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Abstract. For any field K and for a completely arbitrary graph E, we characterize
the Leavitt path algebras LK(E) that are indecomposable (as a direct sum of two-sided
ideals) in terms of the underlying graph. When the algebra decomposes, it actually does
so as a direct sum of Leavitt path algebras for some suitable graphs. Under certain
finiteness conditions, a unique indecomposable decomposition exists.

1. Introduction

Leavitt path algebras can be regarded as the algebraic counterparts of the graph C∗-
algebras, the descendants of the algebras investigated by J. Cuntz in [17], which have
had much attention from analysts in the last two decades (see [26] for an overview of
the subject). Leavitt path algebras can also be viewed as a broad generalization of the
algebras constructed by W. G. Leavitt in [24] to produce rings without the Invariant Basis
Number property (i.e., whose modules have bases with different cardinality).

The Leavitt path algebra LK(E) was introduced in 2004 in the papers [1] and [9]. LK(E)
was first defined for a row-finite graph E (countable graph such that every vertex emits
only a finite number of edges) and a field K. Despite a relatively recent introduction,
they have already generated quite a bit of activity. The main directions of research
include: characterization of algebraic properties of a Leavitt path algebra LK(E) in terms
of graph-theoretic properties of E; study of the modules over LK(E); computation of
various substructures (such as the Jacobson radical, the center, the socle and the singular
ideal); investigation of the relationships with C∗(E) and general C∗-algebras; classification
programs; study of the K-theory; and generalization of the constructions and results first
from row-finite to countable graphs and finally, from countable to completely arbitrary
graphs. For examples of each of these directions see for instance [14] and the references
therein.

In the current paper we focus on the first and last of these lines: concretely, we give a
graph-theoretic characterization of the ring-theoretic property of being indecomposable,
and we do that in the most general context of arbitrary graphs.

Many times in the literature, the graph-theoretic conditions characterizing some ana-
lytic property of the graph C∗-algebra (for instance, simplicity in [16] or purely infinite
simplicity in [21]) turned out to be the same graph-theoretic condition characterizing the
corresponding algebraic version of these properties (simplicity in [1] and purely infinite
simplicity in [2]). Even though some efforts are currently being made to obtain some kind
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of “Rosetta stone” to transfer information from the analytic to the algebraic world and
vice versa, so far this goal has remained elusive. Therefore, the only way to proceed so
far is by working out ad hoc methods in either setting (analytic or algebraic) to obtain
the desired results. This is the case once more for the property of being indecomposable
discussed in the current paper: the analytic result was given in [20] for the C∗-algebras
C∗(E), and we give here the algebraic analogue for the Leavitt path algebras LK(E).

The paper is divided as follows. In Section 2 we give the definition of LK(E), basic
properties and main examples. In the next section we prove some preliminary results
that will be needed later in the paper; we also recall there the concepts and constructions
about arbitrary graphs which will be of use to us throughout the paper. The main
result, Theorem 4.2, is given in Section 4 and it characterizes the indecomposable Leavitt
path algebras (i.e., those which cannot be written as a direct sum of nontrivial two-sided
ideals). Finally, the last section includes two decomposition results: Corollary 5.1 and
Corollary 5.3, which show that if LK(E) has certain finiteness conditions (specifically
being unital, two-sided noetherian or two-sided artinian), then it can be decomposed
uniquely as a direct sum of indecomposable Leavitt path algebras for suitable graphs.
The paper finishes off with some examples that illustrate the differences arising when
considering arbitrary graphs instead of row-finite ones.

2. Definition and Examples

A (directed) graph E = (E0, E1, r, s) consists of two sets E0 and E1 together with maps
r, s : E1 → E0. The elements of E0 are called vertices and the elements of E1 edges. If
s−1(v) is a finite set for every v ∈ E0, then the graph is called row-finite.

If a vertex v emits no edges, that is, if s−1(v) is empty, then v is called a sink. A vertex
v is called an infinite emitter if s−1(v) is an infinite set, and v is called a regular vertex if
s−1(v) is a finite non-empty set. The set of infinite emitters is denoted by E0

inf, and the
set of regular vertices is denoted by E0

reg.
All the graphs E that we consider here are arbitrary in the sense that no restriction is

placed either on the number of vertices in E (such as being a countable graph) or on the
number of edges emitted by any vertex (such as being row-finite).

A path µ in a graph E is a finite sequence of edges µ = e1 . . . en such that r(ei) = s(ei+1)
for i = 1, . . . , n− 1. In this case, n = l(µ) is the length of µ; we view the elements of E0

as paths of length 0. For any n ∈ N the set of paths of length n is denoted by En. Also,
Path(E) stands for the set of all paths, i.e., Path(E) =

⋃
n∈NE

n. We denote by µ0 the
set of the vertices of the path µ, that is, the set {s(e1), r(e1), . . . , r(en)}.

