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Abstract. We show that compact graph C∗-algebras C∗(E) are topological direct sums of
finite matrices over C and KL(H), for some countably dimensional Hilbert space, and give
a graph-theoretic characterization as those whose graphs are row-finite, acyclic and every
infinite path ends in a sink. We further specialize in the simple case providing both structure
and graph-theoretic characterizations. In order to reach our goals we make use of Leavitt
path algebras LC(E). Moreover, we describe the the socle of C∗(E) as the two-sided ideal
generated by the line point vertices.

1. Introduction

C∗-algebras (originally called W ∗-algebras) appeared in the 1950s as a restriction of the
properties defining von Neumann algebras. Roughly speaking, C∗-algebras (that can be
thought of as “algebraic” objects with “analytic” structure) restrict the scope of von Neumann
algebras to the context of Functional Analysis. Here we will try to connect graph C∗-algebras
with their purely algebraic nature and the way of doing this is throught Leavitt path algebras.

Leavitt path algebras of row-finite graphs have been recently introduced in [1] and [9]. They
have become a subject of significant interest, both for algebraists and for analysts working in
C∗-algebras. The Cuntz-Krieger algebras C∗(E) (the C∗-algebra counterpart of these Leavitt
path algebras) are described in [20]. Both the algebraic and analytic theories, while sharing
some striking similarities, present some remarkable differences, as was shown for instance in
the “Workshop on Graph Algebras” held at the University of Málaga (see [15]), and more
deeply in the subsequent enlightening work of Tomforde [21].

The aim of this paper is to continue the line of fostering interaction between graph C∗-
algebras and Leavitt path algebras. More specifically, for a graph E, one of the objectives
is to relate algebraic properties of the underlying Leavitt path algebra LC(E) to analytic
properties of the graph C∗-algebra C∗(E) via the graph-theoretic features of E. Several
examples of this exist in the literature, for instance, the conditions on the graph yielding
the (algebraically) simple Leavitt path algebras are precisely the same conditions that give
(topologically) simple graph C∗-algebras (see [1, Theorem 3.11] and [20, Theorem 4.9 and
subsequent remarks]). A similar phenomenon occurs with the purely infinite simplicity (see
[2, Theorem 11] and [16, Proposition 5.3 and Remark 5.5]) or conditions under which every
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ideal is graded in LC(E) (respectively gauge-invariant in C∗(E)) (see [14, Theorem 4.5] and
[16, Theorem 4.1], respectively).

Compact C∗-algebras form an interesting subclass of C∗-algebras some of whose properties
resemble in a way that of finite dimensional algebras. It is well known that a compact
C∗-algebra is a C0-sum of primitive compact C∗-algebras and each such primitive compact
C∗-algebra has an isometric homomorphism onto the algebra of all compact operators on some
Hilbert space. Thus, the structure theory of compact C∗-algebras mimics that of semisimple
algebras (any C∗-algebra is of course semisimple in the sense that has zero Jacobson radical).

Our first goal is to classify the compact graph C∗-algebras C∗(E) associated to arbitrary
graphs E. We achieve this in various steps given in Sections 2 and 3. First we state, in
Proposition 2.1, a graph-theoretic description of the socle of a graph C∗-algebra that parallels
the description of the socle of a Leavitt path algebra. Then we characterize the compactness
of C∗(E) in terms of properties of the graph (Theorem 3.1). After this we use the description
of semisimple Leavitt path algebras to obtain, in Theorem 3.3, the structure of compact
graph C∗-algebras as topological direct sums of finite matrices over C and KL(H), for some
countably dimensional Hilbert space H.

In Section 4 we focus on the subclass of compact graph C∗-algebras that are simple. In this
context (Banach algebras with dense socles) the notions of simplicity, primitivity, primeness
and having simple socle are all equivalent (see Proposition 4.3). Finally, in Theorem 4.4,
simple compact graph C∗-algebras are described and characterized in terms of their underlying
graphs.

2. The socle of a graph C∗-algebra

First we collect various notions concerning graphs, after which we recall the definitions of
Leavitt path algebra and graph C∗-algebra.

