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Abstract: We prove that under conditions of regularity the maximal left quotient
ring of a corner of a ring is the corner of the maximal left quotient ring. We show
that if R and S are two non-unital Morita equivalent rings then their maximal left
quotient rings are not necessarily Morita equivalent. This situation contrasts with
the unital case. However we prove that the ideals generated by two Morita equivalent
idempotent rings inside their own maximal left quotient ring are Morita equivalent.

Introduction.

The notion of left quotient ring was introduced by Utumi in 1956 (see [6]). An
overring Q of a ring R is said to be a left quotient ring of R if given p, q ∈ Q, with
p 6= 0, there exists a ∈ R satisfying ap 6= 0 and aq ∈ R. In his paper, Utumi proved
that there exists a maximal left quotient ring for every ring without total right zero
divisors, called the Utumi left quotient ring of R and denoted by Ql

max(R).

It is natural to ask if given an idempotent e in a ring R without total right
zero divisors, the maximal left quotient ring of a corner (Ql

max(eRe)) and the corner
of the maximal left quotient ring (eQl

max(R)e) are isomorphic. We prove that this
is true for every full idempotent e of a ring R without total left zero divisors and
without total right zero divisors (in fact, we prove a more general result). This fails
in general, as it is shown in (1.10), example produced by Professor Pere Ara.

It is well-known that if R and S are two unital Morita equivalent rings, then
Ql

max(R) and Ql
max(S) are Morita equivalent too. As it is shown in the example (2.6)

there exist rings which are Morita equivalent to division rings but do not satisfy this
property. However we obtain that if R and S are two Morita equivalent idempotent
rings, then Ql

max(R)RQl
max(R) and Ql

max(S)SQl
max(S) are Morita equivalent.
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1. The maximal left quotient ring of a corner.

Recall that an overring Q of a ring R is said to be a left quotient ring of R

if given p, q ∈ Q, with p 6= 0, there exists a ∈ R satisfying ap 6= 0 and aq ∈ R.
Right quotient rings are defined analogously. It is not difficult to prove that if Q is
a left quotient ring of R then given q1, . . . , qn ∈ Q, with q1 6= 0, then there exists an
element a ∈ R such that rq1 6= 0 and rqi ∈ R for every i ∈ {1, . . . , n}. From now on,
we will use this property without mentioning it.

A nonzero element x ∈ R is a total right zero divisor if Rx = 0. Utumi proved
(see [6]) that every ring without total right zero divisors has a maximal left quotient
ring. This ring, denoted by Ql

max(R), will be called the Utumi left quotient ring

of R, or the maximal left quotient ring of R. Similarly, a nonzero element x in R

is said to be a total left zero divisor if xR = 0.

The Utumi left quotient ring of a ring without total right zero divisors can be
characterized as follows. First, some notation and a definition.

A left ideal L of a ring R is said to be dense if for every x, y ∈ R, with x 6= 0,
there exists a ∈ R such that ax 6= 0 and ay ∈ L. As it is not difficult to see, this is
equivalent to saying that R is a left quotient ring of L. We will denote by Idl(R) (or
simply by Idl) the family of dense left ideals of R.

Notation: For a left R-homomorphism f : RL → RR we will write (x)f , or
simply xf , to denote the action of f on an arbitrary element x ∈ L.

1.1. Proposition. Let R be a ring without total right zero divisors, and let S

be a ring containing R. Then S is isomorphic to Ql
max(R), under an isomorphism

which is the identity on R, if and only if S has the following properties:

(1) For any s ∈ S there exists L ∈ Idl(R) such that Ls ⊆ R.

(2) For s ∈ S and L ∈ Idl(R), Ls = 0 implies s = 0.

(3) For any L ∈ Idl(R) and f ∈ HomR(RL, RR), there exists s ∈ S such that
(x)f = xs for all x ∈ L.

1.2. Remark. The conditions (1) and (2) in (1.1) are equivalent to saying that
S is a left quotient ring of R. This can be proved by using [4, Lemma 4.3.2].