A path µ = e1 . . . en is closed if r(en) = s(e1), in which case µ is said to be based at
the vertex s(e1). The closed path µ is called a cycle if it does not pass through any of its
vertices twice, that is, if s(ei) 6= s(ej) for every i 6= j. An exit for a path µ = e1 . . . en is
an edge e such that s(e) = s(ei) for some i and e 6= ei. We say that E satisfies Condition
(L) if every simple closed path in E has an exit, or, equivalently, every cycle in E has an
exit. A graph E is called acyclic if it does not have any cycles.

We define a relation ≥ on E0 by setting v ≥ w if there exists a path µ in E from v to
w, that is, v = s(µ) and w = r(µ). A subset H of E0 is called hereditary if v ≥ w and
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v ∈ H imply w ∈ H. A set H ⊆ E0 is saturated if for any regular vertex v, r(s−1(v)) ⊆ H
implies v ∈ H.

The set E≤∞ consists of all infinite paths e1e2e3 . . . together with all paths which end
in sinks. A graph is called cofinal if for every p ∈ E≤∞ and v ∈ E0, there exists w ∈ p0

such that v ≥ w.
For each e ∈ E1, we call e∗ a ghost edge. We let r(e∗) denote s(e), and we let s(e∗)

denote r(e).

Definition 2.1. Given an arbitrary graph E and a field K, the Leavitt path K-algebra
LK(E) is defined to be the K-algebra generated by a set {v : v ∈ E0} of pairwise
orthogonal idempotents together with a set of variables {e, e∗ : e ∈ E1} which satisfy the
following conditions:

(1) s(e)e = e = er(e) for all e ∈ E1.
(2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.
(3) (The “CK-1 relations”) For all e, f ∈ E1, e∗e = r(e) and e∗f = 0 if e 6= f .
(4) (The “CK-2 relations”) For every regular vertex v ∈ E0,

v =
∑

{e∈E1, s(e)=v}

ee∗.

An alternative definition for LK(E) can be given using the extended graph Ê. This
graph has the same set of vertices E0 and same set of edges E1 together with the so-called
ghost edges e∗ for each e ∈ E1, whose directions are opposite those of the corresponding

e ∈ E1. Thus, LK(E) can be defined as the usual path algebra KÊ subject to the
Cuntz-Krieger relations (3) and (4) above.

If µ = e1 . . . en is a path in E, we write µ∗ for the element e∗n . . . e
∗
1 of LK(E). With

this notation it can be shown that the Leavitt path algebra LK(E) can be viewed as a
K-vector space span of {pq∗ | p, q are paths inE}. (The elements of E0 are viewed as
paths of length 0, so that this set includes elements of the form v with v ∈ E0.)

If E is a finite graph, then LK(E) is unital with
∑

v∈E0 v = 1LK(E); otherwise, LK(E) is
a ring with a set of local units (i.e., a set of elements X such that for every finite collection
a1, . . . , an ∈ LK(E), there exists x ∈ X such that aix = ai = xai) consisting of sums of
distinct vertices of the graph.

Many well-known algebras can be realized as the Leavitt path algebra of a graph. The
most basic graph configurations are shown below (the isomorphisms for the first three can
be found in [1], the fourth in [28], and the last one in [2]).

Examples 2.2. The ring of Laurent polynomials K[x, x−1] is the Leavitt path algebra of
the graph given by a single loop graph. Matrix algebras Mn(K) can be realized by the
line graph with n vertices and n− 1 edges. Classical Leavitt algebras LK(1, n) for n ≥ 2
can be obtained by the n-rose – a graph with a single vertex and n loops. Namely, these
three graphs are:

•
��

• // • // • • // • • eerr
��
RR
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The algebraic counterpart of the Toeplitz algebra T is the Leavitt path algebra of the
graph having one loop and one exit:

•
%% // •

Combinations of the previous examples are possible. For instance, the Leavitt path
algebra of the graph

• // • // • • // • eerr
��
RR

is Mn(LK(1,m)), where n denotes the number of vertices in the graph and m denotes the
number of loops.

Another useful property of LK(E) is that it is a graded algebra, that is, it can be de-
composed as a direct sum of homogeneous components LK(E) =

⊕
n∈Z LK(E)n satisfying

LK(E)nLK(E)m ⊆ LK(E)n+m. Actually,

LK(E)n = spanK{pq∗ : p, q ∈ Path(E), l(p)− l(q) = n}.
Every element xn ∈ LK(E)n is a homogeneous element of degree n. An ideal I is graded

if it inherits the grading of LK(E), that is, if I =
⊕

n∈Z(I ∩ LK(E)n).