A (directed) graph E = (E0, E1, r, s) consists of two sets E0 and E1 together with maps
r, s : E1 → E0. The elements of E0 are called vertices and the elements of E1 edges. For
e ∈ E1, the vertices s(e) and r(e) are called the source and range of e, respectively. If s−1(v)
is a finite set for every v ∈ E0, then the graph is called row-finite. If E0 is finite and E is
row-finite, then E1 must necessarily be finite as well; in this case we say simply that E is
finite.

A vertex v is called an infinite emitter if s−1(v) is an infinite set. A path µ in a graph
E is a finite sequence of edges µ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n − 1.
In this case, s(µ) = s(e1) and r(µ) = r(en) are the source and range of µ, respectively. We
also say that µ is a path from s(e1) to r(en), and we denote by µ0 the set of its vertices, i.e.,
{s(e1), r(e1), . . . , r(en)}. The set of all paths will be denoted by Path(E).

If µ = e1 . . . en is a path in E such that s(µ) = r(µ) and s(ei) 6= s(ej) for every i 6= j, then
µ is called a cycle. A graph which contains no cycles is called acyclic. A vertex v ∈ E0 is
called a bifurcation if |s−1(v)| ≥ 2. A vertex that emits no edges is called a sink. A line point
is a vertex whose tree does not contain neither bifurcations nor cycles.

An infinite path γ is a sequence of edges γ = e1e2 . . . en . . . such that r(ei) = s(ei+1) for
every i ∈ N. The infinite path γ is called an infinite sink if there are no bifurcations nor
cycles at any vertex v ∈ γ0. We say that an infinite path µ ends in a sink if there exists an
infinite sink γ and edges e1, . . . , en ∈ E1 such that µ = e1 . . . enγ.
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We define a relation ≥ on E0 by setting v ≥ w if there exists a path in E from v to w. A
subset H of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H.

For a field K and graph E, the Leavitt path K-algebra LK(E) is defined to be the K-algebra
generated by the set E0 ∪ E1 ∪ {e∗ | e ∈ E1} with the following relations:

(1) vw = δv,wv for all v, w ∈ E0.

(2) s(e)e = er(e) = e for all e ∈ E1.

(3) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.

(4) e∗f = δe,fr(e) for all e, f ∈ E1.

(5) v =
∑

e∈s−1(v) ee
∗ for every v ∈ E0 that is neither a sink nor an infinite emitter.

The set {e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e), and we let s(e∗)
denote r(e). If µ = e1 . . . en is a path in E, we write µ∗ for the element e∗n . . . e

∗
1 of LK(E).

Recall that for a graph E, a Cuntz-Krieger E-family is a collection of mutually orthogonal
projections {pv | v ∈ E0} and a collection of partial isometries {se | e ∈ E1} satisfying the
following three relations:

(CK1) s∗ese = pr(e) for all e ∈ E1,

(CK2) pv =
∑

s(e)=v ses
∗
e for all v ∈ E0 that is not a sink nor an infinite emitter.

(CK3) ses
∗
e ≤ ps(e) for all e ∈ E1.

The graph C∗-algebra of E, denoted C∗(E), is the C∗-algebra generated by a universal
Cuntz-Krieger E-family; that is, C∗(E) is generated by a Cuntz-Krieger E-family {se, pv},
and whenever {te, qv} is a Cuntz-Krieger E-family sitting inside a C∗-algebra A, then there
exists a ∗-homomorphism φ : C∗(E) → A with φ(se) = te for all e ∈ E1 and φ(pv) = qv for
all v ∈ E0.

Throughout this paper we will consider LC(E) to be a ∗-subalgebra of C∗(E) via [21,
Theorem 7.3], and it is for this reason that we will abuse notation and in C∗(E) we will write
v instead of pv, e instead of se and e∗ instead of s∗e, for any v ∈ E0 and any e ∈ E1.

All the algebras that we shall consider in this work will be complex. Given a Banach space
X, the closed unit ball of X is denoted by X1, and the set of all compact linear operators on
X by KL(X). Thus KL(X) is the set of all bounded linear operators t ∈ BL(X) such that
tX1 is contained in a compact subset of X. We recall that a Banach algebra B is said to be
compact if for any t ∈ B the map P (t) : B → B such that a 7→ P (t)(a) := tat is a compact
linear operator on B. An example of compact Banach algebra is KL(X).

