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Abstract. We classify the directed graphs E for which the Leavitt path algebra L(E) is
finite dimensional. In our main results we provide two distinct classes of connected graphs
from which, modulo the one-dimensional ideals, all finite dimensional Leavitt path algebras
arise.

1. Introduction and Preliminaries

Throughout this article K will denote a field. For a directed graph E, the Leavitt path
algebra of E with coefficients in K, denoted LK(E), has recently been the subject of significant
interest, both for algebraists and for analysts working in C*-algebras (the precise definition
of LK(E) is given below). The algebras LK(E) are natural generalizations of the algebras
investigated by Leavitt in [6]. The algebras described in [6] possess decomposition properties
quite different from those of finite dimensional K-algebras; however, among the more general
structures LK(E) there do in fact exist finite dimensional algebras. In this article we classify
exactly those directed graphs E for which LK(E) is finite dimensional. With this information
in hand, we then produce two collections of connected graphs from which, modulo the one-
dimensional ideals, all finite dimensional Leavitt path algebras arise. We show that the two
given collections of graphs are minimal, in the sense that different graphs from each of these
collections produce nonisomorphic Leavitt path algebras.

We set some notation. A (directed) graph E = (E0, E1, r, s) consists of two countable sets
E0, E1 and maps r, s : E1 → E0. The elements of E0 are called vertices and the elements
of E1 edges. If s−1(v) is a finite set for every v ∈ E0, then the graph is called row-finite.
Throughout this paper we will be concerned only with row-finite graphs. If E0 is finite,
then by the row-finite hypothesis E1 must necessarily be finite as well; in this case we say
simply that E is finite. For a graph E and a field K we define the Leavitt path K-algebra
of E, denoted LK(E) (or simply as L(E) when the base field K is understood), to be the
K-algebra generated by a set {v | v ∈ E0} of pairwise orthogonal idempotents, together with
a set of variables {e | e ∈ E1} ∪ {e∗ | e ∈ E1} which satisfy the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(4) v =

∑
{e∈E1|s(e)=v} ee∗ for every v ∈ E0 for which s−1(v) is nonempty.

The elements of E1 are called real edges while for e ∈ E1, we will call e∗ a ghost edge. The
set {e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e), and we let s(e∗) denote
r(e).
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Note that the relations above imply that {ee∗ | e ∈ E1} is a set of pairwise orthogonal
idempotents in L(E). Note also that if E is a finite graph then we have

∑
v∈E0 v = 1 in L(E),

while L(E) is not unital whenever E0 is infinite.
In [1], [2] and [3], a somewhat different description of LK(E) is given (in terms of quotients

of path algebras).
A path µ in a graph E is a sequence of edges µ = µ1 . . . µn such that r(µi) = s(µi+1) for

i = 1, . . . , n − 1. In such a case, s(µ) := s(µ1) is the source of µ, r(µ) := r(µn) is the range
of µ and n is the length of µ. For n ≥ 2 we define En to be the set of paths of length n, and
E∗ =

⋃
n≥0 En the set of all paths.

It is shown in [1] that L(E) is a Z-graded K-algebra, spanned as a K-vector space by
{pq∗ | p, q are paths in E}. In particular, for each n ∈ Z, the degree n component L(E)n

is spanned by elements of the form {pq∗ | length(p) − length(q) = n}. The degree of an
element x, denoted deg(x), is the lowest number n for which x ∈

⊕
m≤n L(E)m. The set of

homogeneous elements is
⋃

n∈Z L(E)n, and an element of L(E)n is said to be n-homogeneous.
If α ∈ L(E) and d ∈ Z+, then we say that α is representable as an element of degree d in

real (resp. ghost) edges in case α can be written as a sum of monomials from the spanning
set {pq∗ | p, q are paths in E}, in such a way that d is the maximum length of a path p (resp.
q) which appears in such monomials. We will denote the degree in real edges by redeg(α).

2. Isolated vertices and one-dimensional ideals

As will become clear in the following two sections, one-dimensional ideals play a somewhat
unique role in the ideal lattice of a Leavitt path algebra L(E).

Recall that a vertex which emits no edges is called a sink, and a vertex which receives no
edges is called a source. For v ∈ E0, a loop at v is an edge e for which s(e) = v = r(e). Also,
if µ is a path such that v = s(µ) = r(µ), then µ is a called a closed path based at v. We
denote by CPE(v) the set of closed paths in E based at v.

Definition 2.1. A vertex v in a graph E is isolated if it is both a source and a sink.

