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ABSTRACT. In this paper we introduce the concept of purely infinite rings, which in the
simple case agrees with the already existing notion of pure infiniteness. We establish vari-
ous permanence properties of this notion, with respect to passage to matrix rings, corners,
and behaviour under extensions, so being purely infinite is preserved under Morita equiv-
alence. We show that a wealth of examples falls into this class, including important ana-
logues of constructions commonly found in operator algebras. In particular, for any (s-)
unital K-algebra having enough nonzero idempotents (for example, for a von Neumann
regular algebra) its tensor product over K with many nonsimple Leavitt path algebras is
purely infinite.

INTRODUCTION

The notion of pure infiniteness has proved key in the theory of operator algebras since its
conception in the early eighties by J. Cuntz (see [27]). This was done for simple algebras
and provided a huge list of examples. One of the milestones of the theory became the
classification of separable, nuclear, unital purely infinite simple algebras by means of K-
theoretic invariants (due to Kirchberg [41] and Phillips [58]).

Far from being analytic, in the simple setting the notion of pure infinitess has a strong
algebraic flavour. Indeed, one of the various characterizations states that a (unital) simple
C∗-algebra A is purely infinite if and only if A 6= C and for any non-zero element a in A,
one has xay = 1 for some elements x, y in A. This led P. Ara, the second named author
and E. Pardo to introduce a corresponding notion for rings (see [13]), as follows. A simple
ring R is purely infinite if every non-zero left (right) ideal contains an infinite non-zero
idempotent (that is, an idempotent that contains properly an isomorphic copy of itself).
As it happens, all (non-zero) idempotents in such rings are in fact properly infinite. They
showed that a simple unital ring R is purely infinite provided that R is not a division
ring and for any non-zero element a in R, one has xay = 1 for suitable x and y in R ([13,
Theorem 1.6]). This notion goes well beyond the pure formalism to actually encompass a
large number of algebras, notably Leavitt’s algebras of type (1, n) ([50]) and suitable von
Neumann regular extensions of those (as shown in [13]), as well as Leavitt path algebras
with suitable conditions on their defining graphs (see [3]).

The operator algebraic notion just outlined above was extended some years ago to the
non-simple setting by Kirchberg and Rørdam ([43]) and has been studied intensively since
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then (see, e.g. [44], [21], [22], [45], [46], [47]). Although there are various possible formula-
tions, the definition given in [43] appears to be more commonly used in possible extensions
of the classification programme to the non-simple case. The reader may wonder whether
the extension consists simply of demanding that right or left ideals contain enough infinite
idempotents. However, for technical reasons this turns out to be inappropriate. Instead,
the approach to define purely infinite algebras resorts to the use of the so-called Cuntz
comparison for positive elements, which is completely analytic and involves the so-called
positive elements of the algebra. Roughly speaking, a C∗-algebra A is said to be purely in-
finite if A does not have abelian quotients and every pair of elements, with one contained
in the closed two-sided ideal generated by the other, is suitably comparable. As with the
simple case, all (non-zero) idempotents in such algebras are properly infinite.

This definition is mostly adequate when dealing with algebras that might not have (non-
trivial) idempotents. However, if all non-zero one-sided ideals in all quotients happen to
contain an infinite idempotent, this suffices to ensure pure infiniteness, and takes into
account the ideal structure of the algebra.

In our aim to adapt this concept to the pure algebraic setting, one of the major difficulties
that we encounter is finding an appropriate algebraic substitute for the analytic conditions.
In order to circumvent this, we introduce in Section 2 an analogue for Cuntz comparison
directed to general elements. We thus define a way to compare two elements in an arbi-
trary ring which, in the case of idempotents, reduces to the usual (Murray-von Neumann)
comparison. This allows us to define (general) properly infinite elements in a ring. As
with idempotents, these are those that contain two orthogonal copies of themselves (see
below for the precise definitions).

In Section 3 we introduce the concept of pure infiniteness for an arbitrary, not necessar-
ily unital, ring. There are at least two different ways to do this that are both natural and
accommodate an expected generalisation from C∗-algebras. Within this class, both ways of
extending this concept are shown to be equivalent (in [43, Theorem 4.16]), but they are dif-
ferent in the more general framework. This is why our terminology needs to be adapted,
so we are bound to distinguish between properly purely infinite rings and purely infinite
rings. We prove that every properly purely infinite ring is in fact purely infinite. Thus the
first class may be thought of as being purely infinite in a strong sense, but we choose not
to term them strongly purely infinite in order to avoid confusion with the corresponding
notion for C∗-algebras (see [44]). We prove that being purely infinite or properly purely
infinite behaves well when passing to quotients, ideals and in extensions. We also prove
that C∗-algebras that are purely infinite in our sense are also purely infinite in the sense
of [43].

Before analysing further permanence properties, we explore in Section 4 examples of
purely infinite rings, and we already find interesting algebraic versions of analytic results.
For example, if A is any unital K-algebra over a field and (Bi)i is a sequence of unital
K-algebras whose units are all properly infinite, then A ⊗K (⊗∞i=1Bi) is purely infinite (in
fact, properly purely infinite) (see Theorem 4.2). We also deduce from Theorem 4.6 that
A⊗K LK(1,∞) is purely infinite for any von Neumann regular K-algebra A (where K is a
field and LK(1,∞) is the Leavitt algebra of type (1,∞)).

The key question of whether corners and matrices over purely infinite rings are again
purely infinite is addressed in Section 5. We prove that corners of purely infinite rings
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(resp. properly purely infinite rings) are again purely infinite (resp. properly purely in-
finite). Matrices turn out to be trickier, and we establish in Theorem 5.7 that Mn(R) is in
fact properly purely infinite whenever R is a purely infinite exchange ring with local units,
so that there is a good supply of idempotents. This result prompts the question of extend-
ing its validity to a larger class of rings, namely those whose monoids of isomorphism
classes of finitely generated projective (right) modules have the Riesz refinement prop-
erty. The typical example of this is that of the so-called Leavitt path algebras associated
to graphs. We thus benefit from the results developed in order to completely characterize
those Leavitt path algebras LK(E) associated to row-finite graphs that are purely infinite
– or, equivalently in this case, properly purely infinite (Theorem 7.4). As a consequence,
given any unital K-algebra A such that any nonzero right ideal in every quotient con-
tains a nonzero idempotent, and given any row-finite graph E for which LK(E) is purely
infinite, the algebra A⊗K LK(E) is purely infinite.

1. PRELIMINARIES

Throughout the paper R will always denote a ring, which is not assumed to be uni-
tal. However, many of our results for nonunital rings require some replacement for the
existence of a unit, such as one of the following conditions.

Definitions 1.1. A ring R is said to be s-unital if for each x ∈ R, there exist u, v ∈ R such
that ux = xv = x. When we say that an ideal I of R is s-unital, we mean that I is s-unital
when viewed as a ring in its own right, i.e., the elements u and v in the definition must lie
in I .

The defining property of an s-unital ring actually carries over to finite sets of elements,
as the following lemma of Ara shows. In particular, it follows that if R is an s-unital ring,
then all the matrix rings Mn(R) are s-unital.

The assertion that R has local units means that each finite subset of R is contained in a
corner of R, that is, a subring of the form eRe where e is an idempotent of R. (We will not
use any of the more general types of corners discussed in [49].) For example, every (von
Neumann) regular ring has local units [31, Lemma 2]. Note that if R has local units, then
R is the directed union of its corners. We use this term in the sense of, e.g., [6] (rather
than [1]).

Finally, R is said to be σ-unital if there exists a countable sequence (u1, u2, . . . ) of ele-
ments of R such that

(1) un+1un = unun+1 = un for all n.
(2) For any finite subset F ⊆ R, there is some n ∈ N such that unx = xun = x for all

x ∈ F .
Observe that if R is σ-unital and R also has local units, then the sequence (u1, u2, . . . ) can
be chosen so that all the un are idempotents.

Lemma 1.2. [8, Lemma 2.2] Let R be an s-unital ring. For any finite subset F ⊆ R, there exists
an element u ∈ R such that ux = xu = x for all x ∈ F .

The situation is even better for s-unital exchange rings, by the following lemma of
González-Barroso and Pardo. Recall from [7, p. 412] that a (possibly nonunital) ring R
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is an exchange ring if for each x ∈ R, there exist an idempotent e ∈ R and elements r, s ∈ R
such that e = xr = x+ s− xs (or the left-right symmetric version of this condition).

Lemma 1.3. [34, Lemma 2.2] Every s-unital exchange ring has local units.

Definitions 1.4. Recall that idempotents e and f in a ring R are (Murray-von Neumann)
equivalent (written e ∼ f ), provided there exist x, y ∈ R such that e = xy and f = yx (after
replacing such x and y by exf and fye, we may also assume that x ∈ eRf and y ∈ fRe).
This is equivalent to demanding that eR ∼= fR as right R-modules. We say that e and f
are orthogonal (which we denote by e ⊥ f ) when ef = fe = 0. In this situation, e + f is
also idempotent and (e+ f)R = eR⊕ fR. The orthogonal sum of e and f is the idempotent

e⊕f =

(
e 0
0 f

)
in M2(R). Orthogonal sums of larger (finite) collections of idempotents are

defined analogously. To deal with such idempotent matrices, the definition of equivalence
is extended in the natural way: idempotents p ∈ Mm(R) and q ∈ Mn(R) are equivalent if
and only if there exist x ∈ Mm,n(R) and y ∈ Mn,m(R) such that p = xy and q = yx. For
example, if e and f are orthogonal idempotents in R, then e+ f ∼ e⊕ f .

We say that e ≤ f if ef = fe = e. We will also write e < f when e ≤ f but e 6= f . We say
that e is subequivalent to f (denoted e . f ) when e ∼ g ≤ f for some idempotent g ∈ R.
This holds if and only if there exist x, y ∈ R such that e = xfy (given such x and y, take
g = fyexf ). The idempotent e is called infinite if there exists an idempotent f such that
e ∼ f < e; equivalently, if there is a nonzero idempotent g ∈ R such that e ∼ e ⊕ g. If e
is not infinite, we say that e is finite; this holds if and only if for any x, y ∈ eRe, we have
xy = e only if yx = e. Finally, e is properly infinite provided e 6= 0 and e⊕ e . e.

Some of our results involve the monoid of equivalence classes of idempotent matrices
over a ring. We recall the construction here, along with some standard concepts associated
with abelian monoids.

Definition 1.5. Given a ring R and an idempotent e in a matrix ring M•(R), write [e] for
the (Murray-von Neumann) equivalence class of e. The set of these equivalence classes
becomes an abelian monoid, denoted V (R), with respect to the addition operation given
by [e] + [f ] = [e ⊕ f ]. (Alternatively, when R is unital, V (R) may be constructed as the
monoid of isomorphism classes of finitely generated projective right R-modules, with ad-
dition induced from direct sum.) In case R is a C∗-algebra, every idempotent matrix over
R is equivalent to a projection matrix, and so the elements of V (R) can be viewed as equiv-
alence classes of projections.

Definitions 1.6. Let V be an abelian monoid. The algebraic preordering on V is the relation≤
defined as follows: x ≤ y if and only if there exists z ∈ V such that x+ z = y. (This relation
is in general only reflexive and transitive, not necessarily antisymmetric.) For idempotent
matrices e and f over a ring R, we have [e] ≤ [f ] in V (R) if and only if e . f . Thus, for
example, e is properly infinite if and only if [e] 6= 0 and 2[e] ≤ [e].

The monoid V is conical if 0 is the only unit in V , that is, for x, y ∈ V we have x + y = 0
only if x = y = 0. For instance, V (R) is conical.

An ideal (or o-ideal) in V is any submonoid I such that for all x, y ∈ V , we have x+ y ∈ I
only if x, y ∈ I (equivalently, I is hereditary with respect to the algebraic preordering).
Given an o-ideal I , there is a congruence ≡I on V defined as follows: x ≡I y if and only
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if there exist a, b ∈ I such that x + a = y + b. We write V/I for the monoid V/ ≡I , noting
that such a quotient is always conical. As with factor rings, we use overbars to denote
congruence classes in quotient monoids. If I is an ideal of a ring R, then V (I) is naturally
isomorphic to a submonoid of V (R). Moreover, assuming R is an exchange ring, V (I) is
an ideal of V (R) with V (R)/V (I) ∼= V (R/I) [12, Proposition 1.4], and every ideal of V (R)
has the form V (I) for some (semiprimitive) ideal I [54, Teorema 4.1.7].

An order-unit for V is an element u ∈ V such that for each x ∈ V , there is some m ∈ N
with x ≤ mu. This is the same as requiring that the ideal generated by u equals V . If R is
a unital ring, then [1R] is an order-unit in V (R).

We say that V is simple (as an abelian monoid) if
(1) There exist nonunits in V ;
(2) the only ideals of V are V and the group of units of V .

In case V is conical, it is simple if and only if it is nonzero and all nonzero elements are
order-units.

2. INFINITE AND PROPERLY INFINITE ELEMENTS

Our basic definitions, like those in [43], are in terms of equations involving 2×2 matrices
over a ring. The following concepts will simplify manipulations with matrix equations.
While we use ⊕ in the same sense as [43], our algebraic version of the relation - differs
from the Cuntz relation - (or .) for positive elements in a C∗-algebra A. (It is closest to
the relation <

≈
defined in [26, Section 1], except that Cuntz’s definition allows factors from

the unitization of A.)

Definitions 2.1. Let R be a ring, and suppose x and y are square matrices over R, say
x ∈Mk(R) and y ∈Mn(R). We shall use ⊕ to denote block sums of matrices; thus,

x⊕ y =

(
x 0
0 y

)
∈Mk+n(R),

and similarly for block sums of larger numbers of matrices. We define a relation - on
matrices over R by declaring that x - y if and only if there exist α ∈ Mkn(R) and β ∈
Mnk(R) such that x = αyβ.

Observe that if x and y are idempotent matrices, then x - y if and only if x . y.

Lemma 2.2. Let R be a ring. For (iii)–(vi), assume that R is s-unital.
(i) If x, y, z are square matrices over R and x - y - z, then x - z.

(ii) If x1, y1, . . . , xn, yn are square matrices over R satisfying xi - yi for all i = 1, . . . , n, then
x1 ⊕ · · · ⊕ xn - y1 ⊕ · · · ⊕ yn.

(iii) If x and y are square matrices over R, then x - x and x⊕ y - y ⊕ x.
(iv) If x is a square matrix over R, then x⊕ 0 - x⊕ 0′ for any square zero matrices 0 and 0′. In

particular, x - x⊕ 0 - x for any 0.
(v) If x, y ∈Mk(R) for some k, then xy, yx - x.

(vi) If x1, . . . , xn ∈Mk(R) for some k, then x1 ± x2 ± · · · ± xn - x1 ⊕ · · · ⊕ xn.