Let R and S be rings with R ⊆ S. For every X ⊆ S the following sets can be
defined: lanR(X) := {r ∈ R | rx = 0 ∀ x ∈ X} and ranR(X) := {r ∈ R | xr =
0 ∀ x ∈ X}.

1.3. Proposition. Let R and S be rings with R ⊆ S, and consider an idem-
potent e ∈ S such that eR + Re ⊆ R and lanR(Re) = ranR(eR) = 0. Then,
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for every eLe ∈ Idl(eRe), ReLe ⊕ lanR(e) ∈ Idl(R). In particular, if e ∈ R,
eLe 7→ ReLe ⊕ lanR(e) defines an injective (inclusion-preserving) map from the
dense left ideals of eRe and those of R.

Proof: The sum of ReLe and lanR(e) is direct because lanR(e) = R(1 − e).
Let p and q be in R with p 6= 0. Since lanR(Re) = 0, pse 6= 0 for some s ∈ R.
Then ranR(eR) = 0 allows us to find u ∈ R such that eupse 6= 0. Using twice
eLe ∈ Idl(eRe) we obtain: 0 6= etet′eupse and et′euqe ∈ eLe, for some ete, et′e ∈ eRe.
Then etet′eu ∈ R satisfies etet′eup 6= 0 and etet′euq = etet′euqe + etet′euq(1− e) ∈
ReLe + lanR(e).

Finally, suppose e ∈ R. If eLe, eL′e ∈ Idl(eRe) are such that ReLe⊕ lanR(e) =
ReL′e⊕ lanR(e), then ReLe = ReL′e, hence eLe = eL′e. This proves the injectivity.

The map defined in the previous lemma is not always surjective, as we will see
in the following example.

1.4. Example. Take R = M2(Z), I = M2(2 Z) and e =
(

1 0
0 0

)
. Then

lanR(Re) = ranR(eR) = 0, I ∈ Idl(R) and since lanR(e) =
(

0 Z
0 Z

)
, I 6= ReLe ⊕

lanR(e) for every eLe ∈ Idl(eRe).

1.5. Proposition. Let R and S be rings with R ⊆ S, and consider an idempo-
tent e ∈ S such that eR + Re ⊆ R and ranR(eR) = 0. Then for every L ∈ Idl(R),
eLe ∈ Idl(eRe). Moreover, if e ∈ R and lanR(Re) = 0, then L 7→ eLe defines a
surjective (inclusion-preserving) map from the dense left ideals of R and those of
eRe.

Proof: Take exe, eye ∈ eRe, with exe 6= 0. Since L ∈ Idl(R) we can find t ∈ R

satisfying texe 6= 0 and tey ∈ L. Now ranR(eR) = 0 implies estexe 6= 0 for some
element s ∈ R. Then este ∈ eRe satisfies estexe 6= 0 and esteye ∈ eLe.

Finally, suppose e ∈ R and lanR(Re) = 0. If eLe ∈ Idl(eRe) then ReLe⊕R(1−
e) ∈ Idl(R) (see (1.3)) and e[ReLe ⊕ R(1 − e)]e = eLe. This shows the surjectivity.

The map L 7→ eLe is not always injective, as it is shown in the following example.

1.6. Example. Take R = M2(Z), L =
(
Z mZ
Z mZ

)
, L′ =

(
Z nZ
Z nZ

)
, with

n,m ∈ Z, m 6= n, and e =
(

1 0
0 0

)
. Then lanR(Re) = ranR(eR) = 0, L, L′ ∈

Idl(R), and eLe = eL′e ∈ Idl(eRe), while L 6= L′.
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1.7. Lemma. Let R ⊆ Q ⊆ S be rings and consider an idempotent e ∈ S such
that eR + Re ⊆ R, eQ + Qe ⊆ Q and ranR(eR) = 0. If Q is a left quotient ring of
R, then eQe is a left quotient ring of eRe.

