
Topological Robotics

Michael Farber

Ever since the literary works of Capek and Asimov, mankind has been fas-
cinated by the idea of robots. Modern research in robotics reveals that, along
with many other branches of mathematics, topology has a fundamental role to
play in making these grand ideas a reality. This minicourse will be an intro-
duction to topological robotics – a new discipline situated on the crossroads
of topology, engineering and computer science. Currently topological robotics
has two main streams: firstly, studying pure topological problems inspired by
robotics and engineering and, secondly, applying topological ideas, topological
language, topological philosophy and developed tools of algebraic topology to
solve specific problems of engineering and computer science. In the course I will
discuss the following topics:

1. Configuration Spaces of Mechanical Linkages

Configuration spaces of linkages represent a remarkable class of closed smooth
manifolds, also known as polygon spaces. I will show how Morse theory tech-
niques can be used to compute Betti numbers of these manifolds. I will describe
solution of Walker’s conjecture - a full classification of manifolds of linkages
in terms of combinatorics of chambers and strata determined by a collection
of hyperplanes in Rn. In many applications (such as molecular biology and
statistical shape theory) the lengths of the bars of a linkage are known only ap-
proximately; this explain why one wants to study mathematical expectations of
topological invariants of varieties of linkages. I will describe some recent results
expressing asymptotic values of the average Betti numbers of polygon spaces
when the number of links n tends to infinity.

2. Topology of Robot Motion Planning

The motion planning problem of robotics leads to an interesting homotopy
invariant TC(X) of topological spaces which measures the “navigational com-
plexity” of X, viewed as the configuration space of a system. TC(X) is a purely
topological measure of how difficult it is to perform path-planning on a config-
uration space which is continuous with respect to endpoints. The computation
of this complexity provides a subtle topological problem inspired by physical
systems. I will give an account of main properties of TC(X) and will explain
how one can compute TC(X) using cohomology algebra of X and action of
cohomology operations. I will also mention certain specific motion planning
problems, for example the problem of coordinated collision free control of many
particles.
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Plan

Lectures 1 & 2. Topology of robot motion planning.

The notion of topological complexity of the motion planning

problem. The Schwartz genus.

Computations of the topological complexity in basic examples.

Motion planning in projective spaces. Relation with the immer-

sion problem for real projective spaces.

Weights of cohomology classes and cohomology operations.

Some open problems.
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Lectures 3 & 4. Configuration spaces of linkages

Linkages and their configuration spaces,

Examples,

Betti numbers of configuration spaces of linkages,

The Walker conjecture,

Isomorphism problem for monoidal rings,

Random linkages and their topological invariants.
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Lecture 5. Euler characteristics of configuration spaces
(after S. Gal).
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The ultimate goal of robotics is to create autonomous robots.

Such robots will accept high-level descriptions of tasks and will

execute them without further human intervention.

The input description will specify what should be done and the

robot decides how to do it and performs the task.
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Examples of tasks:

Clean my room!
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Drive me home!

7



Let’s play football!
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Teach me math!
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Can we talk?
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Robotics raises challenging questions in computer science and in

mathematics from which new concepts of broad usefulness are

likely to emerge.

11



What is common to robotics and topology?

Topology enters robotics through the notion of configuration

space. Any mechanical system R determines the variety of all

its possible states X which is called the configuration space of R.

Usually a state of the system is fully determined by finitely many

real parameters; in this case the configuration space X can be

viewed as a subset of the Euclidean space Rk. Each point of X

represents a state of the system and different points represent

different states. We see that the configuration spaces X comes

with the natural topology (inherited from Rk) which reflects the

technical limitations of the system.

12



Many problems of control theory can be solved knowing only the

configuration space of the system.

Peculiarities in the behavior of the system can often be explained

by topological properties of the system’s configuration space.

We will discuss this in more detail in the case of the motion

planning problem: We will see how

one may predict the character of instabilities of the behavior of

the robot knowing the cohomology algebra of its configuration

space.

If the configuration spaces of the system is known one may of-

ten forget about the system and study the configuration space

viewed with its topology and some other geometric structures.
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Example: Robot arm

Here

X = S1 × S1 × · · · × S1

(the n-dimensional torus) in the planar case and

X = S2 × S2 × · · · × S2

in the spacial case. We allow the self-intersection.
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Example: The “usual”configuration
spaces

Let Y be a topological space and let X = F (Y, n) be the subset
of the Cartesian product Y ×Y ×· · ·×Y (n times) containing the
n-tuples (y1, y2, . . . , yn) with yi 6= yj for i 6= j.

X = F (Y, n) is the configuration space of a system of n particles
moving in Y avoiding collisions.
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Motion Planning Problem

Let X denote the configuration space of a mechanical system

system. Continuous motions of the system are represented by

continuous paths γ : [0,1] → X.

Assume that X is path connected. Practically this means that

one may fully control the system and bring it to an arbitrary

state from any given state.

16



Motion Planning Algorithm:

Input: pairs (A, B) of admissible configurations of the system.

Output: a continuous motion of the system, which starts at

configuration A and ends at configuration B.
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Denote by PX the space of all continuous paths γ : [0,1] → X.

PX has a natural compact - open topology. Let

π : PX → X ×X

be the map which assigns to a path γ the pair (γ(0), γ(1)) ∈ X×X

of the initial – final configurations.

π is a fibration in the sense of Serre.
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Definition: A motion planning algorithm is a section

s : X ×X → PX

of π, i.e.

π ◦ s = 1X×X .
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Do continuous motion planning algorithms

exist?

Lemma: A continuous motion planning algorithm in X exists if

and only if X is contractible.

Proof: Let s : X × X → PX be a continuous MP algorithm.

Here for A, B ∈ X the image s(A, B) is a path starting at A and

ending at B. Fix B = B0 ∈ X. Define F (x, t) = s(x, B0)(t). Here

F : X × [0,1] → X is a continuous deformation with F (x,0) = x

and F (x,1) = B0 for any x ∈ X. This shows that X must be

contractible.
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Conversely, let X be contractible. Then there exists a deforma-

tion F : X× [0,1] → X collapsing X to a point B0 ∈ X. One may

connect any two given points A and B by the concatenation of

the path F (A, t) and the inverse path to F (B, t).

21



Conclusion: For a system with non-contractible configuration

space any motion planning algorithm must be discontinuous
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Example: Robot motion on an island.
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Example: Island with a lake.
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Questions:

1. Is it possible to “measure” the character of discontinuities

appearing in the motion planning algorithms numerically?

2. Is it possible to “minimize” discontinuities?

3. Given that discontinuities are caused by topological properties

of the configuration space (non-contractibility), which topolog-

ical or homotopical properties are “mainly responsible”for dis-

continuities? In particular, how the cohomology algebra of the

configuration space X can be used to measure the discontinuities

of MP algorithms in X?
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In these lectures we will associate with any topological space X

a numerical invariant TC(X). Roughly, TC(X) is the minimal

number of “continuous rules” which are needed to describe any

motion planning algorithm in X.

TC(X) measures the “navigational complexity of X”.
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We will show that the function

X 7→ TC(X)

has the following basic properties:

1. TC(X) is a homotopy invariant of X.

2. TC(X) = 1 if and only if X is contractible.

3. cat(X) ≤ TC(X) ≤ cat(X ×X).

4. TC(X) ≤ 2 · dim(X) + 1.
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Information about TC(X) may have some practical applications.

For example motion planning algorithms in F (R3, n) may be help-

ful in air traffic control problems.
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“Tame” Motion Planning Algorithms

Definition: A motion planning algorithm

s : X ×X → PX

is called tame if X ×X can be split into finitely many sets

X ×X = F1 ∪ F2 ∪ F3 ∪ · · · ∪ Fk

such that

1. s|Fi
: Fi → PX is continuous, i = 1, . . . , k,

2. Fi ∩ Fj = ∅, where i 6= j,

3. Each Fi is an Euclidean Neighborhood Retract (ENR).
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Definition: A topological space X is called an ENR if it can

be embedded into an Euclidean space X ⊂ Rk such that for

some open neighborhood X ⊂ U ⊂ Rk there exists a retraction

r : U → X, r|X = 1X.

All motion planning algorithms which appear in practice are

tame. The configuration space X is usually a semi-algebraic set

and the sets Fj ⊂ X ×X are given by equations and inequalities

involving real algebraic functions; thus they are semi-algebraic as

well. The functions s|Fj
: Fj → PX are real algebraic in practical

situations and hence they are continuous.
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The Topological Complexity

Definition: The topological complexity of a tame MP algorithm

is the minimal number of domains of continuity k in the repre-

sentation X ×X = F1 ∪ F2 ∪ F3 ∪ · · · ∪ Fk as above.

Definition: The topological complexity of a path-connected

topological space X is the minimal topological complexity of

motion planning algorithms in X.
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The notion of Schwartz genus.

Let p : E → B be a fibration. Its Schwartz genus is defined as

the minimal number k such that there exists an open cover

B = U1 ∪ U2 ∪ · · · ∪ Uk

with the property that over each set Uj ⊂ B there exists a con-

tinuous section sj : Uj → E of E → B.

This notion was introduced by A.S. Schwartz in 1966.

In 1987-1988 S. Smale and V.A. Vassiliev applied the notion

of Schwartz genus to study complexity of algorithms of solving

polynomial equations.
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The genus of the Serre fibration P0X → X coincides with the

Lusternik - Schnirelman category cat(X) of X. It is the minimal

number k such that X can be covered by k open subsets X =

U1∪U2∪ · · · ∪Uk with the property that each inclusion Uj → X is

null-homotopic.

For the motion planning problem we need to study a different

fibration π : PX → X ×X.

