth of the theory. On the other hand, there are many
situations in a wide range of mathematics, from algebraic geometry to mathematical
physics, where a suitable extension of the Quillen functor to non necessarily reduced
dgl’s would be most welcome.

These problems are atacked in the work reviewed by this survey, whose departure
point is the following observation and subsequent general question raised by R. Lawrence
and D. Sullivan in [25]:

The rational singular chains on a cellular complex are naturally endowed with a
structure of cocommutative, coassociative infinity coalgebra and hence, taking the com-
mutators of a “generalized bar construction” it should give rise to a complete dgl (in
fact, all our dgl’s would be of this kind, see next section for a precise definition). What
is the topological and geometrical meaning of this dgl? Allowing 1-cells, what is the
relation of this dgl with the fundamental group of the given complex?

In the same reference they carefully construct such a dgl for the interval. It consists
of a free dgl ,

L∆1 = (L̂(a, b, x), ∂),

in which a and b are Maurer-Cartan elements representing the endpoints of the interval,
x is a degree 0 element representing the 1-cell, and

∂x = adxb+
∞∑
n=0

Bn
n!

adnx(b− a)

where the Bn’s are the Bernoulli numbers.
We begin by extending this to any simplex and construct, for each n ≥ 1, a free dgl

L∆n = (L̂(s−1∆n), ∂) in which s−1∆n together with the linear part of the differential ∂
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is the (desuspension) of the rational simplicial chain complex of the standard n-simplex
∆n, and the vertices correspond to Maurer-Cartan elements. We then show that the
family

L∆• = {L∆n}n≥0

is a cosimplicial dgl and therefore, we may geometrically realize any dgl L as the sim-
plicial set

〈L〉 = Homdgl(L∆• , L).

On the other hand, The L construction can be extended to any simplicial set X by
defining its dgl model as

LX = colim
−−−→σ∈X L∆|σ| .

It turns out that the model and realization functors

sset dgl
〈−〉
oo

L //

are adjoint and they extend the original Quillen functors in different directions, all of
them carefully covered by section §3. Here, we mention two:

On the one hand, 〈L〉 ' 〈L〉Q for any reduced finite type dgl L. This shows that the
Quillen realization functor is representable by the cosimplicial dgl L∆• which becomes
the Eckmann-Hilton dual of A•. Moreover, under no restriction, our realization coincide,
up to homotoy type, with any other known realization functor for dgl’s including the
Deligne-Getzler-Hinich simplicial functor [2, 18, 20].

On the other hand, unlike the Quillen λ functor, our model functor reflects geomet-
rical properties of non-nilpotent spaces. Indeed, the non trivial component 〈LaX〉 of the
realization of the model of a connected finite simplicial set X has the homotopy type of
the Bousfield-Kan Q-completion of X [4]. In particular, H0(LaX), with the group struc-
ture given by the Baker-Campbell-Hausdorff product, recovers the Malcev completion
of the fundamental group π1(X).

After that, we embed the model and realization functors in a suitable homotopy
theoretical framework. Indeed, we use the transfer principle [1, 3] to endow the category
of dgl’s with a cofibrantly generated model category structure arising from the one
in the category of simplicial sets, see §4. In this structure a dgl morphism f : A →
B is a fibration if it is surjective in non negative degrees; f is a weak equivalence if

M̃C(f) : M̃C(A)
∼=→ M̃C(B) is a bijection and fa : Aa

'→ Bf(a) is a quasi-isomorphism

for every a ∈ M̃C(A); finally f is a cofibration if it has the left lifting property with
respect to trivial fibrations. As an immediate consequence we deduce that the model
and realization functor form a Quillen pair. In particular, they induce adjoint functors
in the homotopy categories,

Ho sset
L //

Ho dgl,
〈−〉
oo

and both preserve weak equivalences and homotopies.
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The paper is organized as follows: in the first section we set up notation and briefly
recall the basics on complete differential graded Lie algebras. In §2 we construct the
comsimplicial dgl L∆• . Section 3 contains the main properties of the model and real-
ization functors. In particular, we estress how they extend Quillen rational homotopy
theory to non simply connected (nor connected) spaces and to any dgl. In section 4, we
set up the mentioned model structure on the category of dgl’s and describe in detail this
new homotopy theoretical framework.

The purpose of this work is not being exhaustive. Rather, we have tried to guide the
reader in the most comprehensible way through the main aspects of the theory. Hence,
some proofs are omitted and others are simply outlined. Nevertheless, precise references
are always given.

This survey contains the main results of a project which begun some years ago in
collaboration with U. Buijs, Y. Félix and D. Tanré to all of whom I am deeply grateful.
All of this results can be found in [6, 7, 8, 9, 10].

1 Differential graded Lie algebras

Throughout this paper we assume that Q is the base field. Direct and inverse limits are
denoted by colim

−−−→
and lim
−→

respectively.

A graded Lie algebra consists of a Z-graded vector space L = ⊕p∈ZLp together with
a bilinear product

[ , ] : Lp ⊗ Lq −→ Lp+q, p, q ∈ Z,

called the Lie bracket, satisfying antisimmetry,

[x, y] = −(−1)|x||y|[y, x],

and Jacobi identity,

(−1)|x||z|
[
x, [y, z]

]
+ (−1)|y||x|

[
y, [z, x]

]
+ (−1)|z||y|

[
z, [x, y]

]
= 0.

