\documentclass[12pt,leqno]{article}
\usepackage{amsmath}
%\usepackage{amssymb}
\usepackage{amscd}
\usepackage[psamsfonts]{amssymb}
\parindent=0cm
\begin{document}
\pagestyle{empty}
\textsc{Title:} Sturm sequences
and $\mathrm{H}_{2}$ of the
hyperbolic homomorphism
\vspace{1cm}
\textsc{Abstract:} Let $R$ be an
arbitrary ring (let's say
commutative). Let $\mathrm{GL}(R)$ and
$\mathrm{Sp}(R)$ be the ``infinite"
general linear group and symplectic
group ; let
$\mathrm{H}:\mathrm{GL}(R)\to
\mathrm{Sp}(R)$ be the
hyperbolic homomorphism. Finally
let $\mathrm{I}(R)$ be the
fundamental ideal of the Witt ring of
$R$ (the one of the theory of
non-degenerate symmetric bilinear
forms, defined here in terms of
free $R$-modules). Our aim is to show
that the homology group
$\mathrm{H}_{2}(\mathrm{H})$, group
which takes place naturally in a five
term exact sequence
$$
\begin{CD}
\mathrm{K}_{2}(R) @>>>
\mathrm{KSp}_{2}(R) @>>>
\mathrm{H}_{2}(\mathrm{H}) @>>>
\mathrm{K}_{1}(R) @>>>
\mathrm{KSp}_{1}(R)
\hspace{8pt},
\end{CD}
$$
is the fibre product of
$\mathrm{I}(R)$ and
$\mathrm{K}_{1}(R)$ over
$\mathrm{K}_{1}(R)/(1+\tau)$,
$\tau$ denoting the involution of
$\mathrm{K}_{1}(R)$ defined by matrix
transposition.
\medskip
This result is a variant of
results of R. W. Sharpe [On the
structure of the unitary Steinberg
group, \textit{Ann. of Math.},
\textbf{96} (1972), 444-479]. Our
method of proof is distantly related
to the classical theory of Sturm
sequences, hence our title.
\end{document}