Theorem. Let X be a finite polyhedron. Then the number

TC(X) coincides with the Schwartz genus of the fibration π :

PX → X ×X.
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Thus, TC(X) is the minimal number k such that there exists an

open cover

X ×X = U1 ∪ U2 ∪ · · · ∪ Uk

where each Uj admits a continuous section sj : Uj → PX.

Note that Uj → X ×X may be not null-homotopic.

Example: take Uj to be a small neighborhood of the diagonal

X ⊂ X ×X.

We know that TC(X) = 1 if and only if X is contractible.

Lemma: One has: cat(X) ≤ TC(X) ≤ cat(X ×X).
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Proof: We shall use two general properties of the Schwartz

genus.

(1) Let B′ ⊂ B be a subset, E′ = p−1(B′). Then the genus of

E′ → B′ is less or equal than the genus of E → B.

(2) The genus of E → B is less or equal than cat(B).

Observe that π−1(X × x0) = P0X. Using the first observation

we find TC(X) ≥ cat(X).

The second observation gives TC(X) ≤ cat(X ×X).
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Theorem: The number TC(X) ia a homotopy invariant of X.
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One obtains a function

X 7→ TC(X).

Properties of TC(X)

1. TC(X) is a homotopy invariant of X.

2. TC(X) = 1 if and only if X is contractible.

3. cat(X) ≤ TC(X) ≤ cat(X ×X).

4. TC(X) ≤ 2 · dim(X) + 1.
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5. If X is r-connected then

TC(X) <
2dimX + 1

r + 1
+ 1.
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Cohomological Lower Bound for TC(X)

Let k be a field. The cohomology H∗(X;k) = H∗(X) is a graded k-algebra
with the multiplication

∪ : H∗(X)⊗H∗(X) → H∗(X)

given by the cup-product. The tensor product

H∗(X)⊗H∗(X)

is again a graded k-algebra with the multiplication

(u1 ⊗ v1) · (u2 ⊗ v2) = (−1)|v1|·|u2| u1u2 ⊗ v1v2.

The cup-product ∪ is an algebra homomorphism.

Definition The kernel of homomorphism ∪ will be called the ideal of the
zero-divisors of H∗(X). The zero-divisors-cup-length of H∗(X) is the length
of the longest nontrivial product in the ideal of the zero-divisors of H∗(X).

Theorem: TC(X) is greater than the zero-divisors-cup-length of H∗(X).
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MP Algorithms on Spheres, Graphs and Surfaces

Theorem:

TC(Sn) =

{
2, if n is odd,
3, if n is even.

Theorem: If X is a connected graph then

TC(X) =





1, if b1(X) = 0,
2, if b1(X) = 1,
3, if b1(X) > 1.
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Let Σg denote a compact orientable surface of genus g.

Then

TC(Σg) =

{
3, if g ≤ 1,
5, if g > 1.
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Rigid Body Motion

Theorem: Let SE(3) denote the special Euclidean group of all

orientation preserving isometric transformations R3 → R3 (i.e.

the group of motions of a rigid body in R3). Then

TC(SE(3)) = 4.
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Robot Arm

X =





S1 × S1 × · · · × S1 planar case,

S2 × S2 × · · · × S2 spatial case

Theorem:

TC(X) =





n + 1, planar case,

2n + 1, spatial case.
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Collision Free Motion of Many Particles

(joint work with S. Yuzvinsky)

Let X = Cn(Rm) denote the configuration space of n distinct

particles in Rm.
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Theorem: The topological complexity of motion planning in

Cn(Rm) equals

TC(Cn(R
m)) =





2n− 2, for m = 2,

2n− 1, for m = 3.
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The cohomology algebra H∗(Cn(Rm)) was described by V. Arnold,

F. Cohen and others. It has generators

Aij ∈ Hm−1(Cn(R
m)), i 6= j,

which satisfy the relations

A2
ij = 0,

Aij = (−1)mAji,

AijAjk + AjkAki + AkiAij = 0.
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Motion Planning in Projective Spaces

(joint work with S. Tabachnikov and S. Yuzvinsky)

Rotation of a line in Rn+1 - elementary problem of the topolog-

ical robotics.

X = RPn, TC(RPn) =?.
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If α < π/2 one may rotate A towards B in the plane spanned by

A and B in the direction of the acute angle. Thus one is left

with the set of pairs of orthogonal lines.
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Non-singular map

f : Rn ×Rn → Rk

is such that

(a) f(λu, µv) = λµf(u, v) for any λ, µ ∈ R, u, v ∈ Rn.

(b) f(u, v) = 0 if and only if u = 0 or v = 0.
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Remarks: 1. By the Borsuk - Ulam theorem there are no non-

singular maps with k < n.

2. Non-singular maps with k = n are given by the multiplica-

tion of real numbers, complex numbers, the quaternions and the

Cayley numbers.

3. By the famous theorem of J.F. Adams, for n 6= 1,2,4,8 there

are no non-singular maps with k = n.

4. For any n there exists a non-singular map with k = 2n− 1.
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Theorem: TC(RPn) coincides with the smallest k such that

there exists a nonsingular map

Rn+1 ×Rn+1 → Rk.

Moreover, for n 6= 1,3,7, the number TC(RPn) coincides with

the smallest k so that the projective space RPn admits an im-

mersion into Rk−1.

Adem, Gitler, James.
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Table:

n 1 2 3 4 5 6 7 8 9 10 11 12
tn 2 4 4 8 8 8 8 16 16 17 17 19

n 13 14 15 16 17 18 19 20 21 22 23
tn 23 23 23 32 32 33 33 35 39 39 39

Here tn = TC(RPn).
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Recall:

Definition. Let X be a path-connected topological space. The
number TC(X) is defined as the Schwartz genus of the fibration
π : PX → X ×X.

Properties:

1. Homotopy invariance: The number TC(X) is a homotopy
invariant of X.

2. Dimensional upper bound:

TC(X) ≤ 2dimX + 1.

Moreover, if X is r-connected then

TC(X) <
2dim(X) + 1

r + 1
+ 1.
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3. Cohomological lower bound for TC(X).

Definition:

The kernel of homomorphism

∪ : H∗(X)⊗H∗(X) → H∗(X)

will be called the ideal of the zero-divisors of H∗(X).

The zero-divisors-cup-length of H∗(X) is the length of the longest

nontrivial product in the ideal of the zero-divisors of H∗(X).

Theorem: TC(X) is greater than the zero-divisors-cup-length

of H∗(X).
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Motion planning in projective spaces

Moving (rotating) lines through the origin in the Euclidean space
Rm+1 from the initial position A to the final position B.

It is an elementary problem of the TOPOLOGICAL ROBOTICS.
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Problem: Compute TC(RPn).

The Lusternik - Schnirelmann category of the real projective

spaces is well-known:

cat(RPn) = n + 1.
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We will start with the complex case which is easier:

Lemma: TC(CPn) = 2n + 1.

More generally:

Lemma: For any simply connected symplectic manifold M one

has

TC(M) = dimM + 1.

6



Proof: Let u ∈ H2(M) be the class of the symplectic form. We

have a zero-divisor u⊗ 1− 1⊗ u satisfying

(u⊗ 1− 1⊗ u)2n = (−1)n

(
2n
n

)
un ⊗ un

where

2n = dimM.

The cohomological lower bound gives TC(M) ≥ 2n + 1.

The cohomological upper bound (using the assumption that M is

simply connected) gives the opposite inequality TC(M) ≤ 2n+1.
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Return to the problem of computing TC(RPn).

Lemma: Let X be a finite polyhedron and let P : X̃ → X be
a regular covering with the covering translation group G. Then
TC(X) is greater than or equal to the Schwartz genus of the
covering

q : X̃ ×G X̃ → X ×X.

Proof:

PX
f−→ X̃ ×G X̃

π ↘ ↙ q

X ×X

8



Corollary: The number TC(RPn) is greater than or equal to the

Schwartz genus of the two-fold covering Sn×Z2
Sn → RPn×RPn.

Reformulation:

Let ξ denote the canonical real line bundle over RPn. The exte-

rior product ξ⊗ξ is a real line bundle over the product RPn×RPn

with the first Stiefel-Whitney class

w1(ξ ⊗ ξ) = α× 1 + 1⊗ α ∈ H1(RPn ×RPn;Z2).

Here α ∈ H1(RPn;Z2) is the generator.
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Corollary C: The number TC(RPn) is not less than the smallest

k such that the Whitney sum k(ξ⊗ ξ) of k copies of ξ⊗ ξ admits

a nowhere vanishing section.

The proof uses a theorem of A.S. Schwartz claiming that the

Schwartz genus of a fibration p : E → B equals the smallest k

such that the k-fold fiberwise join p ∗ p ∗ · · · ∗ p admits a section.

In our case, the k-fold fiberwise join of the bundle Sn ×Z2
Sn →

RPn ×RPn coincides with the unit sphere bundle of k(ξ ⊗ ξ).
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We know that

n + 1 ≤ TC(RPn) ≤ 2n + 1

Theorem: If n ≥ 2r−1 then TC(RPn) ≥ 2r.

Let α ∈ H1(RPn;Z2) be the generator. The class α× 1 + 1× α

is a zero-divisor. Consider the power

(α× 1 + 1× α)2
r−1.

Assuming that 2r−1 ≤ n < 2r it contains the nonzero term
(

2r − 1
n

)
αk ⊗ αn

where k = 2r − 1 − n < n. Applying the cohomological lower

bound the result follows.
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Nonsingular maps

Definition: A continuous map

f : Rn ×Rn → Rk

is called nonsingular if:

(a) f(λu, µv) = λµf(u, v) for all u, v ∈ Rn, λ, µ ∈ R, and

(b) f(u, v) = 0 implies that either u = 0, or v = 0.