3. Preliminary results

In this paper we will be dealing with arbitrary graphs, and therefore many of the
technicalities which arise when considering these graphs must be taken into account. The
following concepts and results from [29] will be used in the sequel.

A vertex w is called a breaking vertex of a hereditary saturated subset H if w ∈ E0\H
is an infinite emitter with the property that 0 < |s−1(w) ∩ r−1(E0\H)| < ∞. The set of
all breaking vertices of H is denoted by BH . For any v ∈ BH , vH denotes the element

vH = v −
∑

s(e)=v, r(e)/∈H

ee∗.

Note that the sum is finite if v is a breaking vertex. Given a hereditary saturated subset
H and a subset S ⊆ BH , a pair (H,S) is called an admissible pair and I(H,S) denotes the
ideal generated in LK(E) by H ∪ {vH : v ∈ S}. It was shown in [29] that the graded
ideals of LK(E) are precisely the ideals of the form I(H,S) for some admissible pair (H,S).
Moreover, it was shown that I(H,S) ∩ E0 = H and {v ∈ BH : vH ∈ I(H,S)} = S.

Given an admissible pair (H,S), the corresponding quotient graph E\(H,S) is defined
as follows:

(E\(H,S))0 = (E0\H) ∪ {v′ : v ∈ BH\S};
(E\(H,S))1 = {e ∈ E1 : r(e) /∈ H} ∪ {e′ : e ∈ E1, r(e) ∈ BH\S}.

Further, r and s are extended to (E\(H,S))0 by setting s(e′) = s(e) and r(e′) = r(e)′.
Note that, in the graph E\(H,S), the vertices v′ are all sinks.

The result [29, Theorem 5.7] states that there is an epimorphism φ : LK(E) →
LK(E\(H,S)) with kerφ = I(H,S) and that φ(vH) = v′ for v ∈ BH\S. Thus LK(E)/I(H,S)

∼=
LK(E\(H,S)). This theorem has been established in [29] under the hypothesis that E is
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a graph with at most countably many vertices and edges; however, an examination of the
proof reveals that the countability condition on E is not utilized. So [29, Theorem 5.7]
holds for arbitrary graphs E.

Recall that an K-algebra R is said to be indecomposable if it does not have any decom-
position into a direct sum of two nonzero ideals I and J as R = I ⊕ J . Of course R is
called decomposable if it is not indecomposable, that is, if there exists at least one such
decomposition.

Remark 3.1. In this paper we will be concerned with indecomposable Leavitt path
algebras, and we will characterize them in terms of properties of the graph. We note that
sometimes in the literature the term “indecomposable algebra” is equivalent to “connected
algebra” (see for instance [15, Lemma 1.7] where it is stated that for a finite quiver Q,
the path algebra KQ is connected if and only if the quiver Q is connected).

However we will stick to the first terminology since the second one could be misleading
in the sense that the connected Leavitt path algebras are not necessarily the ones whose
underlying graph is connected. Actually we can prove the following:

E directly connected =⇒
6⇐= LK(E) connected =⇒

6⇐= E connected,

that is, the implications cannot be reversed.
Recall that directly connectedness takes into account the direction of the edges (that is:

for every v, w ∈ E0 there exists a path µ with s(µ) = v and r(µ) = w), while connectedness
does not (i.e., for every v, w ∈ E0 there exists a walk from v to w, that is, a path in the

extended graph Ê which includes the ghost edges e∗ ∈ (E1)∗ in the reverse direction to
any real edge e ∈ E1).

If E is not connected, then we have two disjoint subgraphs E1 and E2 such that E
is the disjoint union E = E1

∐
E2. An application of [11, Proposition 2.4] gives that

LK(E) = LK(E1)⊕ LK(E2) so that LK(E) is not connected (i.e., it is decomposable).
To see that the reverse implication is false it is enough to consider the graph

• •oo // •

which is connected but its Leavitt path algebra is, by [5, Proposition 3.5], isomorphic to
LK(E) ∼= M2(K)⊕M2(K), which is not connected.

Now assume that E is directly connected. In this case the graph must be cofinal (clearly,
for every path p ∈ E≤∞ and every v ∈ E0, there exists µ ∈ Path(E) and w ∈ p0 such that
v = s(µ) and w = r(µ)). So we distinguish two cases. First, if there exists a cycle c which
does not have an exit then we get: there do not exist vertices outside c (by the directly
connectedness); and also there are no further edges beside those of c (otherwise we would
have an exit). In this case [6, Theorem 3.3] gives that LK(E) ∼= Mn(K[x, x−1]) where n
is the length of the cycle c. This algebra is unital and does not have central idempotents
besides 0 and 1, hence it is connected. In the second case, that is, if every cycle has
an exit, then [19, Theorem 3.11] and [12, Lemma 2.8] yield that LK(E) is simple, and
therefore also connected.