For any K-vector space V we denote the K-dimension of V by dimK(V ).

Lemma 2.2. If I is an ideal of L(E) having dimK(I) = 1, then every element of I is
homogeneous of zero degree.

Proof. Consider a nonzero element x ∈ I with redeg(x) minimal. The element x generates I as
a K-vector space. Write x = x−m+· · ·+x0+· · ·+xn, where xi is the i-homogeneous component
of x in L(E). There exists u ∈ E0 such that 0 6= ux. Then ux = ux−m+· · ·+ux0+· · ·+uxn =
kx−m + · · ·+ kx0 + · · ·+ kxn for some k ∈ K. If we compare each i-component we have that
k = 1 and xi = uxi, i. e., x = ux. Reasoning analogously on the right-hand side, we find a
vertex w ∈ E0 such that x = xw. Now, we distinguish the following situations:

Case 1: x is in only real edges. Then write x =
∑

i fiαi +
∑

j kjvj, where fi ∈ E1 and

αi 6= 0 are in only real edges such that redeg(αi) < redeg(x). If the first summation above is
zero, then clearly x is homogeneous of zero degree. If this summation is nonzero then there
exists fi ∈ E1 for which 0 6= f ∗

i x = αi + k′f ∗
i ∈ I, contradicting the minimality of redeg(x).

Case 2: x is in only ghost edges and u = w. Then we can write x =
∑r

i=1 kiy
∗
i , where

ki ∈ K and yi ∈ CP (u). We can suppose that deg(y1) ≥ deg(yi) for every i = 1, . . . , r. If
deg(y1) ≥ 1, then for some k′ ∈ K, y∗1x = k1(y

∗
1)

2 + · · · + kry
∗
1y

∗
r = k′x = k′y∗1 + · · · + k′y∗r .



FINITE DIMENSIONAL LEAVITT PATH ALGEBRAS 3

Since 0 6= deg(y2
1)  deg(yi) for every i = 1, . . . , r, we have a contradiction. Therefore, x is

homogeneous of zero degree.
Case 3: x is in only ghost edges and u 6= w. Write x =

∑
i γif

∗
i +

∑
j kjvj, where fi ∈ E1 are

distinct, and γi 6= 0 are in only ghost edges. First, since x = uxw, we get that x =
∑

i γif
∗
i .

We present a process by which we will find an expression similar to the last one with at
least one edge fi ∈ E1 having w = s(fi) and r(fi) 6= w. First note that, since x is in only
ghost edges, all the monomials appearing in the expression of x are linearly independent
and therefore cannot be simplified. Taking this into account and the fact that x = xw we
may suppose that s(fi) = w for every fi in this expression for x. If there exists fi ∈ E1

with r(fi) 6= w we have finished. If this is not the case, then choose an arbitrary fi ∈ E1

and compute xfi = γi =
∑

i ηig
∗
i which yields an element satisfying the same conditions as

x did before, that is: ηi are nonzero polynomials in only ghost edges and gi ∈ E1 are all
different with s(gi) = w. Now this process must stop due to the fact that x = uxw. Thus,
we find a path µ and an edge f such that 0 6= xµf and r(f) 6= w. Moreover, suppose that
k1xµf + k2x = 0 for some k1, k2 ∈ K. Multiply by w on the right hand side to obtain
k1xµfr(f)w + k2xw = 0 + k2x = 0, yielding k2 = 0 and therefore k1 = 0. This shows
that xµf and x are two linearly independent nonzero elements in I, which cannot happen as
dimK(I) = 1 by hypothesis.

Case 4: x is neither in only real edges nor in only ghost edges. Then clearly redeg(x) 6= 0
(redeg(x) = 0 means that x is a polynomial in only ghost edges).

Write x =
∑m

i=1 fiαi + β, with each summand different from zero, the fi’s all different,
fi ∈ E1, redeg(αi) < redeg(x) and β a polynomial in only ghost edges.

Now, by following the same reasoning used in [1, pg. 330], we obtain that x must be zero,
a contradiction. The only remarkable difference between that proof and this one is when we
consider a sink v. We may suppose vβ = 0 because otherwise vx = vβ 6= 0 would imply
v = u and 0 6= x = vx = vβ ∈ I, and Cases 2 and 3 apply. �

Proposition 2.3. The algebra LK(E) contains a one-dimensional ideal if and only if E has
an isolated vertex.