Here, |x| denotes the degree of x. The commutator operator [a, b] = a⊗b− (−1)|a||b|b⊗a
is a Lie bracket on T (V ), the tensor algebra on the graded vector space V . The free Lie
algebra L(V ) generated by V is the sub Lie algebra of T (V ) generated by V .

A differential graded Lie algebra is a graded Lie algebra L endowed with a differential,
that is, a linear derivation ∂ of degree −1 such that ∂2 = 0. By abusing of notation we
say that a differential graded Lie algebra is free if it is so as graded Lie algebra.

Given a differential graded Lie algebra L, a Maurer-Cartan element is an element
a ∈ L−1 satisfying the Maurer-Cartan equation

∂a+
1

2
[a, a] = 0.

We denote by MC(L) the set of Maurer-Cartan elements which is clearly preserve by
morphisms. Given a ∈ MC(L) the derivation ∂a = ∂ + ada is again a differential on

4



L. Here ada denotes the usual adjoint operator, adab = [a, b]. The component of L at
a ∈ MC(L) is the truncation of the perturbed (L, ∂a) at non-negative degrees,

La = (L, ∂a)/(L<0 ⊕ J) ∼= L>0 ⊕ (L0 ∩ ker ∂a) ,

in which J is a complement of ker ∂a in L0.
The completion L̂ of a differential graded Lie algebra L is

L̂ = lim−→
n

L/Ln

where L1 = L, Ln = [L,Ln−1] for n ≥ 2, and the limit is taken on the topology arising
from this filtration. An element a of L̂ is then a sequence a = (a1, a2, · · · ) with ai ∈ L/Li

and ai = ai−1 in L/Li−1.We write L̂(V ) = L̂(V ). Each element of L̂(V ) can be seen as
a series

∑
n xn with xn ∈ Ln(V ) for all n.

A differential graded Lie algebra L is complete if the natural morphism L
∼=→ L̂

is an isomorphism. Observe that, reduced differential graded Lie algebras, which are
concentrated in positive degrees, are always complete.

We denote by dgl the category of complete differential graded Lie algebras, dgl’s
henceforth. Limits are the same than in the category of (non-complete) differential
graded Lie algebras. The colimit of a diagram is the completion of its colimit in the
category of (non-complete) differential graded Lie algebras.

Given L = L̂(V ) a free dgl and v ∈ V , we will often write ∂v =
∑

n≥1 ∂nv where

∂nv ∈ Ln(V ). Observe that, if θ is a derivation of L satisfying θ(V ) ⊂ L̂≥2(V ) and
[θ, ∂] = 0, then eθ =

∑
n≥0

θn

n! is an automorphism of L and in particular, it induces a
bijection on the Maurer-Cartan set.

Recall that given a dgl L, the Baker-Campbell-Hausdorff product ∗ equips the vector
space L0 with a group structure. Since that a ∗ (−a) = 0 we often use the notation
−a = a−1.

The gauge action, see for instance [28, §4], of (L0, ∗) on MC(L) is defined by

xGa = eadx(a)− eadx − 1

adx
(∂x) =

∑
i≥0

adix(a)

i!
−
∑
i≥0

adix(∂x)

(i+ 1)!
.

Here and from now on, 1 inside an operator will denote the identity. We denote by
M̃C(L) = MC(L)/G the orbit set, that is, the set of equivalence classes of Maurer-Cartan
elements modulo the gauge action.

Geometrically [22, 25], interpreting Maurer-Cartan elements as points in a space, one
thinks of x as a flow taking xG a to a in unit time. For the more topological oriented
reader [12], the points a and xG a are in the same path component. See also Remark
4.6 for a homotopy theoretical equivalent description of the gauge action..

The Deligne groupoid of L has MC(L) as objects, and elements x ∈ L0 as arrows
from xG z to z.

A fundamental object, which illustrates all of the above concepts and facts, turns
out to be the starting point of our work:
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Definition 1.1. [25] The Lawrence-Sullivan model for the interval, LS-interval hence-
forth, is the dgl

L∆1 = (L̂(a, b, x), ∂),

in which a and b are Maurer-Cartan elements, x is of degree 0 and

∂x = adxb+
∞∑
n=0

Bn
n!

adnx(b− a) = adxb+
adx

eadx − 1
(b− a),

where the Bn’s are the Bernoulli numbers.

Let (L̂(a0, a1, a2, x1, x2), ∂) be two glued LS-models of the interval. That is, a0, a1

and a2 are Maurer-Cartan elements, ∂x1 = adx1(a1) +
adx1

eadx1−1
(a1 − a0) and ∂x2 =

adx2(a2) +
adx2

eadx2−1
(a2 − a1). Then, the “subdivision of the interval” is given by:

Theorem 1.2. [25, Theorem 2] The map

γ : (L̂(a, b, x), ∂)→ (L̂(a0, a1, a2, x1, x2), ∂), γ(a) = a0, γ(b) = a2, γ(x) = x1 ∗ x2,

is a dgl morphism.

In [7, Thm. 2.3] the reader may find a complete description of the Deligne groupoid
of the LS-interval as two disjoint rational lines.

