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Abstract. A group-graded K-algebra A = ⊕g∈GAg is called locally finite in

case each graded component Ag is finite dimensional over K. We characterize

the graphs E for which the Leavitt path algebra LK(E) is locally finite in the
standard Z-grading. For a locally finite Z-graded algebra A we show that, if

every nonzero graded ideal has finite codimension in A, then every nonzero
ideal has finite codimension in A; that is, Z-graded just infinite implies just
infinite. We use this result to characterize the finite graphs E for which the

Leavitt path algebra LK(E) is locally finite just infinite. We then give an

explicit description of the graphs and algebras which arise in this way. In
particular, we show that the locally finite Leavitt path algebras are precisely

the noetherian Leavitt path algebras.

Throughout this article K will denote a field. As in [8], we say that a K-algebra
B is just infinite dimensional (or more concisely just infinite) in case dimK(B) is
infinite, but dimK(B/I) is finite for every nonzero ideal I of B. We say that a Z-
graded K-algebra A =

⊕
n∈Z An is locally finite in case dimK(An) < ∞ for every

n ∈ Z.
For a graph E and a field K, the Leavitt path algebra LK(E), and its analytic

counterpart the Cuntz-Krieger graph C∗-algebra C∗(E), have been the focus of
much recent attention (see e.g. [1], [4], [6], and [11]). After presenting a brief
overview of this topic, in section 1 we classify those graphs E for which the Leavitt
path algebra LK(E) is locally finite (Theorem 1.8). With a general result about
Z-graded algebras in hand, in section 2 we then find those finite graphs for which
LK(E) is locally finite just infinite (Theorem 2.7). In the final section we describe
explicitly those K-algebras which arise in this way. Specifically, in Theorem 3.3 we
describe all locally finite just infinite Leavitt path algebras, and then in Theorem
3.8 we describe all locally finite Leavitt path algebras.

Of course any finite dimensional algebra is necessarily locally finite. Thus the
work presented in the current article can be viewed as a logical followup to [3], in
which the authors completely classify the finite dimensional Leavitt path algebras.

1. Locally finite Leavitt path algebras

The Leavitt path algebra of a graph is defined in [1]. We briefly recall the
essentials here. A (directed) graph E = (E0, E1, r, s) consists of two countable sets
E0, E1 and maps r, s : E1 → E0. The elements of E0 are called vertices and the
elements of E1 edges. If s−1(v) is a finite set for every v ∈ E0, then the graph is
called row-finite. Throughout this paper we will be concerned only with row-finite
graphs. If E0 is finite then, by the row-finite hypothesis, E1 must necessarily be
finite as well; in this case we say simply that E is finite. A vertex which emits no
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edges is called a sink. A path µ in a graph E is a sequence of edges µ = e1 . . . en

such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case, s(µ) := s(e1) is the
source of µ, r(µ) := r(en) is the range of µ, and n is the length of µ. For n ≥ 2
we define En to be the set of paths of length n, and E∗ =

⋃
n≥0E

n the set of all
paths.

We define the Leavitt path K-algebra LK(E) as the K-algebra generated by a set
{v | v ∈ E0} of pairwise orthogonal idempotents, together with a set of variables
{e, e∗ | e ∈ E1}, which satisfy the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(4) v =

∑
{e∈E1|s(e)=v} ee

∗ for every v ∈ E0 that emits edges.
The elements of E1 are called real edges, while for e ∈ E1 we call e∗ a ghost edge.

The set {e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e), and we
let s(e∗) denote r(e). If µ = e1 . . . en is a path, then we denote by µ∗ the element
e∗n . . . e

∗
1 of LK(E).

It is sometimes helpful to view LK(E) in the following way. If we start with a
graph E, we can form a new graph Ê having the same vertex set as E, but in which,
for each edge e of E, we add an edge e∗ whose orientation is opposite to that of
e. We next form KÊ, the (now-standard) path algebra of Ê with coefficients in K.
Finally, LK(E) can be viewed as the quotient of KÊ modulo the two sided ideal
generated by the relations described in (3) and (4) above.

While LK(E) arises as the quotient of a path algebra, in general these Leavitt
path algebras have properties which are not found in the usual path algebra con-
struction. For instance, the class of Leavitt path algebras includes the algebras
described by Leavitt in [10]. These algebras (denoted A = LK(1, n) for each n ≥ 2)
have the property that A ∼= An as free left A-modules; in particular, they do not
possess the Invariant Basis Number property, and so intuitively should be thought
of as being “far” from possessing any sort of chain condition. In the more general
context of Leavitt path algebras, the Leavitt algebra LK(1, n) arises as the algebra
LK(E), where E is the “rose with n petals” graph
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On the other side of the structural spectrum, the full n × n matrix ring over K
arises as the Leavitt path algebra of the oriented n-line graph

•v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

while the Laurent polynomial ring K[x, x−1] arises as the Leavitt path algebra of
the “one vertex, one loop” graph

•v xgg

In [3] the authors completely determine the structure of the finite dimensional
Leavitt path algebras. It is the goal of the current article to extend these results
to the locally finite Leavitt path algebras.
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Note that if E is a finite graph then we have
∑

v∈E0 v = 1; otherwise, by [1,
Lemma 1.6], LK(E) is a ring with a set of local units consisting of sums of distinct
vertices. Conversely, if LK(E) is unital, then E0 is finite. For any subset H of E0,
we will denote by I(H) the ideal of LK(E) generated by H.