Proof. Let J be a one-dimensional ideal. It is graded (in fact, homogeneous of degree 0) by
Lemma 2.2. By [4, Remark 2.2], there exists a subset H of E0 for which J = < H >, where
< H > denotes the ideal generated by H. Clearly H can only contain one vertex v as the
set {v, w} is linearly independent over K for v 6= w ∈ E0. In addition, v must be isolated, as
otherwise J would contain an element of nonzero degree (specifically, an edge). The converse
is obvious by the relations defining L(E). �

If e ∈ s−1(v) for a vertex v, we say that v emits e, while if f ∈ r−1(v) we say that v receives
f . Although we will not use the following result in the sequel, we include it for completeness.

Proposition 2.4. A graded ideal J of LK(E) is isomorphic to K as a ring if and only if
J = Kv for some isolated vertex v ∈ E0.

Proof. The “Only if” part is clear, since v is an idempotent in LK(E).
For the other direction, if J is graded then by [4, Remark 2.2] there exists a subset H of

E0 for which J = < H >. Since J ∼= K as rings J cannot contain zero divisors, so H = {v}
for some vertex v. We claim that v is isolated.
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First, we show that if v emits an edge, then that edge must be a loop based at v. Otherwise,
if there is an edge e from v to w for w 6= v then w = e∗ve ∈ < {v} >, so that J contains two
distinct nonzero idempotents v and w, which can’t happen in a field. Next, we show that if
v receives an edge, then the edge must be a loop based at v. Otherwise, if there is an edge
f from w to v for w 6= v then fvf∗ ∈ < {v} >. But fvf∗ is an idempotent, and fvf∗ 6= v
(since v annihilates fvf∗), so that J contains two distinct nonzero idempotents, which can’t
happen in a field.

So we have shown that the only edges that v could possibly emit or receive are loops based
at v. If there are two or more such loops based at v, call one of them e and another f , then
< {v} > would contain zero divisors since f ∗e = 0, which can’t happen in a field.

Thus the only possibility is that there is only one edge in E which is either emitted or
received by v, namely, a single loop e. But then < {v} > ∼= K[x, x−1], which is not isomorphic
to a field. �

3. acyclic graphs

In this section we classify the graphs E for which the Leavitt path algebra LK(E) is finite
dimensional; these turn out to be precisely the finite acyclic graphs. Subsequently, we give the
structure of such finite dimensional Leavitt path K-algebras; these turn out to be precisely
the K-algebras which can be realized as finite direct sums (with an arbitrary number of
summands) of full matrix rings (of arbitrary size) having coefficients in K.

We start by indicating that for each integer n ≥ 1, the full matrix K-algebra Mn(K) arises
as LK(E) for a suitable graph E. The proof of the following result will follow as a corollary
of Proposition 3.5.

Proposition 3.1. The Leavitt path algebra of the oriented line graph Mn with n-vertices

• // • • // •
is Mn(K).

Since the details of the proof of Proposition 3.1 are contained in the proof of Proposition
3.5, we indicate here only an outline of it. We note that each vertex v in the graph Mn emits
at most one edge. Thus if e is an edge which connects vertex v to vertex w, then we have
not only the usual relation e∗e = w in LK(E), but we have also the relation ee∗ = v. In
this way, the set {e, e∗} generates a set of elements in LK(E) which behave precisely as the
matrix units in Mn(K).

The following definition can be found in [7, pg. 56]: A walk in a directed graph E is a
path in the underlying undirected graph. Formally, a walk µ is a sequence µ = µ1 . . . µn with
µi ∈ E1 ∪ (E1)∗ and s(µi) = r(µi+1) for 1 ≤ i < n. The directed graph E is connected if
for every two vertices v, w ∈ E0 there is a walk µ = µ1 . . . µn with v = s(µ) and w = r(µ).
Intuitively, E is connected if E cannot be written as the union of two disjoint subgraphs,
or equivalently, E is connected in case the corresponding undirected graph of E is so in the
usual sense.

It is easy to show that if E is the disjoint union of subgraphs {Fi}, then L(E) ∼= ⊕L(Fi).
In particular, by Proposition 3.1, any algebra of the form A =

⊕t
i=1 Mni

(K) can be realized
as the Leavitt path algebra of a (not connected) graph E

• // • • // • • // • • // • . . . • // • • // •
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formed as the disjoint union of the graphs {Mni
}t

i=1.
The natural question then arises: Given a K-algebra of the form A =

⊕t
i=1 Mni

(K), can
we find a connected graph E for which LK(E) ∼= A? In general the answer is no.

Proposition 3.2. If A =
⊕t

i=1 Mni
(K), and if ni = 1 for some i, then there does not exist

a connected graph E such that L(E) ∼= A.