Recall that an algebra A is semiprime if it does not have a nonzero ideal of zero square.
Recall that the socle of A is defined as the sum of all the minimal left ideals of A; when the
algebra is semiprime, this coincides with the sum of all the minimal right ideals of A. The
socle is said to be zero if there are no minimal one-sided ideals. We will use Soc(A) to denote
the socle of the algebra A (see [18, Definition 8, p.156]). Two notions of semisimplicity will
be used in the sequel. A semiprime algebra A will be called semisimple if it coincides with
its socle, whereas a semisimple C∗-algebra is one that has zero Jacobson radical.

For any subset X ⊆ LC(E) (respectively X ⊆ C∗(E)) we will denote by ILC(E)(X) (respec-
tively IC∗(E)(X)) the ideal in LC(E) (respectively in C∗(E)) generated by X.

For any graph E, the following proposition gives a description of the socle of a graph C∗-
algebra, paralleling the description of the socle for Leavitt path algebras in [12, Theorem 4.2]:
it is the ideal generated by the set of line points of the graph. For a graph E, the notation
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Pl(E) will stand for the set of all line points of E. Observe that, in particular, every sink is
a line point.

Proposition 2.1. Let E be any graph.

(1) Let p ∈ Soc(C∗(E)) be a projection such that C∗(E)p is a minimal left ideal. Then
there exists v ∈ Pl(E) such that C∗(E)p ∼= C∗(E)v.

(2) ILC(E)(Pl(E)) = Soc(LC(E)) ⊆ Soc(C∗(E)) = IC∗(E)(Pl(E)).

Proof. (1). In [5, Theorem 5.5] it was shown that p ∼ v1 ⊕ · · · ⊕ vn for some v1, . . . , vn ∈
E0 where ∼ denotes the equivalence of idempotents and ⊕ denotes the orthogonal sum of
idempotents as described in [10, page 566]. This result can be generalized for arbitrary graphs
[8] in the following way: V (C∗(E)) ∼= M(E) where now we have, in addition to the previous
types of projections, some new ones of the form p = v −

∑n
i=1 eie

∗
i , where the sum is finite,

ei are distinct edges in s−1(v) and v is an infinite emitter.
In the situation that p is of the form v −

∑n
i=1 eie

∗
i we see that it cannot be in the socle

as C∗(E)p is not minimal. Concretely let f ∈ s−1(v) \ {e1, . . . , en}. Then f ∗ = f ∗p so that
C∗(E)f ∗ ⊆ C∗(E)p. On the other hand, they must be different as p 6∈ C∗(E)f ∗. Otherwise
write p = v−

∑n
i=1 eie

∗
i = af ∗ for some a ∈ C∗(E). Multiply on the right-hand side by f to get

f = pf = af ∗f = ar(f) so that p = af ∗ = ar(f)f ∗ = ff ∗, equivalently v =
∑n

i=1 eie
∗
i + ff ∗,

which contradicts that v is an infinite emitter.
This shows that we are in the case p ∼ v1 ⊕ · · · ⊕ vn and, since C∗(E)p is minimal, clearly

n = 1 so that p ∼ v1 and therefore C∗(E)p ∼= C∗(E)v1. Since the latter is minimal, we get
that v1C

∗(E)v1
∼= v1Cv1. Now, since the monomorphism from LC(E) to C∗(E) sends vertices

to vertices, we have the inclusion v1LC(E)v1 ⊆ v1C
∗(E)v1. But Cv1 ⊆ v1LC(E)v1 so that

v1LC(E)v1 = Cv1 is a division algebra and hence LC(E)v1 is minimal. Apply [6, Proposition
1.9] to get that v1 ∈ Pl(E).

(2). By [13, Theorem 5.2], ILC(E)(Pl(E)) = Soc(LC(E)). The containment of the socles
was shown in [13, Theorem 3.6]. We will provide here another more detailed proof.

