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Abstract. We extend the notion of the Leavitt path algebra L(E) of a graph E to
include all directed graphs. We show how various ring-theoretic properties of these
more general structures relate to the corresponding properties of Leavitt path algebras
of row-finite graphs. Specifically, we identify those graphs E for which L(E) is simple;
purely infinite simple; exchange; and semiprime. In our final result, we show that all
Leavitt path algebras have zero Jacobson radical.

Throughout this article K will denote a field. Let E denote a row-finite directed
graph (that is, a directed graph with the property that each vertex is the source of
at most finitely many edges). The Leavitt path algebra of E with coefficients in K,
denoted LK(E), has been the focus of much recent investigation, see e.g. [1], [2], [3],
[6], and [8]. The row-finiteness condition on E is necessary to allow the so-called CK2
relation (given below) to be invoked at each vertex of E which emits edges. We give
an appropriate definition of the Leavitt path algebra for any directed graph E; this
broader definition will coincide with the usual definition given in the row-finite case.
Our more general definition is consistent with the definition of the graph C∗-algebra
C∗(E) of an arbitrary directed graph (see e.g. [9] and [12]). The goal of this article is
to show how the ring-theoretic structure of these more general algebras LK(E) can be
determined from graph-theoretic properties of E. In particular, we extend to arbitrary
graphs results which identify those directed graphs E for which LK(E) is simple; purely
infinite simple; exchange; and semiprime. In addition, we show that for any directed
graph E, the Leavitt path algebra LK(E) is semiprimitive (i.e., has zero Jacobson
radical). As in the row-finite situation, these ring-theoretic properties of LK(E) are
shown to be independent of the choice of the field K. A key tool in our investigation is
Theorem 5.6, which shows that for any directed graph E, there is a Morita equivalence
between LK(E) and LK(F ), where F is a row-finite graph known as a desingularization
of E.

1. Definition and Examples

We briefly recall some graph-theoretic definitions and properties; more complete ex-
planations and descriptions can be found in [1]. A (directed) graph E = (E0, E1, r, s)
consists of two countable sets E0, E1 and maps r, s : E1 → E0. The elements of E0 are
called vertices and the elements of E1 edges. If s−1(v) is a finite set for every v ∈ E0,
then the graph is called row-finite. A vertex which emits no edges is called a sink. A
vertex v ∈ E0 such that |s−1(v)| = ∞ is called a infinite emitter. Following [12], if v is
either a sink or an infinite emitter, we call it a singular vertex. If v is not a singular ver-
tex, we call it a regular vertex. A path µ in a graph E is a sequence of edges µ = e1 . . . en

such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case, s(µ) := s(e1) is the source
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of µ, r(µ) := r(en) is the range of µ, and n is the length of µ. If µ = e1 . . . en is a path
then we denote by µ0 the set of its vertices, that is, µ0 = {s(e1), r(ei) for 1 ≤ i ≤ n}.
An edge e is an exit for a path µ = e1 . . . en if there exists i such that s(e) = s(ei) and
e 6= ei. If µ is a path in E, and if v = s(µ) = r(µ), then µ is called a closed path based
at v. If s(µ) = r(µ) and s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle. We say
that a graph E satisfies Condition (L) if every cycle in E has an exit. For n ≥ 2 we
define En to be the set of paths of length n, and E∗ =

⋃
n≥0E

n the set of all paths.

The Leavitt path algebra of a row-finite graph is defined and described in [1]. For
not necessarily row-finite graphs we give the following definition.

Definition 1.1. Let E be any directed graph, and K any field. The Leavitt path K-
algebra LK(E) of E with coefficients in K is the K-algebra generated by a set {v | v ∈
E0} of pairwise orthogonal idempotents, together with a set of variables {e, e∗ | e ∈ E1},
which satisfy the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(4) v =

∑
{e∈E1|s(e)=v} ee

∗ for every regular vertex v ∈ E0.

We note that the only difference between the definition of LK(E) in the row-finite case
and the definition in the arbitrary case given in Definition 1.1 is that we simply forget
about relation (4) (the so-called CK2 relation) at every infinite emitter. Clearly then,
when the graph is row-finite, this new definition for LK(E) agrees with the previous
one. As is commonly done in the row-finite case, we will often denote LK(E) simply by
L(E).

The elements of E1 are called real edges, while for e ∈ E1 we call e∗ a ghost edge. The
set {e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e), and we let s(e∗)
denote r(e). If µ = e1 . . . en is a path, then we denote by µ∗ the element e∗n . . . e

∗
1 of

LK(E). For any subset H of E0, we will denote by I(H) the ideal of LK(E) generated
by H.

Many well-known algebras arise as the Leavitt path algebra for row-finite graphs. For
instance, the classical Leavitt algebras L(1, n) for n ≥ 2 arise as the algebras L(Rn)
where Rn is the “rose with n petals” graph

•v y1ii

y2

ss

y3

��

yn

RR...

Also, the full n×n matrix ring over K arises as the Leavitt path algebra of the oriented
n-line graph

•v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

while the Laurent polynomial ring K[x, x−1] arises as the Leavitt path algebra of the
“one vertex, one loop” graph

•v xii
Constructions such as direct sums and the formation of matrix rings produce additional
examples of Leavitt path algebras.

We now describe the Leavitt path algebra for two specific non-row-finite graphs.
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Lemma 1.2. Let E∞ denote the infinite edges graph

•v
(∞)

// •w

where the label (∞) denotes the infinite set of edges E1 = {ei | i ≥ 1} with s(ei) = v and
r(ei) = w. Then L(E∞) ∼= M∞(K) ∨K, where this ring is the set of infinite matrices
of the form A + kI where A ∈ M∞(K) is an infinite matrix with only a finite number
of nonzero entries, k ∈ K, and I is the infinite unit matrix I = (δij).