Proof. A summand of A having ni = 1 would be a one-dimensional ideal of A. Thus any such
graph E would contain an isolated vertex by virtue of Proposition 2.3. �

In spite of Proposition 3.2, the realization of A =
⊕t

i=1 Mni
(K) as LK(E) for some con-

nected graph E will be possible whenever ni ≥ 2 for every i. To show this, we start by giving
the algebraic analogs of [5, Corollaries 2.2 and 2.3], which appear here as Lemma 3.4 and
Proposition 3.5.

Definition 3.3. (See [5, Corollary 2.3].) For a vertex v of E, the range index of v, denoted
by n(v), is the cardinality of the set R(v) := {α ∈ E∗ : r(α) = v}.

Although n(v) may indeed be infinite, it is always nonzero because v ∈ R(v) for every
v ∈ E0. For example, in the graph:

•v •w

f
**

g
44e

oo •x

we have n(v) = 2, n(w) = 1 and n(x) = 3 since R(v) = {v, e}, R(w) = {w} and R(x) =
{x, f, g}.

Recall that a path µ is called a cycle if s(µ) = r(µ) and s(µi) 6= s(µj) for every i 6= j. A
graph E without cycles is said to be acyclic.

Lemma 3.4. Let E be a finite and acyclic graph and v ∈ E0 a sink. Then Iv :=
∑
{kαβ∗ :

α, β ∈ E∗, r(α) = v = r(β), k ∈ K} is an ideal of L(E), and Iv
∼= Mn(v)(K).

Proof. Consider αβ∗ ∈ Iv and a nonzero monomial ei1 . . . eine∗j1 . . . e∗jm
= γδ∗ ∈ L(E). If

γδ∗αβ∗ 6= 0 we have two possibilities: Either α = δp or δ = αq for some paths p, q ∈ E∗.
In the latter case deg(q) ≥ 1 cannot happen, since v is a sink.
Therefore we are in the first case (possibly with deg(p) = 0), and then

γδ∗αβ∗ = (γp)β∗ ∈ Iv

because r(γp) = r(p) = v. This shows that Iv is a left ideal. Similarly we can show that Iv

is a right ideal as well.
Let n = n(v) (which is clearly finite because the graph is acyclic, finite and row-finite),

and rename {α ∈ E∗ : r(α) = v} as {p1, . . . , pn} so that

Iv :=
∑

{kpip
∗
j : i, j = 1, . . . , n; k ∈ K}.

Take j 6= t. If (pip
∗
j)(ptp

∗
l ) 6= 0, then as above, pt = pjq with deg(q) > 0 (since j 6= t), which

contradicts that v is a sink.
Thus, (pip

∗
j)(ptp

∗
l ) = 0 for j 6= t. It is clear that

(pip
∗
j)(pjp

∗
l ) = pivp∗l = pip

∗
l .
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We have shown that {pip
∗
j : i, j = 1, . . . , n} is a set of matrix units for Iv, and the result now

follows. �

Proposition 3.5. Let E be a finite and acyclic graph. Let {v1, . . . , vt} be the sinks. Then

L(E) ∼=
t⊕

i=1

Mn(vi)(K).

Proof. We will show that L(E) ∼=
⊕t

i=1 Ivi
, where Ivi

are the sets defined in Lemma 3.4.
Consider 0 6= αβ∗ with α, β ∈ E∗. If r(α) = vi for some i, then αβ∗ ∈ Ivi

. If r(α) 6= vi

for every i, then r(α) is not a sink, and the relation (4) in the definition of LK(E) applies to
yield:

αβ∗ = α

 ∑
e∈E1

s(e)=r(α)

ee∗

 β∗ =
∑
e∈E1

s(e)=r(α)

αe(βe)∗.

Now since the graph is finite and there are no cycles, for every summand in the expression
above, either the summand is already in some Ivi

, or we can repeat the process (expanding
as many times as necessary) until reaching sinks. In this way αβ∗ can be written as a sum of
terms of the form αγ(βγ)∗ with r(αγ) = vi for some i. Thus L(E) =

∑t
i=1 Ivi

.
Consider now i 6= j, αβ∗ ∈ Ivi

and γδ∗ ∈ Ivj
. Since vi and vj are sinks, we know as in

Lemma 3.4 that there are no paths of the form βγ′ or γβ′, and hence (αβ∗)(γδ∗) = 0. This
shows that Ivi

Ivj
= 0, which together with the facts that L(E) is unital and L(E) =

∑t
i=1 Ivi

,
implies that the sum is direct. Finally, Lemma 3.4 gives the result. �

We now get as corollaries to Proposition 3.5 the two results mentioned at the beginning of
this section.