The other implication does not hold as can be seen for instance with the following graph

• // • // •
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whose Leavitt path algebra is LK(E) ∼= M3(K), which is connected even though the graph
is not directly connected.

Remark 3.2. In the literature the term “indecomposable” also appears as an equivalent
statement to “there are no nontrivial central idempotents”. However once more we will
only use the first terminology since in our setting these two statements are not equivalent,
due to the lack of an identity. An easy example is given by the graph:

. . . // • // • // • //

��

•

•
whose Leavitt path algebra is LK(E) ∼= M∞(K) ⊕M∞(K) by [4, Proof of Proposition
2.4]. Then LK(E) is not indecomposable even though it does not have nonzero central
idempotents (actually the center of LK(E) is zero).

It is well-known that the following result is true for the row-finite case of E (see [9,
Proof of Proposition 5.2 and Theorem 5.3]). We thank P. Ara and E. Pardo for pointing
out to us how to prove that this result remains valid for arbitrary graphs.

Proposition 3.3 ([8, 25]). Let K be a field and E an arbitrary graph. Then the following
statements are equivalent for a two-sided ideal I of LK(E):

(1) I is graded.
(2) I is generated by idempotents.

Proof. The transition to arbitrary graphs can be done in several ways. The first one is
via the monoid V (LK(E)) of the finitely generated projective modules of LK(E). The
proofs of [9, Proposition 5.2 and Theorem 5.3] make use of the fact that V (LK(E))
is an unperforated, separative and refinement monoid when E is row-finite. However,
Ken Goodearl extended those monoid properties to completely arbitrary graphs in [19,
Theorem 5.8], which in turn paves the way for generalizing the aforementioned results for
arbitrary graphs.

A second approach is via the Leavitt path algebras of separated graphs (these graphs
are generalizations of the usual directed graphs which, considering the trivial partitions,
allow us to recover the classical construction of LK(E)). Now, in [10, Section 6] the
ideals generated by idempotents are described, and from these results one obtains that
the ideals generated by idempotents are actually generated by idempotents which are
homogeneous of zero degree, and therefore graded. Conversely, even in the arbitrary
graph case, every graded ideal is generated by the 0-component turns out to be locally
matricial and therefore von Neumann regular. Thus the 0-component is generated by
idempotents. �

Remark 3.4. In the following results, we need to use the structure of, and operations
on, the lattice LE of the admissible pairs of E, originally described in [29, Definition 5.4].
However, Mark Tomforde informed us that corrections needed to be made to those oper-
ations as described, and provided us with the corrections. These have not yet appeared
in the literature, so we include them here, and thank Mark Tomforde for providing them.

(X,SY ) ∧ (Y, SY ) := ((X ∩ Y ), ((SX ∪X) ∪ (SY ∪ Y )) ∩BX∩Y )
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(X,SX) ∨ (Y, SY ) :=

(
∞⋃
n=0

Xn, (SX ∪ SY ) ∩B∪∞n=0Xn

)
where X0 := X ∪ Y and

Xn+1 := Xn ∪ {v ∈ E0
reg : r(s−1(v)) ⊆ Xn} ∪ {v ∈ SX ∪ SY : r(s−1(v)) ⊆ Xn}.

The following is an easy lemma that states some useful properties about breaking
vertices which we will be using throughout the paper.

Lemma 3.5. Let E be a graph and X, Y ∈ HE two hereditary and saturated sets of
vertices.

(1) If X = E0 or X = ∅, then BX = ∅.
(2) If X ∩ Y = ∅, then BX ∩BY = ∅.

Proof. (i) follows trivially from the definition of a set of breaking vertices:

BX = {w ∈ E0
inf \X : 0 < |s−1(w) ∩ r−1(E0 \X)| <∞}.

(ii). Let v ∈ BX ∩ BY . Since v ∈ BX , then 0 < |s−1(v) ∩ r−1(E0 \ X)| < ∞, which
in turn implies, since v is an infinite emitter, that |s−1(v) ∩ r−1(X)| = ∞. On the other
hand, v ∈ BY gives 0 < |s−1(v) ∩ r−1(E0 \ Y )| < ∞. But now X ∩ Y = ∅ implies that
s−1(v) ∩ r−1(X) ⊆ s−1(v) ∩ r−1(E0 \ Y ), a contradiction. �

We now prove a proposition which is the first step towards our characterization of the
indecomposable Leavitt path algebras.

Proposition 3.6. Let E be a graph and let (X,S1) and (Y, S2) two admissible pairs in
E such that LK(E) = I(X,S1) ⊕ I(Y,S2). Then S1 = BX and S2 = BY .