Proof. (i) and (ii) are clear.
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(iii) There exist square matrices u and v over R such that ux = xu = x and vy = yv =

y. Then uxu = x, whence x - x, and
(
x 0
0 y

)
=

(
0 u
v 0

)(
y 0
0 x

)(
0 v
u 0

)
, showing that

x⊕ y - y ⊕ x.
(iv) There is a square matrix u over R such that ux = xu = x. Inserting rectangular zero

matrices 0i of the appropriate sizes, we have(
x 01

02 0

)
=
(
u 03

)( x 04

05 0′

)(
u
06

)
,

whence x⊕ 0 - x⊕ 0′.
(v) There exists u ∈ Mk(R) such that ux = xu = x. Since xy = uxy and yx = yxu, we

immediately see that xy, yx - x.
(vi) There exists u ∈Mk(R) such that uxi = xiu = xi for all i. Now

x1 ± x2 ± · · · ± xn =
(
u u · · · u

)
x1 0 · · · 0
0 x2 0
... . . . ...
0 0 · · · xn



u
±u

...
±u

 ,

whence x1 ± x2 ± · · · ± xn - x1 ⊕ · · · ⊕ xn. �

Definition 2.3. Let R be a ring. For each element a ∈ R, we define

K(a) = {x ∈ R | a⊕ x - a}.

Lemma 2.4. Let R be a ring and a, x ∈ R. Then the following conditions are equivalent:
(i) x ∈ K(a).

(ii) a⊕ x - a⊕ 0.

(iii) There exist α1, α2, β1, β2 ∈ R such that
(
a 0
0 x

)
=

(
α1 0
α2 0

)(
a 0
0 0

)(
β1 β2

0 0

)
.

Proof. (i) ⇒ (iii). By assumption, there exist matrices
(
α1

α2

)
∈ M21(R) and

(
β1 β2

)
∈

M12(R) such that
(
a 0
0 x

)
=

(
α1

α2

)
a
(
β1 β2

)
, from which it follows that(

a 0
0 x

)
=

(
α1 0
α2 0

)(
a 0
0 0

)(
β1 β2

0 0

)
.

(iii)⇒ (ii). This is clear.
(ii) ⇒ (i). In the s-unital case, this is immediate from the fact that a ⊕ 0 - a (Lemma

2.2(iv)). In general, (ii) gives us matrices α, β ∈ M2(R) such that a ⊕ x = α(a ⊕ 0)β. If we
write α = (αij) and β = (βij), then(

a 0
0 x

)
=

(
α11

α21

)
a
(
β11 β12

)
,

yielding a⊕ x - a and x ∈ K(a). �

Lemma 2.5. If R is an s-unital ring and a ∈ R, then
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(i) K(a) is a two-sided ideal of R.
(ii) K(a) ⊆ RaR. In fact, each x ∈ K(a) satisfies x - a.

Proof. (i) If x ∈ K(a) and r ∈ R, then a ⊕ rx - a ⊕ x - a, whence rx ∈ K(a). Similarly,
xr ∈ K(a). If x, y ∈ K(a), then

a⊕ (x± y) - a⊕ x⊕ y - a⊕ y - a,

whence x± y ∈ K(a).
(ii) If x ∈ K(a), then x - 0⊕ x - a⊕ x - a. Consequently, there exist α, β ∈ R such that

x = αaβ ∈ RaR. �

Definitions 2.6. We will say that an element a in a ring R is infinite if K(a) 6= 0, that is, if
there exists a nonzero element x ∈ R such that a⊕x - a. We call an element a ∈ R properly
infinite if a 6= 0 and a ∈ K(a), the latter condition being equivalent to a⊕ a - a. Finally, we
will say that a ∈ R is finite if it is not infinite.

Remarks 2.7. Note that, by Lemma 2.5(ii), when R is an s-unital ring, we get that a ∈ R is
properly infinite if and only if K(a) = RaR.

We observe that the concepts above agree with the classical ones when applied to an
idempotent e ∈ R, as follows. Here we do not need to assume s-unitality.

If e is infinite in the usual sense, there is a nonzero idempotent f ∈ R such that e⊕f ∼ e,
and so e⊕ f - e, whence e is infinite in the sense of Definition 2.6.

Conversely, if e is infinite in the sense of Definition 2.6, there exist x, α1, α2, β1, β2 ∈ R

such that x 6= 0 and
(
e 0
0 x

)
=

(
α1

α2

)
e
(
β1 β2

)
, that is,

α1eβ1 = e, α1eβ2 = α2eβ1 = 0, α2eβ2 = x.

Since we can replace α1 and β1 by eα1e and eβ1e, there is no loss of generality in assuming
that α1, β1 ∈ eRe. Now α1β1 = e, and so f = β1α1 is an idempotent in eRe with f ∼ e.
Since fβ2 = β1α1eβ2 = 0, we have α2(e− f)β2 = α2eβ2 = x 6= 0, whence f < e. This shows
that e is infinite in the usual sense.

Finally, assuming that e 6= 0, observe that e is properly infinite in the sense of Definition
2.6 if and only if e ⊕ e - e, if and only if e ⊕ e . e, i.e., if and only if e is properly infinite
in the usual sense.

Lemma 2.8. If R is an s-unital ring and a ∈ R, then a+K(a) is finite in R/K(a).

Remark. In the following proof, and below, we use overbars to denote cosets in factor
rings.

Proof. Suppose that the coset a ∈ R/K(a) is infinite. Then there exist b ∈ R \ K(a) and
α1, α2, β1, β2 ∈ R such that(

α1 0
α2 0

)(
a 0
0 0

)(
β1 β2

0 0

)
=

(
a 0
0 b

)
.

Now set

x =

(
a 0
0 b

)
−
(
α1 0
α2 0

)(
a 0
0 0

)(
β1 β2

0 0

)
∈M2(K(a)).
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Write x = (xij), with xij ∈ K(a), and choose u ∈ R such that uxij = xiju = xij for all i, j.
We then have

(
α1 u u 0 0
α2 0 0 u u

)
a

x11

x12

x21

x22



β1 β2

u 0
0 u
u 0
0 u

 =

(
a 0
0 b

)
,

which shows that a⊕ b - a⊕ x11⊕ x12⊕ x21⊕ x22. On the other hand, since a⊕ xij - a for
all i, j, four successive applications of Lemma 2.2 yield a ⊕ x11 ⊕ x12 ⊕ x21 ⊕ x22 - a. But
now a⊕ b - a, contradicting the assumption that b /∈ K(a). Therefore a is finite. �

Corollary 2.9. For a nonzero element a in an s-unital ring R, the following conditions are equiv-
alent.

(i) a is properly infinite.
(ii) For any ideal I of R, the coset a = a+ I is either zero or infinite.

Proof. (i)⇒(ii). If a ⊕ a - a, then clearly a ⊕ a - a in any quotient R/I , so that a is either
zero or properly infinite in R/I .

(ii)⇒(i). Suppose that a is not properly infinite. Since a 6= 0, we have a 6∈ K(a). Consider
I = K(a), which is an ideal of R by Lemma 2.5(i). Now a is nonzero and thus infinite in
R/K(a) by hypothesis, which contradicts Lemma 2.8. Therefore a is properly infinite. �

Proposition 2.10. Let R be an s-unital ring. If a ∈ R is properly infinite and b ∈ RaR, then
b - a.

Proof. Write b =
∑n

i=1 xiayi for some xi, yi ∈ R. Each xiayi - a, whence (by Conditions (vi)
and (v) in Lemma 2.2)

b - x1ay1 ⊕ x2ay2 ⊕ · · · ⊕ xnayn - a⊕ a⊕ · · · ⊕ a - a,

because a⊕ a - a. �

3. PURELY INFINITE RINGS

Definitions 3.1. We will say that a ring R is purely infinite if the following two conditions
are satisfied:

(i) No quotient of R is a division ring.
(ii) Whenever a ∈ R and b ∈ RaR, we have b - a.
We will say that R is properly purely infinite if every nonzero element of R is properly

infinite.
These two concepts are closely related, as we will see below (cf. Lemmas 3.4, 5.3 and

Corollary 5.8).

For relations of these concepts with the C∗-algebraic version of pure infiniteness, see
Definition 3.16 and Proposition 3.17.

In [13], the authors gave a definition of “purely infinite simple ring” in the algebraic set-
ting by demanding that every nonzero right (or left) ideal contain an infinite idempotent.
They proved the following characterization.
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Theorem 3.2. [13, Theorem 1.6] Let R be a unital simple ring. Then R is purely infinite if and
only if

(i) R is not a division ring, and
(ii) 1R - a for every nonzero element a ∈ R.

The concept of purely infinite simple ring was generalized to the setting of rings with
local units in [3], and of nonunital (but σ-unital) rings in [34]. Concretely, the previous
characterization was generalized to the context of rings with local units as follows.

Proposition 3.3. [3, Proposition 10] Let R be a ring with local units. Then R is purely infinite
simple if and only if

(i) R is not a division ring, and
(ii) b - a for all nonzero elements a, b ∈ R.

Clearly then, Definition 3.1 agrees with the previous definitions in the case of simple
rings with local units and, more generally, for simple s-unital rings (because then exis-
tence of idempotents is guaranteed). However, they do not agree in general (see Example
3.5 below). Many examples of purely infinite simple rings are known – see, e.g., [13, Ex-
amples 1.3], [34, Remark 2.7] and also [11, Corollary 5.4]. For some classes of non-simple
(properly) purely infinite rings, see Sections 4 and 7.

Lemma 3.4. Let R be an s-unital ring.
(i) If R is properly purely infinite, then it is purely infinite.

(ii) If M2(R) is purely infinite, then R is properly purely infinite.

Proof. (i) Suppose first that R/I is a division ring for some ideal I of R. Take a nonzero
element a ofR/I . Then a is a nonzero element inR and by hypothesis it is properly infinite.
Find elements α1, α2, β1, β2 ∈ R such that(

a 0
0 a

)
=

(
α1 0
α2 0

)(
a 0
0 0

)(
β1 β2

0 0

)
.

But then in R/I we have that (
a 0
0 a

)
=

(
α1aβ1 α1aβ2

α2aβ1 α2aβ2

)
.

Since R/I is a division ring and a 6= 0, it follows that α1, α2, β1, β2 are all nonzero. But then
α1aβ2 = 0 implies a = 0, a contradiction.

This shows that no quotient of R is a division ring. The other condition is obtained by
invoking Proposition 2.10.

(ii) Given a ∈ R, there exists u ∈ R such that ua = au = a. Hence,

a⊕ a =

(
u 0
0 0

)(
a 0
0 0

)(
u 0
0 0

)
+

(
0 0
u 0

)(
a 0
0 0

)(
0 u
0 0

)
∈M2(R)(a⊕ 0)M2(R).

Since M2(R) is assumed to be purely infinite, it follows that a⊕a - a⊕0, and so a⊕a - a.
Therefore a is either zero or properly infinite. �
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Examples 3.5. (i) If R is a ring with zero multiplication, then R is trivially purely infi-
nite, since RaR = 0 for all a ∈ R. For similar trivial reasons, R contains no infinite
elements, and so R is not properly purely infinite unless R = 0. Thus, proper pure
infiniteness is, in general, stronger than pure infiniteness.

(ii) Let T be a nearly simple uniserial domain (e.g., [28] or [29, Example 3.1]), and take
R = J(T ). Then R is a non-unital purely infinite simple ring, as follows. Given any
nonzero elements a, b ∈ R, we have TaT = Tb3T = R because T is nearly simple, and
so a = x1b

3y1 + · · · + xnb
3yn for some xi, yi ∈ T . Since T is uniserial, we may assume

that x1b
3T ⊆ · · · ⊆ xnb

3T , whence a ∈ xnb3T . Hence, a = xb3y for some x, y ∈ T , and
so a = (xb)b(by) with xb, by ∈ R. This verifies that R is simple and purely infinite. On
the other hand, as R is a domain, it contains no properly infinite elements, and thus
R is not properly purely infinite.

Neither of these examples is s-unital (the second one is not as it is a domain with no
nontrivial idempotents). Therefore they immediately suggest the problem below, which
has become quite elusive so far.

Problem 3.6. Find an s-unital ring R which is purely infinite but not properly purely infi-
nite.

In the simple, non-unital setting, we have already encountered two notions of pure
infiniteness, namely the one introduced in Definition 3.1 and the one that requires each
(nonzero) right ideal to contain an infinite idempotent. In view of existing examples, Pere
Ara has posed the following:

Problem 3.7. Let R be a simple, nonunital ring. If R is purely infinite (in the sense of 3.1)
then, is it true that either

(i) R is a radical ring, or else
(ii) Every right (or left) nonzero ideal of R contains an infinite idempotent?

If the answer to this question is affirmative, then this would imply that a nonunital
purely infinite simple ring R is an exchange ring. In fact, this is an equivalent statement.
More precisely, if every nonunital purely infinite simple ring R is an exchange ring then,
if R does not have idempotents it is radical, and otherwise, condition (ii) above is met by
the results in [34].

Passage of (proper) pure infiniteness to ideals and quotients is given by the following
result. We will consider corners and matrix rings in Section 5.

Note that if I is an s-unital ideal in a ring R, then any ideal J of I is also an ideal of R.
For if x ∈ J and r ∈ R, then x = ux for some u ∈ I , whence rx = (ru)x ∈ Ix ⊆ J ; similarly,
xr ∈ J .

Lemma 3.8. Let I be an ideal of a ring R.
(i) If R is (properly) purely infinite, then so is R/I .

(ii) Now assume that I is s-unital. If R is (properly) purely infinite, then so is I .

Proof. (i) It is clear that strong pure infiniteness passes from R to R/I . Now assume only
that R is purely infinite. Since any quotient of R/I is also a quotient of R, no quotient
of R/I is a division ring. Consider a, b ∈ R such that b ∈ (R/I)a(R/I). Then there is



NON-SIMPLE PURELY INFINITE RINGS 11

some c ∈ RaR such that c = b. By hypothesis, c = xay for some x, y ∈ R, and therefore
b = c = xay.

(ii) Assume first that R is properly purely infinite, and let a ∈ I be nonzero. Then there

exist α1, α2, β1, β2 ∈ R such that
(
a 0
0 a

)
=

(
α1

α2

)
a
(
β1 β2

)
. Since I is s-unital, we also

have a = ua = au for some u ∈ I . Then(
a 0
0 a

)
=

(
α1u
α2u

)
a
(
uβ1 uβ2

)
with α1u, α2u, uβ1, uβ2 ∈ I . This proves that I is properly purely infinite.

Now assume only that R is purely infinite. If a ∈ I and b ∈ IaI , then we at least have
b = xay for some x, y ∈ R. Since also a = ua = au for some u ∈ I , we have b = (xu)a(uy)
with xu, uy ∈ I .

Suppose that I has an ideal J such that I/J is a division ring. As noted above, J is an
ideal of R. Since R/J is purely infinite by (i), it suffices to find a contradiction working in
R/J . Thus, there is no loss of generality in assuming that J = 0.

If e is the identity element of I , then I = eI = Ie, and so I = eR = Re. It follows that
er = ere = re for all r ∈ R, whence e is a central idempotent of R. But then the annihilator
of e in R is an ideal K such that R = I ⊕K, and R/K ∼= I is a division ring, contradicting
the assumption that R is purely infinite. Therefore no quotient of I is a division ring. �

Lemma 3.9. Let R be an s-unital ring and a, e ∈ R with e = e2 - a.
(i) If e ∼ f ≤ e for an idempotent f ∈ R, then e− f ∈ K(a).

(ii) If e is properly infinite, then e ∈ K(a).
(iii) If e is infinite, then a is infinite.