Proof: Given epe, eqe ∈ eQe, with epe 6= 0, use that Q is a left quotient ring
of R to find r ∈ R satisfying repe 6= 0 and rep, req ∈ R. Since ranR(eR) = 0,
etrepe 6= 0 for some t ∈ R. Moreover, etreqe ∈ eRe.

1.8. Theorem. Let R be a ring and Q := Ql
max(R). Then, for every idempotent

e ∈ Q such that eR+Re ⊆ R and lanR(Re) = ranR(eR) = 0 we have: Ql
max(eRe) ∼=

eQl
max(R)e.

Proof: By (1.7), eQe is a left quotient ring of eRe and this implies the condi-
tions (1) and (2) of (1.1). Now, we will prove the third one.

Take eLe ∈ Idl(eRe) and f ∈ HomeRe(eReeLe, eReeRe). Define

f : ReLe⊕ lanR(e) −→ R∑
rielie + t 7→ ∑

ri(elie)f

By (1.3), ReLe⊕lanR(e) ∈ Idl(R). The map f is well-defined: suppose 0 =
∑

rielie+
t ∈ ReLe⊕ lanR(e). Then 0 = t =

∑
rielie and

∑
ri(elie)f must be zero; otherwise,

since ranR(eR) = 0 there would be an element s ∈ R such that 0 6= es
∑

ri(elie)f =∑
esrie (elie)f = (

∑
esrielie)f = (es

∑
rielie)f = 0, which is a contradiction.

Moreover, f is a homomorphism of left R-modules: for rele + t ∈ ReLe ⊕ lanR(e)
and s ∈ R, s(rele + t)f = sr(ele)f = (srele + st)f .

Apply (1.1) to find q ∈ Q such that (rele + t)f = (rele + t)q for all rele + t ∈
ReLe ⊕ lanR(e). We will prove q = eqe. For every rele + t ∈ ReLe ⊕ lanR(e),
(rele + t)q = (rele + t)f = r(ele)f = r(ele)fe = releqe = (rele + t)eqe. This implies
(ReLe ⊕ lanR(e))(q − eqe) = 0, and by (1.1(2)), q − eqe = 0. Finally, take erele ∈
eReLe. Then (erele)f = (erele)f = ereleq = ereleqe. Hence (ele)f = eleqe for every
ele ∈ eLe because eReLe is a dense left ideal of eRe, and two eRe-homomorphisms
which coincide on a dense left ideal of eRe coincide on their common domain. This
completes the proof.

We recall that an idempotent e of a ring R is called a full idempotent if ReR =
R.

1.9. Corollary. Let R be a ring without total right zero divisors and with-
out total left zero divisors, and consider a full idempotent e2 = e ∈ R. Then
Ql

max(eRe) ∼= eQl
max(R)e.

The hypothesis of fullness of the idempotent cannot be dropped in (1.9), as it is
shown in the following example.
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1.10. Example. (Pere Ara). There exists a non full idempotent e in a ring R

such that Ql
max(eRe) 6∼= eQl

max(R)e.

Proof: Consider the ring R of lower triangular matrices 3 × 3 over a field
K which have the term 2,1 equal to zero, and let e be the nonfull idempotent
diag(1, 1, 0). Then Ql

max(R) = M3(K) and eQl
max(R)e = {(aij) ∈ M3(K) | a13 =

a23 = a31 = a32 = a33 = 0}, while Ql
max(eRe) = eRe = {(aij) ∈ M3(K) | a12 =

a13 = a21 = a23 = a31 = a32 = a33 = 0}.
1.11. Corollary. Let R and S be rings with R ⊆ S and S a left quotient ring

of R, and suppose R without total left zero divisors. Then, for every full idempotent
e ∈ R such that RfR = R, for f := 1− e, we have:

(i) S = Ql
max(R) if and only if eSe = Ql

max(eRe) and fSf = Ql
max(fRf).