It is shown in [1] that LK(E) is a Z-graded K-algebra, spanned as a K-vector
space by {pq∗ | p, q are paths in E}. In particular, for each n ∈ Z, the degree n com-
ponent LK(E)n is spanned by elements of the form {pq∗ | length(p)− length(q) =
n}. The degree of an element x, denoted deg(x), is the lowest number n for which
x ∈

⊕
m≤n LK(E)m. The set of homogeneous elements is

⋃
n∈Z LK(E)n, and an

element of LK(E)n is said to be n-homogeneous or homogeneous of degree n.
The K-linear extension of the assignment pq∗ 7→ qp∗ (for p, q paths in E) yields

an involution on LK(E), which we denote simply as ∗. Clearly (LK(E)n)∗ =
LK(E)−n for all n ∈ Z.

We will analyze the structure of various graphs in the sequel. An important
role is played by the following three concepts. An edge e is an exit for a path
µ = e1 . . . en if there exists i such that s(e) = s(ei) and e 6= ei. If µ is a path in
E, and if v = s(µ) = r(µ), then µ is called a closed path based at v. We denote by
CPE(v) the set of closed paths in E based at v. If s(µ) = r(µ) and s(ei) 6= s(ej)
for every i 6= j, then µ is called a cycle.

Definition 1.1. We say that a graph E satisfies Condition (NE) if no cycle in E
has an exit.

Of course the one vertex, one loop graph satisfies condition (NE). More generally,
a graph containing one loop together with any number of paths having range equal
to the vertex of the loop, but in which no path has source equal to the vertex of
the loop, satisfies condition (NE).

Lemma 1.2. If a finite graph E satisfies Condition (NE) then every path in E of
length at least card(E0) ends in a cycle.

Proof. Clearly a path µ of length greater than card(E0) contains a closed path
ν = e1 . . . er. Since E satisfies Condition (NE), then ν must be in fact a cycle;
moreover µ necessarily ends in es . . . er . . . es−1 for some s ∈ {1, . . . , r} because this
cycle has no exits. �

Let n ∈ Z. For m ∈ N with n ≤ m, we let Cn
m denote the following subset of the

graded component LK(E)n of LK(E):

Cn
m = {pq∗ | p ∈ Em, q ∈ Em−n}.

For n > m, define Cn
m = ∅.

Lemma 1.3. Let n ∈ Z. If there exists t ∈ N, t ≥ n, such that Cn
t+1 ⊆

⋃t
i=1 C

n
i ,

then
⋃∞

i=1 C
n
i =

⋃t
i=1 C

n
i .

Proof. Suppose Cn
t+1 ⊆

⋃t
i=1 C

n
i . By induction on r, we show that for every

r ∈ N, Cn
t+r ⊆

⋃t
i=1 C

n
i . The case r = 1 is our hypothesis. Suppose Cn

t+r−1 ⊆⋃t
i=1 C

n
i , and consider µ = et+ret+r−1 . . . e1f

∗
1 . . . f

∗
t−n+r−1f

∗
t−n+r ∈ Cn

t+r. If
we define ν = et+r−1 . . . e1f

∗
1 . . . f

∗
t−n+r−1 ∈ Cn

t+r−1, then µ = et+rνf
∗
t−n+r ∈

et+rC
n
t+r−1f

∗
t−n+r ⊆ et+r(

⋃t
i=1 C

n
i )f∗t−n+r ⊆

⋃t+1
i=2 C

n
i ⊆

⋃t
i=1 C

n
i . �

We are now in position to obtain the main result of this section.
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Theorem 1.4. For a finite graph E the following conditions are equivalent:
(i) LK(E)n has infinite dimension for some n ∈ Z.
(ii) LK(E)n has infinite dimension for every n ∈ Z.
(iii) There exists a cycle in E with an exit.

Proof. (ii) =⇒ (i) is obvious.
(i) =⇒ (iii). Let n ∈ Z be such that LK(E)n has infinite dimension. Suppose

that no cycle has an exit. Let t = max(n, card(E0)). We show that Cn
2t+1 ⊆⋃2t

i=1 C
n
i .

Let ν be a nonzero element in Cn
2t+1, say ν = e1 . . . e2t+1f

∗
1 . . . f

∗
2t−n+1. Then, by

Lemma 1.2, r(e2t+1) is in a cycle c. By noting that 2t−n+1 = t+t−n+1 ≥ t+1 ≥
card(E0), Lemma 1.2 can be applied to f2t−n+1 . . . f1, so that f1 must belong to a
cycle d. Moreover, since ν 6= 0 and E satisfies Condition (NE), c = d and therefore
e2t+1 = f1 (by Condition (NE) again). This yields that ν ∈ Cn

2t, as Condition
(NE) implies that e2t+1f

∗
1 = s(e2t+1) (by relation (4)). Now, since

⋃∞
i=1 C

n
i is a

generating set for LK(E)n, Lemma 1.3 applies to obtain a contradiction and finish
the proof.

(iii) =⇒ (ii). Let f be an exit for a cycle c and suppose that v := s(f) = s(c).
Let k = deg(c), and write c = ek . . . e1. Consider n ≥ 0 and decompose n = bk+ s,
with 0 ≤ s < k. We claim that {es . . . e1c

bcr(c∗)r | r ∈ N} is a linearly independent
set in LK(E)n. Indeed, suppose

∑n
r=i kres . . . e1c

bcr(c∗)r = 0 for kr ∈ K with
ki 6= 0. Multiply on the left by (c∗)i(c∗)be∗1 . . . e

∗
s, and on the right by ci, to get

kiv +
∑n

r=i+1 krc
r−i(c∗)r−i = 0 (apply [1, Lemma 2.2]). Since f is an exit for c,

we obtain 0 = kif
∗v +

∑n
r=i+1 krf

∗cr−i(c∗)r−i = kif
∗, a contradiction. The case

n < 0 can be obtained by using the involution: since LK(E)n = (LK(E)−n)∗, then
dimK(LK(E)n) = dimK((LK(E)−n)∗) = dimK(LK(E)−n) = ∞. �

Remark 1.5. The finiteness hypothesis on E in the preceding result cannot be
dropped. For instance, if E is an acyclic graph with infinitely many vertices and
only a finite number of edges, then dimK(LK(E)0) = ∞, while dimK(LK(E)n) = 0
for any sufficiently large n. In general this happens for any infinite graph such that
En = ∅ for some n ∈ N.