Proof. (i) We first reduce to the case that e ∈ aR. By hypothesis, e = αaβ for some α, β ∈ R,
and there is no loss of generality in assuming that eα = α and βe = β. Set e′ = aβα and
f ′ = aβfα. Then e′ and f ′ are idempotents, e′ ∈ aR, and f ′ ≤ e′ ∼ e. Since (aβ)(fα) = f ′

and (fα)(aβ) = f , we have f ′ ∼ f , and thus e′ ∼ f ′. Similarly, e′ − f ′ ∼ e − f , and so
e′ − f ′ ∈ K(a) if and only if e− f ∈ K(a). Thus, after replacing e and f by e′ and f ′, there
is no loss of generality in assuming that e ∈ aR.

Since (e− f)⊕ e ∼ (e− f)⊕ f ∼ e, we have (e− f)⊕ e - e. Further,

a = ea+ (a− ea) - ea⊕ (a− ea) - e⊕ (a− ea),

and hence

a⊕ (e− f) - (e− f)⊕ a - (e− f)⊕ e⊕ (a− ea) - e⊕ (a− ea).

By hypothesis, e = ax for some x ∈ R, and we note that (a− ea)x = 0. Also, there exists
u ∈ R such that ua = au = a. Set w = u − xa, and observe that aw = a − ea, whence
eaw = 0. Consequently, (a− ea)w = a− ea. We now compute that(

e
u− e

)
a
(
x w

)
=

(
ea

a− ea

)(
x w

)
=

(
e 0
0 a− ea

)
,

whence e⊕ (a− ea) - a. Therefore a⊕ (e− f) - a, which shows that e− f ∈ K(a).
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(ii). If e is properly infinite, there are orthogonal idempotents f, g ∈ R such that f⊕g ≤ e
and f ∼ g ∼ e. Then g ≤ e and we can apply (i) to get that e− g ∈ K(a). But we also have
f ≤ e− g, so that f = f(e− g) ∈ K(a), and consequently e ∈ K(a) because e ∼ f .

(iii) If e is infinite, there is an idempotent f ∈ R with e ∼ f < e. By (i), e− f is a nonzero
element of K(a), and therefore a is infinite. �

Proposition 3.10. Let R be an s-unital ring and I an s-unital ideal of R. Assume that every
nonzero ideal in every quotient of I contains a nonzero idempotent. Then R is properly purely
infinite if and only if I and R/I are both properly purely infinite.

Proof. Necessity follows from Lemma 3.8. Conversely, assume that I and R/I are properly
purely infinite.

If R is not properly purely infinite, there is a nonzero element a ∈ R which is not prop-
erly infinite. By Corollary 2.9, R has an ideal J such that the coset a ∈ R/J is nonzero and
finite. The ring R′ = R/J and its ideal I ′ = (I +J)/J satisfy the same hypotheses as R and
I , and so we may replace R, I , and a by R′, I ′, and a. Thus, there is no loss of generality in
assuming that a is nonzero and finite.

Note that a is not properly infinite, whence a /∈ I . Since R/I is properly purely infinite,
the coset a ∈ R/I is properly infinite, and so there exist α1, α2, β1, β2 ∈ R such that(

a 0
0 a

)
=

(
α1

α2

)
a
(
β1 β2

)
in M2(R/I). Observe that(

a 0
0 a

)
−
(
α1

α2

)
a
(
β1 β2

)
∈M2(I ∩RaR),

where we have a ∈ RaR because R is s-unital. The above difference cannot be zero, since
a is not properly infinite. Therefore I ∩RaR 6= 0.

By hypothesis, there exists a nonzero idempotent e ∈ I ∩ RaR. Then e =
∑

i riasi for
some ri, si ∈ R. Since we may replace the ri and si by eri and sie, respectively, there is
no loss of generality in assuming that ri, si ∈ I for all i. Then, there is some u ∈ I such
that riu = ri for all i. Now ua ∈ I and e =

∑
i ri(ua)si ∈ IuaI . Since I is properly purely

infinite and hence purely infinite, e - ua in I .
Now e - a in R. Since e is (properly) infinite, Lemma 3.9 implies that a is infinite,

contradicting our assumptions. Therefore R is indeed properly purely infinite. �

Corollary 3.11. Let R be an s-unital ring and I a regular ideal of R. Then R is properly purely
infinite if and only if I and R/I are both properly purely infinite.

Problem 3.12. Does the above hold more generally? That is, for an s-unital ringR and an s-unital
ideal I of R, is it the case that R is properly purely infinite if and only if I and R/I both are?

Proposition 3.13. Let R be an s-unital ring. If every nonzero right (or left) ideal in every nonzero
quotient of R contains an infinite idempotent, then R is properly purely infinite.

Proof. Let a be a nonzero element ofR; we use Corollary 2.9 to see that a is properly infinite.
Thus, let I be an ideal of R with a /∈ I , and set S = R/I . By hypothesis, the right ideal
aS contains an infinite idempotent e, so that there is an idempotent f ∈ S with e ∼ f < e.
Now, applying Lemma 3.9(i) we have that 0 6= e−f ∈ K(a), so that a is infinite in S. Thus,
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Corollary 2.9 shows a is properly infinite, which yields in turn that R is properly purely
infinite. �

The next proposition shows that, under suitable conditions, to prove that a ring R is
properly purely infinite, we can relax the hypothesis that every nonzero element is prop-
erly infinite and require only that every nonzero idempotent is properly infinite.

Proposition 3.14. Let R be an s-unital exchange ring. Suppose that every ideal of R is semiprimi-
tive, and that all nonzero idempotents inR are properly infinite. ThenR is properly purely infinite.

Proof. We again use Corollary 2.9 to see that every nonzero element a ∈ R is properly
infinite. Thus, it is enough to check that a is infinite or zero in R/I , for an arbitrary ideal I
of R.

Assume that a /∈ I , and set S = R/I . By hypothesis, S is a semiprimitive exchange
ring. This implies, in particular, that every nonzero right ideal J of S contains a nonzero
idempotent, as follows. Since S is semiprimitive, J 6⊆ J(S), and so there exists an element
x ∈ J which is not right quasiregular. Since S is an exchange ring, there exist r, s ∈ S and
an idempotent e ∈ S such that e = xr = s+ x− xs. Then e ∈ J , and e 6= 0 because x is not
right quasiregular.

In view of the previous paragraph, the nonzero right ideal aS contains a nonzero idem-
potent, say e. This element can be lifted to a nonzero idempotent f of R, which will be
properly infinite by hypothesis. Since the condition f ⊕ f . f passes to e ⊕ e . e, the
idempotent e is properly infinite in S, so Lemma 3.9(ii) applies to give us 0 6= e ∈ K(a).
Therefore a is infinite, as required. �

Since regular rings are s-unital semiprimitive exchange rings, and regularity passes to
quotients, we immediately obtain the following corollary. We shall prove later that a reg-
ular ring is purely infinite if and only if it is properly purely infinite (see Corollary 5.8).

Corollary 3.15. Let R be a regular ring. Then R is properly purely infinite if and only if all
nonzero idempotents in R are properly infinite.

Next, we look at the relationship between the algebraic and analytic concepts of pure
infiniteness. First, recall the definition of pure infiniteness given by Kirchberg and Rørdam
in [43].

Definition 3.16. Let A be a C∗-algebra. For a, b ∈ A+, one defines b - a (in the C∗ sense) to
mean that there exists a sequence of elements xi ∈ A such that xiax∗i → b.

NowA is purely infinite in the sense of [43, Definition 4.1] if the following two conditions
are satisfied:

(i) There are no characters on A, that is, no nonzero homomorphisms A→ C.
(ii) For every a, b ∈ A+ we have b - a if and only if b ∈ AaA.

Given a positive element a in a C∗-algebra A and ε > 0, write (a−ε)+ as the positive part
of a−ε ·1. In other words, (a−ε)+ = f(a), where f : R→ R is given by f(t) = max(t−ε, 0).

Proposition 3.17. Let A be a C∗-algebra. If A is purely infinite in the sense of Definition 3.1, then
it is purely infinite in the sense of Definition 3.16.
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Proof. Observe that since A has no quotients which are division rings, it has no quotients
isomorphic to C, and thus it has no characters.

Next, if a, b ∈ A+ with b - a, then obviously b ∈ AaA. Conversely, suppose that b ∈ AaA.
Given ε > 0, there exist xi ∈ A such that ‖b −

∑
xiax

∗
i ‖ < ε, and

∑
xiax

∗
i = xay for some

x, y ∈ A because A is purely infinite in the algebraic sense. Note that xay ∈ A+. Since
‖b − xay‖ < ε, we obtain (b − ε)+ - xay by [43, Lemma 2.5(ii)]. In addition, xay - a
because of [60, Proposition 2.4], so that (b− ε)+ - a. Since ε is arbitrary we conclude that
b - a [43, Proposition 2.6]. �

Remark 3.18. One might be tempted to look for a converse to Proposition 3.17, at least for
C∗-algebras with real rank zero, but we conjecture that no such converse holds.

4. TENSOR PRODUCT AND MULTIPLIER RING EXAMPLES

Various C∗-algebras obtained from tensor products or multiplier algebras are known to
be purely infinite. We develop some algebraic analogs in this section (see also [43], [46],
[47]).

Lemma 4.1. Let R = A⊗K B where A and B are s-unital algebras over a field K, and let a ∈ A
and b ∈ B. If a is nonzero and b is properly infinite, then a⊗ b is a properly infinite element of R.

Proof. Since we are tensoring over a field, a⊗ b 6= 0.

By assumption,
(
α1

α2

)
b
(
β1 β2

)
=

(
b 0
0 b

)
for some αi, βj ∈ B. Thus, αibβj = δijb for all

i, j. As in the proof of Lemma 3.4(ii), there exist ui, vj ∈M2(A) such that

u1(a⊕ 0)v1 + u2(a⊕ 0)v2 = a⊕ a.
Hence, we make the following computation in M2(A)⊗K B:

(u1 ⊗ α1 + u2 ⊗ α2)
(
(a⊕ 0)⊗ b

)
(v1 ⊗ β1 + v2 ⊗ β2) =

2∑
i,j=1

ui(a⊕ 0)vj ⊗ αibβj

=
2∑
i=1

ui(a⊕ 0)vi ⊗ b = (a⊗ a)⊗ b.

Thus, (a⊕ a)⊗ b - (a⊕ 0)⊗ b. Under the usual identification of M2(A)⊗K B with M2(R),
this last relation becomes (a⊗ b)⊕ (a⊗ b) - (a⊗ b)⊕ 0. �

Our first construction requires infinite tensor products of algebras. Recall that if B1,
B2, . . . is an infinite sequence of unital algebras over a field K, the algebra

⊗∞
i=1Bi is

defined to be the direct limit of the sequence B1 → B1 ⊗K B2 → B1 ⊗K B2 ⊗K B3 → · · · ,
where all the connecting maps have the form b 7→ b⊗ 1.

Theorem 4.2. Let B =
⊗∞

i=1Bi and R = A ⊗K B where A is an s-unital algebra over a field K
and the Bi are unital K-algebras. If the identity element of each Bi is properly infinite, then R is
properly purely infinite.

Proof. By construction, R is the direct limit of a sequence of K-algebras Ri and injective
connecting homomorphisms φi : Ri → Ri+1, where each Ri = A ⊗K B1 ⊗K · · · ⊗K Bi and
φi(r) = r ⊗ 1 for r ∈ Ri. Since A is s-unital and the Bi are unital, all the Ri are s-unital.
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For any nonzero element r ∈ Ri, Lemma 4.1 implies that φi(r) is properly infinite in Ri+1.
Therefore all nonzero elements of R are properly infinite. �

Theorem 4.2 yields many properly purely infinite algebras without needing any purely
infinite simple algebras as ingredients. For example, A could be an arbitrary nonzero uni-
tal K-algebra and we could take each Bi = EndK(Vi) where the Vi are infinite dimensional
vector spaces over K.

Definition 4.3. Let K be a field. The Leavitt algebra LK(1,∞) (denoted U∞ in papers such
as [13]) is the unital K-algebra with generators x1, y1, x2, y2, . . . and relations xiyj = δij
for all i, j. The following notation is convenient for working with this algebra. Let F
denote the set of all finite sequences of positive integers, including the empty sequence,
and set x∅ = y∅ = 1 ∈ LK(1,∞). For any nonempty sequence I = (i1, . . . , ir) ∈ F , set
xI = xi1xi2 . . . xir and yI = yi1yi2 . . . yir . Let I∗ = (ir, . . . , i1) denote the reverse sequence to
I , and note that xIyI∗ = 1. The products yJxI for I, J ∈ F form a K-basis for LK(1,∞).

It is known that the C∗-completion of LC(1,∞) yields O∞. Both algebras LC(1,∞) and
O∞ are purely infinite simple (for the Leavitt algebra, see below), so in particular they are
exchange algebras (see [9]). For a C∗-algebra A, being an exchange algebra is equivalent
to the condition of having real rank zero (see [12] and also [25]). Moreover, their monoids
of equivalence classes of projections agree. In general, one cannot expect that properties
of a C∗-algebra can be read off from a dense ∗-subalgebra. As an example, we mention the
McConnell-Petit algebra

Tα = C〈x, x−1, y, y−1 | xy = αyx〉 ,
where here we take α to be an irrational number. This is not an exchange algebra and it
is known that V (Tα) is not cancellative. However, if we endow it with the involution that
extends complex conjugation and x∗ = x−1, y∗ = y−1, we find that the completion of Tα is
the so-called irrational rotation algebra Aα, that has real rank zero, and whose monoid of
projections is in fact cancellative.

The following fact is known, but we did not locate a reference in the literature.

Lemma 4.4. The algebra LK(1,∞) is a central simple K-algebra, for any field K.

Proof. Simplicity of the algebra L = LK(1,∞) is proved, for instance, in [13, Theorem 4.3].
Consider an element c ∈ Z(L), and write c =

∑
I,J λI,JyJxI where I and J run over F ,

the λI,J ∈ K, and all but finitely many λI,J = 0. Choose an integer n greater than all the
entries in those J for which some λI,J 6= 0. Then λI,JxnyJ = 0 whenever J 6= ∅, and so
xnc =

∑
I λI,∅xnxI . On the other hand, xnc = cxn =

∑
I,J λI,JyJxIxn where the yJxIxn

are part of the standard basis for L. Hence, we must have λI,J = 0 whenever J 6= ∅.
This allows us to rewrite c in the form c =

∑
I λIxI for suitable scalars λI . Now choose

an integer m greater than all the entries in those I for which λI 6= 0. Then λIxIyn = 0
whenever I 6= ∅, and so cyn = λ∅. On the other hand, cny = ycn =

∑
I λIynxI , from

which we conclude that λI = 0 for all nonempty I . Therefore c = λ∅ ∈ K, proving that
Z(L) = K. �

The following lemma is well known in the unital case (e.g., [40, Theorem V.6.1]); minor
modifications, which we leave to the reader, yield the s-unital case.
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Lemma 4.5. Let R = A ⊗K B where A and B are algebras over a field K. Assume that A is
s-unital, that B is unital and simple, and that Z(B) = K. Then every ideal of R has the form
I ⊗K B for some ideal I of A.