(ii) In particular, Ql
max(R) = Q1+Q1RQ2+Q2RQ1+Q2, where Q1 := eQl

max(R)e ∼=
Ql

max(eRe) and Q2 := fQl
max(R)f ∼= Ql

max(fRf).

Proof: We prove only (i) because (ii) follows immediately from it. The only
part follows from (1.9). Conversely, write Q := Ql

max(R). Since S is a left quotient
ring of R, we may consider R ⊆ S ⊆ Q. Moreover, eSf = eeeeSf ⊆ eSeRSf =
eSeRfRSf ⊆ eSeRfSf ⊆ eSf implies eSf = eSeRfSf , and fSe = fSeeee ⊆
fSReSe = fSRfReSe ⊆ fSfReSe ⊆ fSe implies fSe = fSfReSe.

Analogously we prove eQf = eQeRfQf and fQe = fQfReQe. Hence S =
eSe⊕ eSf ⊕ fSe⊕ fSf = eQe⊕ eQf ⊕ fQe⊕ fQf = Q.

The hypothesis of e being in R cannot be eliminated. We show it in the following
example.

1.12. Example. Let V be a left vector space over a field K of infinite dimension,
Q = EndK(V ) and R = Soc(Q). Consider two idempotents e, f ∈ Q such that
e, f /∈ R and e + f = 1. Then T = eQe ⊕ eQeRfQf ⊕ fQfReQe ⊕ fQf satisfies
R ⊆ T ⊆ Q = Ql

max(R), eTe = eQe and fTf = fQf , while T 6= Q.

Notice that we cannot apply (1.11) to the ring T since e is not a full idempotent
of T .

2. Morita invariance and maximal left quotient rings.

Let R and S be two rings, RNS and SMR two bimodules and (−,−) : N ×M →
R, [−,−] : M ×N → S two maps. Then the following conditions are equivalent:
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(i)
(

R N
M S

)
is a ring with componentwise sum and product given by:

(
r1 n1

m1 s1

)(
r2 n2

m2 s2

)
=

(
r1r2 + (n1,m2) r1n2 + n1s2

m1r2 + s1m2 [m1, n2] + s1s2

)

(ii) [−,−] is S-bilinear and R-balanced, (−,−) is R-bilinear and S-balanced and the
following associativity conditions hold:

(n,m)n′ = n[m,n′] and [m,n]m′ = m(n,m′).

[−,−] being S-bilinear and R-balanced and (−,−) being R-bilinear and S-
balanced is equivalent to having bimodule maps ϕ : N ⊗S M → R and ψ :
M ⊗R N → S, given by

ϕ(n⊗m) = (n,m) and ψ(m⊗ n) = [m,n]

so that the associativity conditions above read

ϕ(n⊗m)n′ = nψ(m⊗ n′) and ψ(m⊗ n)m′ = mϕ(n⊗m′).

A Morita context is a sextuple (R, S, N, M, ϕ, ψ) satisfying the conditions
given above. The associated ring is called the Morita ring of the context. By abuse
of notation we will write (R, S, N, M) instead of (R, S,N, M, ϕ, ψ) and will suppose
R, S, N , M contained in the Morita ring associated to the context. The Morita
context will be called surjective if the maps ϕ and ψ are both surjective.

In classical Morita theory it is shown that two rings with identity R and S are
Morita equivalent (i.e., R-mod and S-mod are equivalent categories) if and only if
there exists a Morita context (R, S,N, M, ϕ, ψ). The approach to Morita theory for
rings without identity by means of Morita contexts appears in a number of papers
(see [1] and the references therein) in which many consequences are obtained from
the existence of a Morita context for two rings R and S.

In particular it is shown in [3, Theorem] that, if R and S are arbitrary rings
having a surjective Morita context, then the categories R−Mod and S−Mod are
equivalent. It is proved in [1, Proposition 2.3] that the converse implication holds for
idempotent rings (a ring R is said to be idempotent if R2 = R).