Remark 1.6. As a consequence of the previous result, for a finite graph E, if one
homogenous component of the Leavitt path algebra LK(E) has infinite dimension
then all the homogenous components have that same (necessarily countably infinite)
dimension. However, in case the homogeneous components have finite dimension,
the dimension of the components can differ. Of course any nontrivial finite dimen-
sional Leavitt path algebra will have this property (see e.g. [3] for examples). For
an infinite dimensional but locally finite example of this phenomenon, consider the
Leavitt path algebra of the graph E

•u

f

44
g
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Using Lemma 1.3, a straightforward computation yields dimK(LK(E)0) = 8,
dimK(LK(E)1) = dimK(LK(E)−1) = 9, and dimK(LK(E)n) = 3 for all n having
|n| ≥ 2.

The following Lemma will be useful throughout the sequel, and will be used often
without explicit mention.
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Lemma 1.7. If LK(E) is a locally finite Leavitt path algebra, then E is finite.

Proof. If E were not finite, then E0 would yield an infinite set of linearly indepen-
dent elements of LK(E)0. �

With this lemma, Theorem 1.4 gives the following.

Theorem 1.8. For a graph E and any field K the following are equivalent:
(i) LK(E) is locally finite.
(ii) E is finite and has Condition (NE).

We end this section by identifying the locally finite simple Leavitt path algebras.

Corollary 1.9. Let LK(E) be a locally finite Leavitt path algebra. Then LK(E) is
simple if and only if LK(E) ∼= Mn(K) for some positive integer n.

Proof. By Theorem 1.8 we have that E is finite and has Condition (NE). On the
other hand, by [1, Theorem 3.11], E has also Condition (L), therefore E is an
acyclic graph. Now using [3, Proposition 3.5], LK(E) ∼= ⊕t

i=1Mni
(K). But LK(E)

being simple implies the desired result. �

2. Locally finite just infinite Leavitt path algebras.

Having identified the locally finite Leavitt path algebras in the previous section,
we now determine which of these algebras are in fact just infinite.

As we show in the following example, a graded just infinite Leavitt path algebra
need not be just infinite. To demonstrate this, we need some additional information
about various subsets of the vertices of a graph. We define a relation ≥ on E0 by
setting v ≥ w if there is a path µ ∈ E∗ with s(µ) = v and r(µ) = w. A subset H
of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H. A hereditary set is
saturated if every vertex which feeds into H and only into H is again in H, that
is, if s−1(v) 6= ∅ and r(s−1(v)) ⊆ H imply v ∈ H. Denote by H (or by HE when
it is necessary to emphasize the dependence on E) the set of hereditary saturated
subsets of E0.

Example 2.1. The Leavitt path algebra LK(E) of the following graph E

•v2
f2 // •v1

f1 // •v e
ww

is a graded simple (and therefore graded just infinite) K-algebra, but is not just
infinite, as follows.

It is straightforward to show that the only hereditary and saturated subsets of
E0 are ∅ and E0. Thus [4, Theorem 6.2] applies, and we conclude that LK(E)
is graded simple (i.e., the only graded ideals of LK(E) are {0} and LK(E)). In
particular, LK(E) is graded just infinite.

We now show that there are ideals in LK(E) of infinite codimension, specifically,
the ideal I :=< v + e > is such. We start by showing that v 6∈ I. Suppose on
the contrary that v ∈ I. Then there exist monomials ai and bi in LK(E), and
scalars ki ∈ K such that v =

∑
i kiai(v+ e)bi. This last equation and the fact that

v(v + e)v = v + e allow us to suppose that vaiv = ai and vbiv = bi. Let a denote
any element of the form a = ai or bi. Write a = αβ∗, where α, β are paths or
arbitrary length (they can be of length zero, that is, a vertex). As α is a monomial
we necessarily have that v is a local unit for α on the right, so that a = αvβ∗.
In this situation we have vαv = α and vβ∗v = β∗, so that, α, β ∈ CP (v). But
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it is clear that in E we have CP (v) = {ek | k ≥ 0}. Thus a = en(e∗)m for some
n,m ≥ 0. Moreover, since e has no exits, then a = en or a = (e∗)n, where n ∈ N.

A similar equation holds for all the monomials ai and bi, so that we get v =∑
i kie

mi(v+ e)eni with mi and ni ∈ Z (where for r < 0 we interpret er as (e∗)−r).
Then v =

∑
i ki(emi+ni + emi+ni+1). Rewrite v as v =

∑s
i=r k

′
i(e

i + ei+1). A
degree argument on the highest and on the lowest power of the right hand side
shows s+ 1 = 0 and r = 0, a contradiction since r ≤ s. We conclude that v 6∈ I.

