Departamento de Álgebra, Geometría y Topología. Universidad de Málaga.

Ejercicios de Álgabra Clásica

Relación 6. Extensiones normales. 9 de diciembre de 2009.

Profesor de la asignatura: José Antonio Cuenca Mira.

6. Extensiones normales

- **6.1** Sea K/F una extensión de cuerpos tal que K=F(S) y siendo $[F(x):F]\leq 2$ para todo $x\in S$. Demostrar que K/F es una extensión normal.
- **6.2** Sea K/F una extensión normal y E un cuerpo intermedio de dicha extensión. Demostrar que E/F es normal si y sólo si $\sigma(E) \subset E$ para todo F-automorfismo σ de K.
- **6.3** Demostrar que $\mathbb{Q}(\sqrt{2},i)$ es una extensión normal de \mathbb{Q} y que cada una de las raíces del polinomio irreducible X^4-2X^2+9 genera a $\mathbb{Q}(\sqrt{2},i)$ sobre \mathbb{Q} .
- **6.4** Sean K/F y L/F extensiones normales y finitas. Comprobar que existe alguna F-inmersión $\sigma: K \longrightarrow L$ si y sólo si hay dos polinomios f y g de F[X] con $f \mid g$ tal que K es cuerpo de descomposición de f y L cuerpo de descomposición de g.
- **6.5** ¿Existe algún automorfismo del cuerpo A de los números algebraicos que transforma $\sqrt{2}$ en $-\sqrt{2}$ y $\sqrt{5}$ en $-\sqrt{5}$?
- **6.6** Sea K/F una extensión algebraica. Demostrar que K/F es una extensión normal si y sólo si para todo $x \in K$ existe algún subcuerpo E de K que contiene a x y que constituye una extensión finita y normal de F.
- 6.7 Sea $\mathcal U$ la clase de todos los cuerpos. Demostrar que la clase de las extensiones normales satisface la segunda de las condiciones dadas en la definición de clase $\mathcal U$ -distinguida de extensiones.
- **6.8** Sea f(X) un polinomio irreducible de $\mathbb{Q}[X]$ que tiene raíces reales y no reales y K el cuerpo de descomposición de f sobre \mathbb{Q} . Demostrar que el grupo de Galois de la extensión K/\mathbb{Q} no es abeliano y comprobar que la hipótesis de irreducibilidad no puede suprimirse.
- **6.9** Sea K/F una extensión normal y f(X) un polinomio irreducible de F[X]. Supóngase que g y h son polinomios mónicos irreducibles de K[X] que son factores de f. Demostrar que existe algún F-automorfismo σ de K tal que $g^{\sigma}=h$. Dar un ejemplo de una extensión que no sea normal y en la que no se tenga un resultado de este tipo.
- **6.10** Sea K/F una extensión algebraica de cuerpos. Demostrar que la extensión es normal si y sólo si los factores irreducibles en K[X] de cada polinomio irreducible de F[X] tienen el mismo grado.