Proof. We will show that S1 = BX and then S2 = BY will be analogous. With the lattice
operation detailed in Remark 3.4 above, we have a lattice isomorphism between the set
of graded ideals Lgr(LK(E)) and the lattice of admissible pairs HE, see [29, Theorem 5.7
(1)]. Therefore we have

LK(E) = I(X,S1) ⊕ I(Y,S2) = I(X,S1)∨(Y,S2) = I(
⋃∞

n=0Xn,(S1∪S2)∩B∪∞
n=0Xn ),

where the Xn’s are those of Remark 3.4.
Now suppose that there is a vertex v ∈ E0 such that v ∈ BX \ S1. Recall that we

always have that X = {w ∈ E0 | w ∈ I(X,S1)} (see for instance the proof of [29, Theorem
5.7 (1)]), and therefore v ∈

⋃∞
n=0 Xn. We will show, step by step, that this situation is

not possible.
Base Case: v 6∈ X0. Suppose on the contrary that v ∈ X0 = X ∪Y . Recall that the set

of breaking vertices of X is given by

BX = {w ∈ E0
inf \X : 0 < |s−1(w) ∩ r−1(E0 \X)| <∞},

and so since by hypothesis v ∈ BX , we must have that v 6∈ X by the first condition
defining the set BX , which in turn implies that v ∈ Y .

On the other hand, the second condition, together with the fact that v must be an
infinite emitter, show that there exists an edge e ∈ E1 such that v = s(e) and r(e) ∈ X.
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Now apply that Y is a hereditary subset to obtain that r(e) ∈ Y , a contradiction with
the fact that X and Y are disjoint.

Inductive Step: v 6∈ Xn implies v 6∈ Xn+1. We proceed again by contradiction and
suppose that v ∈ Xn+1, which we recall is the union of three different sets of vertices

Xn+1 := Xn ∪ {v ∈ E0
reg : r(s−1(v)) ⊆ Xn} ∪ {v ∈ S1 ∪ S2 : r(s−1(v)) ⊆ Xn}.

By the induction hypothesis v does not belong to the first set, and it also does not belong
to the second set as v is an infinite emitter. Thus, v must belong to the third set.

Now use the hypothesis that v 6∈ S1 to get that v ∈ S2 ⊆ BY . And hence v ∈ BX∩BY =
∅, by Lemma 4.3, a contradiction. �

4. Decomposable Leavitt path algebras

We now give a characterization of decomposable Leavitt path algebras in terms only of
the underlying graph. In this section, we state our main theorem, then prove it in two
parts. The theorem is the Leavitt path algebra sibling of the corresponding C∗-algebra
result given by Hong in [20, Theorem 4.1].

Definition 4.1. Let E be an arbitrary graph and X ∈ HE be a saturated hereditary
subset. An X-compatible path is a directed path of positive length α = α1 . . . αn satisfying
the following two conditions:

(i) r(αn) ∈ X.
(ii) s(αn) 6∈ X ∪BX .

Note that the notion of X-compatible path, as defined above, arises in other parts of
the graph algebra literature: If X is a saturated hereditary subset, the ideal IX is isomor-
phic to the graph algebra of a graph E, and the construction of E uses the X-compatible
paths defined above (see the set F1(X, ∅) in [27, Definition 4.1]).

Theorem 4.2. Let E be an arbitrary graph. The Leavitt path algebra LK(E) is decom-
posable if and only if there exist nontrivial hereditary and saturated subsets X, Y ∈ HE

such that X ∩ Y = ∅ and, there are a finite and nonzero number of paths that are either
X-compatible paths or Y -compatible paths.

We split the proof of the theorem into several pieces that we will later put together.

Lemma 4.3. Let E be a graph, X, Y ∈ HE two disjoint hereditary and saturated sets of
vertices and µ = α1 . . . αn ∈ Path(E). Then µ is either X-compatible or Y -compatible if
and only if µ satisfying the properties:

(i) αi ∈ E1 \ ({α ∈ E1 | s(α) ∈ BX , r(α) ∈ X} ∪ {α ∈ E1 | s(α) ∈ BY , r(α) ∈ Y }).
(ii) r(αn) ∈ X ∪ Y , and s(αi) 6∈ X ∪ Y for all i = 1, . . . , n.