Corollary 3.6. The Leavitt path algebra LK(E) is a finite dimensional K-algebra if and only
if E is a finite and acyclic graph.

Proof. If E is finite and acyclic, then Proposition 3.5 immediately yields that LK(E) is finite
dimensional.

Suppose on the other hand that E is not finite; in other words, the set E0 of vertices is
infinite. But then {v | v ∈ E0} is a linearly independent set in LK(E). Furthermore, if E is
not acyclic, then there is a vertex v and a closed path µ based at v. But then {µn | n ≥ 1}
is a linearly independent set in LK(E). �

Combining Proposition 3.5 with Corollary 3.6 immediately yields

Corollary 3.7. The only finite dimensional K-algebras which arise as LK(E) for a graph E
are of the form A =

⊕t
i=1 Mni

(K).

4. A class of connected graphs which yield (almost all) finite dimensional
Leavitt path algebras

As one consequence of Proposition 3.5 we see immediately that if A =
⊕t

i=1 Mni
(K) with

each ni ≥ 2, then the graph E given here
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•v1
2

// •v1
3 •v1

n1−1
// •v1

n1

•v

??~~~~~~~~
//

��2
22

22
22

22
22

22
2 •v2

2
// •v2

3 •v2
n2−1

// •v2
n2

. . . . . . . . .

•vt
2

// •vt
3 •vt

nt−1
// •vt

nt

yields a connected graph for which LK(E) ∼= A.

For a vertex v in a directed graph E, the out-degree of v, denoted outdeg(v), is the number
of edges in E having s(e) = v; in other words, outdeg(v) = card(s−1(v)). The total-degree
of the vertex v is the number of edges that either have v as its source or as its range, that
is, totdeg(v) = card(s−1(v) ∪ r−1(v)). The connected graphs of the previous type giving
L(E) ∼=

⊕t
i=1 Mni

(K) = A (where each ni ≥ 2) are built by “gluing together” the t different
graph-components corresponding to each of the t matrix rings appearing in the decomposition
of A. In particular, the vertex v has the property that outdeg(v) = t, while all other vertices
have outdeg(w) ≤ 1.

Definition 4.1. We say that a finite graph E is a line graph if it is connected, acyclic and
totdeg(v) ≤ 2 for every v ∈ E0. (We note in particular that line graphs have maximum
out-degree at most 2.) If we want to emphasize the number of vertices, we say that E is an
n-line graph whenever n = card(E0). An n-line graph E is oriented if En−1 6= ∅.

The collection of n-line graphs consists precisely of those finite connected graphs whose
undirected graphs have the property that for each vertex there are at most two edges incident
to it. Clearly there are at most 2n−1 different n-line graphs (up to isomorphism), each
corresponding to an orientation of the n− 1 edges. For instance, the 3-line graphs are:

• •oo •oo • •oo // • • // • •oo • // • // •

Among them they represent three different graphs (up to isomorphism), as the first is clearly
isomorphic to the last. From these three different graphs we obtain only two nonisomorphic
Leavitt path algebras: An application of Proposition 3.5 yields that the first, third (and
fourth) graphs have LK(E) ∼= M3(K), while the second one produces LK(E) ∼= M2(K) ⊕
M2(K). The question of how many ways there are of representing a given direct sum of
matrix rings as the Leavitt path algebra of connected graphs seems to yield an interesting
combinatorics question.

As noted previously, if a graph E is the disjoint union of subgraphs, then L(E) decomposes
as the direct sum of ideals, each of which is of the form L(F ) for an appropriate subgraph
F . The converse of this statement is not true in general, as the second (connected) graph
above indicates. We note that in the finite dimensional case, for every decomposition of L(E)
into a direct sum of ideals ⊕t

i=1Ii there exists a graph F (not necessarily equal to E) having
L(E) ∼= L(F ), for which F = ∪Fi is a disjoint union of subgraphs such that L(Fi) ∼= Ii. We
do not know whether this last property extends to all Leavitt path algebras.
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In contrast, if we restrict the set of graphs E from which we produce the Leavitt path
algebras LK(E), then we stand some chance of producing non-isomorphic Leavitt path alge-
bras from non-isomorphic graphs. We do so in the remainder of this section. We repeat the
process with a different restricted set of graphs in the next section.