2 The cosimplicial dgl L∆•

Given n ≥ 0, let ∆n be the standard n-simplex ,

∆n
p = {(i0, . . . , ip) | 0 ≤ i0 < · · · < ip ≤ n}, if p ≤ n,

and denote by s−1∆n the graded vector space of desuspended rational simplicial chains
on ∆n with the usual boundary operator,

dai0...ip =

p∑
j=0

(−1)jai0...̂ij ...ip .

Here, ai0...ip denotes the generator of degree p−1 represented by the p-simplex (i0, . . . , ip) ∈
∆n
p . Consider (L̂(s−1∆n), d) the free dgl generated by s−1∆n with the differential in-

duced by d.
For each 0 ≤ i ≤ n consider the i-th coface map δj : {0, . . . , n− 1} → {0, . . . , n},

δi(j) =

{
j, if j < i,

j + 1, if j ≥ i,

and use the same notation for the induced dgl morphism,

δi : (L̂(s−1∆n−1), d) −→ (L̂(s−1∆n), d),
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defined by

δi(aj0...jp) = a`0...`p with `k =

{
jk, if jk < i,

jk + 1, if jk ≥ i.

Finally, we denote by ∆̇n and Λni the boundary of ∆n and the i-horn obtaining by
removing the i-th coface from ∆̇n.

The following is the core result on which our dgl realization is based.

Theorem 2.1. [6, thms. 2.3 and 2.8] There is a family of dgl’s, unique up to dgl
isomorphism,

L∆• = {L∆n}n≥0 = {(L̂(s−1∆n), ∂)}n≥0,

such that, for each n ≥ 0, the following holds:

(1) For each i = 0, . . . , n, the generator ai ∈ s−1∆n
0 is a Maurer-Cartan element,

∂ai = −1
2 [ai, ai].

(2) The linear part ∂1 of ∂ is precisely the desuspension s−1d of d.

(3) For each i = 0, . . . , n, the coface map δi : L∆n−1 → L∆n, is a dgl morphism.

Here, we outline a proof as it contains important ideas of how to express simple
geometrical constructions in algebraic terms.

Sketch of proof. For n = 0, L∆0 is simply the free lie algebra L(a) generated by a
Maurer-Cartan element.

For n = 1, we observe that the Lawrence-Sullivan interval.

L∆1 = (L̂(a, b, x), ∂) ,

satisfy the required conditions.
For n = 2, the “model of the triangle”

L∆2 = (L̂(a0, a1, a2, a01, a12, a02, a012), ∂),

is obtained as follows:
First, consider a model of its boundary ∆̇2 given by

(L̂(a0, a1, a2, a01, a12, a02), ∂)

in which (L̂(a0, a1, a01), ∂), (L̂(a1, a2, a12), ∂) and (L̂(a0, a2, a02), ∂) are LS-intervals. Next,
find a map from the LS-interval to this dgl by subdividing the interval into three parts
applying twice Theorem 1.2 and then gluing the end points:

ψ : L∆1 → (L̂(a0, a1, a2, a01, a12, a02), ∂), ψ(a) = ψ(b) = a0, ψ(x) = a01 ∗ a12 ∗ a−1
02 .
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Hence,

∂(a01∗a12∗a−1
02 ) = ∂ψ(x) = ψ∂x = ψ

adx(b) +
∑
k≥0

Bk
k!

adkx(b− a)

 = −ada0(a01∗a12∗a−1
02 ).

Therefore we define

∂a012 = a01 ∗ a12 ∗ a−1
02 + ada0(a01 ∗ a12 ∗ a−1

02 ),

or equivalently,
∂a0a012 = a01 ∗ a12 ∗ a−1

02 .

Observe that the linear part of ∂(a012) is a12 − a02 + a01 In geometrical terms, The
differential of a012 draws the border of ∆2 starting from the base point a0. For n ≥ 3,
L∆n is constructed inductively so that, as in the triangle,

∂a0a0...n ∈ L∆̇n .

First, one sees that in general [6, Cor. 2.5],

H(L∆n , ∂a0) = H(L∧ni , ∂a0) = 0.

Now, suppose L∆n−1 has been built and let x = ∂a0a0...n−1 ∈ L∆̇n−1 ⊂ L∧nn . Since
H(L∧nn , ∂a0) = 0, there exists y ∈ L∧nn such that x = ∂a0y. We set,

∂a0a0...n = Ω where Ω = (−1)n(a0...n−1 − y).

Uniqueness is also proved inductively.

Next, for each 0 ≤ i ≤ n consider the i-th codegeneracy map σi : {0, . . . , n + 1} →
{0, . . . , n},

σi(j) =

{
j if j ≤ i,
j − 1 if j > i,

and use the same notation for the induced dgl morphism,

σi : (L̂(s−1∆n+1), d) −→ (L̂(s−1∆n), d),

defined by,

σi(a`0...`q) =

{
aσi(`0)...σi(`q) if σi(`0) < · · · < σi(`q),

0 otherwise,

where d is the linear boundary operator. Observe that σi may not extend to a dgl
morphism L∆n+1 → L∆n unless the differential in these dgl’s are of a special “symmetric”
kind:
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Let ai0...ip be a generator of L̂(∆n) and σ ∈ Σp+1 of signature εσ. We set

aiσ(0)...iσ(p) = εσai0...ip ,

and define an action of the symmetric group Σn+1 on the complete free graded Lie
algebra, L̂(s−1∆n) by,

σai0...ip = aσ(i0)...σ(ip), σ[a, b] = [σa, σb].