Proof. Assume that µ satisfies the properties (i) and (ii), then Condition (ii) implies either
r(αn) ∈ X or r(αn) ∈ Y . If r(αn) ∈ X, then Condition (i) implies µ is X-compatible. If
r(αn) ∈ Y , then Condition (i) implies µ is Y -compatible. Conversely, suppose µ is a path
that is either X-compatible or Y -compatible. If µ is X-compatible, then r(αn) ∈ X by
condition (i) of 4.1 and s(αn) 6∈ X by condition (ii) of 4.1, and the fact X is hereditary
implies s(αi) 6∈ X for all i. Likewise, by the fact Y is hereditary and X is disjoint from
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Y , r(αn) ∈ X implies that s(αi) 6∈ Y for all i. Thus property (ii) holds. In addition, if µ
is X-compatible, then condition (ii) of 4.1 implies s(αn) 6∈ BX . Since no edge other than
αn has range in X ∪ Y , it follows that the property (i) holds. Likewise, a Y -compatible
path satisfies the properties (i) and (ii). �

Definition 4.4. Let E be an arbitrary graph and let X, Y ∈ HE be hereditary and
saturated subsets such that X ∩ Y = ∅. A path µ = α1 . . . αk ∈ Path(E) that is ei-
ther X-compatible or Y -compatible is call an XY -compatible path. The edges αi ∈ E1

constituting the path α are called XY -compatible edges.

Proposition 4.5. Let E be an arbitrary graph containing two nontrivial hereditary and
saturated subsets X, Y ∈ HE such that X ∩ Y = ∅ and, for every v ∈ E0 \ (X ∪ Y ), there
exists at least one but finitely many XY -compatible paths starting at v. Then LK(E) =
I(X,BX) ⊕ I(Y,BY ).

Proof. The sum is direct because of the lattice isomorphism between admissible pairs
and graded ideals. We have: I(X,BX) ∩ I(Y,BY ) = I(X,BX)∧(Y,BY ); and we use Remark 3.4
to get that (X,BX) ∧ (Y,BY ) = (X ∩ Y, Z) = (∅, Z) for some subset Z that satisfies
Z ⊆ BX∩Y = B∅ = ∅ (by Lemma 4.3 (1)). Thus, taking into account the way the ideal
I(H,S) is defined, we obtain I(X,BX) ∩ I(Y,BY ) = I(∅,∅) = 0.

Define now K := I(X,BX) ⊕ I(Y,BY ) and we will show that K = LK(E). Recall that
I(X,BX) ∩ E0 = X and thus X ∪ Y ⊆ K. On the other hand, since K is a two-sided ideal
of LK(E), it is enough to show that K contains all the vertices in E0 (since the set of
sums of distinct vertices of the graph always constitutes a set of local units for LK(E)).
Therefore, our task will be to show that v ∈ K for every v ∈ E0 \ (X ∪ Y ). Assume we
have picked such v and proceed by induction on the number n of different XY -compatible
paths which start at that v (our hypothesis says that such n exists and is nonzero).

Base Case: n = 1. Let µ = α1 . . . αk be the only XY -compatible path starting at v. We
have r(αk) ∈ X ∪ Y ⊆ K, and we will be proceeding backwards along the path µ proving
inductively that s(αk) ∈ K first, then s(αk−1) ∈ K, and so on until getting s(α1) = v ∈ K.
We distinguish cases:
◦ Case 1: s(αk) 6∈ BX ∪BY . In this situation we have that αk is the only edge emitted

by s(αk). Otherwise, suppose that there exists e ∈ E1 \ {αk}. Two things can happen:
if r(e) ∈ X ∪ Y then ν := α1 . . . αk−1e is a XY -compatible path starting at v (because
s(e) 6∈ BX ∪BY ). This new path is different from µ, a contradiction with our hypothesis.

On the other hand, if r(e) 6∈ X ∪ Y , then by hypothesis there exists a XY -compatible
path σ ∈ Path(E) starting at r(e), and again since s(e) 6∈ BX ∪ BY then α1 . . . αk−1eσ is
a XY -compatible path starting at v, which is different from µ.

Therefore we have s−1(s(αk)) = {αk}, and an application of the (CK2) relation gives
that

s(αk) = αkα
∗
k = αk r(αk) α

∗
k ∈ K,

as needed.
◦ Case 2: s(αk) ∈ BX . We will prove that in this case αk is the only edge starting at

s(αk) whose range lies outside X. Suppose on the contrary that there exists f ∈ E1 such
that f 6= αk, s(f) = s(αk) and r(f) 6∈ X.
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Two things can happen: if r(f) ∈ Y then α1 . . . αk−1f is a XY -compatible path starting
at v, and this cannot happen as µ was the only such path. In case r(f) 6∈ Y , then there
exists a XY -compatible path σ ∈ Path(E) starting at r(f), and because f is a XY -
compatible edge, we get α1 . . . αk−1fσ is a XY -compatible path starting at v, which is
different from µ.

Thus, s−1(s(αk)) ∩ r−1(E0 \X) = {αk} and this yields s(αk)
X = s(αk) − αkα∗k. Now,

taking into account that I(X,BX) is generated as a two-sided ideal by X ∪ {vX : v ∈ BX}
we get

s(αk) = s(αk)
X + αk r(αk) α

∗
k ∈ I(X,BX) + LK(E) K LK(E) ⊆ K,

as we wanted to prove.
◦ Case 3: s(αk) ∈ BY . Analogous to Case 2.
Thus, in any case we obtain s(αk) ∈ K. Now proceeding in the same fashion with αk−1

by distinguishing the three cases above with the vertex s(αk−1), we would conclude that
s(αk−1) ∈ K, and repeating this process k times we eventually reach v, hence proving that
v ∈ K.