Proof. Define a map φ : L(E∞) → M∞(K)∨K on the generators by the following rules:
φ(w) = E11, φ(v) = I−E11, φ(ei) = E(i+1)1 and φ(e∗i ) = E1(i+1). Extend multiplicatively
and linearly to all L(E∞). In order to see that this is a well-defined homomorphism,
we need to check that φ factors through the relations ideal defining L(E∞). This is
a straightforward calculation for the relations (1) through (3). Since v is an infinite
emitter and w is a sink, we do not have any relation of type (4) in L(E∞), so that φ is
a K-homomorphism.

Now we define an inverse map for φ in the following way. ψ : M∞(K) ∨K → L(E∞)
is given by

ψ(A+ kI) = (a11 + k)w +
∑

a(i+1)1ei +
∑

a1(i+1)e
∗
i +

∑
a(i+1)(j+1)eie

∗
j + kv.

Note that every element in M∞(K) ∨ K can be expressed in a unique way as A + kI
where A ∈ M∞(K), so that ψ is well-defined. It is tedious but straightforward to see
that ψ is a K-algebra homomorphism. Now one can easily see that φ and ψ are mutually
inverse maps. �

Lemma 1.3. If C∞ is the infinite clock graph given by

• •

•

^^ OO ??~~~~~~~
//

��@
@@

@@
@@

��

(∞)

•

•
then L(C∞) ∼=

⊕∞
i=1 M2(K) ⊕KI22, where I22 is the element in

∏∞
i=1 M2(K) given by

I22 =
∏∞

i=1E22, and E22 is the standard (2, 2)-matrix unit in M2(K).

Proof. Let v be the central vertex and denote by vi and ei (for i = 1, 2, . . . ) the vertices
and edges such that v = s(ei) and r(ei) = vi for every i. We define directly the
isomorphism φ : L(C∞) →

⊕∞
i=1 M2(K) ⊕ KI22 in the following way: φ is defined on

the generators by sending φ(vi) = (E11)i, φ(ei) = (E21)i, φ(e∗i ) = (E12)i and φ(v) = I22,
where by (A)i we mean the element of

⊕∞
i=1 M2(K) that has A ∈ M2(K) in the ith

component and zero elsewhere. With similar tedious but not difficult computations to
that of the previous lemma, φ is checked to be the desired isomorphism. �

2. Basic properties and results

Because the only difference between the definition of LK(E) for row-finite graphs
and for arbitrary graphs is the non-existence of a CK2 relation at infinite emitters, it is
perhaps not surprising that many of the results that hold for the row-finite case still hold
in this more general situation. For instance, all the results about the row-finite situation
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whose proofs do not make use of the relation (4) will hold verbatim for arbitrary graphs.
In particular, by rereading the basic results in [1] we get that the following statements
still hold in this general situation.

If E is a finite graph then we have
∑

v∈E0 v = 1; otherwise, LK(E) is a ring with a set
of local units consisting of sums of distinct vertices. Conversely, if LK(E) is unital, then
E0 is finite. LK(E) is a Z-graded K-algebra, spanned as a K-vector space by {pq∗ | p, q
are paths in E}. In particular, for each n ∈ Z, the degree n component LK(E)n is
spanned by elements of the form {pq∗ | length(p) − length(q) = n}. The degree of an
element x, denoted deg(x), is the lowest number n for which x ∈

⊕
m≤n LK(E)m. The

set of homogeneous elements is
⋃

n∈Z LK(E)n, and an element of LK(E)n is said to be
n-homogeneous or homogeneous of degree n. The K-linear extension of the assignment
pq∗ 7→ qp∗ (for p, q paths in E) yields an involution on LK(E), which we denote simply
as ∗.

A key result in [1] that also holds here is the following:

Proposition 2.1. (see [1, Corollaries 3.3 and 3.8]) Let E be a graph satisfying Condition
(L). If J is an ideal of L(E) that contains a nonzero polynomial in only real edges (or
in only ghost edges), then E0 ∩ J 6= ∅.

Proof. The proof follows along the same lines as the proofs of the two indicated corol-
laries in [1], since in neither of them is the relation (4) ever used. �

In the row-finite case we had the following important lemma:

Lemma 2.2. ([1, Lemma 3.9]) Let E be a row-finite graph. If J is an ideal of L(E),
then J ∩ E0 is a hereditary and saturated subset of E0.

The proof of this lemma clearly showed the strong connections that, within an ideal,
are produced between the relation (3) and the hereditary condition, and between the
relation (4) and the saturated condition, respectively. Thus, given an ideal J , when we
have an infinite emitter v ∈ E0, even though r(s−1(v)) may indeed be contained in the
ideal, contrary to what happens in the row-finite case, v itself need not be, because v is
no longer the “infinite” summation

∑
{ej∈E1:s(ej)=v} eje

∗
j . Thus, a reformulation of the

saturated condition is needed so that this result holds. Concretely, the solution is to
simply follow the definition of saturation given in [15]. The hereditary condition stays
unaltered.