Pardo has observed [55] that the method used in the proof of [13, Theorem 4.3] can be
applied to show that A⊗K LK(1,∞) is purely infinite simple for any unital simple algebra
A over a field K. We thank him for permission to use this observation, which we extend
to the non-simple case in the following proof.

Theorem 4.6. Let R = A ⊗K LK(1,∞) where A is an s-unital algebra over a field K. Assume
that every nonzero right ideal in every quotient of A contains a nonzero idempotent. Then R is
properly purely infinite.

Proof. Set L = LK(1,∞). By Proposition 3.13, it suffices to show that every nonzero right
ideal in every nonzero quotient of R contains an infinite idempotent. In view of Lemmas
4.4 and 4.5, every quotient ofR is isomorphic to an algebra of the form (A/I)⊗KLwhere I
is an ideal of A. Hence, after replacing A by A/I , we just need to show that every nonzero
right ideal of R contains an infinite idempotent.

We first claim that for any nonzero element r ∈ R, there is a nonzero element a ∈ A such
that a ⊗ 1 - r. Write r =

∑
I,J aI,J ⊗ yJxI where I and J run over F , the aI,J ∈ K, and

all but finitely many aI,J = 0. There is some u ∈ A such that uaI,J = aI,Ju = aI,J for all
I, J ∈ F . Choose I ′ ∈ F of minimal size such that some aI′,J 6= 0, and then choose J ′ ∈ F
of minimal size such that aI′,J ′ 6= 0. For I, J ∈ F , we have

(i) If aI,J 6= 0, then either xIyI′∗ = 0 or xIyI′∗ = xI′′ for some I ′′ ∈ F , where I ′′ = ∅ only
if I = I ′.

(ii) If aI′,J 6= 0, then either xJ ′∗yJ = 0 or xJ ′∗yJ = yJ ′′ for some J ′′ ∈ F , where J ′′ = ∅ only
if J = J ′.

Consequently,
(u⊗ xJ ′∗)r(u⊗ yI′∗) = a⊗ 1 +

∑
I,J∈F

bI,J ⊗ yJxI ,

where a = aI′,J ′ 6= 0 and b∅,∅ = 0. Since the element r′ = (u⊗xJ ′∗)r(u⊗yI′∗) satisfies r′ - r,
we may replace r by r′. Hence, there is no loss of generality in assuming that a = a∅,∅ is
nonzero. Now choose an integer k greater than all the entries in those I ∈ F for which
some aI,J 6= 0, and greater than all the entries in those J ∈ F for which some aI,J 6= 0.
Then aI,J ⊗ xkyJxIyk = 0 whenever I and J are not both empty, and so

(u⊗ xk)r(u⊗ yk) = a⊗ xkyk = a⊗ 1.

Therefore a⊗ 1 - r, as claimed.
Let H be a nonzero right ideal of R, choose a nonzero element r ∈ H , and let a be a

nonzero element of A such that a ⊗ 1 - r. By hypothesis, there is a nonzero idempotent
e ∈ aA, and e - a in A, whence f = e ⊗ 1 is a nonzero idempotent in R such that f -
a ⊗ 1 - r. Then f = srt for some s ∈ fR and t ∈ Rf , and so g = rts is an idempotent
in rR, equivalent to f . Lemma 4.1 implies that f is properly infinite, whence g is properly
infinite. Since g ∈ rR ⊆ H , the proof is complete. �

Corollary 4.7. If A is a regular algebra over a field K, then A ⊗K LK(1,∞) is a properly purely
infinite K-algebra.
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Kirchberg and Rørdam have proved that if A is any C∗-algebra and B any unital simple
separable purely infinite nuclear C∗-algebra, then A ⊗ B is purely infinite [43, Theorem
4.5]. Theorem 4.6 above corresponds to the case B = O∞ of this result, but it appears to
be a difficult problem to find a general algebraic analog. The proof of [43, Theorem 4.5]
uses the fact that B ∼= B ⊗ (

⊗∞
n=1O∞), which is a consequence of classification theorems

for C∗-algebras. Analogous results are not known in the algebraic setting. In fact, it is
not even known whether LK(1,∞)⊗K LK(1,∞) ∼= LK(1,∞). This would be the algebraic
analogue of the C∗-algebra isomorphism O∞ ⊗O∞ ∼= O∞ (see [42, Theorem 3.15]).

We now turn to multiplier rings for an additional source of examples. To supplement
the following definition, see, e.g., [16] for more detail.

Definitions 4.8. LetR be a ring. A multiplier (or double centralizer) forR is any pair of maps
(f, g) ∈ End(RR)×End(RR) which are compatible in the sense that x

(
f(y)

)
=
(
g(x)

)
y for all

x, y ∈ R. LetM(R) denote the set of all multipliers for R. It becomes a unital ring, called
the multiplier ring of R, in which

(f, g) + (f ′, g′) := (f + f ′, g + g′) and (f, g)(f ′, g′) := (ff ′, g′g)

for all (f, g), (f ′, g′) ∈M(R).
There is a canonical homomorphism ϕ : R → M(R) given by x 7→ (λx, ρx), where λx

and ρx denote the left and right multiplications by x, respectively, and the image ϕ(R)
is an ideal of M(R). The kernel of ϕ consists of those x ∈ R for which xR = Rx = 0.
Thus, in particular, ϕ is injective if R is s-unital, in which case we identify R with its image
ϕ(R) ⊆M(R).

For example, if S is a unital semiprime ring and R = M∞(S) is the ring of all ω × ω
matrices over S with only finitely many nonzero entries, then M(R) = RCFM(S), the
ring of all row- and column-finite ω × ω matrices over S [16, Proposition 1.1].

Theorem 4.9. Let R be a σ-unital, nonunital, simple regular ring, and let I be an ideal ofM(R).
(i) M(R) is an exchange ring but not a regular ring.

(ii) The quotientM(R)/I is properly purely infinite if and only if all its nonzero idempotents are
properly infinite.

Proof. (i) [53, Theorem 2] and [16, Proposition 1.8].
(ii) By [16, Theorem 2.5], every ideal of M(R) is generated by idempotents. Conse-

quently, every ideal ofM(R) is semiprimitive, and therefore part (ii) follows from Propo-
sition 3.14. �

The question of whether the multiplier algebra of a C∗-algebra of real rank zero also
has real rank zero was asked by Brown and Pedersen in their seminal paper [25]. It was
proved by Lin ([51]) that this is the case when the base algebra is AF (roughly speaking,
a closure of an ultramatricial complex algebra – see below). The result above presents an
algebraic analogue of that result, as all ultramatricial algebras are von Neumann regular
rings. In the C∗-context, a much more general result, characterizing when the multiplier
algebra of a C∗-algebra has real rank zero, is available (see [52]).

The work of Ara and the third named author [16] provides a number of settings in which
Theorem 4.9 can be applied. The first of these is immediate:
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Corollary 4.10. Let R be a σ-unital, nonunital, purely infinite simple regular ring. ThenM(R)
is properly purely infinite, and R is the unique proper nonzero ideal ofM(R).

Proof. By [3, Proposition 10], R is also purely infinite in the sense of [3] and [16, p. 3378],
i.e., every nonzero right ideal of R contains an infinite idempotent. Consequently, [16,
Proposition 2.13] shows that the identity map on V (R) extends to an isomorphism

V (M(R))
∼=−→ V (R) t {∞}.

In particular, V (R) is the unique proper nonzero ideal of V (M(R)), and so it follows from
[16, Theorem 2.7] that R is the unique proper nonzero ideal ofM(R).

The given description of V (M(R)) implies that 2[e] = [e] for any idempotent e ∈M(R)\
R, whence these idempotents are properly infinite. On the other hand, any nonzero idem-
potent in R is infinite (as already noted) and thus properly infinite, because R is simple
(e.g., apply Corollary 2.9). Therefore all nonzero idempotents inM(R) are properly infi-
nite, and Theorem 4.9 implies thatM(R) is properly purely infinite. �

Definitions 4.11. Let V be a nonzero abelian monoid which has an order-unit u. A state
on V is any monoid homomorphism s : V → R≥0 such that s(u) = 1, and the state space of
(V, u) is the set Su = S(V, u) of all such states. View Su as a subset of RV , which is a (locally
convex, Hausdorff) linear topological space with the product topology, and observe that Su
is a compact convex subset of RV . The extreme boundary of Su, that is, the set of its extreme
points, is denoted ∂eSu. We write Aff(Su) for the set of all affine continuous functions
Su → R; this is a partially ordered real Banach space with respect to the pointwise ordering
and the supremum norm. There is a natural evaluation map φu : V → Aff(Su), such
that φu(v)(f) = f(v) for v ∈ V and f ∈ Aff(Su). We shall also need the set LAffσ(Su)

++

consisting of those affine lower semicontinuous functions Su → (0,∞] which are pointwise
suprema of countable increasing sequences of strictly positive functions from Aff(Su).

An interval in V is any nonempty hereditary upward directed subset I of V . We say that
I is countably generated if it has a countable cofinal subset, and that I is a generating interval
if I generates the monoid V . IfD is a countably generated generating interval for V , and an
order-unit u ∈ V is given, we set d = supφu(D) ∈ LAffσ(Su)

++ (the pointwise supremum
of the functions in φu(D)), and we define W d

σ (Su) to be the following semigroup:

{f ∈ LAffσ(Su)
++ | f + g = nd for some g ∈ LAffσ(Su)

++ and n ∈ N}.
The disjoint union V tW d

σ (Su) can then be made into an abelian monoid using the given
operations in V and W d

σ (Su) together with the rule x + f = φu(x) + f for x ∈ V and
f ∈ W d

σ (Su).

Definition 4.12. A cancellative abelian monoid V is strictly unperforated if nx < ny always
implies x < y, for any x, y ∈ V and n ∈ N.

Theorem 4.13. [16, Theorem 2.11] Let R be a σ-unital, nonunital, simple unit-regular ring.
Assume that Soc(RR) = 0 and that V (R) is strictly unperforated.

(i) The set D = {[e] | e = e2 ∈ R} is a countably generated generating interval in V (R).
(ii) Choose a nonzero element u ∈ V (R), and define Su, LAffσ(Su)

++, d, W d
σ (Su) as in Defini-

tions 4.11. Then the identity map on V (R) extends to a monoid isomorphism

ϕ : V (M(R))→ V (R) tW d
σ (Su)
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such that ϕ(x) = sup{φu(y) | y ∈ V (R) and y ≤ x} for x ∈ V (M(R)) \ V (R).

Notice that the space Su considered in Theorem 4.13 is in fact a Choquet simplex. This
is basically due to the fact that V (R) satisfies the Riesz refinement property (for a proof,
see, e.g. [37, Theorem 1.2]).

Kucerovsky and the third named author have used a C∗-algebraic version of the above
theorem to give sufficient conditions for certain corona algebras M(A)/A to be purely in-
finite [46, Lemma 3.1, Theorem 3.4] (see also [47]). Their argument carries over to our
algebraic context as follows.

Theorem 4.14. Let R, u, Su, d be as in Theorem 4.13. Assume that ∂eSu is compact, that the
set F∞ = ∂eSu ∩ d−1({∞}) consists of a finite number of isolated points of ∂eSu, and that the
restriction of d to F ′∞ = ∂eSu \ F∞ is continuous. ThenM(R)/R is properly purely infinite, and
it has at least 2|F∞| distinct ideals.

Proof. SinceM(R) is an exchange ring (Theorem 4.9(i)), idempotents lift fromM(R)/R to
M(R). Thus, to verify that the nonzero idempotents inM(R)/R are properly infinite, we
need only consider cosets e = e+R for idempotents e ∈M(R) \R.

The isomorphism ϕ in Theorem 4.13 sends [e] to a function f ∈ W d
σ (Su). Then f+g = md

for some g ∈ W d
σ (Su) and m ∈ N. Since d is finite and continuous on F ′∞ and g is lower

semicontinuous, we see that f is upper semicontinuous on F ′∞ and hence continuous there.
Moreover, F ′∞ is compact (because F∞ is open), and so f is bounded on F ′∞. Thus, we may
choose k ∈ N such that f(s) < k for all s ∈ F ′∞.

Now set X = {s ∈ F∞ | f(s) = ∞}. By increasing k if necessary, we may assume that
f(s) < k for all s ∈ F∞ \X . Then define h : ∂eSu → (0,∞] so that

h(s) =

{
k − f(s) (s ∈ ∂eSu \X)

∞ (s ∈ X).

Since h|F ′∞ is continuous and F∞ is finite, we see that h is lower semicontinuous; in fact,
h is the pointwise supremum of a countable sequence of continuous strictly positive func-
tions. Compactness of ∂eSu implies that the restriction map Aff(Su) → C(∂eSu,R) is an
isomorphism of partially ordered Banach spaces (e.g., [35, Corollary 11.20]), from which it
follows that h extends uniquely to a map h ∈ LAffσ(Su)

++.
Observe that ku + f = 2f + h on ∂eSu, whence ku + f = 2f + h in LAffσ(Su)

++. Since
ku+f ∈ W d

σ (Su), it follows that h ∈ W d
σ (Su). Hence, h = ϕ([q]) for some idempotent matrix

q overM(R). Now ku+ [e] = 2[e] + [q] in V (M(R)), whence p⊕ · · · ⊕ p⊕ e ∼ e⊕ e⊕ q for
some idempotent matrix p over R. Passing to idempotent matrices overM(R)/R yields
e ∼ e⊕ e⊕ q, and therefore e is properly infinite, as desired.

We have now shown that all nonzero idempotents in M(R)/R are properly infinite.
Therefore Theorem 4.9 implies thatM(R)/R is properly purely infinite.

Suppose that F∞ consists of distinct points s1, . . . , sn. For i = 1, . . . , n, define hi : ∂eSu →
(0,∞] so that

hi(s) =

{
∞ (s = si)

1 (s 6= si).

As with h above, we see that hi is lower semicontinuous and that it extends uniquely to a
map in LAffσ(Su)

++. Since d is positive and continuous on Su, it is bounded below, and so
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there is some m ∈ N such that md(s) > 1 for all s ∈ Su. Hence, we can construct a function
g ∈ LAffσ(Su)

++ such that

g(s) =

{
∞ (s ∈ F∞)

md(s)− 1 (s ∈ F ′∞).

Then hi + g = md for all i, which shows that the hi ∈ W d
σ (Su).

Now there exist idempotents ei ∈ M(R) \ R such that ϕ([ei]) = hi for i = 1, . . . , n. By
what we have already proved, the idempotents ei ∈ M(R)/R are properly infinite. Ob-
serve that if hi ≤ hj1 +· · ·+hjr for some i, j1, . . . , jr ∈ {1, . . . , n}, then hj1(si)+· · ·+hjr(si) =
∞ and so some jl = i. It follows that if i, j1, . . . , jr are distinct elements of {1, . . . , n}, then
ei cannot belong to the ideal ofM(R)/R generated by ej1 , . . . , ejr . Therefore the ideals of
M(R)/R generated by the different subsets of {e1, . . . , en} are all distinct. �

Recall that an ultramatricial algebra over a field K is any direct limit of a countable se-
quence of finite direct products of matrix algebras M•(K). Such an algebra R is always
σ-unital and unit-regular, and V (R) is strictly unperforated. (This is the algebraic ana-
logue of an AF algebra, or approximately finite dimensional C∗-algebra. In fact, the AF algebras
are exactly the C∗-completions of the complex ultramatricial algebras.)