We say that a family L∆• = {L∆n}n≥0 as in Theorem 2.1 is symmetric if for the above
action each L∆n is a Σn+1–dgl, that is, ∂σ = σ∂ for each σ ∈ Σn+1. Such symmetric
families always exist [6, Thm. 3.3] and we may prove:

Theorem 2.2. Any family L∆• admits a cosimplicial dgl structure for which the cofaces
are the usual ones.

Proof. Assume first that the family L∆• is symmetric. We show that in this case the
codegeneracies σi’s are dgl morphisms, that is, ∂σi = σi∂ for each n ≥ 0 and each
i = 0, . . . , n.

Choose a`0...`q a generator of L∆n+1 . If σi(`0) < · · · < σi(`q), then σi extends to an
element of Σn+2 and since the family is symmetric, ∂σi(a`0...`q) = σi∂(a`0...`q). Otherwise,
the sequence `0, . . . , `q contains the elements i, i+1 and therefore σi(a`0...`q) = 0. In this
case denote by τ the permutation τ = (i, i+ 1) and observe that

σi∂(a`0...`q) = σiτ∂(a`0...`q) = −σi∂(a`0...`q).

Therefore σi∂(a`0...`q) = 0 = ∂σi(a`0...`q).
Once we know that both, cofaces and codegeneracies are dgl morphisms, the cosim-

plicial identities hold as they are trivially satisfied on generators.
Now let L′∆• be a non necessarily symmetric family as in Theorem 2.1. By uniqueness

we have isomorphisms ϕn : L′∆n

∼=→ L∆n , and we define the codegeneracies as ϕ−1
n σiϕn.

Since the ϕn’s commute with the cofaces, the cosimplicial identities are also satisfied in
this case.

We now briefly recall [6, §7] how to obtain the cosimplicial dgl L∆• via a transfer
process. This construction may not describe L∆• explicitly but it is particularly adapted
to relate our realization functor with the Deligne-Getzler-Hinich realization. Recall that
a homotopy retract is a diagram

K << M
p //

V
i

oo

where i and p are chain maps for which pi = idV and ip ' idM through the chain
homotopy K.

Denote by A• the simplicial cdga of PL-forms on the standard simplices,

An = Λ(t0, . . . , tn, dt0, . . . , dtn)/(
∑
ti − 1,

∑
dti),
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and let C∗(∆•) be the rational simplicial cochain complex also on the standard simplices.
Then [14, 15, 18], there is a homotopy retract

K• << A•
p• //

C∗(∆•),
i•
oo

where the maps p• and i• are defined as follows:
Let αi0...ik be the basis for C∗(∆n) defined by

〈αi0...ik , aj0...jk〉 =

 (−1)
k(k−1)

2 if (j0, . . . , jk) = (i0, . . . , ik),

0 otherwise.

Then, in(αi0...ik) is the Whitney elementary form ωi0...ik defined by

ωi0...ik = k!
k∑
j=0

(−1)jtijdti0 · · · d̂tij · · · dtik .

The map pn : An → C∗(∆n) is defined by

pn(ω) =

n∑
k=0

∑
i0<···<ik

αi0...ikIi0...ik(ω),

with

Ii0...ik(tb1i1 . . . t
bk
ik
dti1 . . . dtik) =

b1! · · · bk!
(b1 + · · ·+ bk + k)!

,

and 0 otherwise. In particular, Ii0...ik(ωi0...ik) = 1.
Then, the homotopy transfer theorem [23, 26, 29], also classically known as the ho-

mological perturbation lemma [19, 21], induces a simplicial commutative A∞-algebra
structure on C∗(∆•). Since this is a finite dimensional simplicial cochain complex one
may “dualize” this A∞-structure (see for instance [9, §3]) to obtain a cocommutative
A∞-coalgebra structure on the simplicial rational chain complex ∆•. This is equivalent
to have a differential d in the simplicial complete tensor algebra T̂ (s−1∆•). However,
due to the cocommutativity of the A∞-coalgebra structure, the differential d of any gen-
erator is a Lie polynomial, see for instance [9, Thm. 3.1], that is, da ∈ L̂(s−1∆•) for any
a ∈ s−1∆•. This provides a cosimplicial dgl (L̂(s−1∆•), ∂) satisfying the conditions of
Theorem 2.1. By uniqueness, L∆• = (L̂(s−1∆•), ∂).

3 The model and realization functors

Given a simplicial set X, identify as usual any simplex σ ∈ Xn with a simplicial map
σ : ∆n → X. Here, ∆n denote the simplicial set whose p-simplices are integer sequences
0 ≤ i0 ≤ · · · ≤ ip ≤ n. Then, X can be recovered from its simplices as the colimit

X = colim
−−−→σ∈X∆|σ|.
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Definition 3.1. The model of any simplicial set X is defined as the dgl

LX = colim
−−−→σ∈X L∆|σ| .