Now, consider the infinite set of vertices {vi}. We claim that {vi}i is a linearly
independent set in LK(E)/I. Suppose otherwise that for some scalars k1, . . . , km ∈
K, and some vertices vi1 , . . . , vim

, x =
∑m

j=1 kjvij
∈ I. Consider w = vij

∈
{vi1 , . . . , vim}, with kj 6= 0. Then v = f∗1 . . . f

∗
ij
fij . . . f1 = f∗1 . . . f

∗
ij
wfij . . . f1 =

kj
−1f∗1 . . . f

∗
ij
wxwfij . . . f1 ∈ I, contrary to the result of the previous paragraph.

Here is some additional useful information about graphs. If µ is a path having
v = s(µ) = r(µ) and s(µi) 6= v for every i > 1, then µ is called a closed simple path
based at v. We denote by CSPE(v) the set of closed simple paths in E based at v.
For a path µ we denote by µ0 the set of its vertices, i.e., {s(µ1), r(µi) | i = 1, . . . , n}.
For a graph E, we let V0 denote the set of vertices which do not lie on any cycle
(see [2]), i.e.

V0 = {v ∈ E0 | CSP (v) = ∅}.
For an H ∈ H, the quotient graph of E by H is given by

E/H = (E0 −H, {e ∈ E1 | r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1).

Lemma 2.2. If LK(E) is a graded just infinite Leavitt path algebra and ∅ 6= H ∈ H
then E0 −H is a finite set and E0 − V0 ⊆ H.

Proof. If E0−H were infinite then E/H would contain infinitely many vertices and
LK(E/H) would be infinite dimensional but, by [5, Lemma 2.3 (1)], LK(E/H) ∼=
LK(E)/I(H) with I(H) a nonzero graded ideal of LK(E), which is impossible by
the hypothesis.

Suppose now that there exists v ∈ (E0 − V0)−H, that is, there exists a cycle µ
based at v 6∈ H. As H is hereditary, µ0 ∩H = ∅. If we write µ = µ1 . . . µn, then
µi ∈ E/H as r(µi) 6∈ H. Thus E/H completely contains the cycle µ, and therefore
again LK(E/H) is infinite dimensional, contrary to the hypothesis. �

Lemma 2.3. Let LK(E) be a graded just infinite Leavitt path algebra. If H,H ′ ∈ H
are nonempty, then the intersection H ∩H ′ is nonempty.

Proof. Since LK(E) is infinite dimensional, by [3, Corollary 3.6], either E0 is infinite
or E is not acyclic. In the first case, apply Lemma 2.2 to obtain that both E0−H
and E0−H ′ are finite. Now if H∩H ′ = ∅ then H ⊆ E0−H ′, and therefore both H
and E0 −H are finite sets, which cannot happen when E0 is infinite. Now, if E is
not acyclic, then pick any cycle in E, and let v denote the vertex at which the cycle
is based. But then v 6∈ V0, and again Lemma 2.2 applies to get v ∈ H ∩H ′. �

We denote by E∞ the set of infinite paths γ = (γn)∞n=1 of the graph E and by
E≤∞ the set E∞ together with the set of finite paths in E whose end vertex is a
sink. We say that a vertex v in a graph E is cofinal if for every γ ∈ E≤∞ there is
a vertex w in the path γ such that v ≥ w. We say that a graph E is cofinal if so
are all the vertices of E.
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The set T (v) = {w ∈ E0 | v ≥ w} is the tree of v, and it is the smallest hereditary
subset of E0 containing v. We extend this definition for an arbitrary set X ⊆ E0

by T (X) =
⋃

x∈X T (x). The hereditary saturated closure of a set X is defined as
the smallest hereditary and saturated subset of E0 containing X. It is shown in [4]
that the hereditary saturated closure of a set X is X =

⋃∞
n=0 Λn(X), where

(1) Λ0(X) = T (X),
(2) Λn(X) = {y ∈ E0 | s−1(y) 6= ∅ and r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X), for

n ≥ 1.
We now have the tools to give a graph-theoretic characterization of all of the

graded just infinite Leavitt path algebras.

Theorem 2.4. Let LK(E) be an infinite dimensional Leavitt path algebra. The
following conditions are equivalent:

(i) LK(E) is graded just infinite.
(ii) E is cofinal.
(iii) LK(E) is graded simple.

Proof. (ii) =⇒ (iii). By [4, Theorem 6.2] the result follows.
(iii) =⇒ (i) is evident since by hypothesis LK(E) is infinite dimensional.
(i) =⇒ (ii). If we suppose that E is not cofinal, then by again using [5, Lemma

2.8] there exists a nontrivial hereditary and saturated subsetH of E0. Let y1 denote
a vertex which is not in H, and consider H ′ = {y1}. By Lemma 2.3, H ∩H ′ 6= ∅.
In this case the hereditary saturated closure described above gives us some minimal
n ∈ N with H ∩ Λn({y1}) 6= ∅.

If n > 0 then, asH∩Λn−1({y1}) = ∅, we have thatH∩{y ∈ E0 | ∅ 6= r(s−1(y)) ⊆
Λn−1({y1})} 6= ∅. Take z ∈ H with ∅ 6= r(s−1(z)) ⊆ Λn−1({y1}). In particular
r(s−1(z)) ∩H = ∅, which contradicts that H is hereditary.

So n = 0, and therefore H ∩ T ({y1}) 6= ∅. Since y1 6∈ H, we can then find
a path ν = ν1 . . . νn with n ≥ 1 such that s(ν) = y1, r(ν) ∈ H but r(νi) 6∈ H
for i < n. Since H is saturated and s(νn) = r(νn−1) 6∈ H, there must exist
e ∈ E1 with r(e) 6∈ H and s(e) = s(νn). We claim that r(e) 6= s(νi) for every
i = 1, . . . , n: Otherwise, if r(e) = s(νi) for some i, then s(νi) 6∈ V0 as the path given
by νiνi+1 . . . νn−1e is a closed path based at this vertex, which yields a cycle based
at this vertex, but this contradicts, by Lemma 2.2, the fact that s(νi) 6∈ H.