Let Mr and Ms be oriented (finite) line graphs. Then by identifying the (unique) sources
of Mr and Ms we produce a new graph, which we denote by Mr ∨Ms. More generally,

Definition 4.2. From any collection Mn1 , . . . ,Mnt of oriented line graphs we can form the
comet-tail graph G =

∨t
i=1 Mni

by identifying the (unique) sources of the line graphs. (The
resulting graph G is the one appearing at the beginning of this section.) Given an ordered
sequence of natural numbers 2 ≤ n1 ≤ · · · ≤ nt, we denote the comet-tail

∨t
i=1 Mni

by
C(n1, . . . , nt).

Definition 4.3. Let G = (G0, G1) be a directed graph. For s ≥ 1 let G∗s denote the graph
having vertices G0 ∪{u1, . . . , us}, and edges G1. So G∗s is obtained from G by simply adding
s isolated vertices.

Lemma 4.4. Let {Mn1 , . . . ,Mnt} be any finite set of oriented line graphs, and let E =∨t
i=1 Mni

. Then LK(E) ∼=
⊕t

i=1 Mni
(K). In other words, LK(

∨t
i=1 Mni

) ∼=
⊕t

i=1 LK(Mni
).

Proof. The sinks of the directed graph E are precisely the sinks arising from each of the
oriented line graphs Mni

. Thus the result follows directly from Proposition 3.5. �

Theorem 4.5. Let K be a field, and let A be a finite dimensional Leavitt path algebra with
coefficients in K. Then there exists a comet-tail C(n1, . . . , nr), and an integer s, for which
A ∼= L(C(n1, . . . , nr)

∗s). This representation for A is unique, in the sense that if there exist
integers n′

1, . . . , n
′
r′ , s

′ for which A ∼= L(C(n′
1, . . . , n

′
r′)

∗s′), then s = s′, r = r′, and ni = n′
i for

all 1 ≤ i ≤ r.

Proof. By Corollary 3.7 we have that A ∼=
⊕t

i=1 Mni
(K). The existence part of the result now

follows from Lemma 4.4. The uniqueness part follows from the Wedderburn-Artin Theorem.
(We remark that the integers appearing in the definition of the comet-tail are assumed to
be ordered, which allows for the uniqueness part of the Wedderburn-Artin Theorem to be
invoked here.) �

5. Another class of connected graphs which yield (almost all) finite
dimensional Leavitt path algebras

Continuing the theme begun in the previous section, in this final section we present another
way to realize K-algebras of the form

⊕t
i=1 Mni

(K) (where each ni ≥ 2) as the Leavitt path
algebras arising from connected graphs having vertices with small out-degree.

By Proposition 3.1, we know that we can realize any full matrix algebra Mn(K) as the
Leavitt path algebra of a connected graph having maximum out-degree equal to 1. We will
see that the class of connected graphs having maximum out-degree equal to 1 is not sufficient
to produce all possible direct sums of full matrix algebras over K (Lemma 5.1). However, we
will show here that the class of connected graphs having maximum out-degree equal to 2 is
sufficient to produce a large class of such algebras. Furthermore, as done above, by allowing
one vertex to have out-degree larger than 2, and by allowing isolated vertices, we will produce
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a class of graphs from which all finite dimensional Leavitt path K-algebras arise in a unique
way.

As a first step, one might wonder if a realization of A =
⊕t

i=1 Mni
(K) is possible by means

of a line graph. For instance, if we applied the method described in the previous section to
find a connected graph E such that L(E) ∼= M2(K)⊕M2(K)⊕M3(K), then we would obtain
the graph E:

•

•

??~~~~~~~
//

��@
@@

@@
@@

•

• // •
However, there exist line graphs which produce the same Leavitt path algebra (up to isomor-
phism), such as the graph

• •oo // • •oo // •
(as can be easily checked by using Proposition 3.5). So the question arising now is whether or
not this new alternate realization of a direct sum of matrix rings as the Leavitt path algebra
of a line graph is always possible.

In contrast to the observation made at the beginning of this section about algebras of the
form Mn(K), we have

Lemma 5.1. Let A =
⊕t

i=1 Mni
(K) (where each ni ≥ 2), and let t ≥ 2. Then A is not

representable as a Leavitt path algebra L(E) with E a connected graph having maximum out-
degree at most 1.