In fact, Theorem 2.1 is a special case of the following: It can be proven that the
model of X is the free complete Lie algebra

LX = (L̂
(
s−1X), ∂)

where, abusing of notation, s−1X denotes the desuspension of the normalized chains
on X. Recall that these are the simplicial chains on X modulo degeneracies. In other
words, s−1X is generated by the non-degenerate simplices of X. The differential ∂ is
completely determined by the following:

(1) The non degenerate 0-simplices are Maurer-Cartan elements.

(2) The linear part ∂1 of ∂ is precisely the desuspension of the differential in the
normalized chains on X.

(3) If j : Y ⊂ X is a subsimplicial set, then L(j) = L̂(s−1j).

On the other hand the cosimplicial structure on L∆• gives rise to the following.

Definition 3.2. The realization of a dgl L is defined as the simplicial set

〈L〉 = Homdgl(L∆• , L).

Then, we have:

Theorem 3.3. the model and realization functors are adjoint.

sset dgl
〈−〉
oo

L //

Proof. Indeed, for any simplicial set and any dgl L,

Homdgl(LX , L) = Homdgl(colim
−−−→σ∈X L∆|σ| , L) = lim

−→σ∈X Homdgl(L∆|σ| , L)

= lim
−→σ∈X 〈L〉|σ| = lim

−→σ∈X Homsset(∆
|σ|, 〈L〉)

= Homsset(colim
−−−→σ∈X ∆|σ|, 〈L〉) = Homsset(X, 〈L〉). �

The first results describing the homotopy type of the realization of a given dgl are the
following. Proofs are included to illustrate how they basically depend on the definition
of the related concepts.

Theorem 3.4. [6, Prop. 4.4] For any dgl L there is a natural bijection π0〈L〉 ∼= M̃C(L).

Proof. By [11, Proposition 3.1], two Maurer-Cartan elements z0, z1 ∈ MC(L) are gauge
equivalent if and only if there is a map ϕ : L∆1 → L with ϕ(a) = z0 and ϕ(b) = z1. On
the other hand, by definition, 〈L〉0 is the set of Maurer-Cartan elements of L, and 〈L〉1
is the set of dgl morphisms from the LS-interval L∆1 to L. This implies the result.
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Theorem 3.5. [6, Prop. 4.5] Let L be a non negatively graded dgl. Then, 〈L〉 is a
connected simplicial set and there are natural group isomorphisms

πn〈L〉 ∼= Hn−1(L, d), n ≥ 1,

in which H0(L, d) is considered with the group structure given by the Baker-Campbell-
Hausdorff product.

Proof. By Theorem 3.4, 〈L〉 is connected. Let di = Homdgl(δi, L) : 〈L〉n → 〈L〉n−1 be
the i-th face map and write ker dj = {f : L∆n → L | djf = 0}. Recall that

πn〈L〉 = ∩ni=0 ker di/ ∼

where f ∼ g if there is h ∈ 〈L〉n+1 such that dnh = f , dn+1h = g and dih = 0 for i < n.
We denote by f the element of πn〈L〉 represented by f . Define,

ϕ : πn〈L〉
∼=−→ Hn−1(L), ϕ(f) = [f(a0...n)],

and observe that, for any f ∈ πn〈L〉, the morphism f vanishes in any p-simplex of
∆n, with 0 ≤ p < n. Hence, it is uniquely determined by f(a0...n). Straightforward
computations show that ϕ is a well defined isomorphism for n ≥ 2 and a bijection for
n = 1.

To check that for n = 1 this bijection is in fact an isomorphism of groups choose
α, β ∈ π1〈L〉, and consider h ∈ 〈L〉2 = Homdgl(L∆2 , L) given by

h(a01) = g(a01), h(a12) = f(a01), h(a02) = f(a01) ∗ g(a01), h(a012) = 0,

being f, g ∈ 〈L〉1 = Homdgl(L∆1 , L) representing α and β respectively. Note that, since
L is non negatively graded the image of any 0-simplex vanishes for every morphism in
〈L〉.

Now, in view of the model of ∆2 given in the proof of Theorem 2.1, h is a well defined
morphism for which d0h = f and d2h = g. Hence, by definition of the product in π1〈L〉,
α · β is represented by d1h. Finally,

ϕ(α · β) = d1h(a01) = hδ1(a02) = h(a02) = f(a01) ∗ g(a01) = ϕ(α) ∗ ϕ(β).

Theorem 3.6. [6, Thm. 4.6] For any dgl, 〈L〉 ' ∪̇
z∈M̃C(L)

〈Lz〉.

Proof. By Theorem 3.4, the components of 〈L〉 are identified with M̃C(L). Via this

identification, the component of a given z ∈ M̃C(L) is of the same homotopy type as the
reduced simplicial set which we denote by 〈L〉z whose n-simplices are the dgl morphisms
f : Ln → L such that f(ai) = z for any 0-simplex ai, i = 0, . . . , n.

The simplicial set 〈L〉z has only one 0-simplex z : L∆0 → L and its degeneracies
are the maps z : L∆n → L such that z(ai) = z for all i and which vanish on all
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generators of non-negative degrees. Observe that, for any n ≥ 1, πn(〈L〉z, z) is the
quotient space En/ ∼, where En denotes the set of dgl morphisms f : L∆n → L such
that dif = z for all i. When f ∈ En, f(a0...n) is a ∂z-cycle which defines an isomorphism
πn(〈L〉z, z) ∼= Hn−1(L, ∂z) that is in turn induced by the simplicial set weak equivalence

ψ : 〈L〉z
'−→ 〈Lz〉, ψ(f)(ai) = 0, ψ(f)(ai0...iq) = f(ai0...iq) for q > 0.