Problem: Given n find the smallest k such that there exists a

nonsingular map f : Rn ×Rn → Rk
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As an illustration let us show that for any n there exists a non-

singular map

f : Rn ×Rn → R2n−1.

Fix a sequence α1, α2, . . . , α2n−1 : Rn → R of linear functionals

such that any n of them are linearly independent. For u, v ∈ Rn

the value f(u, v) ∈ R2n−1 is defined as the vector whose j-th co-

ordinate equals the product αj(u)αj(v), where j = 1,2, . . . ,2n−1.

If u 6= 0 then at least n among the numbers α1(u), . . . , α2n−1(u)

are nonzero. Hence if u 6= 0 and v 6= 0 there exists j such that

αj(u)αj(v) 6= 0 and thus f(u, v) 6= 0 ∈ R2n−1.
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Properties:

1. For k < n there exist no nonsingular maps f : Rn ×Rn → Rk

(as follows from the Borsuk - Ulam theorem).

2. For n = 1,2,4,8 there exist nonsingular maps f : Rn ×Rn →
Rn having an additional property that for any u ∈ Rn, u 6= 0 the

first coordinate of f(u, u) is positive.

These maps use the multiplication of the real numbers, the com-

plex numbers, the quaternions, and the Cayley numbers, corre-

spondingly.

3. For n distinct from 1,2,4,8 there exist no nonsingular maps

f : Rn ×Rn → Rn (as follows from a theorem of J.F. Adams).
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Theorem: [joint work with S. Tabachnikov and S. Yuzvinsky]

The number TC(RPn) coincides with the smallest integer k such

that there exists a nonsingular map

Rn+1 ×Rn+1 → Rk.
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Lemma: Suppose that there exists a nonsingular map

Rn+1 ×Rn+1 → Rk+1

where 1 < n < k. Then there exists a nonsingular map

f : Rn+1 ×Rn+1 → Rk+1

having the following additional property: for any u ∈ Rn+1, u 6=
0, the first coordinate of f(u, u) ∈ Rk+1 is positive.

Proposition A: If there exists a nonsingular map

Rn+1 ×Rn+1 → Rk

where n + 1 < k then RPn admits a motion planner with k local

rules i.e. TC(RPn) ≤ k.
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Proof: Let Φ : Rn+1 × Rn+1 → R be a scalar continuous map
such that φ(λu, µv) = λµφ(u, v) for all u, v ∈ V and λ, µ ∈ R. Let
Uφ ⊂ RPn × RPn denote the set of all pairs (A, B) of lines in
Rn+1 such that A 6= B and φ(u, v) 6= 0 for some points u ∈ A

and v ∈ B. It is clear that Uφ is open.

There exists a continuous motion planning strategy over Uφ, i.e.
there is a continuous map s defined on Uφ with values in the
space of continuous paths in the projective space RPn such that
for any pair (A, B) ∈ Uφ the path s(A, B)(t), t ∈ [0,1], starts at A

and ends at B. One may find unit vectors u ∈ A and v ∈ B such
that φ(u, v) > 0. Such pair u, v is not unique: instead of u, v we
may take −u,−v. Note that both pairs u, v and −u,−v determine
the same orientation of the plane spanned by A, B. The desired
motion planning map s consists in rotating A toward B in this
plane, in the positive direction determined by the orientation.
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Assume now additionally that φ : Rn+1×Rn+1 → R is positive in

the following sense: for any u ∈ Rn+1, u 6= 0, one has φ(u, u) > 0.

Then instead of Uφ we may take a slightly larger set U ′φ ⊂ RPn×
RPn, which is defined as the set of all pairs of lines (A, B) in

Rn+1 such that φ(u, v) 6= 0 for some u ∈ A and v ∈ B. Now all

pairs of lines of the form (A, A) belong to U ′φ. For A 6= B the

path from A to B is defined as above (rotating A toward B in the

plane, spanned by A and B, in the positive direction determined

by the orientation), and for A = B we choose the constant path

at A. Then continuity is not violated.
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A vector-valued nonsingular map f : Rn+1 × Rn+1 → Rk deter-

mines k scalar maps φ1, . . . , φk : Rn+1 × Rn+1 → R (the coor-

dinates) and the described above neighborhoods Uφi
cover the

product RPn × RPn minus the diagonal. Since n + 1 < k we

may use Lemma above. Hence we may replace the initial non-

singular map by such an f that for any u ∈ Rn+1, u 6= 0, the

first coordinate φ1(u, u) of f(u, u) is positive. The open sets

U ′φ1
, Uφ2

, . . . , Uφk
cover RPn × RPn. We have described explicit

motion planning strategies over each of these sets. Therefore

TC(RPn) ≤ k.
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Proposition B: For n > 1, let k be an integer such that the

rank k vector bundle k(ξ⊗ ξ) over RPn×RPn admits a nowhere

vanishing section. Then there exists a nonsingular map

Rn+1 ×Rn+1 → Rk.
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We have three numbers: x, y, z where

x = TC(RPn)

y is the smallest k such that k(ξ ⊗ ξ) admits a nonzero section

z is the smallest k such that there exists a nonsingular map
Rn+1 ×Rn+1 → Rk.

We have:

x ≥ y by Corollary C

x ≤ z by Proposition A

z ≤ y by Proposition B

Hence x = y = z.
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TC(RPn) and the immersion problem

Theorem: For any n 6= 1,3,7 the number TC(RPn) equals

the smallest k such that the projective space RPn admits an

immersion into Rk−1.

The proof uses the previous result and the following theorem of

J. Adem, S. Gitler and I.M. James:

Theorem: There exists an immersion RPn → Rk (where k > n)

if and only if there exists a nonsingular map Rn+1 × Rn+1 →
Rk+1.
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The proof of the next theorem provides a direct construction,

starting from an immersion RPn → Rk, of a motion planning

algorithm.

Theorem: Suppose that the projective space RPn can be im-

mersed into Rk. Then TC(RPn) ≤ k + 1.

Proof: Imagine RPn being immersed into Rk. Fix a frame in

Rk and extend it, by parallel translation, to a continuous field of

frames. Projecting orthogonally onto RPn, we find k continuous

tangent vector fields v1, v2, . . . , vk on RPn such that the vectors

vi(p) (where i = 1,2, . . . , k) span the tangent space Tp(RPn) for

any p ∈ RPn.
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A nonzero tangent vector v to the projective space RPn at a

point A (which we understand as a line in Rn+1) determines a

line v̂ in Rn+1, which is orthogonal to A, i.e. v̂ ⊥ A. The vector

v also determines an orientation of the two-dimensional plane

spanned by the lines A and v̂.
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For i = 1,2, . . . , k let Ui ⊂ RPn × RPn denote the open set of

all pairs of lines (A, B) in Rn+1 such that the vector vi(A) is

nonzero and the line B makes an acute angle with the line v̂i(A).

Let U0 ⊂ RPn × RPn denote the set of pairs of lines (A, B) in

Rn+1 making an acute angle.
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The sets U0, U1, . . . , Uk cover RPn × RPn. Indeed, given a pair

(A, B), there exist indices 1 ≤ i1 < · · · < in ≤ k such that the vec-

tors vir(A), where r = 1, . . . , n, span the tangent space TA(RPn).

Then the lines

A, v̂i1(A), . . . , v̂in(A)

span the Euclidean space Rn+1 and therefore the line B makes

an acute angle with one of these lines. Hence, (A, B) belongs to

one of the sets U0, Ui1, . . . , Uik.
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Now we may describe a continuous motion planning strategy

over each set Ui, where i = 0,1, . . . , k. First define it over U0.

Given a pair (A, B) ∈ U0, rotate A towards B with constant

velocity in the two-dimensional plane spanned by A and B so

that A sweeps the acute angle. This clearly defines a continuous

motion planning section s0 : U0 → P (RPn). The continuous

motion planning strategy si : Ui → P (RPn), where i = 1,2, . . . , k,

is a composition of two motions: first we rotate line A toward

the line v̂i(A) in the in the 2-dimensional plane spanned by A and

v̂i(A) in the direction determined by the orientation of this plane

(see above). On the second step rotate the line v̂i(A) towards

B along the acute angle similarly to the action of s0.

27



Some corollaries

Corollary: The number TC(RPn) equals the Schwartz genus of

the two-fold covering Sn ×Z2
Sn → RPn ×RPn. It also coincides

with the smallest k such that the vector bundle k(ξ ⊗ ξ) over

RPn ×RPn admits a nowhere zero section.
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R. J. Milgram constructed, for any odd n, a nonsingular map

Rn+1 ×Rn+1 → R2n+1−α(n)−k(n).

Here α(n) denotes the number of ones in the dyadic expansion

of n, and k(n) is a non-negative function depending only on the

mod (8) residue class of n with k(1) = 0, k(3) = k(5) = 1 and

k(7) = 4.

Corollary: For any odd n one has

TC(RPn) ≤ 2n + 1− α(n)− k(n).
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Table

n 1 2 3 4 5 6 7 8 9 10 11 12

TC(RPn) 2 4 4 8 8 8 8 16 16 17 17 19

n 13 14 15 16 17 18 19 20 21 22 23

TC(RPn) 23 23 23 32 32 33 33 35 39 39 39
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Some references for these lectures

1. M. Farber, Topological complexity of motion planning, Discrete and
Computational Geometry, 29(2003), 211 - 221

2. M. Farber, Instabilities of robot motion, Topology and its Applications,
40(2004), 245-266.

3. M. Farber, S. Yuzvinsky, ”Topological Robotics: Subspace Arrangements
and Collision Free Motion Planning”, to appear in AMS volume dedicated
to S.P.Novikov’s 65th birthday.