Any minimal left ideal I of LC(E) satisfies I2 = 0 or I = LC(E)e for some minimal
idempotent e, (recall that an idempotent e in an algebra A is said to be minimal if eAe is a
division algebra). But the first possibility cannot happen because LC(E) is semiprime by [13,
Proposition 3.4]. We check that e is also a minimal idempotent in C∗(E). To this end we prove

that eC∗(E)e = Ce. The key fact here is that LC(E) = C∗(E). Consider ebe ∈ eC∗(E)e; then
b = limn→∞ bn for some bn ∈ LC(E) and {bn} a Cauchy sequence in C∗(E). Since eLC(E)e =
Ce we have ebne = λne for each n, where λn ∈ C. Since (λp−λq)e = e(bp−bq)e, taking norms
we get |λp − λq| ≤ ‖e‖‖bp − bq‖, which implies that {λn} is a Cauchy sequence and therefore
it is convergent. So ebe = limn→∞ ebne = limn→∞ λne = λe ∈ Ce, where λ = limn→∞ λn.
Summarizing, I = LC(E)e ⊆ C∗(E)e ⊆ Soc(C∗(E)), hence Soc(LC(E)) ⊆ Soc(C∗(E)).

Now we see Soc(C∗(E)) = IC∗(E)(Pl(E)). The socle of a C∗-algebra is generated by
projections. More specifically, every minimal left ideal of C∗(E) is of the form C∗(E)p
for some projection p by [17, Proposition 4.6.2]. By (1), C∗(E)p ∼= C∗(E)v for some
v ∈ Pl(E). Hence p ∼ v yields p ∈ IC∗(E)(v) ⊆ IC∗(E)(Pl(E)). The converse containment, i.e.
IC∗(E)(Pl(E)) ⊆ Soc(C∗(E)), is a consequence of Pl(E) ⊆ Soc(LC(E)) ⊆ Soc(C∗(E)). �
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3. Compact graph C∗-algebras

In this section we describe compact graph C∗-algebras. First we characterize them by
properties of their graphs.

Theorem 3.1. Let E be any graph and C∗(E) be the C∗-algebra associated to E. Then the
following are equivalent conditions:

(1) C∗(E) is compact.
(2) E is acyclic, row-finite and every infinite path ends in a sink.

Proof. (1) ⇒ (2). Suppose that E is a graph whose associated graph C∗-algebra, C∗(E), is
compact. By [18, Theorem 14 (ii), p.178] for any vertex u, uC∗(E)u has finite dimension.
This implies that there cannot be any cycle based at u. So the graph is acyclic. On the other
hand, suppose that a vertex u is an infinite emitter, so we have an infinite collection {fi}i∈I
of edges such that s(fi) = u. But then {fif ∗i }i∈I is an infinite family of nonzero orthogonal
idempotents contained in uC∗(E)u, hence an infinite linearly independent set, contrary to
the finite-dimensional character of uC∗(E)u. This implies that E must be row-finite.

We now prove that any infinite path ends in a sink. Suppose that µ is an infinite path
which does not end in a sink. Then, since E is acyclic, we can decompose µ = µ1µ2 · · · ,
where each µi is a path such that r(µi) = s(µi+1) for all i, s(µi) is a bifurcation for each i
and fi is an edge with s(fi) = s(µi) but fi is not the first edge of the path µi.

For any i define the element ei = (
∏i−1

j=1 µj)fif
∗
i (
∏i−1

j=1 µj)
∗. It is easy to see that each ei

is an idempotent. Now we see that they are pairwise orthogonal. Suppose l > i; taking into
account f ∗i µi = 0 we have

eiel =

(
i−1∏
j=1

µj

)
fif
∗
i

(
i−1∏
j=1

µj

)∗( l−1∏
j=1

µj

)
flf
∗
l

(
l−1∏
j=1

µj

)∗

=

(
i−1∏
j=1

µj

)
fi(f

∗
i µi)

(
l−1∏
j=i+1

µj

)
flf
∗
l

(
l−1∏
j=1

µj

)∗
= 0.

Because ei is clearly self-adjoint, we obtain elei = 0. Thus we get an infinite family of
nonzero orthogonal idempotents {ei}∞i=1 in uC∗(E)u, where u = s(µ1), contradicting again
the finite-dimensionality of uC∗(E)u.