Finally, concerning the realization functor, we state that, under the usual bounding
and finite type assumptions, it extends the original Quillen realization functor 〈−〉Q
[32], and the realization 〈C ∗(−)〉S of the cdga given by the Chevalley-Eilenberg cochain
functor C ∗ on L [5]. This is the composite of the functors,

C ∗ = (−)] ◦ C : dglf → cdga and 〈−〉S : cdga→ sset,

where dglf is the full subcategory of dgl of finite type dgl’s. The second one is the
Sullivan realization functor defined by 〈A〉S = Homcdga(A,A•).

Theorem 3.7. [6, Thm. 8.1] Let L be a finite type dgl with Hq(L) = 0 for q < 0. Then,

〈L〉 ' 〈C ∗(L)〉S. If in addition L is reduced, 〈L〉 ' 〈L〉Q.

This exhibit the Quillen realization as a functor representable by L∆•

The last assertion follows immediately from the first and a theorem of Majewski, the
main result in [27].

We also show that, with full generality, our realization is homotopy equivalent to the
Deligne-Getzler-Hinich simplicial functor on L [18, 20]. This functor, carefully studied
also in [2], is defined as the simplicial set of Maurer-Cartan elements of the simplicial
dgl A•⊗̂L. Recall that the nerve γ•(L) of L, introduced in [18, §5], is a subsimplicial set
of MC(A•⊗̂L) homotopy equivalent to it. We prove (cf. [30, Thm. 3.2]):

Theorem 3.8. [9, Thm.4.8] For any dgl L, γ•(L) ' 〈L〉. Moreover, there are explicit
homotopy equivalences

MC(A•⊗̂L)
p // 〈L〉
i

oo

which make 〈L〉 a strong homotopy retract of MC(A•⊗̂L).

Here, A•⊗̂L = lim−→n
(A• ⊗ L/Ln).

We now analyze the main properties of the model functor:

Theorem 3.9. [8] For any finite simplicial set X,

M̃C(LX) ∼= π0(X+).
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Here, X+ denotes the disjoint union of X with a point. This, together with Theorem
3.6, gives,

π0〈LX〉 = π0(X+).

Moreover, we are able to determine the homotopy type of each of these components.

Theorem 3.10. [10, Thm. 2.7] Given X a finite simplicial set,
〈
L0
X

〉
is contractible.

Proof. A general result [10, Prop. 2.8] proves that H(LX) = 0. In particular, both LX
and (LX)<0 ⊕ J , with J a complement of ker ∂, are acyclic. Hence, H(L0

X) = 0. By
Theorem 3.5 this is equivalent to π∗

〈
L0
X

〉
= 0 and the theorem follows.

For the non trivial components we have:

Theorem 3.11. [10, Thm. 2.9] Let X be a connected finite simplicial set and let z ∈ LX
be a non trivial Maurer-Cartan element. Then,

〈
LzX
〉
' Q∞X, the Q-completion of X.

We recall that in [4], A. Bousfield and D. Kan define a functor that associates to each
simplicial set X, a simplicial set Q∞X together with a natural morphism, X → Q∞X.
This construction is governed by the following property: a map f : X → Y induces

an isomorphism in rational homology, H̃∗(X;Q)
∼=→ H̃∗(Y ;Q), if and only if the map

Q∞f : Q∞X → Q∞Y is a homotopy equivalence. The space Q∞X is called the Q-
completion of X. When X is a nilpotent simplicial set, the space Q∞X is the classical
rationalization of X [4, Chap. V,4.3].

The proof of the theorem above is based in two statements: on the one hand, given
(ΛV, d) the Sullivan minimal model of a finite type connected complex X, its realization
〈(ΛV, d)〉S is the Q-completion of X [5, Thm. 12.2]. On the other hand, 〈(ΛV, d)〉S '〈
LzX
〉
.

In particular, by [17, Cor. 7.4], and taking into account Theorem 3.5 for n = 1, we
deduce:

Corollary 3.12. H0(LzX) is the Malcev Lie completion of the fundamental group π1(X).

4 A model category structure on dgl

Henceforth, by model category we mean the original closed model category definition
of Quillen [31]. In the category sset of simplicial sets we consider the classical model
category structure, see for instance [4, Chap. VII], in which fibrations are Kan fibrations,
weak equivalences are homotopy weak equivalences and cofibrations are the maps that
have the lift lifting property with respect to acyclic fibrations. Recall that with this
structure sset if cofibrantly generated by the generating sets,

I = {∆̇n ↪→ ∆n}n≥0, J = {∧ni
'
↪→ ∆n}n≥0, i=0,...,n

of cofibrations and trivial cofibrations respectively.
Then, we have:
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Theorem 4.1. [10, Thm. 3.1] There is a cofibrantly generated model category structure
on dgl for which:

• A morphism f : A→ B is a fibration if it is surjective in non negative degrees.