Rename this new vertex r(e) as y2. In particular y1 6= y2. Repeat the process
with y2, thus yielding a path δ = δ1 . . . δm with m ≥ 1 such that s(δ) = y2, r(δ) ∈ H
and r(δi) 6∈ H for i < m. Once more, there exists, by the saturation of H, an edge
f ∈ E1 with r(f) 6∈ H and s(f) = s(δm). Not only do we have r(f) 6= s(δi) for
all i = 1, . . . ,m as before, but also r(f) 6= s(νi) for i = 1, . . . , n. (Otherwise, if for
instance r(f) = s(ν1) = y1, then ν1 . . . νn−1eδ1 . . . δm−1f is a closed path based at
r(f) 6∈ H, a contradiction to Lemma 2.2.)

Continuing in this way, we rename r(f) as y3, so that in particular we have
y3 6= y1, y2. In this way we obtain an infinite sequence {yi}∞i=1 ⊆ E0 − H, which
cannot happen by Lemma 2.2. This finishes the proof. �

We complete this section by showing that for locally finite Leavitt path algebras,
the property of being graded just infinite in fact implies that the algebra is just
infinite. To do so, we in fact prove a general result about all Z-graded algebras. By
[12, Lemma 1.3(d)], if A is a locally finite positively Z-graded algebra (i.e. An = {0}
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for all n < 0), then A is just infinite in case it is graded just infinite. We extend this
result to all Z-graded algebras. Our approach is largely based on an idea presented
by D. Rogalski in a private communication.

Proposition 2.5. Let A be a locally finite Z-graded K-algebra. Then A is graded
just infinite if and only if A is just infinite.

Proof. Suppose that the algebra A is graded just infinite, and let L be a nonzero
ideal of A. We note that the quotient algebra A/L is generated by homogeneous
elements as a K-vector space. Pick any nonzero element x ∈ L, and write x =∑n

i=m xi, with xi ∈ Ai, and xm, xn 6= 0. In particular, x ∈
⊕n

i=mAi.
Since AxnA is a nonzero graded ideal of A, by hypothesis AxnA has finite codi-

mension in A, so that there exists r ∈ N such that Ai ⊆ AxnA for every i ∈ Z
having |i| > r. Analogously, there exists s ∈ N such that Ai ⊆ AxmA for every
i ∈ Z having |i| > s. Define p = max{r, s, n −m}. We show that A/L is in fact
generated by elements of the form {yi | yi ∈ Ai,−p ≤ i ≤ p}. As A is locally finite,
this will yield the desired result.

For any j > p consider yj ∈ Aj . Then yj ∈ AxnA, so we can write yj =∑
t aσt

xnbτt
with aσt

∈ Aσt
and bτt

∈ Aτt
. Note that σt + n + τt = j. For each

i with m ≤ i ≤ n define cj−n+i =
∑

t aσt
xibτt

, and then define z =
∑n

i=m cj−n+i.
Then z =

∑
t aσt

xbτt
, so z ∈ L. Therefore in A/L we have yj = −(z − yj). But

z− yj has homogenous components of degree j− (n−m) through j− 1. Therefore,
since j > n −m, all these degrees are positive. Thus, modulo L, we have written
yj as the sum

∑j1
i=q1

ci, where ci ∈ Ai, each i is positive, and j1 < j.
If j1 < p we stop. If not, repeat the above process on cj1 . Specifically, we are

able to express cj1 as a sum of homogeneous components of degree less than j1, but
all of them positive.

In this way, after at most j − p steps, we will have written yj (modulo L) as a
sum of homogeneous elements of positive degree less than p. That is, (Aj +L)/L ⊆⊕p

i=1(Ai + L)/L for all j > p.
A completely analogous argument yields that for any j < −p we have (Aj +

L)/L ⊆
⊕−1

i=−p(Ai +L)/L. This then yields that A/L ⊆
⊕p

i=−p(Ai +L)/L. Since
each Ai is finite dimensional, we are done. �

As one easy consequence of Proposition 2.5 we get the following well known
result (see e.g. [7]). The algebras which appear in this result will play a central
role in the sequel.

Corollary 2.6. Let K be a field, and let A denote the Laurent polynomial ring
A = K[x, x−1]. Then for any n > 0 the matrix ring Mn(A) is just infinite.

Proof. As dimK(Ai) = 1 for all i ∈ Z, A is locally finite. Since every nonzero
homogeneous element of A is invertible, A is graded simple, so is in particular
graded just infinite. Now apply Proposition 2.5 to conclude that A is just infinite.
Because matrix rings over just infinite rings are again just infinite (see e.g. [7,
Lemma 1(i)]) we are done. �

Theorem 2.4 together with Proposition 2.5 now immediately yield the result
about locally finite just infinite Leavitt path algebras which was mentioned in the
introduction.
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Theorem 2.7. Let E be a graph such that LK(E) is infinite dimensional and locally
finite. Then the following conditions are equivalent:

(i) LK(E) is graded just infinite.
(ii) E is cofinal.
(iii) LK(E) is graded simple.
(iv) LK(E) is just infinite.

As noted previously in Example 2.1, the local finiteness condition on E (which
implies the finiteness of E) cannot be dropped in Theorem 2.7.