Specifically, we define a relation ≥ on E0 by setting v ≥ w if there is a path µ ∈ E∗

with s(µ) = v and r(µ) = w. A subset H of E0 is called hereditary if v ≥ w and v ∈ H
imply w ∈ H. A hereditary set is saturated if every regular vertex which feeds into H
and only into H is again in H, that is, if v is a regular vertex such that s−1(v) 6= ∅ and
r(s−1(v)) ⊆ H, then necessarily v ∈ H. Denote by H (or by HE when it is necessary to
emphasize the dependence on E) the set of hereditary saturated subsets of E0. Then
we have:

Lemma 2.3. If J is an ideal of L(E), then J ∩E0 is a hereditary and saturated subset
of E0.

Proof. The proof is completely analogous to Lemma 2.2 taking into account that we
only consider regular vertices for the saturated condition. �
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3. Simplicity of L(E)

Now we are ready to extend the result [1, Theorem 3.11] to a general simplicity
theorem for row-infinite graphs. The first part of the row-finite case proof of this result
does not translate verbatim because it makes use of the relation (4) at some points
where we may not have it available. Thus, another approach must be taken.

Theorem 3.1. Let E be an arbitrary graph. The Leavitt path algebra L(E) is simple if
and only if E satisfies the following conditions.

(i) The only hereditary and saturated subsets of E0 are ∅ and E0.
(ii) E satisfies Condition (L).

Proof. Suppose first that (i) and (ii) hold and we will show that L(E) is simple. Let
J be a nonzero ideal if L(E) and take 0 6= α ∈ J having minimal degree in real edges.
We will show that J contains a nonzero element in only ghost edges. Let v be a vertex
such that vα 6= 0 and note that the degree in real edges of vα is less than or equal to
that of α. Suppose then that vα is not in only ghost edges.

Write vα =
∑n

i=1 eiαi + β, where ei ∈ E1 are all different and β is a polynomial in
only ghost edges. If for some i we have e∗i vα 6= 0, then 0 6= e∗i vα = αi + e∗iβ would be
a nonzero element in J with less degree in real edges than that of α, contradicting our
choice.

Therefore, we may assume that e∗i vα = 0 for every i, in which case we obtain that
αi = −e∗iβ for every i and thus vα =

∑n
i=1−eie

∗
iβ + β. From this equation and the

fact that vei = ei, we obtain that vβ = β, yielding that vα = (v −
∑n

i=1 eie
∗
i )β 6= 0.

This in particular implies that v 6=
∑n

i=1 eie
∗
i where s(ei) = v for every i, so both in

the case that v is a regular vertex (and we have the relation (4) at v), or even when v
is an infinite emitter (and we do not have the relation (4) at v), we may find an edge
f ∈ E1 with s(f) = v but f 6= ei for all i. Now f ∗vα = f ∗β yields an element in J in
only ghost edges. This element is nonzero because β = vβ is in only ghost edges.

By (ii) the graph E satisfies Condition (L) and Proposition 2.1 applies to give that
E0∩J 6= ∅. But by Lemma 2.3 the set E0∩J is hereditary and saturated and by (i) we
get that E0 ∩ J = E0, or in other words, J contains a set of local units and therefore is
the whole algebra.

Suppose now that there exits p a cycle without exits and then we will prove that L(E)
is not simple. In this situation, if we denote by v the vertex at which the cycle is based,
we have that v 6∈ I({v + p}) just by following verbatim the proof of this statement
in [1, Theorem 3.11]. (Note that, because if p does not have exits, in particular this
implies that all their vertices are regular.) Finally, if we consider a nontrivial hereditary
and saturated subset H of E0, we can perform the construction of the quotient graph
F = E/H as is done in [1, Theorem 3.11], and define a K-algebra homomorphism
Ψ : L(E) → L(F ) in the same manner. Thus, when checking that Ψ factors through
the relations in L(E), we must keep in mind that we do not have the relation (4) for
infinite emitters, so that we need check this relation only for regular vertices. Obviously
if v is a regular vertex in E, it cannot become an infinite emitter in F and therefore
Cases 1, 2 and 3 of the proof of [1, Theorem 3.11] are adapted trivially to this case. �

Example 3.2. We can use Theorem 3.1 to study the simplicity of the Leavitt path
algebras of the following graphs.
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(i) The Leavitt path algebra L(E∞) of the infinite edges graph E∞

•v
(∞)

// •w

is not simple as the set {w} is hereditary and saturated. In fact it is not difficult
(by using the isomorphism in Lemma 1.2) to show that the nontrivial ideal
generated by {w} inside L(E∞) is indeed M∞(K).

(ii) The Leavitt path algebra L(R∞) of the infinite rose graph R∞

•

(∞)

��

is simple.
(iii) The Leavitt path algebra L(C∞) of the infinite clock graph C∞

• •

•

OO ??~~~~~~~
//

��@
@@

@@
@@(∞)

•

•

is not simple as the set of all vertices but the central one form a nontrivial
hereditary and saturated set.

One might wonder if Theorem 3.1 completely corresponds to the simplicity result
for non-row-finite C*-algebras (see [12, Corollary 2.15]). In fact, this will be the case.
In order to show that, first we must modify the equivalence between condition (i) of
Theorem 3.1 and the cofinality of the graph of [8, Lemma 2.8].

We denote by E∞ the set of infinite paths γ = (γn)∞n=1 of the graph E and by E≤∞

the set E∞ together with the set of finite paths in E whose end vertex is a sink. We
say that a vertex v in a graph E is cofinal if for every γ ∈ E≤∞ there is a vertex w in
the path γ such that v ≥ w. We say that a graph E is cofinal if so are all the vertices
of E.