(2)⇒ (1). Now, assume that the graph E is acyclic, row-finite and each infinite path ends in
a sink. We know that LC(E) is semisimple by [11, Theorem 4.7]. So LC(E) = Soc(LC(E)). On

the other hand, C∗(E) = LC(E) by [21, Theorem 7.3], where the bar denotes the completion
in norm. Consequently

C∗(E) = LC(E) = Soc(LC(E)) ⊆ Soc(C∗(E)) ⊆ C∗(E),

where the first inclusion is given by Proposition 2.1. Thus C∗(E) = Soc(C∗(E)) and by [7,
Theorem 7.3, p. 15], C∗(E) is compact. �

In view of the previous theorem, it is natural to think that the structure of compact C∗-
algebras will be obtained from the structure of semisimple Leavitt path algebras (as both
classes are those whose graphs satisfy the same conditions). Concretely, for row-finite graphs
this structure was determined in [3, Theorem 2.6]. Subsequently, in [11, Theorem 4.7], it was
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shown that the hypothesis of row-finiteness was actually a consequence of the semisimplicity
of the Leavitt path algebra. Tailoring both results to our needs, we may state the following
theorem without any assumption on the graphs and on the fields of scalars.

Theorem 3.2. Let E be an arbitrary graph and K any field. The following conditions are
equivalent.

(1) LK(E) is semisimple.
(2) E is acyclic, row-finite and every infinite path ends in a sink.

(3) LK(E) ∼=
(⊕

i∈Γ Mni
(K)

)
⊕
(⊕

j∈Λ Mmj
(K)

)
, where Γ and Λ are countable sets (possibly

empty), ni ∈ N and mj =∞.

In our next result we denote by � the topological direct sum of C∗-algebras. Here we give
the structure of compact graph C∗-algebras, and collect some of the previous equivalences.

Theorem 3.3. Let E be any graph. The following conditions are equivalent.

(1) C∗(E) is compact.
(2) E is acyclic, row-finite and every infinite path ends in a sink.
(3) LC(E) is semisimple.

(4) LC(E) ∼=
(⊕

i∈Γ Mni
(C)
)
⊕
(⊕

j∈Λ Mmj
(C)
)

, where Γ and Λ are countable sets (possibly

empty), ni ∈ N and mj =∞.
(5) C∗(E) ∼= (�i∈ΓMni

(C)) � (�j∈ΛKL(Hj)) where Γ and Λ are countable sets (possibly
empty), ni ∈ N, and Hj are Hilbert spaces of countably infinite dimension.

Proof. (5) =⇒ (1) is well known. Hence, in view of Theorems 3.1 and 3.2 it suffices to show
(4) ⇒ (5). So suppose that LC(E) is of the given form. We use [21, Theorem 7.3] and argue

as in (2)⇒ (1) in Theorem 3.1 to get that C∗(E) = LC(E) = Soc(LC(E)). Therefore

C∗(E) =

(⊕
i∈Γ

Mni
(C)

)
⊕

(⊕
j∈Λ

Mmj
(C)

)
∼= (�i∈ΓMni

(C)) � (�j∈ΛKL(Hj)) ,

for some Hilbert spaces Hj of countably infinite dimension. �

4. Subclasses of compact C∗(E)

This section will focus on characterizing the simple compact graph C∗-algebras. They will
coincide with the primitive (equivalently prime) compact ones. We will also give a graph-
theoretic description of these C∗-algebras. In order to achieve our aim we will need some
previous definitions and results concerning LK(E), where K is an arbitrary field.

If γ is a sink or an infinite sink in a graph E, we denote by Iγ the ideal of LK(E) generated
by γ0. Note that, since γ0 is a hereditary set, [3, Lemma 3.1] gives that

Iγ = 〈µτ ∗ : µ, τ ∈ Path(E), r(µ) ∈ γ0〉,
where for a subset X ⊆ LK(E), the notation 〈X〉 stands for the linear span of the elements
of X inside LK(E). Observe that Iγ is a self-adjoint ideal relative to the standard involution
∗ in LK(E). We say that two paths γ and µ meet if γ0 ∩ µ0 6= ∅.

Lemma 4.1. Let γ, µ be infinite sinks. They meet if and only if Iγ = Iµ.
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Proof. Suppose that γ0 ∩ µ0 6= ∅, thus by the absence of bifurcations, we may write γ =
f1 · · · fng1g2 · · · and µ = e1 · · · emg1g2 · · · for some fi, ej, gk ∈ E1. We show that Iγ = Iν
where ν = g1g2 · · · . Clearly Iν ⊆ Iγ; to show the reverse containment observe that r(fn) =
s(g1) ∈ ν0 ⊆ Iν . Thus, s(fn) = fnf

∗
n = fnr(fn)f ∗n ∈ Iν by (CK1) and the lack of bifurcations.