3. Explicit graph-theoretic and algebraic descriptions of locally
finite Leavitt path algebras, and of locally finite just infinite

Leavitt path algebras

In this final section of the article we achieve three goals. First, we describe
concretely the graphs which arise in Theorem 2.7. Consequently, we obtain the
isomorphism classes of the locally finite just infinite Leavitt path algebras (Theo-
rem 3.3). Building on these ideas, we then are able to describe the isomorphism
classes of all locally finite Leavitt path algebras (Theorem 3.8). As a result, we
conclude in Theorem 3.10 that the locally finite Leavitt path algebras are precisely
the noetherian Leavitt path algebras.

Definition 3.1. We say that a graph E is a Cn-comet if it is finite, has exactly
one cycle Cn (this unique cycle contains n vertices), and T (v)∩ (Cn)0 6= ∅ for every
vertex v ∈ E0.

Proposition 3.2. The Leavitt path algebra LK(E) is locally finite just infinite if
and only if E is a Cn-comet.

Proof. Suppose that E is a Cn-comet. By hypothesis, E is finite and contains a
cycle. Then LK(E) is infinite dimensional. Locally finiteness follows from the fact
that the cycle Cn has no exits and an application of Theorem 1.8.

Now let v ∈ E0, and consider the hereditary and saturated closure {v}. By
hypothesis we have (Cn)0 ∩ {v} 6= ∅, and also by hereditariness (Cn)0 ⊆ {v}.
Just suppose that {v} 6= E0. Then take y1 6∈ {v}. As E is a Cn-comet we get
{v}∩T ({y1}) 6= ∅. Since y1 6∈ {v}, we can then find a path ν = ν1 . . . νn with n ≥ 1
such that s(ν) = y1, r(ν) ∈ {v} but r(νi) 6∈ {v} for i < n. If we focus on s(νn),
since {v} is saturated and s(νn) 6∈ {v}, there must exist e ∈ E1 with r(e) 6∈ {v}
and s(e) = s(νn). We claim that r(e) 6= s(νi) for every i = 1, . . . , n. Otherwise, if
r(e) = s(νi) for some i, then s(νi) 6∈ V0 as the path given by νiνi+1 . . . νn−1e is a
closed path based at this vertex, but then that would imply the existence of a cycle
contained in E0 − {v}, contradicting the fact that Cn is the only cycle in E.

Rename this newly obtained vertex r(e) by y2. In particular y1 6= y2. Repeat
the process with y2 so that we can find a path δ = δ1 . . . δm with m ≥ 1 such that
s(δ) = y2, r(δ) ∈ {v} and r(δi) 6∈ {v} for i < m. Once more, there exists, by the
saturation of {v}, an edge f ∈ E1 with r(f) 6∈ {v} and s(f) = s(δm). Not only do we
have r(f) 6= s(δi) for all i = 1, . . . ,m as before, but also r(f) 6= s(νi) for i = 1, . . . , n.
(If, for instance, we have r(f) = s(ν1) = y1, then ν1 . . . νn−1eδ1 . . . δm−1f is a closed
path based at r(f) 6∈ {v}, a contradiction again).
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Write then y3 = r(f), so that in particular we have y3 6= y1, y2. In this way we
obtain an infinite sequence {yi}∞i=1 ⊆ E0−{v}, which cannot happen as E is finite.
Now [5, Lemma 2.8] applies to yield the cofinality of E. Now, Theorem 2.7 finishes
the proof.

Conversely, since LK(E) is locally finite, we have in particular that E is fi-
nite. But since LK(E) is just infinite we have in particular that LK(E) is infi-
nite dimensional, so that by [3, Corollary 3.6] we have that E contains a cycle
Cn. Consider v /∈ (Cn)0. Use Theorem 2.7 to get that E is cofinal, and by [5,
Lemma 2.8], {v} = E0. Let t denote the smallest non-negative integer having
Λt({v})∩(Cn)0 6= ∅. Pick w in this intersection. If t > 0 then Λt−1({v})∩(Cn)0 = ∅,
and therefore ∅ 6= r(s−1(w)) ⊆ Λt−1({v}). In particular Λt−1({v}) ∩ (Cn)0 6= ∅, a
contradiction, so t must be zero, thus T ({v})∩ (Cn)0 6= ∅. This also shows that Cn

is the only cycle, because the existence of any other cycle in E would necessarily
have an exit, which cannot happen by Theorem 1.8. �

Theorem 3.3. Let E be a graph for which LK(E) is locally finite just infinite. Let
C denote the unique cycle in E, and let v be any vertex in C. Then

LK(E) ∼= Mn(K[x, x−1]),

where n is the number of paths in E which do not contain C, and which end in v.
In particular, LK(E) ∼= LK(Cn).

Proof. By Proposition 3.2 there is an integer m so that graph E is a Cm-comet, so
that C = Cm is the unique cycle in E. Let e1, . . . , em and v1, . . . , vm be respectively
the edges and the vertices of the cycle Cm. That is: r(ei) = vi for all i, s(ei) = vi−1

for i > 1, and s(e1) = vm. We eliminate the edge e1 in the graph E, and denote
the resulting graph by F .

Let P = {pi | 1 ≤ i ≤ n} denote the set of all paths which end in vm, and which
do not contain the cycle Cm. That is, pi are the paths in F ending in vm, or with
the notation used in [3], pi are the paths in R(vm). Since E is a Cm-comet graph,
the graph F is finite and acyclic, so that |P | = n is indeed finite.