The hereditary saturated closure of a set X is defined as the smallest hereditary and
saturated subset of E0 containing X. As happens in the row-finite case, it is shown in
[9, Remark 3.1] that the hereditary saturated closure of a set X is X =

⋃∞
n=0 Λn(X),

where

Λ0(X) = T (X) = {v ∈ E0 | x ≥ v for some x ∈ X}, and

Λn(X) = {y ∈ E0 | 0 < |s−1(y)| <∞ and r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X), for n ≥ 1.

Here now is the generalization of the graph-theoretic result [8, Lemma 2.8] to arbitrary
directed graphs.

Proposition 3.3. A graph E has H = {∅, E0} if and only if it satisfies the following
two conditions.

(i) E is cofinal.
(ii) For every singular vertex v ∈ E0, E0 ≥ v.
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Proof. Suppose that E satisfies (i) and (ii) above. Let H ∈ H with ∅ 6= H 6= E0.
First note that as H is nonempty and hereditary, condition (ii) implies in this case
that E0 \ H does not contain singular vertices. Now fix v ∈ E0 \ H and build a path
γ ∈ E≤∞ such that γ0 ∩ H = ∅. Since v is a regular vertex, then 0 < |s−1(v)| < ∞
and r(s−1(v)) * H; otherwise, H saturated implies v ∈ H, which is impossible. Hence,
there exists e1 ∈ s−1(v) such that r(e1) /∈ H. Let γ1 = e1 and repeat this process with
r(e1) 6∈ H. By recurrence we shall have an infinite path γ whose vertices are not in H.
Now consider w ∈ H. By (i), there exists z ∈ γ such that w ≥ z, and by hereditariness
of H we get z ∈ H, contradicting the definition of γ.

Conversely, suppose thatH = {∅, E0}. First we will see that E is cofinal. Take v ∈ E0

and γ ∈ E≤∞, with v 6∈ γ0 (the case v ∈ γ0 is obvious). By hypothesis the hereditary
saturated subset generated by v is E0, i.e., E0 =

⋃
n≥0 Λn(v). Consider m, the minimum

n such that Λn(v) ∩ γ0 6= ∅, and let w ∈ Λm(v) ∩ γ0. If m > 0, then by minimality
of m it must be 0 < |s−1(w)| < ∞ and r(s−1(w)) ⊆ Λm−1(v). The first inequalities
imply that w is a regular vertex and since γ = (γn) ∈ E≤∞, there exists i ≥ 1 such
that s(γi) = w and r(γi) = w′ ∈ γ0, the latter meaning that w′ ∈ r(s−1(w)) ⊆ Λm−1(v),
contradicting the minimality of m. Therefore m = 0 and then w ∈ Λ0(v) = T (v), as
we needed. Finally, we will prove condition (ii). Take v a singular vertex in E0 and
take an arbitrary w ∈ E0. By hypothesis E0 =

⋃
n≥0 Λn(w) and again take m the

minimum n such that v ∈ Λn(w). If m > 0, since m is the minimum, we should have
that 0 < |s−1(v)| <∞ and r(s−1(v)) ⊆ Λm−1(w) which contradicts the fact that v is a
singular vertex. Therefore m = 0 and then v ∈ T (w), as needed. �

As an immediate corollary of Theorem 3.1 with Proposition 3.3, we obtain the parallel
result of [12, Corollary 2.15] for all Leavitt path algebras.

Corollary 3.4. Let E be an arbitrary graph. The Leavitt path algebra L(E) is simple
if and only if E satisfies the following conditions.

(i) E satisfies Condition (L).
(ii) E is cofinal.
(iii) For every singular vertex v ∈ E0, E0 ≥ v.

4. The simplicity dichotomy for L(E)

In the row-finite case, both C*-algebras and Leavitt path algebras enjoy the following
dichotomy in the situation when the algebras are simple: If a Leavitt path algebra (resp.
a C*-algebra) of a row-finite graph is simple, then either it is purely infinite simple,
which happens precisely when the graph contains a cycle, or it is locally matricial (resp.
approximately finite), which happens precisely when the graph does not contain a cycle.
We will show that this important dichotomy still holds in the non-row-finite case. First
we will need to extend the results for purely infinite simplicity to this setting.

An idempotent e in a ring R is called infinite if eR is isomorphic as a right R-module
to a proper direct summand of itself. R is called purely infinite in case every right ideal
of R contains an infinite idempotent. In [2] the authors gave necessary and sufficient
conditions in the row-finite graph E so that the Leavitt path algebra L(E) is purely
infinite simple (see [2, Theorem 11]). As is turns out, these same conditions will work
here to get the purely infinite simple result for Leavitt path algebras of arbitrary graphs.
These conditions are also the same ones for the C*-algebra case.
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The first lemma we need is a generalization of [2, Lemma 7]. Recall that a closed
simple path based at a vertex v is a path µ = e1 · · · et such that s(µ) = r(µ) = v and
s(ei) 6= v for all 2 ≤ i ≤ t. We denote the set of closed simple paths based at v by
CSP (v). Further, a graph E is said to satisfy Condition (K) if for each vertex v on a
closed simple path there exists at least two distinct closed simple paths α, β based at v.

Lemma 4.1. Let E be an arbitrary graph. If L(E) is simple then E satisfies Condition
(K).