Reasoning in the same way we get s(fn−1), . . . , s(f1) ∈ Iν , so we have γ0 ⊆ Iν and therefore
Iγ ⊆ Iν . Hence, Iγ = Iν = Iµ.

Conversely, assume that Iγ = Iµ. Then, γ0 ⊆ Iγ = Iµ hence each element u ∈ γ0 is a linear
combination of elements µvτ ∗, where v ∈ µ0. Thus there must be some µvτ ∗u 6= 0. This
implies that vτ ∗u 6= 0, hence u = s(τ) and v = r(τ). But if s(τ) ∈ γ0 then r(τ) ∈ γ0 as γ has
no bifurcations. This shows v ∈ µ0 ∩ γ0. �

Lemma 4.2. Let u, v be two sinks and γ, µ two infinite sinks. Then we have:

(1) u 6= v if and only if IuIv = 0.
(2) IuIγ = IγIu = 0.
(3) Iγ 6= Iµ if and only if IγIµ = 0.

Proof. (1). Choose αuβ∗ ∈ Iu and σvτ ∗ ∈ Iv. Write β∗σ = δι∗ for some paths δ, ι ∈ Path(E);
then αuβ∗σvτ ∗ = αuδι∗vτ ∗. Since u and v are sinks and u = s(δ), v = s(ι), then both paths
are trivial and αuδι∗vτ ∗ = αuvτ ∗ = 0. For the converse implication suppose IuIv = 0. In
particular uv = 0 so that u 6= v.

(2). Taking into account that the ideals Iu and Iγ are self-adjoint relative to the standard
involution ∗, we only need to prove IuIγ = 0. Thus, take αuβ∗ ∈ Iu and σvτ ∗ ∈ Iγ (where
v ∈ γ0) and assume that αuβ∗σvτ ∗ 6= 0. Arguing as before we get αuβ∗σvτ ∗ = αuδι∗vτ ∗,
but δ must be trivial since s(δ) = u. Furthermore s(ι) = v ∈ γ0, and hence r(ι) ∈ γ0. But
u = s(ι∗) = r(ι) implies u ∈ γ0, which is a contradiction.

(3). Pick αuβ∗ ∈ Iγ and σvτ ∗ ∈ Iµ, where u ∈ γ0 and v ∈ µ0. Arguing as in the previous
cases we have αuβ∗σvτ ∗ = αuδι∗vτ ∗. But then u = s(δ) and v = s(ι) imply r(δ) ∈ γ0 and
s(ι∗) = r(ι) ∈ µ0 so that r(δ) = s(ι∗) ∈ γ0∩µ0. Thus if IγIµ 6= 0 and we assume Iγ 6= Iµ, then
γ0 ∩ µ0 = ∅ by Lemma 4.1, a contradiction. Conversely, assume that Iγ = Iµ. By Lemma
4.1, there exists u ∈ γ0 ∩ µ0. Thus, 0 6= u = u2 ∈ IγIµ. �

Next we investigate the properties of simplicity, primitivity and primeness for compact
graph C∗-algebras. These notions coincide for Banach algebras with dense socle.

Proposition 4.3. Let B be a Banach algebra with dense socle. The following are equivalent
conditions:

(1) B is simple.
(2) B is primitive.
(3) B is prime.
(4) Soc(B) is simple.

Proof. (1) ⇒ (2) ⇒ (3) is well known.
(3) ⇒ (4). Suppose that B is a prime Banach algebra with dense socle. Then Soc(B) is a

simple algebra because for any two ideals I and J of Soc(B) such that IJ = 0, the closures
I and J are ideals in B and I J = 0 hence I = 0 or J = 0. Thus Soc(B) is prime, and hence
a simple algebra.

(4)⇒ (1). To prove thatB is simple consider a nonzero closed ideal I ofB. If I∩Soc(B) = 0
then I Soc(B) ⊆ I∩ Soc(B) = 0, and by primeness of B we get I = 0. Otherwise, I∩
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Soc(B) 6= 0 implies, by simplicity of Soc(B), that Soc(B) ⊆ I, hence B = Soc(B) ⊆ I = I,
i.e. I = B. �

We present here the main result of this section, where we give the structure of simple
compact graph C∗-algebras as well as a graph-theoretic characterization.