4. M. Farber, S. Tabachnikov, S. Yuzvinsky, Topological Robotics: Mo-
tion Planning in Projective Spaces, International Mathematical Research
Notices 34(2003), 1853-1870..

5. M. Farber, Collision free motion planning on graphs. To appear in
Proceeding of WAFR 2004 (Workshop on Algorithmic Foundations of
Robotics)

These papers are available from the xxx.lanl.gov archive.
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W. Thurston – J. Weeks (1986),

K. Walker (1985),

J.-Cl. Hausmann (1986),

M. Kapovich – J. Millson (1995),

A.A. Klyachko (1994).
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Linkage

l

l

l

l

l

1

2

34

5

A planar linkage is a mechanism consisting of n bars of fixed

lengths l1, . . . , ln connected by revolving joints forming a closed

polygonal chain. The positions of two adjacent vertices are fixed

but the other vertices are free to move so that angles between

the bars change but the lengths of the bars remain fixed and the

links are not disconnected from each other.
4



Configuration space of a planar linkage

M` = {(u1, . . . , un) ∈ S1 × · · · × S1;
n∑

i=1

liui = 0, un = −e1}.

Here

` = (l1, l2, . . . , ln) ∈ Rn
+

is the length vector of the linkage. M` is the variety of all possible

states of the mechanism.

5



Polygon spaces

Another point of view:

M` = {(u1, . . . , un) ∈ S1 × · · · × S1;
n∑

i=1

liui = 0}/SO(2).

It is the variety of shapes of planar n-gons with sides of length
l1, . . . , ln viewed up to orientation preserving isometries of the
plane.

The sides of our n-gons are labelled and oriented.
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Similarly one studies varieties of polygonal shapes in R3. They

are defined as follows:

N` = {(u1, . . . , un) ∈ S2 × · · · × S2;
n∑

i=1

liui = 0}/SO(3).

l
l

l

l

l

l
1

4

5
6

2

3
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In this talk I discuss topology of manifolds N` and M` and de-

pendance on the length vector ` = (l1, . . . , ln).

One knows that:

M` is a compact manifold of dimension n−3 (with finitely many

singularities, if the length vector ` is not generic).

N` is a compact manifold of dimension 2(n − 3) (with finitely

many singularities, if the length vector ` is not generic).
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M` and N` are empty if and only if certain number li is greater

than the sum of all numbers lj with j 6= i.
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How do M` and N` depend on ` ∈ Rn?

We shall see below that for n = 9 one obtains, by varying `,

exactly 175428 distinct closed smooth manifolds N`.
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Examples:

(1) Let ` = (4,3,3,1). Then M` = S1 t S1.

(2) Let ` = (3,2,1,1). Then M` = S1.
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In the cases ` = (2,2,1,1) the moduli space M` is:

14



In the cases ` = (1,1,1,1) the moduli space M` is:

15



The spaces N` also appear as spaces of semi-stable configura-

tions of n weighted points on S2.

A configuration is a sequence of points u1, . . . , un ∈ S2 with the

weight li > 0 attached to each point ui. A configuration is semi-

stable if

2 ·
∑

ui=v
li ≤ l1 + · · ·+ ln

for all v ∈ S2. A semi-stable configuration is said to be a nice

semi-stable configuration if it is either stable or its PSL(2,C)-

orbit is closed in Msst (the variety of all semi-stable configura-

tions).
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Theorem: [A.A. Klyachko, M. Kapovich - J. Millson]

There is a (complex-analytic) equivalence

N` → Mnsst/PSL(2,C).

Here Mnsst denotes the variety of all nice semi-stable configura-

tions.
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Spaces M` and N` play an important role in a number of appli-

cations:

• Topological robotics

• Molecular biology

• Statistical shape theory, see

D.G. Kendall, D. Barden, T.K. Carne and H. Le, Shape and

Shape Theory, 1999.
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A few general facts

Fact 1: M` = Mt` and N` = Nt` for t > 0.

In other words, only relative sizes are important.
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Fact 2: If σ : {1, . . . , n} → {1, . . . , n} is a permutation then

M` = Mσ(`)

and

N` = Nσ(`).

In other words, the order of the numbers l1, . . . , ln is irrelevant.
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For any subset J ⊂ {1, . . . , n} denote by HJ ⊂ Rn the hyperplane
∑

i∈J

li =
∑

i/∈J

li.

Let A ⊂ Rn be the unit simplex of dimension n−1 given by li ≤ 0

and
∑

li = 1. One obtains a filtration

A(0) ⊂ A(1) ⊂ · · · ⊂ A(n−1) = A

where A(i) denotes the set of vectors of A lying in ≥ n − 1 − i

linearly independent hyperplanes HJ.

A connected component of A(k) −A(k−1) is called a stratum.

Fact 3: If `, `′ ∈ A lie in the same stratum then M` is diffeomor-

phic to M`′ and N` is diffeomorphic to N`′.
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Strata of dimension n− 1 are called chambers.

Fact 4: M` and N` are smooth manifolds without singularities

for ` ∈ A lying in a chamber.

Such length vectors ` are called generic.

` is generic iff M` and N` admit no lined configurations:
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Simplex A ⊂ Rn and hyperplanes HJ.
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Poincaré Polynomial of N`.

Theorem (Klyachko,1994): For a generic length vector ` the
Poincaré polynomial of N` equals

P (t) =
1

t2(t2 − 1)


(1 + t2)n−1 −

∑

J∈S(`)

t2|J |



Here S(`) denotes the set of all short subsets of {1, . . . , n} with
respect to `.

A subset J ⊂ {1,2, . . . , n} is called short if
∑

i∈J

li <
∑

i/∈J

li.
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A. Klyachko used a remarkable symplectic structure on the mod-

uli space of linkages in R3 in an essential way. His technique is

based on properties of Hamiltonian circle actions (the perfect-

ness of the Hamiltonian viewed as a Morse function).

The moduli spaces of planar linkages M` do not carry symplectic

structures in general. Therefore methods of symplectic topology

are not applicable in this problem.
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Betti numbers of M`.

Betti numbers of planar polygon spaces were found in my joint

work with Dirk Schuetz (2006).

To state our main theorem we need the following definitions.

26



Recall that a subset J ⊂ {1, . . . , n} is called short if
∑

i∈J

li <
∑

i/∈J

li.

The complement of a short subset is called long.

A subset J ⊂ {1, . . . , n} is called median if
∑

i∈J

li =
∑

i/∈J

li.

Clearly, median subsets exist only if the length vector ` is not

generic.
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Theorem: Fix a link of the maximal length li, i.e. such that

li ≥ lj for any j = 1,2, . . . , n. For every k = 0,1, . . . , n− 3 denote

by ak and bk correspondingly the number of short and median

subsets of {1, . . . , n} of cardinality k + 1 containing i. Then the

homology group Hk(M`;Z) is free abelian of rank

ak + bk + an−3−k,

for any k = 0,1, . . . , n− 3.
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Example:

Suppose that ` = (2,2,1,1,1), n = 5. Fix 1 as the label of the
longest link. Then the short subsets containing 1 are

{1}, {1,3}, {1,4}, {1,5}.

We obtain that a0 = 1, a1 = 3 and all other ai and bi vanish.

Then applying the Theorem we find:

b0(M`) = b2(M`) = 1, b1(M`) = 6.

We conclude that M` is an orientable surface of genus 3.
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Example:

Suppose that ` = (1,1,1,1,1), n = 5. Fix 1 as the label of the

longest link. Then the short subsets containing 1 are

{1}, {1,2}, {1,3}, {1,4}, {1,5}.
We obtain that a0 = 1, a1 = 4 and all other ai and bi vanish.

Then applying the Theorem we find:

b0(M`) = b2(M`) = 1, b1(M`) = 8.

We conclude that M` is an orientable surface of genus 4.
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Morse theory on manifolds with involutions

Our main tool in computing the Betti numbers of the moduli

space of planar polygons M` is Morse theory of manifolds with

involution.

Theorem: Let M be a smooth compact manifold with boundary.

Assume that M is equipped with a Morse function f : M → [0,1]

and with a smooth involution τ : M → M satisfying the following

properties:
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1. f is τ-invariant, i.e. f(τx) = f(x) for any x ∈ M ;

2. The critical points of f coincide with the fixed points of the

involution;

3. f−1(1) = ∂M and 1 ∈ [0,1] is a regular value of f .

Then each homology group Hi(M ;Z) is free abelian of rank equal

the number of critical points of f having Morse index i. More-

over, the induced map

τ∗ : Hi(M ;Z) → Hi(M ;Z)

coincides with multiplication by (−1)i for any i.
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As an illustration consider a surface is R3 which is symmetric

with respect to the z-axis. The function f is the orthogonal

projection onto the z-axis, the involution τ : M → M is given by

τ(x, y, z) = (−x,−y, z).

The critical points of f are exactly the intersection points of M

with the z-axis.
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Theorem: Let M be a smooth compact connected manifold

with boundary. Suppose that M is equipped with a Morse func-

tion f : M → [0,1] and with a smooth involution τ : M → M

satisfying the properties of the previous Theorem. Assume that

for any critical point p ∈ M of the function f we are given a

smooth closed connected submanifold

Xp ⊂ M

with the following properties:
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1. Xp is τ-invariant, i.e. τ(Xp) = Xp;

2. p ∈ Xp and for any x ∈ Xp − {p}, one has f(x) < f(p);

3. the function f |Xp is Morse and the critical points of the re-

striction f |Xp coincide with the fixed points of τ lying in Xp.