Proof. Suppose that v ∈ E0 is such that CSP (v) = {p}. In this case p is clearly a
cycle. By Theorem 3.1 we can find an edge e which is an exit for p. Let A be the
set of all vertices in the cycle. Since p is the only cycle based at v, and e is an exit
for p, we conclude that r(e) 6∈ A. Consider then the set X = {r(e)}, and take the
hereditary and saturated closure X. Again Theorem 3.1 implies that X = E0, so we
can find n = min{m : A ∩ Λm(X) 6= ∅}. Take w ∈ A ∩ Λn(X). Suppose that n > 0.
By minimality of n we have that w 6∈ Λn−1(X) and therefore 0 < |s−1(w)| < ∞ and
{r(e) : s(e) = w} ⊆ Λn−1(X). Since w is in the cycle p, there exists f ∈ E1 such that
r(f) ∈ A and s(f) = w. In that case r(f) ∈ A∪Λn−1(X) contradicts the minimality of
n. Then, n = 0 and thus w ∈ T (r(e)), so that there exists a cycle based at w containing
the edge e. Since e is not in p we get |CSP (w)| ≥ 2. Since w is a vertex contained in
the cycle p, we then get |CSP (v)| ≥ 2, a contradiction. �

The second lemma is an easy but useful fact regarding infinite emitters for simple
Leavitt path algebras.

Lemma 4.2. Let E be an arbitrary graph such that L(E) is simple. If z ∈ E0 is an
infinite emitter, then CSP (z) 6= ∅.

Proof. Because z is an infinite emitter, there exists e ∈ E1 with s(e) = z and r(e) = z′.
Now condition (iii) of Theorem 3.4 yields z′ ≥ z, so that we can find a closed path, and
therefore a cycle p, containing the edge e which is based at z. �

With this, we reach the purely infinite simplicity characterization generalizing [2,
Theorem 11] for the row-finite case.

Theorem 4.3. Let E be an arbitrary graph. Then L(E) is purely infinite simple if and
only if E has the following properties.

(i) The only hereditary and saturated subsets of E0 are ∅ and E0.
(ii) E satisfies condition (L).
(iii) Every vertex connects to a cycle.

Proof. Suppose that L(E) is purely infinite simple. Clearly, if the graph is row-finite
then an application of [2, Theorem 11] is enough. Therefore, we may suppose that there
exists an infinite emitter z ∈ E0. In this case, by Theorem 3.1 we have (i) and (ii). By
Lemma 4.2 there exists a cycle p based at z. Now consider the path γ = p∞ ∈ E≤∞.
Condition (ii) of Theorem 3.4 gives that every vertex should connect to γ, and in that
way to the cycle p.

The converse can be proved in a fashion similar to that used in [2, Theorem 11] where
we use Theorem 3.1 and Lemma 4.1 in place of [1, Theorem 3.11] and [2, Lemma 7]. �
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Example 4.4. We can use Theorem 4.3 to get that the Leavitt path algebra L(R∞) of
the infinite rose graph R∞

•

(∞)

��

is purely infinite simple. This property is consistent with the fact that every algebra
within the family {L(Rn) ∼= L(1, n) | n ≥ 2} of classical Leavitt algebras is purely
infinite simple.

Paralleling the dichotomy for C*-algebras of [10, Remark 5.6] for the row-finite case,
and of [12, Remark 2.16] for the arbitrary case, we will now have the corresponding
dichotomy for simple Leavitt path algebras.

Recall that a matricial algebra is a finite direct product of full matrix algebras over
K, while a locally matricial algebra is a direct limit of matricial algebras.

Theorem 4.5. Let E be an arbitrary graph. If L(E) is simple then either

(i) L(E) is purely infinite simple and E contains a cycle, or
(ii) L(E) is locally matricial and E does not contain a cycle.

Proof. Suppose that E does not contain a cycle. Then, by Lemma 4.2, E cannot
contain infinite emitters so that E is row-finite and [8, Corollary 3.6] applies to get
that L(E) is locally matricial. If, on the contrary, E contains a cycle p, then Condition
(ii) of Theorem 3.4 gives that every vertex should connect to the infinite path p∞ and
therefore to the cycle p. Thus, Condition (iii) of Theorem 4.3 is satisfied. As we already
had Conditions (i) and (ii) by an application of Theorem 3.1, we conclude that L(E) is
purely infinite simple. �

5. Desingularization

We recall here the definition of desingularization from [12]. If E is a directed graph,
then a desingularization of E is a graph F formed by adding a tail to every sink and
every infinite emitter of E in the following fashion: If v0 is a sink in E, then by adding
a tail at v0 we mean attaching a graph of the form

•v0 // •v1 // •v2 // •v3 //

to E at v0. If v0 is an infinite emitter in E, then by adding a tail at v0 we mean
performing the following process. We first list the edges e1, e2, e3, . . . of s−1(v0). Then
we add a tail to E at v0 of the following form

•v0
f1 // •v1

f2 // •v2
f3 // •v3 //

We remove the edges in s−1(v0), and for every ej ∈ s−1(v0) we draw an edge gj from
vj−1 to r(ej).

Example 5.1. A desingularization of the infinite edges graph E∞ described in Lemma
1.2 is given by

•v0 //

��

•v1 //

||yy
yy

yy
yy

•v2 //

vvllllllllllllllll •v3 //

sshhhhhhhhhhhhhhhhhhhhhhhhhh

•w0 // •w1 // •w2 // •w3 //
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Example 5.2. For the infinite clock graph C∞ considered in Lemma 1.3, a desingular-
ization looks like

• //

��

• //

��

• //

��

• //

��
•

��

•

��

•

��

•

��
•

��

•

��

•

��

•

��

Example 5.3. If we consider the infinite rose graph R∞ drawn in Example 4.4, then a
desingularization of it is the following graph

• //99 • //
QQ • //
SS • //
UU • //
XX

Remark 5.4. Obviously a desingularization of a graph is always row-finite and has no
sinks. In addition, although in each of these three examples the desingularizations
that we obtain are unique due to the symmetry of the original graphs, in general there
might be different graphs F that are desingularizations of E. In fact, as noted in [12],
different orderings of the edges of s−1(v0) may give rise to nonisomorphic graphs via the
desingularization process.