Induction Step: We now assume that whenever w ∈ E0 \ (X ∪ Y ) is such that there
exists at most n different XY -compatible paths starting at w, then necessarily w ∈ K.

Suppose then that the vertex v ∈ E0 \ (X ∪ Y ) is such that there exists exactly n + 1
different XY -compatible paths starting at v. We need to show that in this situation
v ∈ K.

Let µ = α1 . . . αk be an XY -compatible path starting at v, and choose m to be the min-
imal index i such that the vertex s(αi) is the base of at least two different XY -compatible
edges (such vertex exists because otherwise µ would be the only XY -compatible path
starting at v). We note that the following property holds:

If g is a XY -compatible edge such that s(g) = s(αm), then necessarily r(g) ∈ K. (†)

Indeed, if r(g) ∈ X ∪ Y , then immediately r(g) ∈ K; and in case r(g) 6∈ X ∪ Y , then
there exists at most n different XY -compatible paths starting at r(g) (each of them would
provide an XY -compatible path starting at v just by appending α1 . . . αm−1g on the left
and, together with µ, we cannot have more than n+ 1 such paths). Thus, the induction
hypothesis applies at r(g) and we obtain r(g) ∈ K.

We now distinguish two cases:
◦ Case 1: s(αm) 6∈ BX ∪BY . In this case we have that every α ∈ E1 with s(α) = s(αm)

is a XY -compatible edge, and therefore we must have finitely many such edges (otherwise
we would have infinitely many XY -compatible paths starting at v). Therefore

s(αm) =
finite∑

{f∈E1 : s(f)=s(αm)}

ff ∗ =
∑

s(f)=s(αm)

f r(f) f ∗ ∈ K,

where we have used property (†) above in the last step.
◦ Case 2: s(αm) ∈ BX (the case s(αm) ∈ BY is similar). Here we have that the set
{f ∈ E1 : s(f) = s(αm) and r(f) 6∈ X} must be finite (note that they constitute XY -
compatible edges and argue as in Case 1). On the other hand, since s(αm) ∈ BX , we
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know that s(αm)X ∈ I(X,BX) and all this gives:

s(αm) =s(αm)X +
finite∑

{f∈E1 : s(f)=s(αm) and r(f)6∈X}

ff ∗ =

=s(αm)X +
∑

s(f)=s(αm), r(f) 6∈X

f r(f) f ∗ ∈ I(X,BX) + LK(E) KLK(E) ⊆ K,

where we have made use of property (†) in the last line.
Now in either case we get that s(αm) ∈ K and the minimality of m implies that there

exists only one path σ from v to s(αm) entirely made of XY -compatible edges. In this
situation we walk backwards along σ as in the Base Case above proving that s(αm−1) ∈ K,
and after m steps arriving at s(α1) = v ∈ K. This finishes the proof. �

Proposition 4.6. Let E be an arbitrary graph such that the Leavitt path algebra LK(E) is
decomposable. Then there exist two nontrivial hereditary and saturated subsets X, Y ∈ HE

such that X ∩ Y = ∅ and, for every v ∈ E0 \ (X ∪ Y ), there exists at least one but finitely
many XY -compatible paths starting at v.

Proof. If LK(E) is decomposable, then there exist two-sided ideals I and J such that
LK(E) = I ⊕ J . We first find a set of local units in I. Recall that LK(E) has such a
set of local units: the set consisting of finite sums of vertices of E. Thus each local unit
e ∈ LK(E) can be decomposed uniquely as e = eI + eJ where eI ∈ I and eJ ∈ J . Also,
since e = e2 we get e = eI + eJ = e2

I + e2
J + eIeJ + eJeI = e2

I + e2
J , and this implies

e2
I − eI = eJ − e2

J ∈ I ∩ J = 0, so eI and eJ are idempotents in I and J respectively.
Now consider X = {eI : e ∈ LK(E) is a local unit in LK(E)}. This is a set of local

units in I. To see this, take x1, . . . , xn ∈ I and let e ∈ LK(E) be a local unit for the xk
in LK(E) so that exk = xk = xke for all k = 1, . . . , n. Then since I and J are orthogonal,
we get eIxk = xk = xkeI also. This shows that I is generated by idempotents (i.e., the
set of local units), so that an application of Proposition 3.3 yields that I is a graded ideal
and similarly so is J .