Corollary 4.15. LetR be a nonunital simple ultramatricial algebra over a fieldK, and assume that
Soc(RR) = 0. Choose a nonzero element u ∈ V (R), and assume that the state space S(V (R), u)
has only finitely many extreme points.

(i) M(R)/R is properly purely infinite.
(ii) If there are distinct s1, . . . , sn ∈ ∂eS(V (R), u) such that sup{si([e]) | e = e2 ∈ R} =∞ for

all i = 1, . . . , n, thenM(R)/R has at least 2n distinct ideals.

Corollary 4.16. Let S be a unital simple ultramatricial algebra over a field K. Assume that
Soc(SS) = 0 and that the state space S(V (S), [1S]) has only finitely many, say n, extreme points.
Then RCFM(S)/M∞(S) is properly purely infinite, and it has at least 2n distinct ideals.

Proof. Set R = M∞(S), and recall from [16, Proposition 1.1] that M(R) = RCFM(S).
Observe that R is a nonunital simple ultramatricial K-algebra with Soc(RR) = 0, and
that the natural embedding of S into the upper left corner subalgebra of R induces an
isomorphism V (S)→ V (R). It follows that V (R) = {[e] | e = e2 ∈ R}, and consequently

sup{s([e]) | e = e2 ∈ R} =∞
for all s ∈ S(V (R), [1S]). Therefore Corollary 4.15 applies. �

Examples of the situation in Corollary 4.16 for which S(V (S), [1S]) has arbitrarily many
extreme points are easily obtained. For instance, let n ∈ N, and give the abelian group
G = Qn the strict ordering, so that

G+ = {0} ∪ {(x1, . . . , xn) ∈ G | xi > 0 for all i = 1, . . . , n}.
Then G is a countable simple dimension group with order-unit u = (1, . . . , 1). By, e.g., [36,
Theorem 15.24 and Corollary 15.21], there exists a unital simple ultramatricial K-algebra
S such that (K0(S), [1S]) ∼= (G, u) (as partially ordered abelian groups with distinguished
order-units). In particular, (V (S), [1S]) ∼= (G+, u). Since G+ has no minimal positive el-
ements, S has no minimal idempotents, and so Soc(SS) = 0. It is easily checked that
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S(G+, u) consists of convex combinations of the n canonical projection maps πi : G+ → Q+,
and thus ∂eS(G+, u) = {π1, . . . , πn}.

5. MATRICES AND CORNERS OF PURELY INFINITE RINGS

In the current section we study the passage of (proper) pure infiniteness to corners and
matrices. As we prove below, corners inherit (proper) pure infiniteness in full generality,
and in fact local rings at elements do for s-unital rings. Our arguments for the analysis of
matrix rings require a certain abundance of idempotents, that the (large) class of exchange
ring has. Hence, we prove that matrices over s-unital purely infinite exchange rings are
properly purely infinite, from which we deduce that pure infiniteness is a Morita invariant
property (for s-unital exchange rings).

Lemma 5.1. Let R be a purely infinite prime ring. Then no corner of R is a division ring.

Proof. Suppose that we have an idempotent e ∈ R such that eRe is a division ring. Since R
is prime, eR is a simple right R-module.

If eR = R, then (R(1 − e))2 = 0 and so R(1 − e) = 0 because R is prime. (Here we
are writing R(1 − e) for the left ideal {r − re | r ∈ R}.) But then R = eRe and R is a
division ring, contradicting the hypothesis that R is purely infinite. Thus, eR 6= R and so
(1 − e)R 6= 0. Now (1 − e)ReR 6= 0 because R is prime, and hence there exists a nonzero
element a ∈ (1 − e)Re. Note that aR is a nonzero homomorphic image of eR, whence
aR is a simple right R-module. Since R is prime, aR = gR for some idempotent g, and
eg = 0 because ea = 0. Observe that g − ge is an idempotent which generates gR, so we
can replace g by g − ge. Hence, there is no loss of generality in assuming that e ⊥ g.

Now f = e + g is an idempotent such that fR = eR ⊕ aR, and f ∈ ReR because
gR = aR ⊆ ReR. Since R is purely infinite, f = xey for some x, y ∈ R. But then fR is
a homomorphic image of eR, implying that fR is simple or zero, which is impossible in
light of fR = eR⊕ aR. This contradiction establishes the lemma. �

Proposition 5.2. Let e be an idempotent in a ring R. If R is (properly) purely infinite, then so is
eRe.

Proof. Assume first that R is properly purely infinite. Any nonzero element a ∈ R is

properly infinite in R, and so
(
a 0
0 a

)
=

(
α1

α2

)
a
(
β1 β2

)
for some α1, α2, β1, β2 ∈ R. Then(

a 0
0 a

)
=

(
eα1e
eα2e

)
a
(
eβ1e eβ2e

)
,

which shows that a is properly infinite in eRe. Therefore eRe is properly purely infinite in
this case.

Now assume only that R is purely infinite. Suppose first that I is an ideal of eRe such
that eRe/I is a division ring. In this case I is a maximal ideal of eRe. Moreover, e /∈
(eRe)I(eRe) = eRIRe, and so e /∈ RIR. Consequently, e is a nonzero idempotent in
R/RIR, and in particular, e cannot be in the Jacobson radical of R/RIR. Hence, there
exists a (left) primitive ideal P ofR such that e /∈ P andRIR ⊆ P . Now I ⊆ P∩eRe ( eRe,
and by maximality of I in eRe we have I = P ∩eRe. This entails eRe/I = eRe/(P ∩eRe) ∼=
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e(R/P )e. But this means that the purely infinite prime ring R/P has a corner which is a
division ring, contradicting Lemma 5.1. Therefore no quotient of eRe is a division ring.

The other condition is easy. Suppose that a ∈ eRe and b ∈ (eRe)a(eRe) ⊆ RaR. Since
R is purely infinite, there exist x, y ∈ R such that b = xay, and hence b = (exe)a(eye) with
exe, eye ∈ eRe. This shows that eRe is purely infinite. �

We next study the inheritance of pure infiniteness by matrix rings. In general, matrix
rings over purely infinite rings need not be purely infinite, since otherwise pure infinite-
ness and strong pure infiniteness would be the same (recall Lemma 3.4 and Remark 3.5).
We shall prove that pure infiniteness passes to matrix rings in certain circumstances, and
strong pure infiniteness in much wider circumstances. First we prove the following useful
lemma.

Lemma 5.3. Let R be a purely infinite unital ring. If 1 ∈ R is properly infinite, then Mn(R) is
properly purely infinite for all n ∈ N.

Proof. As 1 is properly infinite, (R⊕R)R is isomorphic to a direct summand of RR, and so
Rn
R is isomorphic to a direct summand ofRR for every n ∈ N. Hence, there are idempotents

fn ∈ R such that fnR ∼= Rn
R. Thus, Mn(R) ∼= fnRfn, which is purely infinite by Proposition

5.2. But M2(Mn(R)) ∼= M2n(R) is purely infinite for all n, so we are done by Lemma 3.4. �

Proposition 5.4. Let R be a ring with local units. If R is properly purely infinite, then so is every
matrix ring Mn(R).

Proof. Any nonzero matrix a ∈Mn(R) lies in Mn(eRe) for some nonzero idempotent e ∈ R.
SinceR is properly purely infinite, e is properly infinite, and so Proposition 5.2 and Lemma
5.3 together imply that Mn(eRe) is properly purely infinite. Consequently, a is properly
infinite in Mn(eRe), and hence also in Mn(R). �

Recall that a ringR is irreducible providedR 6= 0 and the intersection of any two nonzero
ideals of R is nonzero.

Lemma 5.5. Let R be an irreducible, purely infinite, unital ring in which every nonzero ideal
contains nonzero idempotents. Then 1 ∈ R is infinite.

Proof. If R is simple, the result is clear from [13, Theorem 1.6]. Suppose then that there
exists a nontrivial ideal I in R, and pick a nonzero idempotent e ∈ I . Then 0 6= ReR ( R.
In particular, we have e 6= 0, 1, and since R is irreducible, ReR ∩R(1− e)R 6= 0.

By hypothesis, there exists a nonzero idempotent f ∈ ReR∩R(1−e)R. Use now the pure
infiniteness of R to obtain elements x, y, z, w ∈ R with f = xey = z(1 − e)w. This implies
that f . e and f . 1 − e, and so there exist nonzero orthogonal idempotents f1, f2 ∈ R
such that f ∼ f1 ∼ f2. Take f3 = 1− (f1 + f2), so that 1 = f1 ⊕ f2 ⊕ f3.

Since f1 ∼ f2 ≤ f2 + f3, we have f1 ∈ R(f2 + f3)R, and hence R(f2 + f3)R = R. Using
the pure infiniteness of R once more, we obtain u, v ∈ R with 1 = u(f2 + f3)v, whence
1 . f2 + f3 < 1. Therefore 1 is infinite. �

Proposition 5.6. Let R be a purely infinite exchange ring. Then every nonzero idempotent in R is
properly infinite.
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Proof. If e is a nonzero idempotent in R, then eRe is an exchange ring, and eRe is purely
infinite by Proposition 5.2. Since it suffices to prove that e is properly infinite in eRe, we
may replace R by eRe. Thus, we may assume that R is a nonzero unital ring and e = 1.

By Corollary 2.9, it is enough to show that the set

C = {I | I is a proper ideal of R and 1 + I ∈ R/I is finite}
is empty. Assume, to the contrary, that C is nonempty, and observe that C is an inductive
set. By Zorn’s Lemma, there exists a maximal element M ∈ C. Since R/M is a purely
infinite exchange ring (Lemma 3.8), we may replace R by R/M . Thus, there is no loss of
generality in assuming that 1 ∈ R is finite and that 1 + J ∈ R/J is infinite for all proper
nonzero ideals J of R.

We next claim that J(R) = 0. Otherwise, R/J(R) is a proper quotient of R in which 1
is infinite, so that 1 ∼ 1 ⊕ e for some nonzero idempotent e ∈ R/J(R). But e lifts to an
idempotent f ∈ R (because R is an exchange ring), and 1 ∼ 1⊕ f implies 1 ∼ 1⊕ f , which
contradicts the finiteness of 1 ∈ R. Hence, J(R) = 0 as claimed.

Since R is now a semiprimitive exchange ring, we see, as in the proof of Proposition
3.14, that every nonzero (right) ideal of R contains a nonzero idempotent.

Moreover, we will show that R is irreducible. Suppose that I and J are nonzero ideals
of R with I ∩ J = 0. In particular, (I + J)/I ∼= J . Then the image of 1 is infinite in R/I
and in all nonzero quotients of R/I , whence 1 + I is properly infinite in R/I by Corollary
2.9. Therefore, all nonzero idempotents in R/I are properly infinite, by Lemma 5.3. In
particular, J contains properly infinite idempotents, which contradicts the assumption
that 1 is finite in R. Hence, R is irreducible.

Now we are in position to apply Lemma 5.5 to obtain that 1 is infinite in R, a contradic-
tion. Therefore the original collection C must be empty, as desired. �

Theorem 5.7. Let R be an s-unital purely infinite exchange ring. Then Mn(R) is properly purely
infinite for every n ∈ N.

Proof. By Lemma 1.3, R has local units, and so R is a directed union of corners eRe. Hence,
each matrix ring Mn(R) is a directed union of subrings Mn(eRe). The rings eRe are purely
infinite exchange rings by Proposition 5.2, and it suffices to show that the rings Mn(eRe)
are all properly purely infinite. Thus, there is no loss of generality in assuming that R
is unital. By Proposition 5.6, 1 ∈ R is properly infinite, and so we are done by Lemma
5.3. �

Corollary 5.8. Let R be an s-unital exchange ring. Then R is purely infinite if and only if it is
properly purely infinite.

Recall that for unital rings, a property P is Morita invariant if and only if P passes to
corners by full idempotents and to matrices. Hence, we immediately obtain the following
from Proposition 5.2 and Theorem 5.7.

Corollary 5.9. Pure infiniteness is a Morita invariant property for unital exchange rings.

We close this section by showing that pure infiniteness is also a Morita invariant prop-
erty for the class of exchange rings with local units. We begin by showing that more
general (type of) corners than the ones considered previously also inherit the property of
being purely infinite.
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Definition 5.10. Let R be a ring and let a ∈ R. The local ring of R at a is defined as
Ra = aRa, with sum inherited from R, and product given by axa · aya = axaya.

The use of local rings at elements allows to overcome the lack of a unit element in the
original ring, and to translate problems from a nonunital context to a unital one. We refer
the reader to [33] for a fuller account on transfer of various properties between rings and
their local rings at elements. Notice that if e is an idempotent in the ring R, then the local
ring of R at e is just the corner eRe.

For any ring R, denote R1 = R⊕ Z, which becomes a unital ring under componentwise
addition, product given by (x,m)(y, n) = (xy + my + nx, nm), and unit (0, 1). Clearly R
embeds into R1 as an ideal. Part of the proof below follows the lines of Proposition 5.2.

Theorem 5.11. Let R be a ring.
(i) If R is purely infinite then, for every a ∈ R, the local ring of R at a is purely infinite.

(ii) Suppose that R is s-unital. If for every a ∈ R the ring Ra is purely infinite, then R is purely
infinite.

Proof. (i). Suppose first that I is an ideal of Ra such that Ra/I is a division ring. In this
case, I is a maximal ideal of Ra. Consider R1IR1, the ideal of R generated by I , and let
aua+ I be the identity element in Ra/I , so that

auaxa ≡ axaua ≡ axa (mod I) for all x ∈ R .
In particular, auaua − aua = y ∈ I . Note that auau /∈ R1IR1 because otherwise aua + I =
(aua+ I)4 = auauauaua+ I = 0, a contradiction.

Denote by π : R → R/R1IR1 the natural quotient map. Then the nonzero element e =
π(auau) is an idempotent in R/R1IR1. Indeed,

e2 = π(auau) π(auau) = π(auauauau) =

π((aua+ y)uau) = π(auauau) = π((aua+ y)u) = π(auau) = e .

In particular, π(auau) cannot be in the Jacobson radical of R/R1IR1. Hence, there exists a
(left) primitive ideal P of R such that R1IR1 ⊆ P and auau /∈ P . Notice that auaua /∈ P .
(Otherwise, taking into account that auaua − aua ∈ I ⊆ P we see that aua ∈ P , which is
not possible.) Maximality of I in Ra now entails I = P ∩Ra.

We use π′ to denote the quotient map R → R/P and e′ = π′(auau), which still is a
nonzero idempotent. It is clear that Ra/I ∼= (R/P )π′(a), via the isomorphism

ϕ : Ra/(P ∩Ra)→ (R/P )π′(a)

given by ϕ(x+ (P ∩Ra)) = x+ P .
Further, there is also an isomorphism

ψ : e′(R/P )e′ → (R/P )π′(a) ,

given by ψ(y) = yπ′(a). This yields

e′(R/P )e′ ∼= (R/P )π′(a) ∼= Ra/I .