In particular, dimXp = ind(p).

4. For any fixed point q ∈ Xp of τ the Morse indexes of f and

of f |Xp at q coincide.
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Then each submanifold Xp is orientable and the set of homology

classes realized by {Xp}p∈Fix(τ) forms a free basis of the integral

homology group H∗(M ;Z). In other words, we claim that the

inclusion induces an isomorphism
⊕

ind(p)=i

Hi(Xp;Z) → Hi(M ;Z) (1)

for any i.
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Polygon spaces

In this talk we discuss planar polygon spaces

M` = {(u1, . . . , un) ∈ S1 × · · · × S1;
n∑

i=1

liui = 0}/SO(2).

and polygon spaces in R3:

N` = {(u1, . . . , un) ∈ S2 × · · · × S2;
n∑

i=1

liui = 0}/SO(3).

These are varieties of shapes of n-gons with sides of length

l1, . . . , ln viewed up to orientation preserving isometries.
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The sides of our n-gons are labelled and oriented.
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One knows that:

M` is a compact manifold of dimension n−3 (with finitely many

singularities, if the length vector ` is not generic).

N` is a compact manifold of dimension 2(n − 3) (with finitely

many singularities, if the length vector ` is not generic).
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Fact 1: M` = Mt` and N` = Nt` for t > 0.

Fact 2: If σ : {1, . . . , n} → {1, . . . , n} is a permutation then

M` = Mσ(`)

and

N` = Nσ(`).
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For any subset J ⊂ {1, . . . , n} denote by HJ ⊂ Rn the hyperplane
∑

i∈J

li =
∑

i/∈J

li.

Let A ⊂ Rn be the unit simplex of dimension n−1 given by li ≤ 0

and
∑

li = 1.

The connected components of

A−
⋃

J

HJ

are called chambers.

Fact 3: If `, `′ ∈ A lie in the same chamber then M` is diffeo-

morphic to M`′ and N` is diffeomorphic to N`′.
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Fact 4: M` and N` are smooth manifolds without singularities

for ` ∈ A lying in a chamber.

Such length vectors ` are called generic.

` is generic iff M` and N` admit no lined configurations:
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Betti numbers of M`.

Betti numbers of planar polygon spaces were found in my joint

work with Dirk Schuetz (2006).

To state our main theorem we need the following definitions.
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Recall that a subset J ⊂ {1, . . . , n} is called short if
∑

i∈J

li <
∑

i/∈J

li.

The complement of a short subset is called long.

A subset J ⊂ {1, . . . , n} is called median if
∑

i∈J

li =
∑

i/∈J

li.

Clearly, median subsets exist only if the length vector ` is not

generic.
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Theorem: Fix a link of the maximal length li, i.e. such that

li ≥ lj for any j = 1,2, . . . , n. For every k = 0,1, . . . , n− 3 denote

by ak and bk correspondingly the number of short and median

subsets of {1, . . . , n} of cardinality k + 1 containing i. Then the

homology group Hk(M`;Z) is free abelian of rank

ak + bk + an−3−k,

for any k = 0,1, . . . , n− 3.
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Morse theory on manifolds with involutions

Our main tool in computing the Betti numbers of the moduli

space of planar polygons M` is Morse theory of manifolds with

involution.

Theorem: Let M be a smooth compact manifold with boundary.

Assume that M is equipped with a Morse function f : M → [0,1]

and with a smooth involution τ : M → M satisfying the following

properties:
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1. f is τ-invariant, i.e. f(τx) = f(x) for any x ∈ M ;

2. The critical points of f coincide with the fixed points of the

involution;

3. f−1(1) = ∂M and 1 ∈ [0,1] is a regular value of f .

Then each homology group Hi(M ;Z) is free abelian of rank equal

the number of critical points of f having Morse index i. More-

over, the induced map

τ∗ : Hi(M ;Z) → Hi(M ;Z)

coincides with multiplication by (−1)i for any i.

13



As an illustration consider a surface is R3 which is symmetric

with respect to the z-axis. The function f is the orthogonal

projection onto the z-axis, the involution τ : M → M is given by

τ(x, y, z) = (−x,−y, z).

The critical points of f are exactly the intersection points of M

with the z-axis.
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Theorem: Let M be a smooth compact connected manifold

with boundary. Suppose that M is equipped with a Morse func-

tion f : M → [0,1] and with a smooth involution τ : M → M

satisfying the properties of the previous Theorem. Assume that

for any critical point p ∈ M of the function f we are given a

smooth closed connected submanifold

Xp ⊂ M

with the following properties:
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1. Xp is τ-invariant, i.e. τ(Xp) = Xp;

2. p ∈ Xp and for any x ∈ Xp − {p}, one has f(x) < f(p);

3. the function f |Xp is Morse and the critical points of the re-

striction f |Xp coincide with the fixed points of τ lying in Xp.

In particular, dimXp = ind(p).

4. For any fixed point q ∈ Xp of τ the Morse indexes of f and

of f |Xp at q coincide.
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Then each submanifold Xp is orientable and the set of homology

classes realized by {Xp}p∈Fix(τ) forms a free basis of the integral

homology group H∗(M ;Z). In other words, we claim that the

inclusion induces an isomorphism
⊕

ind(p)=i

Hi(Xp;Z) → Hi(M ;Z) (1)

for any i.
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The robot arm distance map

A robot arm is a simple mechanism consisting of n bars (links) of
fixed length (l1, . . . , ln) connected by revolving joints. The initial
point of the robot arm is fixed on the plane.

The moduli space of a robot arm (i.e. the space of its possible
shapes) is

W = {(u1, . . . , un) ∈ S1 × · · · × S1}/SO(2). (2)
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Clearly, W is diffeomorphic to a torus Tn−1 of dimension n − 1.

A diffeomorphism can be specified, for example, by assigning to a

configuration (u1, . . . , un) the point (1, u2u−1
1 , u3u−1

1 , . . . , un−1u−1
1 ) ∈

Tn−1 (measuring angles between the directions of the first and

the other links).

Consider the moduli space of polygons M` (where ` = (l1, . . . , ln))

which is naturally embedded into W .

We define a function on W as follows:

f` : W → R, f`(u1, . . . , un) = −
∣∣∣∣∣∣

n∑

i=1

liui

∣∣∣∣∣∣

2

. (3)
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Geometrically the value of f` equals the negative of the squared

distance between the initial point of the robot arm to the end

of the arm shown by the dotted line on Figure above. Note that

the maximum of f` is achieved on the moduli space of planar

linkages M` ⊂ W .
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An important role play the collinear configurations, i.e. such that

ui = ±uj for all i, j, see Figure. We will label such configurations

by long and median subsets J ⊂ {1, . . . , n} assigning to any such

subset J the configuration pJ ∈ W given by pJ = (u1, . . . , un)

where ui = 1 for i ∈ J and ui = −1 for i /∈ J. Note that pJ lies in

M` ⊂ W if and only if the subset J is median.

Lemma: The critical points of f` : W → R lying in W − M`

are exactly the collinear configurations pJ corresponding to long

subsets J ⊂ {1,2, . . . , n}. Each pJ, viewed as a critical point of

f`, is nondegenerate in the sense of Morse and its Morse index

equals n− |J |.
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The Involution

Consider the moduli space W of the robot arm with the function

f` : W → R. There is an involution

τ : W → W

given by

τ(u1, . . . , un) = (ū1, . . . , ūn).

Here the bar denotes complex conjugation, i.e. the reflection

with respect to the real axis. It is obvious that formula (??) maps

SO(2)-orbits into SO(2)-orbits and hence defines an involution

on W . The fixed points of τ are the collinear configurations of

the robot arm, i.e. the critical points of f` in W −M`.
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Our plan it to apply Theorems mentioned earlier to the sublevel

sets

W a = f−1
` (−∞, a]

of f`. Recall that the values of f` are nonpositive and the max-

imum is achieved on the submanifold M` ⊂ W . From Lemma

we know that the critical points of f` are the collinear configu-

rations pJ. The latter are labelled by long subsets J ⊂ {1, . . . , n}
and pJ = (u1, . . . , un) where ui = 1 for i ∈ J and ui = −1 for

i /∈ J. One has

f`(pJ) = −(LJ)
2.

Here LJ =
∑n

i=1 liui with pJ = (u1, . . . , un).
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The number a will be chosen so that

−(LJ)
2 < a < 0

for any long subset J such that the manifold W a contains all the

critical points pJ.

24



For each subset J ⊂ {1, . . . , n} we denote by `J the length vector

obtained from ` = (l1, . . . , ln) by integrating all links li with i ∈
J into one link. For example, if J = {1,2} then `J = (l1 +

l2, l3, . . . , ln). We denote by WJ the moduli space of the robot arm

with the length vector `J. It is obvious that WJ is diffeomorphic

to a torus Tn−|J |. We view WJ as being naturally embedded into

W . Note that the submanifold WJ ⊂ W is disjoint from M` (in

other words, WJ contains no closed configurations) if and only

if the subset J ⊂ {1, . . . , n} is long.
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Lemma: Let J ⊂ {1, . . . , } be a long subset. The submanifold
WJ ⊂ W has the following properties:

1. WJ is invariant with respect to the involution τ : W → W ;

2. the restriction of f` onto WJ is a Morse function having as
its critical points the collinear configurations pI where I runs
over all subsets I ⊂ {1, . . . , n} containing J.

3. for any such pI the Morse indexes of f` and of f`|WJ
at pI

coincide.