For an idempotent ring R we denote by R−Mod the full subcategory of the
category of all left R-modules whose objects are the “unital” nondegenerate modules.
Here a left R-module M is said to be unital if M = RM , and M is said to be
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nondegenerate if, for m ∈ M , Rm = 0 implies m = 0. Note that, if R has an
identity, then R−Mod is the usual category of left R−modules.

Given two idempotent rings R and S, we will say that they are Morita equiva-
lent if the respective full subcategories of unital nondegenerate modules over R and
S are equivalent.

The following result can be found in [1] (see Proposition 2.5 and Theorem 2.7).

2.1. Theorem. Let R and S be two idempotent rings. Then the categories
R−Mod and S−Mod are equivalent if and only if there exists a surjective Morita
context (R, S, M, N).

The first result referring Morita contexts is obtained as a consequence of (1.11),
and it is the following.

2.2. Proposition. Let T =
(

R M
N S

)
be a Morita context for two rings R

and S, with R unital, MN = R and NM = S, and denote by Q1 and Q2 the Utumi

left quotient rings of R and S, respectively. Then Ql
max(T ) =

(
Q1 Q1MQ2

Q2NQ1 Q2

)
.

Notice that the ring R in (2.2) must be unital.

2.3. Example. Let V be a left vector space over a field K of infinite dimension,
Q = EndK(V ) and R = Soc(Q). Consider two idempotents e, f ∈ Q such that

e, f /∈ R and e + f = 1. Then the ring T =
(

eRe eRf
fRe fRf

)
gives rise to a Morita

context for the non-unital rings eRe and fRf , and S =
(

eQe eQeRfQf
fQfReQe fQf

)

does not coincide with Ql
max(T ) = Q because there are elements in eQf with infinite

left uniform dimension, while every element of eQeRfQf has finite left uniform
dimension.

The following result is well-known for unital rings (see, for example [5, X.3.3]).
Here, we prove it for non-necessarily unital rings.

2.4. Proposition. For a ring R without total right zero divisors we have:
Ql

max(Mn(R)) ∼= Mn(Ql
max(R)).

Proof: The proof is by induction on n. For n = 1 there is nothing to prove.
Suppose the result valid for n and denote Q := Ql

max(R). Consider the ring Q =(
Q M1×n(Q)

Mn×1(Q) Mn(Q)

)
and the idempotents e =

(
0 0
0 1

)
∈ Q and f := 1 − e.

Since Q is a left quotient ring of itself, e and f are full idempotents of Q, fQf ∼=
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Ql
max(fQf) (fQf ∼= Q = Ql

max(Q)) and eQe ∼= Ql
max(eQe) (by the induction

hypothesis eQe ∼= Mn(Q) = Ql
max(Mn(Q))), we can apply (1.11) to obtain that

Q = Ql
max(Q). Denote R :=

(
R M1×n(R)

Mn×1(R) Mn×n(R)

)
. Since Q is a left quotient

ring of R, we have Ql
max(R) ∼= Q.

2.5. Proposition. Let R and S be two unital Morita equivalent rings. Then:

(i) Ql
max(R) and Ql

max(S) are Morita equivalent ([5, X.3.2]).

(ii) If R = Ql
max(R), then S = Ql

max(S).

Proof: Since R and S are Morita unital equivalent rings, there exist n ∈ N
and a full idempotent e ∈ Mn(R) such that S ∼= eMn(R)e. Then Ql

max(S) ∼=
Ql

max(eMn(R)e) ∼= eQl
max(Mn(R))e (by (1.9)) ∼= eMn(Ql

max(R))e (by (2.4)), and
this implies (i).

If Ql
max(R) = R we have Ql

max(S) ∼= eMn(R)e ∼= S.

The following example shows that the two rings in (2.5) must be unital.