Hence, R/P has a corner which is a division ring, contradicting Lemma 5.1.
Next, suppose aba ∈ aRa and let aca ∈ aRa · aba · aRa = aRabaRa. (We may assume

c ∈ RabaR.) Since R is purely infinite, there exist x, y ∈ R such that c = xabay, whence
aca = axabaya = axa · aba · aya.
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(ii). We now assume R to be s-unital and that all local rings of R are purely infinite. If R
is unital, there is nothing to prove.

Suppose that R/I is a division ring, for an ideal I of R. Let π : R → R/I denote the
natural quotient map, and observe that π restricts to a surjective ring homomorphism
Ru → (R/I)π(u) = R/I . Thus Ru has a quotient which is a division ring, contradicting our
hypothesis.

Next, take b ∈ R and a ∈ RbR. Let x in R be such that a = ax = xa and b = bx = xb.
In particular, a, b ∈ Rx. Apply that Rx is a purely infinite ring to find xrx, xsx ∈ Rx with
a = xrx · xbx · xsx = xrxbxsx. �

Corollary 5.12. Let R be a ring with local units. Then R is purely infinite if and only if every
corner of R is purely infinite.

Using Theorem 5.11, the following becomes immediate (although it has been already
proved in Lemma 3.8).

Corollary 5.13. Let I be an s-unital ideal of a purely infinite ring R. Then I is purely infinite.

Proof. For y ∈ I , choose a ∈ I such that y = ay = ya. Then yRy = yaRay ⊆ yIy ⊆ yRy,
and thus Iy = Ry. Now apply Theorem 5.11. �

We next recall the notion of Morita equivalence for idempotent rings (a ring R is said to
be idempotent if R2 = R).

Let R and S be two rings, RNS and SMR two bimodules and (−,−) : N × M → R,
[−,−] : M ×N → S two maps. Then the following conditions are equivalent:

(i)
(
R N
M S

)
is a ring with componentwise sum and product given by:(
r1 n1

m1 s1

)(
r2 n2

m2 s2

)
=

(
r1r2 + (n1,m2) r1n2 + n1s2

m1r2 + s1m2 [m1, n2] + s1s2

)
(ii) [−,−] is S-bilinear and R-balanced, (−,−) is R-bilinear and S-balanced and the

following associativity conditions hold:

(n,m)n′ = n[m,n′] and [m,n]m′ = m(n,m′) ,

for all m, m′ ∈M and n, ′ ∈ N .
That [−,−] is S-bilinear and R-balanced and that (−,−) is R-bilinear and S-

balanced is equivalent to having bimodule maps ϕ : N⊗SM → R and ψ : M⊗RN →
S, given by

ϕ(n⊗m) = (n,m) and ψ(m⊗ n) = [m,n]

so that the associativity conditions above read

ϕ(n⊗m)n′ = nψ(m⊗ n′) and ψ(m⊗ n)m′ = mϕ(n⊗m′) .
A Morita context is a sextuple (R, S,N,M,ϕ, ψ) satisfying one of the (equivalent) conditions
given above. The associated ring (in condition (i)) is called the Morita ring of the context. By
abuse of notation we will write (R, S,N,M) instead of (R, S,N,M,ϕ, ψ) and will identify
R, S, N and M with their natural images in the Morita ring associated to the context. The
Morita context is said to be surjective if the maps ϕ and ψ are both surjective.
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In classical Morita theory, it is shown that two rings with identity R and S are Morita
equivalent (i.e., R-Mod and S-Mod are equivalent categories) if and only if there exists
a surjective Morita context (R, S,N,M,ϕ, ψ). The approach to Morita theory for rings
without identity by means of Morita contexts appears in a number of papers (see [32] and
the references therein) in which many consequences are obtained from the existence of a
surjective Morita context for two rings R and S.

For an idempotent ring R we denote by R-Mod the full subcategory of the category of
all left R-modules whose objects are the “unital” nondegenerate modules. Here, a left R-
module M is said to be unital if M = RM , and M is said to be nondegenerate if, for m ∈M ,
Rm = 0 implies m = 0. Note that, if R has an identity, then R-Mod is the usual category
of left R-modules.

It is shown in [48, Theorem] that, ifR and S are arbitrary rings having a surjective Morita
context, then the categories R-Mod and S-Mod are equivalent. The converse direction is
proved in [32, Proposition 2.3] for idempotent rings, yielding the following theorem.

Theorem 5.14. Let R and S be two idempotent rings. Then the categories R-Mod and S-Mod are
equivalent if and only if there exists a surjective Morita context (R, S,N,M).

Given two idempotent rings R and S, we will say that they are Morita equivalent if the
categories R-Mod and S-Mod are equivalent.

The following result states that purely infiniteness is a Morita invariant property for
exchange rings with local units.

Theorem 5.15. Let R and S be rings with local units that are Morita equivalent. Then R is purely
infinite and exchange if and only if S is purely infinite and exchange.

Proof. Rings with local units are clearly idempotent, and in this case the exchange property
is Morita invariant, as shown in [10, Theorem 2.3]. Let (R, S,N,M) be a surjective Morita
context and assume that R is a purely infinite exchange ring. We will show that Se is
a purely infinite ring for every idempotent e in S. The result then follows by applying
Corollary 5.12.

Since e ∈ S = MN , we can find x1, . . . , xn ∈ M , y1, . . . , yn ∈ N satisfying e =
∑n

i=1 xiyi.
Put x = (x1, . . . , xn), y = (y1, . . . , ym). Then e = x · yt, and we may assume xi = exi and
yi = yie, for every i ∈ {1, . . . , n}.

Consider the map
ϕ : Mn(R)yt·x → Se

(yt · x)a(yt · x) 7→ xayt ,

which is easily seen to be a ring isomorphism. Since matrix rings over purely infinite
exchange rings with local units are again purely infinite (Theorem 5.7) we obtain (via The-
orem 5.11 or Proposition 5.2) that Se is a purely infinite ring. �

The result above is an algebraic analogue of the corresponding result for C∗-algebras,
established in [43, Theorem 4.16].

6. PURELY INFINITE RINGS WITH REFINEMENT FOR IDEMPOTENTS

There exist rings, such as the Leavitt path algebras we discuss in the following section,
which are not exchange rings but have some similar properties, such as refinement for
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orthogonal sums of projections. Our particular goal in this section is to extend Theorem
5.7 to a class of such rings. For efficient use of refinement arguments, we work with the
monoids V (R) (recall Definitions 1.5).

For the reader’s convenience, we collect here some standard concepts concerning abelian
monoids that will be needed below.

Definitions 6.1. Let V be an abelian monoid. We say that V is a refinement monoid provided
that for any x1, x2, y1, y2 ∈ V with x1+x2 = y1+y2, there exist zij ∈ V such that zi1+zi2 = xi
for i = 1, 2 and z1j + z2j = yj for j = 1, 2. These equations can be conveniently displayed
in the form of a refinement matrix:

( y1 y2

x1 z11 z12

x2 z21 z22

)
Refinements of equations with more terms follow by induction. Moreover, refinement
implies the Riesz decomposition property: whenever x, y1, y2 ∈ V with x ≤ y1 + y2, there exist
xi ∈ V such that x = x1 +x2 and xi ≤ yi for i = 1, 2. When R is an exchange ring, V (R) has
refinement (e.g., [12, Corollary 1.3]). It is easily checked that if V is a refinement monoid
and I is an ideal, then both I and V/I are also refinement monoids (e.g., [23, Proposition
7.8]).

An element u ∈ V is called irreducible provided

(1) u is not a unit;
(2) whenever a, b ∈ V and u = a+ b, either a or b is a unit.

In case V is conical, the definition simplifies because 0 is the only unit. In this case, u is
irreducible if and only if

(1′) u 6= 0;
(2′) whenever a, b ∈ V and u = a+ b, either a = 0 or b = 0.

Condition (2′) extends by induction to sums of more than two terms: if u = a1 + · · · + an
for some ai ∈ V , then there is an index j such that aj = u and ai = 0 for all i 6= j.

Lemma 6.2. [63, 1.9] Let V be a refinement monoid, x, y, z ∈ V , and n ∈ N. If nx = y + z, then
x = x0 + · · · + xn for some xi ∈ V such that x1 + 2x2 + · · · + nxn = y and nx0 + (n − 1)x1 +
· · ·+ xn−1 = z.

Corollary 6.3. Let V be a refinement monoid, x, u ∈ V , and I an ideal of V . If nx ≤ u in V/I for
some n ∈ N, then x = x′ + c for some x′ ∈ V and c ∈ I such that nx′ ≤ u.

Proof. By hypothesis, nx ≤ u + a for some a ∈ I , whence nx = y + z for some y ≤ u and
z ≤ a. By Lemma 6.2, x = x0 + · · ·+ xn for some xi ∈ V such that x1 + 2x2 + · · ·+ nxn = y
and nx0 + (n − 1)x1 + · · · + xn−1 = z. For i < n, we have xi ≤ z ≤ a, and so xi ∈ I . Thus,
the lemma is satisfied with x′ = xn and c = x0 + · · ·+ xn−1. �

We next establish a lifting property which is the analog for refinement monoids of Ef-
fros’s lifting property for decompositions of projections modulo ideals in AF C∗-algebras
[30, Lemma 9.8].
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Lemma 6.4. Let V be a refinement monoid, u ∈ V , and I an ideal of V . Suppose that u =
n1x1 + · · · + nrxr in V/I for some ni ∈ N and xi ∈ V . Then there exist yi ∈ V such that
n1y1 + · · ·+ nryr ≤ u and yi = xi in V/I for all i.

Proof. By hypothesis, u + a = n1x1 + · · · + nrxr + b for some a, b ∈ I . Refine this equation,
obtaining a refinement matrix

(n1x1 · · · nrxr b

u z11 · · · z1r z1,r+1

a z21 · · · z2r z2,r+1

)
for some zij ∈ V . Each z2i ≤ a, so z2i ∈ I and nixi = z1i in V/I for i ≤ r. By Corollary 6.3,
each xi = yi + ci for some yi ∈ V and ci ∈ I such that nyi ≤ z1i. Thus,

n1y1 + · · ·+ nryr ≤ z11 + · · ·+ z1r ≤ u,

and yi = xi in V/I for all i. �

Definition 6.5. Let V be an abelian monoid. An element u ∈ V is abelian (or: u has index 1)
provided the only elements a ∈ V for which 2a ≤ u are the units in V .

Lemma 6.6. Let V be a refinement monoid with an abelian order-unit u.
(i) If I is an ideal of V , then the order-unit u ∈ V/I is abelian.

(ii) If M is a maximal ideal of V , then the order-unit u ∈ V/I is irreducible.

Proof. (i) Suppose that 2a ≤ u in V/I , for some a ∈ V . By Corollary 6.3, a = a′ + c for
some a′ ∈ V and c ∈ I such that 2a′ ≤ u. Since u is abelian, a′ is a unit, and so a′ ∈ I .
Consequently, a ∈ I and a = 0 in V/I . Therefore u is abelian in V/I .

(b) The refinement monoid V/M is conical and simple, and its order-unit u is abelian by
part (a). Thus, after passing to V/M , there is no loss of generality in assuming that V is
conical and simple, and that M = {0}.

Suppose that u = a + b for some a, b ∈ V with b 6= 0. By simplicity, a ≤ nb for some
n ∈ N, and so a = a1 + · · · + an for some ai ≤ b. Since 2ai ≤ a + b = u, we have ai = 0 for
all i, and thus a = 0. Therefore u is irreducible. �

We can now prove a monoid version of [57, Proposition 5.7]. Portions of our proof are
adapted from [24, Lemma 3.4].

Theorem 6.7. Let V be a refinement monoid and u ∈ V such that u is not irreducible in V/I for
any ideal I of V . Then there exist x, y ∈ V such that u = 2x+ 3y.

Proof. Since we may work in the ideal generated by u, we may assume that u is an order-
unit in V .

Let J be the ideal of V generated by the set X = {x ∈ V | 2x ≤ u}. We claim that
u is abelian in V/J . If 2a ≤ u in V/J for some a ∈ V , then Corollary 6.3 shows that,
after possibly replacing a by some element congruent to it modulo J , we may assume that
2a ≤ u. Then a ∈ X and a = 0 in V/J , verifying that u is indeed abelian in V/J . Thus, we
must have J = V .

Now u ∈ J , so u ≤ x1 + · · · + xn for some xi ∈ X . Hence, u = u1 + · · · + un for some
ui ≤ xi, and each ui ∈ X . For k = 1, . . . , n, let Jk denote the ideal of V generated by
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{u1, . . . , uk}. We claim that each Jk can be generated by an element of X . This is clear for
J1, which is generated by u1.

Suppose that we have an element vk ∈ X which generates Jk, for some k < n. Write
u = 2vk + w for some w ∈ V , and note that 2uk+1 ≤ u = w in V/Jk. By Corollary 6.3,
uk+1 = u′k+1 + c for some u′k+1 ∈ V and c ∈ Jk such that 2u′k+1 ≤ w. Set vk+1 = vk + u′k+1.
Since vk+1 ≤ vk + uk+1 and 2vk+1 ≤ 2vk + w = u, we see that vk+1 ∈ Jk+1 and vk+1 ∈ X . On
the other hand, vk ≤ vk+1 and uk+1 ≤ vk+1 + c ≤ vk+1 +mvk ≤ (m+ 1)vk+1 for some m ∈ N.
It follows that Jk+1 is generated by vk+1, verifying the induction step of our claim.

The case k = n of the claim provides an element x = vn ∈ X which generates the ideal
Jn. By construction, u ∈ Jn, so Jn = V , and thus x is an order-unit in V . Since x ∈ X , we
also have u = 2x+ y for some y ∈ V .

Now y ≤ mx for some m ∈ N, and so mx = y + z for some z ∈ V . By Lemma 6.2,
x = x0 + · · ·+ xm for some xi ∈ V such that x1 + 2x2 + · · ·+mxm = y. Set

r =
m∑
i=1

bi/2cxi s =
m∑
i=1
i odd

xi t =
m∑
i=0
i even

xi ,

so that y = 2r + s and x = s+ t. Therefore u = 2x+ y = 2(r + t) + 3s. �

Theorem 6.7 immediately yields a generalization of [57, Proposition 5.7] to the nonsep-
arable case, and a corresponding result for exchange rings, as follows.

Corollary 6.8. Let A be a C∗-algebra with real rank zero, and p ∈ A a projection such that the
corner pAp has no 1-dimensional representations. Then M2(C)⊕M3(C) is isomorphic to a unital
sub-C∗-algebra of pAp.

Proof. If I is any (closed) ideal of A not containing p, then pAp/pIp is not 1-dimensional
by hypothesis. Since A has real rank zero, it follows that pAp/pIp has projections different
from 0 and p, and so p is a sum of two nonzero orthogonal projections. This shows that
[p] is not irreducible in V (A)/V (I). Since all ideals of V (A) have the form V (I) for closed
ideals I of A, we conclude that [p] is not irreducible in any quotient of V (A).