Proof. Take E a connected graph with maximum out-degree at most 1 such that A ∼= L(E).
First, we note that E must be acyclic, because otherwise the dimension of A cannot be finite.
Moreover, by a previous remark, A being a unital ring implies that E is finite. Now by
Proposition 3.5 and the Wedderburn-Artin Theorem, E must have exactly t sinks. Take v
and w two different sinks (this is possible because t ≥ 2). Since E is connected, there exists
a (not-necessarily oriented) path joining v and w. In particular, the fact that v and w are
sinks necessarily yields the existence of a vertex x in the path which is the source of at least
two edges. That is, outdeg(x) ≥ 2, contrary to our assumption. �

Among the n-line graphs, we consider a subset of them which will be the “bricks” we will
use as the basic building blocks from which we will generate the graphs which appear in the
main result of this section.

Definition 5.2. We say that a graph E is a basic n-line graph if n ≥ 3 and E is of the form

•v1

!!DD
DD

DD
DD

•v3

}}zz
zz

zz
zz

•v4oo •vn−1 •vnoo

•v2

Such a graph will be denoted by Bn. The vertex v1 will be called the top source and the
vertex vn the root source. We will sometimes refer to these graphs simply as basic line graphs
if the number of vertices is clear.
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Less formally, a basic n-line graph is a line graph in which there are n vertices, and in
which the edges are oriented so that the edge coming from the top source is oriented in one
direction, and all other edges are oriented in the opposite direction. In particular, there is
exactly one sink in a basic n-line graph, namely, the vertex v2.

Lemma 5.3. For each n ≥ 3, L(Bn) ∼= Mn(K).

Proof. This follows directly from Proposition 3.5 and the previously observed fact that Bn

contains exactly one sink. �

If E and F are line graphs, then by identifying the root source of E with the top source
of F we produce a new graph, which we denote by E ∧ F . Thus, for example B3 ∧B4 is the
graph

• // • •oo // • •oo •oo

More generally, from any collection Bn1 , . . . , Bnt of basic line graphs we can form the line
graph E =

∧t
i=1 Bni

in an analogous way.

Lemma 5.4. Let {Bn1 , . . . , Bnt} be any finite set of basic line graphs, and let E =
∧t

i=1 Bni
.

Then LK(E) ∼=
⊕t

i=1 Mni
(K). In other words, LK(

∧t
i=1 Bni

) ∼=
⊕t

i=1 LK(Bni
).

Proof. The sinks of the directed graph E are precisely the sinks arising from each of the basic
line graphs Bni

. Thus the result follows directly from Proposition 3.5. �

Remark 5.5. Given two directed graphs E and F , and specified vertices v ∈ E0, v′ ∈ F 0, one
can always build the graphs E∧F and E∨F by identifying v with v′ in a manner analogous to
that described above. The previous lemma shows that if E and F are basic line graphs, and
v (resp. v′) is the root (resp. top) source of E (resp. F ), then LK(E ∧F ) ∼= LK(E)⊕LK(F ).
Similarly Lemma 4.4 shows that LK(E ∨ F ) ∼= LK(E)⊕ LK(F ). However, for more general
graphs this connection between the wedge construction of graphs and direct sums of K-
algebras does not hold. For instance, if we consider the single loop graph E

•v xii

and we construct either L(E ∧ E) or L(E ∨ E), we obtain the rose of two leaves graph R2

given by

•v y
iix

))

We know by [1, Theorem 3.11] that L(R2) is simple, whereas L(E)⊕ L(E) is not.

Definition 5.6. Define the left edge graph and the right edge graph (denoted Le and Re)
respectively by

• •oo and • // •

We now have all the ingredients in hand to prove the following

Proposition 5.7. Given A =
⊕t

i=1 Mni
(K), there exists a line graph E such that A ∼= L(E)

if and only if the following two conditions are satisfied:

(1) ni 6= 1 for every i.
(2) card{i : ni = 2} ≤ 2.
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Proof. We start with A =
⊕t

i=1 Mni
(K) and a graph E satisfying (1) and (2). By Lemmas

5.3 and 5.4, the ring A′ =
⊕t

i=1{Mni
(K) | ni ≥ 3} has A′ ∼= L(E ′) for an appropriate line

graph E ′. The (two at most) summands of A of size 2 × 2 can be realized by adding an
appropriate number (two at most) of vertices to E ′, as follows.