4. in particular, f |WJ
achieves its maximum at pJ ∈ WJ.
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Corollary: One has:

1. If a is as above, then the manifold W a contains all submani-

folds WJ where J ⊂ {1, . . . , n} is an arbitrary long subset.

2. The homology classes of the submanifolds WJ form a free

basis of the integral homology group H∗(W a;Z).
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The Walker conjecture

In 1985 Kevin Walker in his study of topology of polygon spaces

raised an interesting conjecture in the spirit of the well-known

question “Can you hear the shape of a drum?” of Marc Kac.

Roughly, Walker’s conjecture asks if one can recover relative

lengths of the bars of a linkage from intrinsic algebraic properties

of the cohomology algebra of its configuration space.
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Walker’s conjecture: Let `, `′ ∈ A be two generic length vectors;

if the corresponding polygon spaces M` and M`′ have isomorphic

graded integral cohomology rings then for some permutation

σ : {1, . . . , n} → {1, . . . , n} the length vectors ` and σ(`′) lie in the

same chamber of A.
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The results mentioned below are joint with J.-Cl. Hausmann and
D. Schütz.

A length vector ` = (l1, . . . , ln) is called ordered if l1 ≤ l2 ≤ · · · ≤
ln.

Theorem 1:

Suppose that two generic ordered length vectors `, `′ ∈ A are
such that that there exists a graded algebra isomorphism

f : H∗(N`;Z2) → H∗(N`′;Z2).

If n 6= 4 then ` and `′ lie in the same chamber of A.

This statement is false for n = 4.

Here Z2 can be replaced by Z.
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Involution

The spaces M` come with a natural involution

τ : M` → M`, τ(u1, . . . , un) = (ū1, . . . , ūn)

induced by the complex conjugation. Geometrically, this invo-

lution maps a polygonal shape to the shape of the reflected

polygon.
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Notation

M̄` = M`/τ.

Theorem 2:

Suppose that two generic ordered length vectors `, `′ ∈ A are

such that that there exists a graded algebra isomorphism

f : H∗(M̄`;Z2) → H∗(M̄`′;Z2).

If n 6= 4 then ` and `′ lie in the same chamber of A.

This statement is false for n = 4.
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The induced involution on cohomology with integral coefficients

τ∗ : H∗(M`) → H∗(M`)

satisfies

τ∗ ◦ τ∗ = 1, τ∗(u · v) = τ∗(u) · τ∗(v).

Fact 5: If `, `′ lie in the same stratum then M` and M`′ are

Z2-equivariantly homeomorphic.
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Theorem 3:

Assume that `, `′ ∈ A are ordered and there exists a graded alge-

bra isomorphism

f : H∗(M`) → H∗(M`′)

commuting with τ∗. Then ` and `′ lie in the same stratum of A.

In Theorem 3 the length vectors are not assumed to be generic,

and thus the corresponding configurations spaces M` and M`′
may have singularities.
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Normal length vectors

Let ` = (l1, . . . , ln) be a length vector.

A subset J ⊂ {1, . . . , n} is called long with respect to ` if
∑

i∈J

li >
∑

i/∈J

li.

The complement of a long subset is called short.

A subset J is called median with respect to ` if
∑

i∈J

li =
∑

i/∈J

li.
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Definition: The length vector ` is called normal if the intersec-

tion of all long subsets (wrt `) of cardinality 3 is not empty.

If 0 < l1 ≤ l2 ≤ · · · ≤ ln then ` is normal if and only is the subset

J = {n− 3, n− 2, n− 1} ⊂ {1, . . . , n} is short.

For large n “most”length vectors are normal; more precisely, the

relative volume of non-normal length vectors satisfies

<
n6

2n
,

i.e. it is exponentially small for large n.
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Theorem 4:

Suppose that `, `′ ∈ A are such that there exists a graded algebra

isomorphism

f : H∗(M`) → H∗(M`′).

If ` is normal then `′ is normal as well and for some permutation

σ : {1, . . . , n} → {1, . . . , n}
the length vectors ` and σ(`′) lie in the same stratum of A.

Here again ` and `′ may be not generic.

In this theorem we do not require that isomorphism f commutes

with the involution τ∗.
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Consider the action of the symmetric group Σn on the simplex

An−1 induced by permutations of vertices. This action defines

an action of Σn on the set of strata and we denote by cn and by

c∗n the number of distinct Σn-orbits of chambers (or chambers

consisting of normal length vectors, respectively).

38



Theorem 5:

(a) For n 6= 4 the number of distinct diffeomorphism types of

manifolds N`, where ` runs over all generic vectors of An−1,

equals cn;

(b) for n 6= 4 the number of distinct diffeomorphism types of

manifolds M̄`, where ` runs over all generic vectors of An−1,

equals cn;
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(c) the number xn of distinct diffeomorphism types of manifolds

M`, where ` runs over all generic vectors of An−1, satisfies

c∗n ≤ xn ≤ cn.

(d) the number of distinct diffeomorphism types of manifolds

with singularities M`, where ` varies in An−1, is bounded above

by the number of distinct Σn-orbits of strata of An−1 and is

bounded below by the number of distinct Σn-orbits of normal

strata of An−1.

Statements (a), (b), (c), (d) remain true if one replaces the

words “diffeomorphism types” by “homeomorphism types” or

by “homotopy types”.
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It is an interesting combinatorial problem to find explicit formulae

for the numbers cn and c∗n and to understand their behavior for

large n . For n ≤ 9, the numbers cn have been determined by

J.-C. Hausmann and E. Rodriguez. The following table gives the

values cn and c∗n for n ≤ 9:

n 3 4 5 6 7 8 9

cn 2 3 7 21 135 2470 175428

c∗n 1 1 2 7 65 1700 151317
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Cohomology classes Xi.

Let ` = (l1, . . . , ln) be a length vector. Consider M` as

M` = {(u1, . . . , un);
n∑

i=1

liui = 0, un = −e1} ⊂ Tn−1

Let

φi : M` → S1

be projection on the i-th coordinate, i = 1, . . . , n− 1. Clearly, φi

measures the angle between the i-th link and the n-th link.

Denote

Xi = φ∗i [S1] ∈ H1(M`), i = 1, . . . , n− 1.

The classes Xi generate “half”of the cohomology algebra H∗(M`).
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The balanced subalgebra

Definition: An integral cohomology class u ∈ Hi(M`) will be

called balanced if

τ∗(u) = (−1)deguu.

The product of balanced cohomology classes is balanced. The

set of all balanced cohomology classes forms a graded subalgebra

B∗` ⊂ H∗(M`).

Example: Since τ∗(Xi) = −Xi the subalgebra generated by the

classes Xi is contained in B∗` .
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Theorem A: Assume that ` = (l1, . . . , ln) is ordered and the
single element subset {n} is short. Then the balanced subalgebra
B∗` , viewed as a graded skew-commutative ring, is generated by
the classes X1, . . . , Xn−1 ∈ H1(M`) and is isomorphic to the factor
ring

E(X1, . . . , Xn−1)/I

where E(X1, . . . , Xn−1) denotes the exterior algebra having de-
gree one generators X1, . . . , Xn−1 and I ⊂ E(X1, . . . , Xn−1) de-
notes the ideal generated by the monomials

Xr1Xr2 . . . Xri,

one for each sequence 1 ≤ r1 < r2 < r3 < · · · < ri < n such that
the subset

{r1, . . . , ri} ∪ {n} ⊂ {1, . . . , n}
is long.
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Poincaré duality defect

If the length vector ` = (l1, . . . , ln) is not generic then the space

M` has finitely many singular points.

Denote by

Ki
` ⊂ Hi(M`)

the set of all cohomology classes u ∈ Hi(M`) such that

uw = 0 for any w ∈ Hn−3−i(M`).

It is obvious that K∗
` = ⊕Ki

` is an ideal in H∗(M`).
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Theorem B: Suppose that ` = (l1, l2, . . . , ln) is such that 0 <

l1 ≤ l2 ≤ · · · ≤ ln and H0(M`) = Hn−3(M`) = Z. Then one has

K∗
` ⊂ B∗` ,

i.e. all cohomology classes in K∗
` are balanced. Moreover, Ki

`

viewed as a free abelian group, has a free basis given by the

monomials of the form

Xr1Xr2 . . . Xri

where 1 ≤ r1 < r2 < · · · < ri < n are such that the subset

{r1, r2, . . . , ri, n} ⊂ {1, . . . , n}
is median with respect to `.
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Isomorphism problem for commutative monoidal rings

Next we state an algebraic theorem of J. Gubeladze playing a

key role in the proof of our main results.