• A morphism f : A → B is a weak equivalence if M̃C(f) : M̃C(A)
∼=→ M̃C(B) is a

bijection and fa : Aa
'→ Bf(a) is a quasi-isomorphism for every a ∈ M̃C(A).

• A morphism is a cofibration if it has the left lifting property with respect to trivial
fibrations.

• The dgl morphisms

LI = {L∆̇n ↪→ L∆n}n≥0, LJ = {L∧ni ↪→L∆n}n≥0, i=0,...,n,

are generating sets of cofibrations and trivial cofibrations respectively.

Outline of the proof. Like in the work of Bandiera [1], we use the version of the so called
Transfer Principle in [3, 2.5, 2.6] which we now recall: let C be a model category cofi-
brantly generated by the sets I and J of generating cofibrations and trivial cofibrations
respectively. Let D be a category with finite limits and small colimits, and let

C
F //

D
G
oo

be a pair of adjoint functors (upper arrow denotes left adjoint). Define a map f in D to
be a weak equivalence (resp. fibration) if G(f) is a weak equivalence (resp. fibration).
Then, the transfer principle defines a model category in D cofibrantly generated by the
families F (I ) and F (J ) provided:

(i) The sets F (I ) and F (J ) permit the small object argument.
(ii) D has a functorial fibrant replacement and a functorial path object for fibrant

objects.
We now check that this applies to the model and realization functors,

sset
L //

dgl .
〈−〉
oo

First, observe that dgl has arbitrary limits and colimits. Note also that every dgl is
fibrant so the first assertion of (ii) is trivially satisfied. For the second, recall that a path

object for A is a factorization of its diagonal A
'→ AI � A×A into a weak equivalence

followed by a fibration. In dgl a functorial path object is given by the sequence,

L �
� ' // LI = L⊗̂Λ(t, dt)

(ε0,ε1) // // L× L (1)

with |t| = 0, |dt| = −1. For (i) one observes that {L∆̇n}n≥0 and {L∧ni }n≥0, i=0,...,n satisfy
the small object argument with respect to the morphisms

LI = {L∆̇n ↪→ L∆n}n≥0, LJ = {L∧ni ↪→L∆n}n≥0, i=0,...,n.
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Hence, by the Transfer Principle, dgl inherits a model category structure for which, by
definition, a dgl morphism f : A → B is a fibration (respec. weak equivalence) if 〈f〉 is
a fibration (respec. a weak equivalence) of simplicial sets. By theorems 3.5 and 3.6 one

easily deduces that 〈f〉 is a weak equivalence if and only if M̃C(f) : M̃C(A)
∼=→ M̃C(B)

is a bijection and fa : Aa
'→ Bf(a) is a quasi-isomorphism for every a ∈ M̃C(A). On the

other hand [10, Prop. 3.5] shows that 〈f〉 is a Kan fibration if and only if f is surjective
at non negative degrees.

The main advantage of having a model structure obtained by the transfer principle
is the following:

Corollary 4.2. the realization and model functors, form a Quillen pair. In particular,
they preserve weak equivalences and induce adjoint functors in the homotopy categories,

Ho sset
L //

Ho dgl .
〈−〉
oo �

We now outline how the classical cylinder for reduced dgl’s in [34, II.5] is also a
cylinder for any free dgl in this new model category structure. Let L = (L̂(V ), ∂) a free
dgl and Let U be a copy of V . Consider the dgl,

(L̂(V ⊕ U ⊕ sU), ∂),

whose differential extends the one in L, ∂u = 0 and ∂su = 0, for any u ∈ U . A derivation
i of degree +1 is defined on this dgl by i(v) = su, i(u) = i(su) = 0. Then θ = i◦∂+∂ ◦ i
is a derivation commuting with ∂ and therefore, eθ is an automorphism. Consider graded
vector spaces V ′ and V , isomorphic to V and sV respectively, and define an isomorphism
of graded Lie algebras,

ψ : L̂(V ⊕ V ′ ⊕ V )→ L̂(V ⊕ U ⊕ sU),

by ψ(v) = v, ψ(v′) = eθ(v) and ψ(v) = su. This induces a differential D = ψ−1 ◦ ∂ ◦ ψ
on L̂(V ⊕ V ′ ⊕ V ) and, since eθ is an automorphism commuting with the differential ∂,
the sub Lie algebra L̂(V ′) is a sub dgl, isomorphic to (L̂(V ), ∂). Write

Cyl (L) = (L̂(V ⊕ V ′ ⊕ V ), D).

Then, we have:

Theorem 4.3. [10, Prop. 5.2 and Cor. 5.3] The diagram,

L
ι0 //
ι1
//Cyl (L)

p //L,

defined by ι0(v) = v, ι1(v) = v′, p(v) = p(v′) = v and p(v) = 0, is a cylinder object of L
in our model category structure. In particular, the LS-interval L∆1 is isomorphic to the
cylinder of L∆0,

L∆1
∼= Cyl L∆0 .
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For completeness, we briefly describe the definition and properties of homotopy of
dgl morphisms which, from all of the above, it follows automatically from standard facts
in homotopical algebra considering the path object, see equation (1), and the cylinder
object of a given dgl.