Theorem 6.7 now implies that [p] = 2x+ 3y for some x, y ∈ V (A). Hence,

p = r1 + r2 + s1 + s2 + s3

for some pairwise orthogonal projections ri and sj with r1 ∼ r2 and s1 ∼ s2 ∼ s3. The
corner (r1 + r2)A(r1 + r2) then contains a complete set of 2 × 2 matrix units, and so has a
unital subalgebra isomorphic to M2(C). Similarly, (s1 + s2 + s3)A(s1 + s2 + s3) has a unital
subalgebra isomorphic to M3(C). Therefore M2(C)⊕M3(C) embeds unitally in

(r1 + r2)A(r1 + r2)⊕ (s1 + s2 + s3)A(s1 + s2 + s3),

which is a unital subalgebra of pAp. �

Corollary 6.9. Let R be an exchange ring, and e ∈ R an idempotent such that no quotient of
eRe is a division ring. Then there exist unital rings R2 and R3 such that M2(R2) ⊕M3(R3) is
isomorphic to a unital subring of eRe.

Proof. This is analogous to the previous proof. If I is any ideal of R not containing e, then
no quotient of eRe/eIe is a division ring, and so eRe/eIe cannot be a local ring. Since
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eRe/eIe is an exchange ring, it thus must contain an idempotent different from 0 and 1,
from which it follows that [e] is not irreducible in V (R)/V (I). Applying Theorem 6.7, we
get e = f1 + f2 + g1 + g2 + g3 for some pairwise orthogonal idempotents fi and gj with
f1 ∼ f2 and g1 ∼ g2 ∼ g3. Consequently, there are matrix units in appropriate corners
yielding a unital subring of eRe of the desired form. �

Our main use of Theorem 6.7 is to extend Theorem 5.7 to purely infinite rings with
refinement for idempotents, as follows.

Theorem 6.10. Let R be a purely infinite ring, and assume that V (R) is a refinement monoid.
If e ∈ R is an idempotent, and [e] is not irreducible in any quotient of V (R), then Mn(eRe) is
properly purely infinite for every n ∈ N. In particular, e is properly infinite.

Proof. Applying Theorem 6.7 to V (R), we obtain that e = f1 + f2 + g1 + g2 + g3 for some
pairwise orthogonal idempotents fi, gj ∈ R such that f1 ∼ f2 and g1 ∼ g2 ∼ g3. Conse-
quently, p = f1 + g1 and q = f1 + f2 + g1 + g2 are idempotents in R such that e ∈ RpR and
qRq ∼= M2(pRp). Since R is purely infinite, there exist x, y ∈ R such that xpy = e, whence
e . p. This means that eRe is isomorphic to a corner of pRp, and so M2(eRe) is isomorphic
to a corner of qRq. In view of Proposition 5.2, M2(eRe) is purely infinite, whence Lemma
3.4(ii) implies that eRe is properly purely infinite. Therefore e is properly infinite, and we
are done by Lemma 5.3. �

Corollary 6.11. Let R be a purely infinite ring with local units. Assume that V (R) is a refinement
monoid, and that idempotents lift modulo all ideals of R. Then Mn(R) is properly purely infinite
for every n ∈ N.

Proof. As in the proof of Theorem 5.7, there is no loss of generality in assuming that R is
unital. Set u = [1R] ∈ V (R). In view of Theorem 6.10, we need only show that u is not
irreducible in any quotient of V (R).

Suppose, to the contrary, that V (R) has an ideal I such that u is irreducible in V (R)/I .
Let E be the set of those idempotents e ∈ R for which [e] ∈ I , and let J be the ideal of R
generated by E. If J = R, then 1 = a1e1b1 + · · ·+ anenbn for some ai, bi ∈ R and ei ∈ E. But
then 1 . e1⊕ · · · ⊕ en, implying u ≤ [e1] + · · ·+ [en] in V (R) and so u ∈ I , contradicting the
assumption that u ∈ V (R)/I is nonzero. Thus, J 6= R.

Now choose a maximal ideal M of R containing J . Then R/M is a purely infinite simple
ring (Lemma 3.8), and so R/M contains idempotents different from 0 and 1 [13, Theorem
1.6]. Pick such an idempotent, say p, and lift it to an idempotent q ∈ R. Then q and 1−q are
both nonzero inR/M , and so q, 1−q /∈ J . Consequently, q, 1−q /∈ E, whence [q], [1−q] /∈ I .
Since [q] + [1− q] = u, this contradicts the assumption that u is irreducible in V (R)/I .

Therefore u is not irreducible in any quotient of V (R), as desired. �

7. NON-SIMPLE PURELY INFINITE LEAVITT PATH ALGEBRAS

Leavitt path algebras LK(E) of row-finite graphs have been recently introduced in [2]
and [14]. They have become a subject of significant interest, both for algebraists and for
analysts working in C∗-algebras. The Cuntz-Krieger algebras C∗(E) (the C∗-algebra coun-
terpart of these Leavitt path algebras) are described in [59]. The algebraic and analytic
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theories share some striking similarities, as well as some distinct differences (see, e.g., [19]
and [62]).

In the analytic context of graph C∗-algebras, the (not necessarily simple) purely infinite
ones were studied in [39]. In this section we will give the algebraic version of these results.
In fact, this can also be regarded as a natural follow up of the characterization of purely
infinite simple Leavitt path algebras that was carried out in [3].

We have chosen to restrict attention to row-finite graphs with (at most) countably many
vertices, mainly to keep the paper down to a reasonable length. The more general setting
of arbitrary uncountable row-finite graphs (using, e.g., the techniques from [38]) will be
pursued elsewhere.

First, we collect various notions concerning graphs, after which we define Leavitt path
algebras.

Definitions 7.1. A (directed) graph E = (E0, E1, r, s) consists of two countable sets E0 and
E1 together with maps r, s : E1 → E0. The elements of E0 are called vertices and the
elements of E1 edges. For e ∈ E1, the vertices s(e) and r(e) are called the source and range
of e, respectively, and e is said to be an edge from s(e) to r(e), represented by an arrow
s(e) → r(e) when E is drawn. If s−1(v) is a finite set for every v ∈ E0, then the graph is
called row-finite. If E0 is finite and E is row-finite, E1 must necessarily be finite as well;
in this case we say simply that E is finite. Here we will be concerned only with finite and
row-finite graphs.

A vertex which emits no edges is called a sink. A path µ in a graph E is a sequence of
edges µ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case, s(µ) = s(e1)
and r(µ) = r(en) are the source and range of µ, respectively, and n is the length of µ. We
also say that µ is a path from s(e1) to r(en), and we denote by µ0 the set of its vertices, i.e.,
{s(e1), r(e1), . . . , r(en)}.

If µ is a path in E, and if v = s(µ) = r(µ), then µ is called a closed path based at v. If
s(µ) = r(µ) and s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle. A graph which
contains no cycles is called acyclic.

An edge e is an exit for a path µ = e1 . . . en if there exists i such that s(e) = s(ei) and
e 6= ei. We say that E satisfies Condition (L) if every cycle in E has an exit. Let M be a
subset of E0. A path in M is a path α in E with α0 ⊆ M . We say that a path α in M has an
exit in M if there exists e ∈ E1 an exit for α such that r(e) ∈M .

Recall that a closed simple path based at a vertex v is a path µ = e1 · · · et such that s(µ) =
r(µ) = v and s(ei) 6= v for all 2 ≤ i ≤ t. We denote the set of closed simple paths based
at v by CSP (v). Further, E is said to satisfy Condition (K) if for each vertex v on a closed
simple path there exist at least two distinct closed simple paths based at v.

We define a relation ≥ on E0 by setting v ≥ w if there exists a path in E from v to w.
A subset H of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H . A hereditary set
is saturated if every vertex which feeds into H and only into H is again in H , that is, if
s−1(v) 6= ∅ and r(s−1(v)) ⊆ H imply v ∈ H . Denote by HE the set of hereditary saturated
subsets of E0.

We recall here some graph-theoretic constructions which will be of use. For a hereditary
subset H of E0, the quotient graph E/H is defined as

(E0 \H, {e ∈ E1| r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1),
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and the restriction graph is

EH = (H, {e ∈ E1| s(e) ∈ H}, r|(EH)1 , s|(EH)1).

The following definition (which is a particular case of that of [20]) will be used in our
main result: A nonempty subset M ⊆ E0 is a maximal tail if it satisfies the following
properties:

(1) E0 \M is hereditary and saturated.
(2) For every v, w ∈M there exists y ∈M such that v ≥ y and w ≥ y.

Throughout this section, K will denote an arbitrary base field.

Definitions 7.2. The Leavitt path K-algebra LK(E), or simply L(E) if the base field is un-
derstood, is defined to be the K-algebra generated by the set E0 ∪ E1 ∪ {e∗ | e ∈ E1} with
the following relations:

(1) vw = δv,wv for all v, w ∈ E0.
(2) s(e)e = er(e) = e for all e ∈ E1.
(3) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(4) e∗f = δe,fr(e) for all e, f ∈ E1.
(5) v =

∑
e∈s−1(v) ee

∗ for every v ∈ E0 that is not a sink.

The elements of E1 are called real edges, while for e ∈ E1 we call e∗ a ghost edge. The set
{e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e), and we let s(e∗) denote
r(e). If µ = e1 . . . en is a path in E, we denote by µ∗ the element e∗n . . . e∗1 of L(E). For any
subset H of E0, we will denote by I(H) the ideal of L(E) generated by H . Note that if E is
a finite graph, then L(E) is unital with

∑
v∈E0 v = 1L(E).

The graph C∗-algebra C∗(E) associated to a graph E is, in fact, the C∗-completion of
LC(E).

Lemma 7.3. LetE be a row-finite graph. If v ∈ E0 and |CSP (v)| ≥ 2, then v is a properly infinite
idempotent in L(E).

Proof. Note that the relations (4) and (5) in the definition of L(E) imply that for any vertex
v ∈ E0, the elements ee∗ for e ∈ s−1(v) are pairwise orthogonal idempotents with r(e) =
e∗e ∼ ee∗ ≤ v. Hence, v ∼

⊕
e∈s−1(v) r(e) when v is not a sink. In particular, if v, w ∈ E0

and v ≥ w, then v & w.
Let e1 . . . em and f1 . . . fn be two different closed simple paths in E based at v. Then there

is some positive integer t such that ei = fi for i = 1, . . . , t− 1 while et 6= ft. Thus, we have
at least two different edges leaving the vertex r(et−1) = r(ft−1). We compute that

v = s(e1) & r(e1) & · · · & r(et−1) & r(et)⊕ r(ft)
& r(et+1)⊕ r(ft+1) & · · · & r(em)⊕ r(fn) ∼ v ⊕ v.

Therefore v is properly infinite. �

The following result is the algebraic counterpart of [39, Theorem 2.3].

Theorem 7.4. Let L(E) denote the Leavitt path algebra of a row-finite graph E. Then, the follow-
ing conditions are equivalent:

(i) Every nonzero right ideal of every quotient of L(E) contains an infinite idempotent.
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(ii) Every nonzero left ideal of every quotient of L(E) contains an infinite idempotent.
(iii) L(E) is properly purely infinite.
(iv) L(E) is purely infinite.
(v) Every vertex v ∈ E0 is properly infinite as an idempotent in L(E).

(vi) Every cycle in every maximal tail M in E has exits in M , and every vertex in M connects to
a cycle in M .

(vii) E satisfies Condition (K), and every vertex in each maximal tail M in E connects to a cycle
in M .

Proof. Set R = L(E), and observe that R has local units.
(i) or (ii)⇒ (iii)⇒ (iv). These are Proposition 3.13 and Lemma 3.4(i).
(iv) ⇒ (v). By [14, Proposition 4.4], V (R) is a refinement monoid. Hence, by Theorem

6.10, it suffices to show that [v] is not irreducible in any quotient of V (R). Now any ideal
I of V (R) is of the form V (I(H)), where I(H) is the ideal of R corresponding to some
saturated hereditary subset H ⊆ E0 [14, Theorem 5.3]. Moreover, we know that in this
situation, V (R)/I ∼= V (R/I(H)) ∼= V (L(E/H)). Since there is nothing to do if [v] ∈ I , we
may assume that v /∈ H . By Lemma 3.8(i), L(E/H) ∼= R/I(H) is purely infinite, and so for
this part of the proof we may replace R by L(E/H). Thus, we need only show that [v] is
not irreducible in V (R), or equivalently, that v is not a primitive idempotent.

Since vRv is purely infinite (Proposition 5.2), it cannot be isomorphic toK or to a Laurent
polynomial ring K[x, x−1]. Hence, v lies on at least one closed simple path, and CSP (v)
cannot consist only of a single loop based at v. If |CSP (v)| ≥ 2, then v is properly infinite
by Lemma 7.3. In this case, v is obviously not primitive. If |CSP (v)| = 1, then the unique
closed simple path based at v must pass through a vertex w 6= v. Now v & w & v, whence
v ⊕ v . v + w and so M2(vRv) is isomorphic to a corner of (v + w)R(v + w). In this case,
Proposition 5.2 and Lemma 3.4(ii) imply that vRv is properly purely infinite. Again, v is
properly infinite and thus not primitive.

(v)⇒ (vi). Suppose thatM is a maximal tail inE, and that α is a cycle inM without exits
in M . Pick v ∈ α0. The subset H = E0 \M is hereditary and saturated, and L(E)/I(H) ∼=
L(E/H) where (E/H)0 = M . Since being properly infinite is preserved in quotients, v is a
properly infinite idempotent of L(E/H).

On the other hand, because M is a maximal tail and α does not have exits in M , the only
paths from v to v in M are the powers of α. It follows that

vL(E/H)v ∼= L(α) ∼= Mn(K[x, x−1]),

where n = |α0|. However, this ring does not contain properly infinite idempotents, con-
tradicting the choice of v. Therefore every cycle in M has exits in M .

Suppose now that there exists a vertex v ∈ M not connecting to any cycle in M . The set
H = {w ∈ M | v ≥ w} is clearly hereditary and acyclic. In particular, H contains no paths
from v to v, from which we see that vL(E/H)v ∼= K. This gives a contradiction as before,
and therefore every vertex in M connects to a cycle in M .

(vi)⇒ (vii) is proved in [39, Lemma 2.2].
(vii) ⇒ (i) Suppose that J is a proper ideal of R. Because we have Condition (K), J =

I(H) for some H ∈ HE by [18, Theorem 4.5], so that R/J = L(E)/I(H) ∼= L(F ), where
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F = E/H . We must show that every nonzero right ideal I of L(F ) contains an infinite
idempotent. First, apply [18, Lemma 3.2] to get that F satisfies Condition (K).

We will prove that every vertex v in F connects to a cycle in F . From [4, Proposition 6.3],
we know that Leavitt path algebras are semiprimitive, so there exists a (left) primitive ideal
P of L(F ) such that v 6∈ P . This ideal is, in particular, prime in L(F ), and so corresponds
by [18, Proposition 5.6] to a maximal tail M in F in the sense that P = IF (F 0 \M). Clearly
then, v ∈ M . Moreover, M is also a maximal tail in E as stated in [39, Proof of Theorem
2.3], so that v connects to a cycle in M (and therefore in F ) by the hypotheses of (vii).

Consider a nonzero element x ∈ I . Since F has Condition (K), every cycle in F has an
exit in F . An application of [3, Proposition 6] yields that there exist elements α, β ∈ L(F )
such that αxβ = w ∈ F 0. Because w connects to a cycle, we can find a (possibly trivial)
path µ ∈ F ∗ such that µ∗wµ = v where v lies in a cycle. Therefore v = axb for certain
a, b ∈ L(E), where we can assume that va = a and bv = b.