2.6. Example. Consider a simple and non unital ring R which coincides with

its socle, and take a minimal idempotent e ∈ R. Then
(

eRe eR
Re R

)
provides a

Morita context for the rings eRe and R. On the one hand, by [4, Proposition 4.3.7],
Ql

max(R) = End∆(V ), with V a left vector space of infinite dimension over a division
ring ∆ (which is isomorphic to eRe), on the other hand, Ql

max(eRe) = eRe ∼= ∆.
But End∆(V ) and ∆ are not Morita equivalent rings because if two unital rings are
Morita equivalent and one of them is left artinian, then the other one must be so.

2.7. Lemma. Let A be a ring without total right zero divisors which is a
subring of a unital ring B, and suppose that there exists a pair (e, f) of orthogonal
idempotents of B such that 1B = e + f and Ae + eA ⊆ A. Then there exist two
orthogonal idempotents u, v ∈ Q := Ql

max(A) such that u + v = 1Q, ea = ua,
ae = au, fa = va and af = av for every a ∈ A.

Proof: Consider the maps

ρe : A → A
a 7→ ae

ρf : A → A
a 7→ af

Clearly, ρe, ρf ∈ HomA(AA,A A) and so u := [A, ρe] and v := [A, ρf ] are idempotents
in Ql

max(A). Moreover u + v = 1Q (which implies that u and v are orthogonal) and
for every a ∈ A,

(1)





[A, ρe][A, ρa] = [A, ρea] ∈ A

[A, ρa][A, ρe] = [A, ρae] ∈ A
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implies ua = ea and au = ae (notice that A can be identified with the subring
{[A, ρa] | a ∈ A} of Q). And analogously fa = va and af = av.

2.8. Theorem. Let R and S be two Morita equivalent idempotent rings,

A =
(

R M
N S

)
, the Morita ring of a surjective Morita context and denote Q1 :=

Ql
max(R), Q2 := Ql

max(S). Then Q1RQ1 and Q2SQ2 are Morita equivalent idempo-
tent rings.

Proof: Consider the unital ring B =
(

R1 M
N S1

)
, where R1 and S1 denote

the unitizations of R and S, respectively. This ring has two orthogonal idempotents

e =
(

1R1 0
0 0

)
and f =

(
0 0
0 1S1

)
such that e+f = 1B and Ae+eA ⊆ A. By (2.7),

there exist two orthogonal idempotents u, v ∈ Q := Ql
max(A) such that u + v = 1Q

and R = uAu, S = vAv, M = uAv, N = vAu ⊆ Q. Moreover, Q1 = Ql
max(R) =

Ql
max(uAu) ∼= (by (1.8), which can be used because Au + uA ⊆ A and lanA(Au) =

ranA(uA) = 0) uQl
max(A)u. And analogously Q2 = Ql

max(S) = Ql
max(vAv) ∼=

vQl
max(A)v. This means that M , N , Q1 and Q2 can be considered inside Q as uQv,

vQu, uQu and vQv, respectively. We claim that T =
(

Q1RQ1 Q1MQ2

Q2NQ1 Q2SQ2

)
is a

surjective Morita context for the idempotent rings Q1RQ1 and Q2SQ2:

Q1RQ1Q1RQ1 ⊆ Q1RQ1 = Q1RRRRQ1 ⊆ Q1RQ1Q1RQ1 implies that Q1RQ1

is an idempotent ring. Analogously we obtain that Q2SQ2 is an idempotent ring.

Q1RQ1Q1MQ2 ⊆ Q1MQ2 = Q1RMQ2 = Q1RRRMQ2 ⊆ Q1RQ1Q1MQ2.
Hence Q1MQ2 = Q1RQ1Q1MQ2. Analogously Q2SQ2Q2NQ1 = Q2NQ1.

Finally, Q1MQ2Q2NQ1 = Q1MQ2NQ1 = Q1MNMQ2NQ1 ⊆ Q1RQ1 =
Q1MNMNMNQ1 ⊆ Q1MQ2Q2NQ1. This implies Q1MQ2Q2NQ1 = Q1RQ1.
And analogously Q2NQ1Q1MQ2 = Q2SQ2.
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