Consider the set B = {pic
kp∗j}i,j∈{1,...,n},k∈Z, where c = e1 . . . em is the cycle

Cm. (We use the notation ck = (c∗)−k for negative k, and that c0 = vm. Note that
these conventions are possible as the usual rules for exponents are valid here, due
to the fact that the cycle Cm has no exits.)

We claim that B is a basis for of LK(E) as a K-vector space. To this end,
we first consider the inclusion map from F to E. This map is a complete graph
homomorphism (see [4, p. 5]), and therefore induces a K-algebra homomorphism
ϕ : LK(F ) → LK(E) by [4, Lemma 2.2] because the relations (1) through (4) in
LK(F ) are preserved by ϕ. Moreover, F has vm as its only sink, as every other
vertex connects to the cycle Cm and therefore to vm.

Thus, [3, Proposition 3.5] applies to yield that LK(F ) is simple and therefore
that ϕ is a monomorphism. If fact, it was shown in [3, Proof of Lemma 3.4] that
{pip

∗
j}i,j∈{1,...,n} is a set of matrix units such that p∗i pj = δijvm. We translate this

information via the monomorphism ϕ to get the analogous relations in LK(E).
Suppose now that x =

∑
i,j,k αijkpic

kp∗j = 0 for αijk ∈ K. Then for arbitrary
i0, j0 we have that 0 = p∗i0xpj0 =

∑
i0,j0,k αi0j0kc

k, which then gives αi0j0k = 0 for
all k ∈ Z, as powers of the cycle are linearly independent in LK(E). This shows
that B is a linearly independent set.
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On the other hand, we realize that the set Y = {pip
∗
j}∪{e1, e∗1} generates LK(E)

as a K-algebra (to show this it is enough to consider that LK(F ) is generated as
a K-algebra by {pip

∗
j} and apply the monomorphism ϕ). Clearly Y ⊆ B (for

instance, e1 = c(e2 . . . em)∗ ∈ B). Moreover, B is closed under products with the
general formula (pic

kp∗j )(prc
tp∗s) = δjrpic

k+tp∗s. Thus we have proved that B is a
generator set of LK(E) as a K-vector space, and therefore, a basis.

Finally, define the map φ : LK(E) → Mn(K[x, x−1]) on the basis by set-
ting φ(pic

kp∗j ) = xkeij (where eij denotes the standard (i, j)-matrix unit), and
extend linearly to all of LK(E). This map is a K-algebra homomorphism as
we have φ((pic

kp∗j )(prc
tp∗s)) = φ(δjrpic

k+tp∗s) = δjrx
k+teis = (xkeij)(xters) =

φ(pic
kp∗j )φ(prc

tp∗s). It is bijective as it maps a basis of LK(E) to a basis of
Mn(K[x, x−1]). Therefore it is the desired isomorphism. �

As one specific consequence of Theorem 3.3 we can complete the n = 1 case of
[2, Proposition 13] .

Corollary 3.4. Let En
1 denote the graph with n vertices and n edges

• // • // • • // • dd

Then LK(En
1 ) ∼= Mn(K[x, x−1]).

Remark 3.5. It turns out that two nonisomorphic Cm-comets can give rise to iso-
morphic Leavitt path algebras, although this isomorphism need not be graded. For
example, consider the C1-comet graph E and C2-comet graph F given by

E ≡ •u
f // •v e

ww
F ≡ •a

x

DD•b

y

��

Theorem 3.3 yields that each is isomorphic to M2(K[x, x−1]). However, these two
Leavitt path algebras cannot be isomorphic as graded algebras, as one can check
that LK(E)0 is generated as a K-vector space by the linearly independent set
{u, v, ef∗, fe∗}, while LK(F )0 is generated by the linearly independent set {a, b},
so that dimKLK(E)0 6= dimKLK(F )0.

Corollary 3.6. For n, n′ ∈ N we have that LK(Cn) ∼= LK(Cn′) if and only if
n = n′.

Proof. Since K[x, x−1] is a commutative ring, we may apply [9, Exercise 14, p. 480]
together with Theorem 3.3 to get the result. �

The corollary in turn gives the following complete classification of the locally
finite just infinite Leavitt path algebras.

Corollary 3.7. A complete irredundant set of the isomorphism classes of locally
finite just infinite Leavitt path algebras is given by

{Mn(K[x, x−1]) | n ∈ N}.

Having described the locally finite just infinite Leavitt path algebras, we are now
in position to describe all locally finite Leavitt path algebras. As a consequence
of the following theorem, we will see two things. First, that the class of locally
finite Leavitt path algebras consists precisely of finite direct sums of locally finite
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just infinite Leavitt path algebras with finite dimensional Leavitt path algebras.
Second, that the locally finite Leavitt path algebras are precisely the noetherian
Leavitt path algebras.

Theorem 3.8. Let E be a graph such that LK(E) is a locally finite algebra. Then
LK(E) is isomorphic to(

l⊕
i=1

Mmi
(K[x, x−1])

)
⊕

 l′⊕
j=1

Mnj
(K)

 ,

where: l is the number of cycles in E (call them c1, . . . , cl); mi is the number of
paths ending in a fixed (although arbitrary) vertex vmi

of the cycle ci which do not
contain the cycle itself (for 1 ≤ i ≤ l); l′ is the number of sinks in E (call them
wl+1, . . . , wl+l′); and for every j ∈ {1, . . . , l′}, nj is the number of paths ending in
the sink wl+j.

Proof. Let Λi be the set of paths in E ending in a fixed vertex vmi
of the cycle

ci which do not contain ci. Write ci = ei
1 . . . e

i
mi

and c0i = {vi
1, . . . , v

i
mi
}, where

r(ei
k) = vi

k for all k, s(ei
1) = vi

mi
and s(ei

k) = vi
k−1 for all k ≥ 1.