Write f = xba, which is an idempotent element of I . Moreover, v = afxb, and so v . f .
Since F has Condition (K), we get that |CSP (v)| ≥ 2. By Lemma 7.3, v is an infinite
idempotent, and therefore so is f .

(vii)⇒ (ii) is proved analogously. �

In [3] and [13], the authors take as the definition of “purely infinite” for simple rings
the left-right symmetric condition “every nonzero left ideal contains an infinite idempo-
tent”. From Theorem 7.4, we see that our more general definition of purely infinite ring
agrees with that given in the simple case for Leavitt path algebras. Consequently, we can
immediately deduce the main result of [3] as a corollary.

Corollary 7.5. [3, Theorem 11] Let E be a row-finite graph. Then L(E) is purely infinite simple
if and only if E has the following properties:

(i) The only hereditary and saturated subsets of E0 are ∅ and E0.
(ii) Every cycle in E has an exit.

(iii) Every vertex in E connects to a cycle.

Proof. Suppose first that L(E) is purely infinite simple. From the characterization of simple
Leavitt path algebras in [2, Theorem 3.11], we obtain that (i) and (ii) hold. We next claim
that E0 is a maximal tail in E. Trivially, the complement of E0 is hereditary and saturated.
Now consider any two vertices v, w ∈ E0. The set H = {x ∈ E0 | v ≥ x} is clearly
hereditary, and so by (i), the saturated closure of H must equal E0. Consequently, there
exist hereditary subsets H1 = H,H2, . . . , Hn ⊆ E0 such that w ∈ Hn and, for i = 2, . . . , n,
we have

Hi = Hi−1 ∪ {wi} for some vertex wi which feeds into Hi−1 and only into Hi−1.
It follows that eachwi feeds intoH , and so there exists y ∈ H such thatw ≥ y. By definition
of H , we also have v ≥ y, proving that E0 is indeed a maximal tail. Now Theorem 7.4(vi)
implies that (iii) holds.

Conversely, suppose that (i), (ii) and (iii) hold. Use [2, Theorem 3.11] to see that L(E)
is simple. Since the complement of a maximal tail is hereditary and saturated, (i) implies
that the only possible nonempty maximal tail in E is E0. Hence, our current hypotheses
imply condition (vi) of Theorem 7.4, and so condition (i) of that theorem says that every
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nonzero right ideal of L(E) contains an infinite idempotent. Therefore L(E) is purely
infinite simple. �

Remarks 7.6. We record a few useful facts about the elements of a Leavitt path algebra
L = LK(E). Recall that the term “path” is used to refer only to paths consisting of real
edges.

(a) Distinct paths in E are linearly independent elements of L [61, Lemma 1.1].
(b) If p and q are paths in E, then q∗pq is either zero or a path of the same length as p. For

if q∗pq 6= 0, then either p = qr for some path r, in which case q∗pq = rq, or else q = ps = st
for some paths s, t, in which case q∗pq = s∗q = t.

(c) If p1, . . . , pn are distinct paths, and q is a path with deg(q) ≤ deg(pi) for all i, then
q∗piq 6= q∗pjq whenever i 6= j and q∗piq 6= 0. To see this, arrange the indexing so that
q∗piq 6= 0 for i = 1, . . . ,m and q∗piq = 0 for i = m + 1, . . . , n. For i ≤ m, we must have
pi = qri for a path ri, and the ri must be distinct, so the paths q∗piq = riq are distinct.

Lemma 7.7. Let E be a row-finite graph in which every cycle has an exit, and let A be an s-unital
K-algebra. Given any nonzero element x ∈ A⊗K LK(E), there exist a nonzero element a ∈ A and
a vertex v ∈ E0 such that a⊗ v - x.

Proof. Set L = LK(E) and R = A ⊗K L, write x =
∑

j aj ⊗ bj for some aj ∈ A and bj ∈ L,
and choose u ∈ A such that uaj = aju = aj for all j. There is at least one vertex v ∈ E0 such
that x(u ⊗ v) 6= 0, and we may replace x by x(u ⊗ v), that is, there is no loss of generality
in assuming that x = x(u⊗ v).

Let P denote the set of paths in E. This is a K-linearly independent subset of L by
Remark 7.6(a), and so if KP denotes the K-span of P in L, then A⊗K KP =

⊕
p∈P A⊗ p.

Let us denote this subalgebra of R by AP .
We first claim that there is a path µ in E such that 0 6= xµ ∈ AP . This follows the

argument of [17, Proposition 3.1], which gives the claim in the case A = K, as observed in
[61, proof of Proposition 2.2]. We may of course assume that x /∈ AP . Write

x = β +
m∑
i=1

βi(u⊗ e∗i )

where β ∈ AP , the ei are distinct edges in E1 with s(ei) = v, and the βi are nonzero ele-
ments of R. Assume also that the number t of ghost edges needed to describe x (including
the e∗i ) is minimal for nonzero elements x′ ∈ R with x′ - x. Since x /∈ AP , there must be at
least one term in the displayed sum. Now e∗1 = e∗1v and so v = s(e1), showing that v is not
a sink.

If x(u ⊗ ej) 6= 0 for some j, then x(u ⊗ ej) is a nonzero element of R with x(u ⊗ ej) - x
and x(u ⊗ ej) = β(u ⊗ ej) + βj . The number of ghost edges needed to describe x(u ⊗ ej)
is the number needed to describe βj , which is less than the number t. This contradicts the
minimality of t unless βj = 0, in which case x(u ⊗ ej) = β(u ⊗ ej) ∈ AP and our claim is
proved.

Now suppose that x(u⊗ ei) = 0 for all i. Then β(u⊗ ei) + βi = 0 for all i, whence

β
(
u⊗

(
v −

m∑
i=1

eie
∗
i

))
= β −

m∑
i=1

β(u⊗ ei)(u⊗ e∗i ) = x 6= 0.
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Consequently, v−
∑m

i=1 eie
∗
i 6= 0, which means that e1, . . . , em are not the only edges emitted

by v. If the others are em+1, . . . , en, then v −
∑m

i=1 eie
∗
i =

∑n
i=m+1 eie

∗
i and

x = x
(
u⊗

n∑
i=m+1

eie
∗
i

)
.

It follows that x(u⊗ ej) 6= 0 for some j > m. But x(u⊗ ej) = β(u⊗ ej) ∈ AP , and again the
claim is proved.

In view of the claim, we may now assume that x ∈ AP , and so x =
∑n

i=1 ai⊗ pi for some
ai ∈ A and some distinct paths pi in E. We may also assume that the number of terms, n, is
minimal for such expressions of nonzero elements x′ ∈ AP with x′ - x in R. In particular,
all the ai 6= 0. Arrange the indexing so that deg(p1) ≤ · · · ≤ deg(pn).

Now (u⊗ p∗1)x =
∑n

i=1 ai ⊗ p∗1pi where each p∗1pi is either zero or a path in E. Moreover,
p∗1p1 = v (recall that x = x(u⊗ v)), and those p∗1pi which are nonzero are distinct. It follows
that (u⊗p∗1)x 6= 0, and so we may replace x by (u⊗p∗1)x. Thus, there is no loss of generality
in assuming that p1 = v. This means that we are done if n = 1, and so we may also assume
that n > 1. Note that for i > 1, the path pi 6= p1 = v, so deg(pi) > 0.

Next, note that (u ⊗ v)x(u ⊗ v) =
∑n

i=1 ai ⊗ vpiv where those vpiv which are nonzero
are distinct. Since vp1v = v, it follows that (u ⊗ v)x(u ⊗ v) 6= 0, and we replace x by
(u⊗ v)x(u⊗ v). Thus, we may now assume that all the pi are closed paths based at v.

At this point, we have a closed path p2 of positive length based at v, and so p2 = p′2p
′′
2

where p′2 is a closed simple path at v and p′′2 is a closed path (possibly trivial) at v. If p′2 is
a cycle, then it has an exit by hypothesis, while if it is not a cycle, it automatically has an
exit. Hence, p′2 = qer for paths q and r and an edge e such that s(e) emits an edge f 6= e.
Then f ∗q∗p′2 = f ∗er = 0, and so f ∗q∗p2 = 0. Consequently,

(u⊗ f ∗q∗)x(u⊗ qf) = a1 ⊗ r(f) +
n∑
i=3

ai ⊗ f ∗q∗piqf.

Further, since deg(p2) ≤ deg(pi) for i > 1, those f ∗q∗piqf for i > 1 which are nonzero are
distinct paths of positive length. Hence, (u⊗f ∗q∗)x(u⊗qf) 6= 0. However, this contradicts
the minimality of n.

Therefore we must have n = 1, and the proof is complete. �

Corollary 7.8. Let A be an s-unital K-algebra, and let E be a row-finite graph such that
(i) The only hereditary and saturated subsets of E0 are ∅ and E0.

(ii) Every cycle in E has an exit.
Then every ideal of A⊗K LK(E) has the form I ⊗K LK(E) for some ideal I of A.

Remark. This would follow from standard results when E is finite, once we showed that
the center of LK(E) is K. The use of Lemma 7.7 saves that step, not to mention extra
techniques needed to investigate centers of corners when E is infinite.

Proof. Set L = LK(E) and R = A⊗K L, and recall from [2, Theorem 3.11] that L is a simple
algebra. Given an ideal J of R, define

I = {a ∈ A | a⊗ L ⊆ J},
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and observe that I is an ideal of A. Since I ⊗K L ⊆ J , we may factor out I ⊗K L and work
in (A/I)⊗K L. Hence, there is no loss of generality in assuming that I = 0.

If there is a nonzero element x ∈ J , then by Lemma 7.7 there exist a ∈ A and v ∈ E0

such that 0 6= a⊗ v - x. In particular, a⊗ v ∈ J . It now follows that a⊗ L = a⊗ LvL ⊆ J
and a ∈ I , contradicting the assumption that I = 0. Therefore J = 0, and the corollary is
proved. �

Theorem 7.9. Let A be an s-unital K-algebra and E a row-finite graph such that
(i) Every nonzero right ideal in every quotient of A contains a nonzero idempotent.

(ii) The only hereditary and saturated subsets of E0 are ∅ and E0.
(iii) Every cycle in E has an exit.
(iv) Every vertex in E connects to a cycle.

Then the algebra R = A⊗K LK(E) is properly purely infinite.

Proof. Set L = LK(E). By Proposition 3.13, it suffices to show that every nonzero right
ideal in every nonzero quotient of R contains an infinite idempotent. In view of Corollary
7.8, every quotient of R is isomorphic to an algebra of the form (A/I) ⊗K L where I is an
ideal of A. Hence, after replacing A by A/I , we just need to show that every nonzero right
ideal J of R contains an infinite idempotent.

Choose a nonzero element x ∈ J . By Lemma 7.7, there exist a ∈ A and v ∈ E0 such that
0 6= a⊗ v - x. By hypothesis, there is a nonzero idempotent e ∈ aA, whence f = e⊗ v is a
nonzero idempotent in R such that f - a ⊗ v - x. Since L is purely infinite simple by [3,
Theorem 11], the idempotent v ∈ L is properly infinite. Hence, Lemma 4.1 implies that f
is properly infinite. But f is equivalent to an idempotent in J (recall the proof of Theorem
4.6), and therefore J contains a (properly) infinite idempotent. �

8. PROBLEMS

In this section we gather some open problems, mostly connected with the relationship
between the algebraic notions and the C∗-algebraic notions. Some of them have been
posed by the referee and we indicate some partial answers.

We begin by restating Problems 3.6 and 3.7:

Problem 8.1. Does there exist an s-unital ring that is purely infinite but not properly purely
infinite?

The existence of such an example (which looks plausible to the authors) would clarify
further the similarities and differences between the purely algebraic notion and its C∗-
sibling.

Problem 8.2 (Pere Ara). Let R be a simple, nonunital ring. If R is purely infinite (in the
sense of 3.1) then, is it true that either

(i) R is a radical ring, or else
(ii) Every right (or left) nonzero ideal of R contains an infinite idempotent?

Problem 8.3. Let A be a K-algebra over a field K, and let B be a (properly) purely infinite
simple K-algebra. Is it always the case that the tensor product A⊗K B is (properly) purely
infinite?
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With considerable effort, we have verified this is the case when A has enough nonzero
idempotents and B is a purely infinite simple Leavitt path algebra (hence, in particular,
for LK(1,∞)), see Theorem 7.9, but in general it remains open.

Problem 8.4. LetH be a (separable) Hilbert space and letA0 be a ∗-subalgebra of B(H). Let
A = A0, that is, the closure of A0 in the norm-topology. If A0 is (properly) purely infinite,
is this property inherited by A?

Recall from [56] that any C∗-algebra A contains a minimal two-sided dense ideal K(A),
referred to as the Pedersen ideal of A. It is in fact the (algebraic) ideal generated by the set

F (A) = {a ∈ A+ | there exists b ∈ A+ with ab = a} .
In particular, given a ∈ A+ and ε > 0, the element (a − ε)+ belongs to F (A) and a =
lim
ε→0

(a − ε)+. It is also clear that K(A) contains all projections of A, whence it equals A in
case A is unital, but it will be proper in general.

In this direction, we offer the following:

Proposition 8.5. Let A be a C∗-algebra, and assume that K(A) is (properly) purely infinite. Then
A is purely infinite in the C∗-sense.

Proof. If A is unital, then K(A) = A and this is Proposition 3.17, hence we may assume
that A is non-unital.

First suppose that K(A) is purely properly infinite, and let a ∈ A+ and ε > 0. Since
(a− ε)+ ∈ K(A), we know that

(a− ε)+ ⊕ (a− ε)+ - (a− ε)+ ≤ a

(algebraically, hence also in Cuntz’s sense). Letting ε go to zero, we get a⊕ a - a, and [43,
Theorem 4.16] implies that A is purely infinite.

Now assume that K(A) is purely infinite. If A has a character τ : A→ C, then restriction
to K(A) is a non-zero homomorphism on K(A) (as this is a dense ideal in A), whencefore
K(A) has a quotient which is a division ring, in contradiction with our hypothesis.

Next, if a, b ∈ A+ with b ∈ AaA, let ε > 0 and choose n ≥ 1 and non-zero elements xi
(i = 1, . . . , n) such that ‖b −

∑n
i=1 xiax

∗
i ‖ < ε/2. Now choose δ < ε/(2

∑
i ‖xi‖2) and note

that

‖b−
∑
i

xi(a− δ)+x
∗
i ‖ ≤ ‖b−

∑
i

xiax
∗
i ‖+ ‖

∑
xiax

∗
i −

∑
xi(a− δ)+x

∗
i ‖

< ε/2 +
∑
i

‖xi‖2‖a− (a− δ)+‖ < ε .

Also,
∑

i xi(a − δ)+x
∗
i ∈ K(A)(a − δ)1/2

+ K(A), and hence it is of the form x(a − δ)1/2
+ y for

some elements x, y ∈ K(A). Thus

(b− ε)+ - x(a− δ)1/2
+ y - (a− δ)+ ≤ a ,

and since ε was arbitrary, we get b - a. �

In general, though, even the following has remained elusive so far:

Problem 8.6. Let A0 and A be as in Problem 8.4, and assume that A0 is unital and purely
infinite simple. Does it follow that A is purely infinite?
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