Definition 4.4. Two dgl morphisms f, g : L→ L′ are left homotopic, and write f
l∼ g,

if there is a morphism Φ: Cyl(L)→ L′ such that f = Φ ◦ ι0 and g = Φ ◦ ι1. We say that
f and g are right homotopic, and write f

r∼ g, if there is a morphism Ψ: L → L′I such
that f = ε0 ◦Ψ and g = ε1 ◦Ψ.

Proposition 4.5. Right homotopy is an equivalence relation while left homotopy is an
equivalence relations only on the set of dgl morphisms with cofibrant domain. Moreover,

for two such morphisms we have f
l∼ g if and only if f

r∼ g. �

Remark 4.6. In particular, it is immediate to recover the well known homotopical behav-
ior of Maurer-Cartan elements, see [12, §4] or [13, §3,4] for an excellent review. Given
z0, z1 ∈ MC(L) the following are equivalent:

(i) z0 an z1 are gauge equivalent.
(ii) There exists a dgl morphism γ : L∆n → L such that γ(a) = z0 and γ(b) = z1.
(iii) There exists Ψ ∈ MC(LI) such that MC(ε0)(Ψ) = z0 and MC(ε1)(Ψ) = z1.

We also, present an algorithm to obtain a cofibrant replacement or model of a given
dgl L. For it let M̃C(L) = {zi}. Since Lzi is concentrated in degrees ≥ 0, we can
construct quasi-isomorphisms

ϕi : (L̂(Vi), ∂i) −→ Lzi .

with V (i) = V (i)≥0 and, for degree reasons, ∂i(V (i)n) ⊂ L̂(V (i)<n). Write Z = 〈zi〉 and
V = ⊕iVi. Then, the union of the ϕi’s induces a morphism

ϕ : (L̂(Z ⊕ V ), ∂)→ L

where each zi ∈ Z is a Maurer-Cartan element and for x ∈ V (i), ∂x = ∂ix − [zi, x].
Then:

Proposition 4.7. [10, §4] ϕ is a weak equivalence and (L̂(Z ⊕ V ), ∂) is a cofibrant
replacement of L.

We end this section with the following important observation which compare our
model structure in dgl with other known model structures:

Remark 4.8. (1) One may consider in the category dgl the classical model structure given
on categories of unbounded chain complexes enriched with some algebraic structure, see
for instance [20, §2]. Fibrations are surjective morphisms, weak equivalences are quasi-
isomorphisms and cofibrations are morphisms satisfying the left lifting property with
respect to trivial fibrations.

Then, the zero map 0→ L(a), in which a is a Maurer-Cartan element, is not surjec-
tive but it is a fibration in our model structure. The same example is a quasi-isomorphism
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but it is not a weak equivalence in our structure. Contrarily, consider the abelian dgl
L generated by a single cycle of negative degree. Then, the zero map 0 → L is a weak
equivalence in our structure but it is not a quasi-isomorphism.

(2) On the other hand, in [24, Thm. 9.16], A. Lazarev and M. Markl define a model
category structure on the full subcategory of dgl formed by the profinite complete dgl’s
where:

f is a fibration if it is a surjection.

f is a weak equivalence if C ∗(f) is a quasi-isomorphism.

f is a cofibration if it has the left lifting property with respect to all trivial fibra-
tions.

Here C ∗ is a generalization of the usual cochain functor [24, §7]. In [10, Thm. 6.12] we
show that if f is a weak equivalence in this structure, it is so in our model structure.
However, this inclusion is strict: let L be the abelian Lie algebra generated by a single
cycle of degree −1. As observed in (1) the zero map f : 0 → L is a weak equivalence
in our model structure but C ∗(f) is not a quasi-isomorphism. Also, it is obvious that
the class of fibrations in the above structure is also properly contained in our class of
fibrations.

A final word

Needless to say what would be the natural continuation of the work presented in this
survey: the literature is plenty of deep results describing the non torsion behaviour of the
homotopy type of simply connected complexes, all of them using the Quillen approach
to rational homotopy theory. Is it possible to extend these results to general complexes
by means of the new framework reviewed in this paper?

On the other hand, there are deep results concerning rational invariants of “highly
non simply connected” spaces. Illustrative examples include the Mumford conjecture on
the rational cohomology ring of the moduli space of Riemann surfaces, and the rational
homological stability problem in general, and that of configuration spaces in particular.
Would it be possible to use our new machinery to attack related problems?

We finish with another general question which may attract experts in various math-
ematical subjects to this new approach to rational homotopy theory:

Let R be a local commutative algebra with maximal ideal M and let lk = R/M. Let
A be an lk-vector space endowed with some additional structure. An R-deformation of
A is another such structure in A ⊗lk R such that, modulo M, it reduces to the original
one in A. The Deligne principle asserts that, whenever lk is of characteristic zero, every
deformation functor is governed by a dgl. That is, denoting by Def(A;R) = the set of
equivalence classes of R-deformations of A, there exists a dgl L such that

Def(A;R) ∼= M̃C(L).
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In words of Kontsevich, finding the appropriate L for a given deformation functor is an
art. Nevertheless, we may consider its realization 〈L〉 and think of it as the “homotopy
moduli space” of Def(A;R). Is it then possible to translate homotopy invariants of 〈L〉
into properties related with deformation phenomena?
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