Theorem 4.4. Let E be a graph and suppose that C∗(E) is a compact C∗-algebra. Then the
following are equivalent:

(1) C∗(E) is simple.
(2) C∗(E) is primitive.
(3) C∗(E) is prime.
(4) One and only one of the following alternatives hold:

(i) C∗(E) ∼= Mn(C) for some n ∈ N.
(ii) C∗(E) ∼= KL(H) for a countably infinite dimensional Hilbert space H.

(5) One and only one of the following alternatives hold:
(i)’ There is a unique sink in E.
(ii)’ There is an infinite path ending in a sink and any other infinite path ends in the

same sink.

In this case, (i) ⇐⇒ (i)’ and (ii) ⇐⇒ (ii)’.

Proof. Since C∗(E) is compact, by Theorem 3.3 LC(E) is semisimple and hence it coincides
with its socle. Now [21, Theorem 7.3] and Proposition 2.1 give

C∗(E) = LC(E) = Soc(LC(E)) ⊆ Soc(C∗(E)),

so that Soc(C∗(E)) is dense. Hence we may apply Proposition 4.3 to get (1) ⇐⇒ (2) ⇐⇒
(3).

(1) ⇐⇒ (4) holds by Theorem 3.3.
(1) =⇒ (5). First we show that there is a sink or an infinite path ending in a sink. If E

does not have sinks, then there exists an infinite path µ in E. In this case Theorem 3.3 gives
that µ must end in a sink.

By Lemma 4.2, two different sinks u 6= v provide two nonzero ideals in LC(E): Iu and
Iv, such that IuIv = 0. Hence Iu Iv = 0 in C∗(E) implying Iu = 0 or Iv = 0 by (3), a
contradiction.

If we consider any two infinite paths σ and τ endings in sinks, then we can write σ =
e1 . . . enγ, τ = f1 . . . fmµ, for some ei, fj ∈ E1 and infinite sinks γ and µ. Since C∗(E) is
prime we must have Iγ Iµ 6= 0 so that IγIµ 6= 0, hence Iγ = Iµ by Lemma 4.2 (3), and
therefore γ0 ∩ µ0 6= ∅ by Lemma 4.1. Since γ and µ are infinite sinks then necessarily one
must be a subpath of the other, implying that σ and τ end in the same sink. Similarly, there
cannot exist a finite sink and an infinite path ending in a sink altogether in the graph E.

(5) =⇒ (1). Applying Theorem 3.3, LC(E) ∼=
(⊕

i∈Γ Mni
(C)
)
⊕
(⊕

j∈Λ Mmj
(C)
)

, where Γ

and Λ are countable sets (possibly empty), ni ∈ N and mj =∞. In the proof of [3, Theorem
2.4] we can see that, if we have the mutually exclusive hypotheses in (5), then necessarily
the direct sum above consists only of one summand, and hence LC(E) is simple. But the
conditions on the graph E that yield the (algebraic) simplicity of LC(E) and the (topological)
simplicity of C∗(E) are the same by [1, Theorem 3.11], [16, Proposition 5.1] and [14, Lemma
2.8].
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(i) ⇐⇒ (i)’. By Theorem 3.3, E is an acyclic and row-finite graph. Since C∗(E) = LC(E)
by [21, Theorem 7.3], then Theorem 3.3 gives that C∗(E) ∼= Mn(C) for some n ∈ N if and
only if LC(E) ∼= Mm(C) for some m ∈ N.

For the direct direction, suppose LC(E) ∼= Mm(C) for some m ∈ N, then [4, Corollary 3.6]
gives that E must be finite and therefore [4, Proposition 3.5] shows that the graph has only
one sink. Conversely, if E has only one sink, the graph must be necessarily finite as follows:
if we assume that E0 is infinite, since it is also acyclic and row-finite, there exists an infinite
path, and this path must end in a sink by Theorem 3.3. This contradicts the fact that (i)’ and
(ii)’ are mutually exclusive. Hence, [4, Corollary 3.6] applies to give that LC(E) ∼= Mm(C)
for some m ∈ N as needed.

(ii) ⇐⇒ (ii)’ follows from the previously proved equivalences. �
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