Let R be a commutative ring. Consider the ring R[X1, . . . , Xm]

of polynomials in variables X1, . . . , Xm with coefficients in R. A

monomial ideal I ⊂ R[X1, . . . , Xm] is an ideal generated by a set

of monomials X
a1
1 . . . Xam

m where ai ∈ Z, ai ≥ 0. The factor-ring

R[X1, . . . , Xm]/I is called a discrete Hodge algebra.
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One may view the variables X1, . . . , Xm as elements of the dis-

crete Hodge algebra R[X1, . . . , Xm]/I. The main question is

whether it is possible to recover the relations X
a1
1 . . . Xam

m = 0

in R[X1, . . . , Xm]/I using only intrinsic algebraic properties of the

Hodge algebra. This question is known as the isomorphism prob-

lem for commutative monoidal rings, it was solved by J. Gube-

ladze in 1998:
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Theorem of Gubeladze: Let R be a commutative ring and

{X1, . . . , Xm}, {Y1, . . . , Ym′} be two collections of variables. As-

sume that I ⊂ R[X1, . . . , Xm] and I ′ ⊂ R[Y1, . . . , Ym′] are two

monomial ideals such that I∩{X1, . . . , Xm} = ∅ and I ′∩{Y1, . . . , Ym′} =

∅ and factor-rings

R[X1, . . . , Xm]/I ' R[Y1, . . . , Ym′]/I ′

are isomorphic as R-algebras. Then m = m′ and there exists a

bijective mapping

Θ : {X1, . . . , Xm} → {Y1, . . . , Ym}
transforming I into I ′.
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Structure of the proof of Theorem 3

H∗(M`)
f→ H∗(M`′)

↑ ↑
B∗`

f→ B∗`′
↑ ↑

K∗
`

f→ K∗
`′
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One observes that

Z2 ⊗B∗` = Z2[X1, . . . , Xn−1]/L

and

Z2 ⊗ (B∗` /K∗
` ) = Z2[X1, . . . , Xn−1]/L̃

are discrete Hodge algebras where L (resp. L̃) is the monomial
ideal generated by the squares X2

r (for each r = 1, . . . , n−1) and
by the monomials Xr1Xr2 . . . Xrp for each sequence 1 ≤ r1 < · · · <
rp < n such that the subset

{r1, . . . , rp} ∪ {n} ⊂ {1, . . . , n}
is long (median or long, respectively) with respect to `.
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Lectures 5

Plan:

1. Topology of Random Linkages Linkages.

2. Euler characteristics of configuration spaces (after S.R. Gal,

Colloq. Math. 89(2001), 61 - 67).
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Polygon spaces

In the previous lectures we discussed planar polygon spaces

M` = {(u1, . . . , un) ∈ S1 × · · · × S1;
n∑

i=1

liui = 0}/SO(2).

and polygon spaces in R3:

N` = {(u1, . . . , un) ∈ S2 × · · · × S2;
n∑

i=1

liui = 0}/SO(3).

These are varieties of shapes of n-gons with sides of length

l1, . . . , ln viewed up to orientation preserving isometries.
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The sides of our n-gons are labelled and oriented.
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One knows that:

M` is a compact manifold of dimension n−3 (with finitely many

singularities, if the length vector ` is not generic).

N` is a compact manifold of dimension 2(n − 3) (with finitely

many singularities, if the length vector ` is not generic).

The manifolds M` and N` depend on the length vector ` in an

essential way.

In particular, we know that there are as many different diffeomor-

phism types of manifolds N` as there are Σn-orbits of chambers

in the unit simplex ∆n−1. (It is a consequence of the solution of

Walker’s conjecture).
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Random linkages

In many practical situations the bar lengths l1, . . . , ln are not

known.

It is very unlikely that the bar lengths are known in applications

when the number of links n is large, n →∞.

Motivated by applications in topological robotics, statistical shape

theory and molecular biology, we view these lengths as random

variables and study asymptotic values of the average Betti num-

bers as the number of links n tends to infinity.
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The main idea of this work is to use methods of probability theory

and statistics in dealing with the variety of diffeomorphism types

of configuration spaces N` for n large. In applications different

manifolds N` appear with different probabilities and our intention

is to study the most “frequently emerging” manifolds N` and the

mathematical expectations of their topological invariants.
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Formally, we view the length vector ` ∈ ∆n−1 as a random vari-

able whose statistical behavior is characterized by a probability

measure νn. Topological invariants of N` become random func-

tions and their mathematical expectations might be very useful

for applications.
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Thus, one is led to study the average Betti numbers
∫

∆n−1
b2p(N`)dνn (1)

where the integration is understood with respect to `.
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One of the main results states that for p fixed and n large this

average 2p-dimensional Betti number can be calculated explicitly

up to an exponentially small error.

We establish a surprising fact that for a reasonably ample class

of sequences of probability measures the asymptotic values of

the average Betti numbers are independent of the choice of the

measure.

The main results apply to planar linkages as well as for linkages

in R3.
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More precisely, I proved that

∫

∆n−1
b2p(N`)dνn ∼

p∑

i=0

(n− 1

i

)
.

Remark: It is well known that all odd-dimensional Betti numbers

of N` vanish.
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It might appear surprising that the asymptotic value of the av-

erage Betti number b2p(N`) does not depend of the sequence of

probability measures νn which are allowed to vary in an ample

class of admissible probability measures.
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The asymptotics of the average Betti numbers bp(M`) of config-

uration spaces of planar polygon spaces M` satisfies:
∫

∆n−1
bp(M`)dνn ∼

(n− 1

p

)
(2)

for any admissible sequence of probability measures νn on Rn
+.
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Examples of admissible sequences of measures.

Example 1: Let νn be the normalized Lebesgue measure on
∆n−1.

Example 2: Let ν′n be obtained as

ν′n = q∗(µn)

where µn is the Lebesgue measure on the unit cube

¤n ⊂ Rn, ¤n = {(l1, . . . , ln); 0 < li < 1}
and q : ¤n → ∆n−1 ⊂ Rn

+ is the radial projection

q(l1, . . . , ln) =
(l1, . . . , ln)∑

li
.

The sequence ν′n describes the case when the bar lengths li are
independently and uniformly distributed on [0,1]
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Theorem 1: Fix an admissible sequence of probability measures

νn and an integer p ≥ 0, and consider the average 2p-dimensional

Betti number (1) of polygon spaces N` in R3 for large n → ∞.

Then there exist constants C > 0 and 0 < a < 1 (depending on

the sequence of measures νn and on the number p but indepen-

dent of n) such that the average Betti numbers satisfy
∣∣∣∣∣∣∣

∫

∆n−1

b2p(N`)dνn −
p∑

i=0

(n− 1

i

)
∣∣∣∣∣∣∣
< C · an

for all n.
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Theorem 2: Fix an admissible sequence of probability measures

νn and an integer p ≥ 0, and consider the average p-dimensional

Betti number (2) of planar polygon spaces for large n →∞. Then

there exist constants C > 0 and 0 < a < 1 (depending on the

sequence of measures νn and on the number p but independent

of n) such that
∣∣∣∣∣∣∣

∫

∆n−1

bp(M`)dνn −
(n− 1

p

)
∣∣∣∣∣∣∣
< C · an

for all n.
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Notations

For a vector ` = (l1, . . . , ln) we denote by

|`| = max{|l1|, . . . , |ln|}
the maximum of absolute values of coordinates.

The symbol ∆n−1 denotes the open unit simplex, i.e. the set of

all vectors ` = (l1, l2, . . . , ln) ∈ Rn such that li > 0 and

l1 + · · ·+ ln = 1.
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Let µn denote the Lebesgue measure on ∆n−1 normalized so

that µn(∆n−1) = 1. In other words, for a Lebesgue measurable

subset X ⊂ ∆n−1 one has

µn(X) =
vol(X)

vol(∆n−1)

where the symbol vol denotes the (n− 1)-dimensional volume.
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For an integer p ≥ 1 we denote by

Λp = Λn−1
p = {` ∈ ∆n−1; |`| ≥ (2p)−1}. (3)

Clearly, Λp ⊂ Λq for p ≤ q.

Note that

µn(Λp) ≤ n · (1− 1

2p
)n−1,

i.e. the normalized Lebesgue measure of Λp is exponentially small
for large n.
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Definition: Consider a sequence of probability measures νn on
∆n−1 where n = 1,2, . . . . It is called admissible if νn = fn · µn

where fn : ∆n−1 → R is a sequence of functions satisfying:

(i) fn ≥ 0,

(ii)
∫
∆n−1 fndνn = 1, and

(iii) for any p ≥ 1 there exist constants A > 0 and 0 < b < 2 such
that

fn(`) ≤ A · bn (4)

for any n and any ` ∈ Λn−1
p ⊂ ∆n−1.

Note that property (iii) imposes restrictions on the behavior of
the sequence νn only in domains Λn−1

p .
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Example. Consider the unit cube ¤n ⊂ Rn
+ given by the in-

equalities 0 ≤ li ≤ 1 for i = 1, . . . , n. Let χn be the probability

measure on Rn
+ supported on ¤n ⊂ Rn

+ such that the restric-

tion χn|¤n is the Lebesgue measure, χn(¤n) = 1. Consider the

sequence of induced measures νn = q∗(χn) on simplices ∆n−1

where q : Rn
+ → ∆n−1 is the normalization map q(`) = t` where

t = (l1 + · · · + ln)−1. It is easy to see that νn = fnµn where

fn : ∆n−1 → R is a function given by

fn(`) = kn · |`|−n, ` ∈ ∆n−1. (5)

Here kn is a constant which can be found from the equation

k−1
n =

∫

∆n−1
|`|−ndµn. (6)
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If ` ∈ Λn−1
p then fn(`) ≤ kn · (2p)n. We can represent Λn−1

p as the

union A1 ∪ · · · ∪An where

Ai = {(l1, . . . , ln) ∈ ∆n−1; li ≥ (2p)−1}, i = 1, . . . , n.

Clearly, µn(Ai) =
(
2p−1
2p

)n−1
and hence

µn(∆
n−1 − Λp) ≥ 1− n

(
2p− 1

2p

)n−1

.

We find that

k−1
n ≥ (2p)n ·


1− n

(
2p− 1

2p

)n−1

 .

This shows that the sequence (2p)nkn remains bounded as n →
∞ implying (iii) of Definition above. Hence, the sequence of

measures {νn} is admissible.
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Lemma: Let b0, . . . , bn ∈ Rn be vertices of a simplex ∆n ⊂ Rn.