Paralleling what happens in the analytic setting for C*-algebras (see [12]), one of the
main interests in the desingularization process is that it allows us, by means of a Morita
equivalence, to study various properties of the Leavitt path algebras of arbitrary graphs
in terms of the Leavitt path algebras of their desingularizations.

First we show that this desingularization process is a natural one in the sense that
L(E) can be always seen living inside L(F ).

Proposition 5.5. Let E be an arbitrary graph and let F be a desingularization of E.
Then there exists φ : L(E) ↪→ L(F ) a monomorphism of K-algebras.

Proof. In order to define a K-algebra homomorphism φ from L(E) to L(F ), we first
define φ on the generators E0 ∪ E1 ∪ (E1)∗ of L(E) in the following way:

If v ∈ E0 we have two cases. If v is a regular vertex then F has v as a vertex also
and we define φ(v) = v. If v is a singular vertex, that is, v is either a sink or an infinite
emitter, then v has been replaced in F by an infinite tail beginning with v0, so we define
in this case φ(v) = v0.

Now consider e ∈ E1. If s(e) is not an infinite emitter then φ(e) = e (and φ(e∗) = e∗).
In contrast, if s(e) is an infinite emitter, then when doing the desingularization F of
E we would have named e as ei for some i ≥ 1, so that the “substitute” for the edge
e = ei of E is the path f1 . . . fi−1gi in F . Thus, in this case φ(ei) = f1 . . . fi−1gi (and
φ(e∗i ) = g∗i f

∗
i−1 . . . f

∗
1 ).

We extend φ linearly and multiplicatively to all of L(E). In order to ensure that φ
defines a K-algebra homomorphism we have to check that the relations (1) through (4)
defining L(E) are preserved by this map. This is a straightforward computation done
by cases. For instance, the relations (1) and (2) concerning the path algebra structure
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are maintained because F is constructed by only “enlarging” some paths, which in any
case, does not change the path structure.

Concerning the relation (3), the only nontrivial situation arises when we consider
ei and ej with s(ei) = s(ej) being an infinite emitter. In this case, if i = j then
e∗i ei = r(ei) and φ(e∗i ei) = (g∗i f

∗
i−1 . . . f

∗
1 )(f1 . . . fi−1gi) = r(gi), which is precisely r(ei)

by the definition of F . On the other hand, if i 6= j, then e∗jei = 0 and φ(e∗jei) =
(g∗j f

∗
j−1 . . . f

∗
1 )(f1 . . . fi−1gi) = 0 as well because the edges f ’s and g’s are necessarily

different by the definition of F .
Finally, the relation (4) clearly stays the same in both E and F when we consider

regular vertices. And when we consider singular ones, we simply do not have such a
relation in E, even though we do in F .

This shows that φ is a well-defined K-algebra homomorphism. Take now x ∈ kerφ.
Suppose that x 6= 0. Then, by [7, Proposition 2.6], there exist a, b ∈ L(E) such that
one of these two possibilities (or both) occur: Either axb is a nonzero vertex in E, or
axb is a nontrivial polynomial expression in a cycle.

In the first case, since axb ∈ kerφ, that would imply that kerφ contains a vertex,
which contradicts the definition of φ, so this case cannot happen. So there should exist
a cycle c such that axb =

∑m
i=−n kic

i, where ki ∈ K and we interpret ci as (c∗)−i for
negative i. Then we have 0 = φ(axb) =

∑m
i=−n kiφ(c)i in L(F ).

Note that φ sends paths in E of a given length t to paths in F of length greater than
or equal to t. In any case φ(c) is a path in L(F ) of length greater than or equal to 1.
Now the grading in L(F ) shows that an equation of the type 0 =

∑m
i=−n kiφ(c)i cannot

hold in L(F ). This shows that x = 0, and φ is injective. �

As a direct consequence of the previous proposition we can show how close the Leavitt
path algebra of a graph is to the Leavitt path algebra of a desingularization of the
original graph. Concretely, these two algebras are indeed Morita equivalent as nonunital
rings.

Theorem 5.6. Let E be an arbitrary graph and let F be a desingularization of E. Then
the Leavitt path algebras L(E) and L(F ) are Morita equivalent.

Proof. Recall that E has the set of sums of distinct vertices as a set of local units. We
label the vertices as a sequence E0 = {vl}∞l=1 and form idempotents tk :=

∑
l≤k vl. If E0

is finite, we simply have the sequence {tk}∞k=1 is the identity of L(E) past some fixed
integer.

We pick an arbitrary idempotent t = tk and we will show that tL(E)t ∼= tL(F )t.
By Proposition 5.5, there exists φ : L(E) ↪→ L(F ) a monomorphism of algebras. We
consider the restriction φ|tL(E)t : tL(E)t ↪→ L(F ). Since φ(t) = t (where we identify a
singular vertex v in E with its corresponding v0 in F ), we have that φ|tL(E)t is indeed a
monomorphism from tL(E)t to tL(F )t, so that we only need to see that this restriction
is onto.