Case 1: {i : ni = 2} = ∅. Then E = E ′ has L(E) ∼= A.
Case 2: {i : ni = 2} = {i1}. Then E = Le ∧ E ′ has L(E) ∼= A.
Case 3: {i : ni = 2} = {i1, i2}. Then E = Le ∧ E ′ ∧Re has L(E) ∼= A.
Conversely, suppose that there exists an n-line graph E such that A ∼= L(E). Since E is

clearly connected, by Proposition 2.3 L(E) cannot contain an ideal isomorphic to K, and
therefore ni 6= 1 for every i. On the other hand, by Proposition 3.5, each ni corresponds to
a sink vi in the graph E. We will see that if ni0 = 2, then vi0 must be either the first or
the last vertex of the line. If not, then vi0 would be a sink in between other vertices, so that
necessarily card{e ∈ E1 : r(e) = vi0} = 2. The situation is represented as follows:

• // •vi0 •oo

Therefore we obtain ni0 = n(vi0) ≥ 3, a contradiction. �

Definitions 5.8. Let G = (G0, G1) be a directed graph, and let v ∈ G0. For ` ≥ 1 let
P (G, v, `) denote the palm graph, that is, the graph having vertices G0 ∪ {w1, . . . , w`}, and
edges G1 ∪ {f1, . . . , f`}, where for each 1 ≤ i ≤ `, s(fi) = v and r(fi) = wi. We sometimes
refer to the edges {f1, . . . , f`} as the leaves growing from v. We define the crown of P (G, v, `)
to be the subgraph of P (G, v, `) having vertices {v, w1, . . . , w`} and edges {f1, . . . , f`}.

Definition 5.9. We call the directed graph G a trunk if G can be realized as arising from the
∧-construction of a finite number of basic line graphs. For natural numbers 3 ≤ n1 ≤ · · · ≤ nr,
we denote the trunk Bn1 ∧ · · · ∧Bnr by T (n1, . . . , nr). We define the top of the trunk as the
top source of Bn1 and the root of the trunk as the root source of Bnr .

Because we have labelled the natural numbers n1 ≤ · · · ≤ nr in increasing order, a straight-
forward application of the Wedderburn-Artin Theorem yields

Lemma 5.10. Let n1, . . . , nr and n′
1, . . . , n

′
r′ denote sequences of natural numbers, for which

3 ≤ n1 ≤ · · · ≤ nr and 3 ≤ n′
1 ≤ · · · ≤ n′

r′. Then the Leavitt path algebras LK(T (n1, . . . , nr))
and LK(T (n′

1, . . . , n
′
r′)) are isomorphic if and only if r = r′, and ni = n′

i for all 1 ≤ i ≤ r.

We are now in position to realize the final result of this article.

Theorem 5.11. Let K be a field, and let A be a finite dimensional Leavitt path algebra
with coefficients in K. Then there exists a trunk T (n1, . . . , nr), and integers `, s for which
A ∼= LK(P (T (n1, . . . , nr), v, `)∗s) (where v denotes the top of the trunk). This represen-
tation for A is unique, in the sense that if there exist integers n′

1, . . . , n
′
r′ , `

′, s′ for which
A ∼= LK(P (T (n′

1, . . . , n
′
r′), v, `′)∗s

′
), then ` = `′, s = s′, r = r′, and ni = n′

i for all 1 ≤ i ≤ r.

Proof. By Corollary 3.7, we can write A = (
⊕s

i=1 K) ⊕ (
⊕`

j=1 M2(K)) ⊕ (
⊕r

i=1 Mni
(K)),

where 3 ≤ n1 ≤ · · · ≤ nr. By the proof of Proposition 5.7 one sees that
⊕r

i=1 Mni
(K) ∼=

L(T (n1, . . . , nr)). Let v denote the top of this trunk. Again, an application of Proposition
3.5 gives A ∼= L(P (T (n1, . . . , nr), v, `)∗s).

The uniqueness follows easily from the Wedderburn-Artin Theorem. �



12 G. ABRAMS, G. ARANDA PINO, AND M. SILES MOLINA

We conclude this paper by comparing the two “realizing sets” of graphs which arose in
Theorems 4.5 and 5.11. Each graph of the form C(n1, . . . , nr)

∗s contains at most one ver-
tex having out-degree at least 2. The out-degree of this vertex represents the number of
summands t in the decomposition A =

⊕t
i=1 Mni

(K). Similarly, each graph of the form
P (T (n1, . . . , nr), v, `)∗s also contains at most one vertex having out-degree at least 2. How-
ever, for these graphs, the out-degree of this vertex represents the number of summands `
in the decomposition A =

⊕t
i=1 Mni

(K) corresponding to summands having ni = 2. So, in
some sense, the graphs of Theorem 5.11 provide a realizing set of graphs for finite dimensional
Leavitt path algebras that is “closer” to the set of line graphs than is the set of graphs of
Theorem 4.5.
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