1. Consideremos en el conjunto $X = \{a, b, c, d, e\}$ la siguiente topología,

$$\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}.$$

- (a) Hallar las componentes conexas de X.
- (b) Estudiar si el subespacio $A = \{b, d, e\}$ es conexo.
- 2. Demostrar que $\prod_{i=1}^{n} X_i$ es conexo (respectivamente arcoconexo) si y sólo si lo es cada X_i , i = 1, ..., n.
- 3. Demostrar que \mathbb{R}^3-S^2 no es conexo y calcular las componentes conexas. ¿Son éstas también las componentes arcoconexas?
- 4. (a) Demostrar que S^n no es homemorfo a S^1 , $n \ge 2$.
 - (b) Demostrar que el espacio $X=\{(x,y)\in\mathbb{R}^2,\ xy=0\}$ no es homeomorfo a \mathbb{R} .
- 5. Sea $A \subset \mathbb{R}^n$ un subconjunto numerable. Demostrar que $\mathbb{R}^n A$ es arcoconexo.
- 6. (a) Sea $C \subset X$ un subespacio conexo que contiene puntos de A y de A^c . Demostrar que entonces $C \cup Fr(A) \neq \phi$.
 - (b) Demostrar que dado $n \geq 1$ toda curva en S^n que una los polos ha de cortar necesariamente al ecuador. (El *ecuador* de la esfera S^n es el subespacio formado por los puntos con última coordenada nula, que es obviamente homeomorfo a S^{n-1})
- 7. Demostrar que el espacio $X \subset \mathbb{R}^2$ dado por

$$X = \{(x, \sin \frac{1}{2}), x \in (0, 1]\} \cup \{(0, x), x \in [-1, 1]\}$$

es un espacio conexo pero no arcoconexo.

- 8. Un espacio topológico se dice que es *localmente conexos* si cada punto tiene una base de entornos conexos.
 - (a) Dar ejemplos de espacios conexos y no localmente conexos y de espacios localmente conexos y no conexos.
 - (b) Demostrar que las componentes conexas de un espacio localmente conexo son abiertas.
 - (c) Sea $f: X \to Y$ una aplicación continua con X localmente conexo. ¿Es f(X) localmente conexo?.
- 9. Demostrar que el espacio peine menos el origen (0,0) es conexo y no arcoconexo.
- 10. Demostrar que el subespacio del \mathbb{R}^2 formado por aquellos puntos con al menos una coordenada racional es arcoconexo.