Recall that tL(F )t is the linear span of the monomials of the form pq∗ where r(p) =
r(q) and both p and q are paths in F that begin at any vertex vl with l ≤ k. Note that
any path p in the previous conditions must be of the form p1 . . . prf1 . . . fj−1 where pn

are either edges already in E or new paths in F of the form f 1 . . . fh−1gh, and fm are
edges along a tail. Any of the pn’s is obviously in the image of φ. So it is enough to
show that (f1 . . . fj−1)((f

′)∗j′−1 . . . (f
′)∗1) is in the image of φ.
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First note that for this element to be nonzero it must be j = j′ and fm = f ′m for
every m ≤ j. We now do the following computation using the relation (4) in the tail:

(f1 . . . fj−1)(f
∗
j−1 . . . f

∗
1 ) = (f1 . . . fj−2)(vj−2 − gj−1g

∗
j−1)(f

∗
j−2 . . . f

∗
1 )

= (f1 . . . fj−2)(f
∗
j−2 . . . f

∗
1 )− (f1 . . . fj−2gj−1)(g

∗
j−1f

∗
j−2 . . . f

∗
1 )

If we continue this process going backwards in the tail, we will reach an expression of
the form

(f1 . . . fj−1)(f
∗
j−1 . . . f

∗
1 ) = · · · = f1f

∗
1 −

j−1∑
i=2

(f1 . . . fi−1gi)(g
∗
i f

∗
i−1 . . . f

∗
1 )

= v0 − g1g
∗
1 −

j−1∑
i=2

(f1 . . . fi−1gi)(g
∗
i f

∗
i−1 . . . f

∗
1 ) = φ(v − e1e

∗
1 −

j−1∑
i=2

eie
∗
i ).

This shows that φ|tL(E)t : tL(E)t → tL(F )t is surjective, and thus an isomorphism of
K-algebras. Moreover, these isomorphisms are defined in such a way that the following
diagram commutes:

tkL(E)tk
φ|tkL(E)tk //

� _

i
��

tkL(F )tk� _

i
��

tk+1L(E)tk+1

φ|tk+1L(E)tk+1// tk+1L(F )tk+1

for every k ≥ 1.
In particular, we then get that the two direct limit rings

lim−→
k∈N

tkL(E)tk and lim−→
k∈N

tkL(F )tk

are isomorphic. But the first of these rings is just L(E), since the set {tk | k ∈ N} is a
set of local units for L(E). Thus we have shown that

lim−→
k∈N

tkL(F )tk ∼= L(E).

Now suppose w0 is a singular vertex in E. Let wi be any vertex in F which arises
in the tail added at w0 in the desingularization process, and let pi denote the path
pi = f1f2 · · · fi in F ∗. Define ρi : L(F )wi → L(F )w0 by x 7→ xp∗i , and define πi :
L(F )w0 → L(F )wi by y 7→ ypi. Then ρi and πi are left L(F )-module homomorphisms,
and, since p∗i pi = wi, we conclude that L(F )wi is isomorphic to a direct summand of
L(F )w0 as left L(F )-modules.

Since L(F ) ∼=
⊕

v∈F 0 L(F )v as left L(F )-modules, and L(F ) is a generator for L(F )−
Mod, the previous paragraph demonstrates that the L(F )-module

⊕
v∈E0 L(F )v ∼=

lim−→k∈N
L(F )tk is in fact a generator for L(F )−Mod.

We now apply [4, Theorem 2.5] to conclude that the rings lim−→k∈N
End(L(F )tk) and

L(F ) are Morita equivalent. But End(L(F )tk) ∼= tkL(F )tk, so that by the previous
isomorphism we have that L(F ) and L(E) are Morita equivalent, and we are done. �

We recall here some graph properties that are preserved by the desingularization
process.
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Lemma 5.7. (c.f. [12, Lemmas 2.7 and 2.8]) Let E be a graph and F be a desingular-
ization of E. Then

(i) E satisfies Condition (L) if and only if F satisfies Condition (L).
(ii) E satisfies Condition (K) if and only if F satisfies Condition (K).
(iii) F is cofinal if and only if E is cofinal and for every singular vertex v ∈ E0 we

have E0 ≥ v.

This lemma together with Theorem 5.6 gives another way to prove the classical char-
acterization of simplicity given in Theorem 3.1, in the following way. We showed that
the conditions of Theorem 3.1 are in fact equivalent to those of Corollary 3.4 (by means
of Proposition 3.3), so we will prove this last one. Suppose that L(E) is simple. Then,
since simplicity is preserved by Morita equivalence, an application of Theorem 5.6 shows
that L(F ) is also simple, where F is a desingularization of E. But F is row-finite, so
that the row-finite characterization for simplicity [1, Theorem 3.11] gives that F is co-
final and satisfies Condition (L). Now Lemma 5.7 gives that E satisfies Condition (L),
E is cofinal, and for every singular vertex v ∈ E0 we have E0 ≥ v, as needed. To prove
the converse we just track the same argument backwards.

In addition, this lemma also provides a way of proving the purely infinite simple result
given in Theorem 4.3. In order to do so, we apply [2, Proposition 10] to get that purely
infinite simplicity is a Morita invariant for rings with local units, together with the
previous result about simplicity and the obvious fact that E has a cycle if and only if
so has F . (We recall that for simple Leavitt path algebras, the condition “every vertex
connects to a cycle” is equivalent to saying that the graph E has at least one cycle).

Moreover, this lemma also yields the generalization of the exchange property result
for Leavitt path algebras of arbitrary graphs (proven in [8] for row-finite graphs).

Theorem 5.8. Let E be an arbitrary graph. The Leavitt path algebra L(E) is an
exchange ring if and only if E satisfies Condition (K).