Let φ : Rn → R be an affine functional such that φ(bi) = −1 for

i = 0, . . . , p − 1 and φ(bi) = 1 for i = p, p + 1, . . . , n. For x ∈ R

denote by Hx the half-space Hx = {v ∈ Rn;φ(v) ≤ x}. Then the

ratio

r(x) =
vol(Hx ∩∆)

vol(∆)

for x ∈ [−1,1] is given by

r(x) =
(

x + 1

2

)q

·
p−1∑

k=0

(q − 1 + k

q − 1

)
·
(
1− x

2

)k
. (7)

Here q = n− p + 1 denotes the multiplicity of value 1 = φ(bi).
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Euler characteristics of configuration spaces

Next I will describe a beautiful result of S. Gal which expresses
explicitly the Euler characteristics of various configuration spaces
associated with polyhedra.

The Euler - Gal power series

For a finite simplicial polyhedron X we denote by F (X, n) the
space of all configurations of n distinct particles moving in X.
F (X, n) is defined as the subspace of the Cartesian product

F (X, n) ⊂ Xn = X × · · · ×X

of n copies of X consisting of all n-tuples (x1, . . . , xn) satisfying
xi 6= xj for i 6= j. Configuration spaces of this kind appear in
robotics in problems of simultaneous control of multiple objects
(robots) avoiding collisions.
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The symmetric group Σn acts freely on F (X, n) by permuting

the particles. The factor

B(X, n) = F (X, n)/Σn

is the space of all subsets of cardinality n in X. The notation

B intends to bring association with “braids”; the fundamental

group π1(B(C, n)) is the well-known braid group.
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Our aim is to compute the Euler characteristics χ(F (X, n)) and

χ(B(X, n)) of configuration spaces F (X, n) and B(X, n) for a

fixed polyhedron X and various values of n. These numbers are

related by

χ(B(X, n)) =
χ(F (X, n))

n!

where n = 1,2, . . . . One formally defines F (X,0) and B(X,0) as

singletons (i.e. spaces consisting of a single point) so that

χ(B(X,0)) = χ(F (X,0)) = 1.
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With each finite polyhedron X one associates a sequence of

integers χ(B(X, n)) which may be organized into a formal power

series with integer coefficients

euX(t) =
∞∑

n=0

χ(B(X, n)) · tn =
∞∑

n=0

χ(F (X, n)) · tn

n!
.

The latter is called the Euler - Gal generating function of X.

The constant term of euX(t) is 1. We shall see that euX(t) has a

fairly simple expression while the individual numbers χ(B(X, n))

are much more involved.
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Theorem G1: For any finite polyhedron X the Euler - Gal power

series euX(t) represents a rational function

euX(t) =
p(t)

q(t)
, (8)

where p(t) and q(t) are polynomials with integral coefficients

satisfying

p(0) = 1 = q(0), deg(p)− deg(q) = χ(X).
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It follows that the numbers χn = χ(B(X, n)) satisfy a linear

recurrence relation:

Corollary: Given a finite simplicial polyhedron X, there exist

integers a1, . . . , ar ∈ Z (for some r depending on X) such that

for any n ≥ r one has

χn = a1χn−1 + a2χn−2 + · · ·+ arχn−r. (9)
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Theorem G2 stated below describes explicitly the polynomials

p(t) and q(t) in terms of local topological properties of X.

Recall the notion of link of a simplex in a simplicial complex.

Let σ be a simplex of X.

The link of σ (denoted Lσ) is the union of all simplices τ ⊂ X

such that τ ∩ σ = ∅ and τ and σ lie in a common simplex of X.

Clearly Lσ is a subcomplex of X.

30



A polyhedral cell complex K is a finite collection of cells lying in

some Euclidean space Rn such that with each cell it contains all

its faces and such that the intersection τ ∩ σ of any pair of cells

τ, σ ∈ K is a face of both τ and σ. The underlying polyhedron

X = |K| = ∪σ has the following important property: any point

x ∈ X has a cone neighbourhood N = CL where L is compact.

If x lies in the interior of a cell σ then a ball of small radius with

center x is topologically the product of a disk of dimension dimσ

and a cone C(Lσ) where Lσ is compact. This Lσ is the link of

the cell σ.
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If X is an n-dimensional manifold with boundary then for any cell

σ of dimension d lying in the interior of X one has Lσ ' Sn−d−1.

If σ belongs to the boundary ∂X then Lσ is topologically the disk

Dn−d−1.
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It will be convenient for us to introduce the invariant

χ̃(X) = 1− χ(X) = χ(C(X), X),

the reduced Euler characteristic. Here C(X) denotes the cone

over X. The reduced Euler characteristic behaves well with re-

spect to the join operation:

χ̃(X ∗ Y ) = χ̃(X) · χ̃(Y ).

Note also the following useful formula

χ̃(Sk) = (−1)k+1.
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Next we state an important addition to Theorem G1:

Theorem G2: Let X be a finite polyhedral cell complex. Then

the polynomials p(t) and q(t) which appear in formula (8) can

be chosen as follows:

p(t) =
∏

dimσ=even

[1 + tχ̃(Lσ)]

and

q(t) =
∏

dimσ=odd

[1− tχ̃(Lσ)]

Here σ runs over all cells of X having even or odd dimension,

correspondingly.
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Corollary: The zeros of the rational function euX(t) are of the

form

t = −χ̃(Lσ)
−1,

where σ is an even-dimensional cell σ with χ̃(Lσ) 6= 0. Poles of

euX(t) are of the form

t = χ̃(Lσ)
−1,

where σ is an odd-dimensional cell σ with χ̃(Lσ) 6= 0.
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Configuration spaces of manifolds

Here we apply Theorems G1 and G2 in the case of manifolds.

Theorem G3: Let X be a piecewise-linear compact manifold,

possibly with boundary. Then

euX(t) =





(1 + t)χ(X), if dimX is even,

(1− t)−χ(X), if dimX is odd.
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Passing to binomial expansions Theorem G3 may be restated as

follows:

χ(F (X, k)) =





χ(χ− 1) . . . (χ− k + 1) if dimX is even,

χ(χ + 1) . . . (χ + k − 1) if dimX is odd.

Here X is a compact manifold, possibly with boundary, and χ =

χ(X).

37



Theorem G3 may also be obtained by examining the towers of

Fadell - Neuwirth fibrations: if X is a manifold without boundary

then projecting onto the first coordinate gives a locally trivial

fibration F (X, n) → X. Its fibre above a point p ∈ X equals F (X−
{p}, n−1), the configuration space of n−1 distinct points in X−
{p}. Using the multiplicative property of the Euler characteristic

we find

χ(F (X, n)) = χ(F (X − {p}, n− 1)) · χ(X).

Iterating we obtain

χ(F (X, n)) = χ(X) · χ(X1) · · · · · χ(Xn−1),

where each Xi is obtained from X by removing i distinct points.

This gives the formulae mentioned above since χ(Xi) = χ(X)−
(−1)dimX · i.
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Next we give a proof of Theorem G3 based on Theorem G2. For

every cell σ lying in the interior of X one has

Lσ = Sn−dσ−1

and

χ̃(Lσ) = (−1)n−dσ

where n = dimX and dσ = dimσ. If σ is a cell lying in the

boundary then χ̃(Lσ) = 0. Hence Theorem G2 gives

euX(t) =
(
1 + (−1)dimXt

)χ(X)−χ(∂X)
.

This implies the result since for dimX even one has χ(∂X) = 0

and for dimX odd, χ(∂X) = 2χ(X).
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Configuration spaces of graphs

Next we examine the special case of Theorem G2 when X = Γ

is a finite graph, i.e. a one-dimensional finite simplicial complex.

For any vertex v ∈ Γ the link Lv is the discrete set of vertices

which are connected to v by an edge in Γ. Hence

χ̃(Lv) = 1− µ(v)

where µ(v) denotes the valence of v. For any edge e ⊂ Γ the link

Le is empty and therefore

χ̃(Le) = 1.

Applying Theorem G2 we find
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Theorem G4: The Euler - Gal power series of a graph Γ is given

by the formula

euΓ(t) = (1− t)−E ·∏
v
[1 + t(1− µ(v))] =

[
1 +

(
E
1

)
t +

(
E+1

2

)
t2 + . . .

]
·∏

v
[1 + t(1− µ(v))] .

Here E denotes the total number of edges in Γ and v runs over

all vertices of Γ.

Observe that univalent vertices µ(v) = 1 give no contribution

into the product.

As another observation note that subdividing an edge by in-

troducing a new vertex of valence 2 makes to change to the

Euler-Gal series as two new terms cancel each other.
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As an illustration compute explicitly the Euler characteristic χ(F (Γ,2)),

which equals twice the coefficient of t2 in the above series.

Corollary: For any finite graph Γ one has

χ(F (Γ,2)) = χ(Γ)2 + χ(Γ)−
∑
v

(µ(v)− 1)(µ(v)− 2).
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As an example consider graph Γµ. It consists of µ edges incident

to a vertex.

The the Euler - Gal series is

euΓµ(t) =
1 + t(1− µ)

(1− t)µ
.

Hence,

χ(F (Γµ, n)) = − (µ + n− 2)!

(µ− 1)!
[(n− 1)µ− 2n + 1] .
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Next we analyze the behavior of χ(F (X, n)) assuming that the

number of particles n tends to infinity.

Proposition: Assume that Γ is a connected graph with χ(Γ) < 0.

Then for large n one has the following asymptotic formula

χ(B(Γ, n)) ∼ cΓ · nE′−1.

Here E′ = E − V + V ′ with V ′ denoting the number of vertexes

v of Γ satisfying µ(v) 6= 2 and the constant cΓ is given by

cΓ =

∏
µ(v)6=2

(2− µ(v))

(E′ − 1)!
.

In the product v ∈ Γ runs over all vertexes with µ(v) 6= 2.
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