We pull out the edges ei
1 in the graph E to obtain a new graph, which we denote

by F .
For a sink wj with j = l + 1, . . . , l + l′, let Λj be the set of paths of E ending

in the sink wj . Let Λ =
⋃

Λi′ = {pj′}. Consider X = {prc
k
t p

∗
s | k ∈ Z; r, s =

1, . . . , card(Λ); t = 1, . . . , l + l′}, where for t > l we let ct denote wt, wk
t denote wt

for all k ∈ Z, and ckt denote (c∗t )
−k for k < 0, t ∈ {1, . . . , l}.

Let B be the set of all nonzero elements in X. Note that an element prc
k
t p

∗
s is

in B if and only if pr, ps ∈ Λt for t ∈ {1, . . . , l + l′}.
We claim that B is a basis for LK(E) as a K-vector space. To show this, define

the inclusion map ϕ : LK(F ) → LK(E) in the natural way. It is a well defined
homomorphism because the relations (1)-(4) in LK(F ) are consistent with those in
LK(E). To show that ϕ is a monomorphism, we produce a left inverse.

Define ψ : LK(E) → LK(F ), first on generators, by setting

ψ(ei
1) = (ei

mi
)∗ . . . (ei

2)
∗ and ψ(x) = x for every x 6= ei

1

and then extending to all of LK(E). It is long, but straightforward, to check that
ψ is well defined, and ψϕ = 1LK(F ).

Following [3, Lemma 3.4 and Proposition 3.5], we have that the elements in
the set {pip

∗
j | pi, pj ∈ Λt, for an arbitrary t} are a set of matrix units in Iv, for

v ∈ {wl+1, . . . , wl+l′} ∪ {vi
mi
, i = 1, . . . , l}. Hence their union, call it Γ, generates

LK(F ). Applying the monomorphism ψ we obtain that Y = Γ ∪ {ei
1, (e

i
1)
∗, i =

1, . . . , l} generates LK(E) as a K-algebra. Clearly Y ⊆ B, and Y is closed under
products because the general formula

(pic
k
σp

∗
j )(prc

t
τp

∗
s) = δστδjrpic

k+t
σ p∗s

holds. It can be shown, as in the proof of Theorem 3.3, that B is a linearly inde-
pendent set.

Finally, define φ as the K-linear extension of:
LK(E) →

(⊕l
i=1 Mmi

(K[x, x−1])
)
⊕
(⊕l′

j=1 Mnj
(K)

)
Λk \ {0} 3 pic

t
kp

∗
j 7→

{
xtpip

∗
j for k = 1, . . . , l

pip
∗
j for k = l + 1, . . . , l + l′



LOCALLY FINITE LEAVITT PATH ALGEBRAS 13

This map is a K-algebra homomorphism, and is in fact an isomorphism because
it sends a basis of LK(E) to a basis of

(⊕l
i=1 Mmi

(K[x, x−1])
)
⊕
(⊕l′

j=1 Mnj
(K)

)
.

�

The description of the locally finite Leavitt path algebras given in Theorem 3.8
yields the final two results of this article.

Corollary 3.9. The class of locally finite Leavitt path algebras consists precisely
of finite direct sums of locally finite just infinite Leavitt path algebras and finite
dimensional Leavitt path algebras.

Proof. If LK(E) is locally finite, then by Theorem 3.8 we have

LK(E) ∼=

(
l⊕

i=1

Mmi(K[x, x−1])

)
⊕

 l′⊕
j=1

Mnj (K)

 .

The result now follows from Theorem 3.3 and [3, Corollary 3.7]. �

Theorem 3.10. For a graph E and field K the following conditions are equivalent:

(i) LK(E) is locally finite.
(ii) LK(E) is left or right noetherian.
(ii)′ LK(E) is left and right noetherian.
(iii) E is finite and has Condition (NE).

Proof. (i) =⇒ (ii)′. It is well known that A = K[x, x−1] is a left and right noe-
therian ring, and hence so is any finite matrix ring over A. Now the result follows
directly from Theorem 3.8.

(ii) =⇒ (iii). It is clear that E must be finite. Suppose to the contrary there
exists a cycle in E with an exit e. Denote s(e) by v, and let µ denote the cycle
based at v. We claim that

{0} ⊂ LK(E)(v − µµ∗) ⊂ LK(E)(v − µ2(µ∗)2) ⊂ . . .

is a properly increasing sequence of left ideals of LK(E). The containment

LK(E)(v − µi(µ∗)i) ⊂ LK(E)(v − µi+1(µ∗)i+1)

for each i ≥ 0 follows from the easily checked equation

v − µi(µ∗)i = (v − µi(µ∗)i)(v − µi+1(µ∗)i+1).

To show that the containments are proper, we show that v−µi+1(µ∗)i+1 6∈ LK(E)(v−
µi(µ∗)i). On the contrary, if v−µi+1(µ∗)i+1 = α(v−µi(µ∗)i) for some α ∈ LK(E),
then multiplying on the right by µi would give µi − µi+1µ∗ = α(µi − µi) = 0, so
that µi = µi+1µ∗, which gives µie = µi+1µ∗e. But this is impossible, as follows.
Since s(e) = r(µ) = v we have µie 6= 0 in LK(E). But since e is an exit for µ we
have µ∗e = 0, so that µi+1µ∗e = 0, a contradiction.

(iii) =⇒ (i) follows from Theorem 1.8.
�
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