Proof. We just take into account Theorem 5.6, Lemma 5.7 and the fact that the exchange
property is a Morita invariant for rings with local units by [5, Theorem 2.3]. �

Although Theorem 5.6 shows that for an arbitrary graph E we can always find a
row-finite graph F for which L(E) is Morita equivalent to L(F ), we now show (as an
application of the exchange property) that there are graphs E for which L(E) is not
isomorphic to L(F ) for any row-finite graph F .

Proposition 5.9. The Leavitt path algebra L(E∞) of the infinite edges graphs cannot
be realized as the Leavitt path algebra of any row-finite graph.

Proof. Suppose on the contrary that there exists a row-finite graph E such that L(E) ∼=
L(E∞). First note that by Lemma 1.2 we have L(E) ∼= M∞(K)∨K asK-algebras. Also,
since E∞ satisfies Condition (K), then Theorem 5.8 yields that L(E) is an exchange
ring, and therefore, again this Theorem yields that E too satisfies Condition (K), and
consequently Condition (L).

On the other hand, it is not difficult to see that M∞(K) ∨ K has only M∞(K) as
a nontrivial ideal. In particular L(E) is not simple, so that Theorem 3.1 gives that
E has a nontrivial hereditary and saturated set H. Moreover, by [6, Theorem 4.3],
there exists a lattice isomorphism from the hereditary saturated sets of E to the graded
ideals of L(E). But, with the identification L(E) = M∞(K) ∨ K, we see that I(H)
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must be the only nontrivial (graded) ideal that this algebra contains, which is M∞(K).
Then we have L(E/H) ∼= L(E)/I(H) = (M∞(K) ∨ K)/M∞(K) ∼= K, with the first
isomorphism following from [8, Lemma 2.3]. This implies that E/H reduces to a vertex
v, and from the way that the quotient graph is defined, we conclude that v must in
fact be an isolated vertex in E. Finally, if that is the case, then we would have a one
dimensional ideal in L(E), and therefore in M∞(K) ∨K, which is impossible. �

6. Semiprimeness and Semiprimitivity of Leavitt path algebras

In this final section we show that for any graph E the Leavitt path algebra L(E) is
both semiprime (i.e., the only two-sided ideal I in L(E) having I2 = {0} is I = {0})
and semiprimitive (i.e., the Jacobson radical of L(E) is zero).

Proposition 6.1. Let E be an arbitrary directed graph. Then L(E) is semiprime.

Proof. We first establish the result for row-finite graphs. Let F be such. Since L(F ) is Z-
graded, by [14, Proposition II.1.4 (1)] (which can easily been generalized for nonunital
rings and for semiprimeness instead of primeness), it suffices to check that the only
graded ideal I of L(F ) for which I2 = {0} is I = {0}. But by [6, Theorem 4.3], any
graded ideal of L(F ) is generated by idempotents, so the result follows immediately.

Now let E be arbitrary. By Theorem 5.6 L(E) is Morita equivalent to L(F ) for some
row-finite graph F . Since Morita equivalent rings with local units have isomorphic ideal
lattices via an isomorphism which preserves products of ideals (see [4, Proposition 3.3]),
the general result is established. �

We note here that the fact that L(F ) is semiprime follows from the fact that L(F ) is
nondegenerate, which is proved in [7]. The proof given above is appropriate here, owing
both to its brevity as well as to the fact that the proof of the following result will follow
a similar approach, namely, the utilization of the Z-grading on L(F ).

We now establish the semiprimitivity result. To do so, we need the following lemma,
which is a generalization of [11, Corollary 2] to Z-graded rings with local units.

Lemma 6.2. Let R be a Z-graded ring. Suppose R contains a set of local units S with
the property that each element of S is homogeneous. Then J(R) is a graded ideal of R.

Proof. Let x ∈ J(R), and decompose x = xn1 + . . . + xnt as a sum of its homogeneous
components. Let e ∈ S have exe = x. The decomposition x = xn1 + . . . + xnt yields
x = exe = exn1e+ . . .+ exnte. But since e is a homogeneous local unit, it has degree 0,
so that by the uniqueness of decomposition of an element into graded components we
get exni

e = xni
for all 1 ≤ i ≤ t. We now use [13, § III.7, Proposition 1] to conclude

that for any idempotent in a ring R with local units, J(R) ∩ eRe = eJ(R)e = J(eRe).
In particular, we have that x = xn1 + . . .+xnt is in fact the decomposition of x ∈ J(eRe)
into graded components inside eRe. But eRe is a Z-graded unital subring of R. Thus
[11, Corollary 2] applies to yield that xni

∈ J(eRe) for each 1 ≤ i ≤ t, so that xni
∈ J(R)

for each 1 ≤ i ≤ t. �

Proposition 6.3. Let E be an arbitrary directed graph. Then L(E) is semiprimitive,
i.e., J(L(E)) = {0}.
Proof. We first establish the result for row-finite graphs F . We have that L(F ) is Z-
graded, and that L(F ) contains a set S of local units in which every element of S is
homogeneous of degree zero (namely, finite sums of distinct vertices of F ). Thus Lemma
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6.2 applies to yield that J(L(F )) is a graded ideal of L(F ). But by [6, Theorem 4.3],
any graded ideal of L(F ) is generated by idempotents. Since the Jacobson radical of
any ring contains no nonzero idempotents, we conclude that J(L(F )) = {0}.

The result for arbitrary graphs E then follows from the result of the previous para-
graph, the Morita equivalence established in Theorem 5.6 between L(E) and L(F ) for
a row-finite graph F , and the preservation of semiprimitivity under Morita equivalence
given in [4, Proposition 3.2]. �
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