We then know that there exist admissible pairs (X,S1) and (Y, S2) such that I = I(X,S1)

and J = I(Y,S2) and thus Proposition 3.6 applies to give BX = S1 and BY = S2. Therefore,
the lattice given in Remark 3.4 gives that in this situation E0 =

⋃∞
n=0Xn where X0 :=

X ∪ Y and

Xn+1 := Xn ∪ {v ∈ E0
reg : r(s−1(v)) ⊆ Xn} ∪ {v ∈ BX ∪BY : r(s−1(v)) ⊆ Xn}.

Let v ∈ E0 \ (X ∪ Y ). First we will show that there exists at least one XY -compatible
path starting at v.

Step 1: v ∈ X1 \ X0. By the construction of X1 we can have two possibilities. First,

suppose v ∈ E0
reg and r(s−1(v)) ⊆ X0. In this case there exists e ∈ E1 such that v = s(e)

and r(e) ∈ X0 = X ∪ Y so the edge e itself constitutes an XY -compatible path starting
at v.

Second, suppose that v ∈ BX is such that r(s−1(v)) ⊆ X0 (the case that v ∈ BY is
analogous). Since v ∈ BX then there exists f ∈ E1 such that r(f) 6∈ X. So on the one
hand f 6∈ {α ∈ E1 : s(α) ∈ BX , r(α) ∈ X}, but we also have that v = s(f) 6∈ BY (since
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BX ∩ BY = ∅ by Lemma 4.3), and therefore f 6∈ {α ∈ E1 : s(α) ∈ BY , r(α) ∈ Y }. But
by hypothesis we also have that r(f) ∈ X0 = X ∪ Y . All this then proves that f is an
XY -compatible path starting at v, as needed.

Step 2: v ∈ X2 \X1. Again we have two cases for the vertex v. In the first case v ∈ E0
reg

and r(s−1(v)) ⊆ X1. Choose then e ∈ E1 such that v = s(e) and r(e) ∈ X1. We can
assume that r(e) 6∈ X0: otherwise we would have that r(s−1(v)) ⊆ X0, and this would
imply that v ∈ X1. Apply now Step 1 to the vertex w := r(f) ∈ X1 \ X0 to find a
XY -compatible path µ starting at w. Then ν := eµ is the desired XY -compatible path
starting at v.

In the second case we have that v ∈ BX is such that r(s−1(v)) ⊆ X1 (for v ∈ BY we
would reason in a similar way). Now v ∈ BX implies that there exists f ∈ E1 such that
w := r(f) 6∈ X. Actually we can assume that w 6∈ X0 because otherwise r(s−1(v)) ⊆ X0,
which would again lead us to the contradiction that v ∈ X1. Thus, we again apply Step
1 to the vertex w ∈ X1 \ X0 to find a XY -compatible path µ starting at w. We now
claim that ν := fµ is a XY -compatible path starting at v. Indeed, as w 6∈ X we get that
f 6∈ {α ∈ E1 : s(α) ∈ BX , r(α) ∈ X}. Furthermore, v = s(f) 6∈ BY (since BX ∩ BY = ∅
by Lemma 4.3), and therefore f 6∈ {α ∈ E1 : s(α) ∈ BY , r(α) ∈ Y }, as we wanted.

This process can go on by induction for any n ∈ N and v ∈ Xn \ Xn−1, so that the
existence of the XY -compatible path is proved. We now focus on the finiteness of the set
of such compatible paths.

Step 1: v ∈ X1 \ X0. We have two options for v. Let us suppose first that: v ∈ E0
reg

and r(s−1(v)) ⊆ X0. Then, for every e ∈ E1 such that v = s(e) we have that its range
arrives at X0 = X ∪ Y , and by the definition of XY -compatible path, we see that no
edge can follow e to form such a path. Therefore only the edges of s−1(v) can constitute
a XY -compatible path starting at v, but we have finitely many of them.

In the second case we assume that v ∈ BX is such that r(s−1(v)) ⊆ X0 (if v ∈ BY we
would proceed analogously). Since v is a breaking vertex of X this means that s−1(v) is
the disjoint union of the infinite set I of edges whose range lie in X and the finite set F
of edges whose range do not lie in X. That is, I ⊆ {α ∈ E1 : s(α) ∈ BX , r(α) ∈ X},
and therefore the edges of I cannot belong to any XY -compatible path: only the edges
of F might. Actually they do because r(s−1(v)) ⊆ X0 = X ∪ Y by assumption, and
v = s(f) 6∈ BY for any f ∈ F , as we have seen in the previous paragraphs.

step 2: v ∈ X2 \X1. Suppose first that v ∈ E0
reg and r(s−1(v)) ⊆ X1. Split the set as

s−1(v) = {g ∈ E1 : v = s(g), r(g) ∈ X1 \X0} ∪ {g ∈ E1 : v = s(g), r(g) ∈ X0 = X ∪ Y },

then the elements of the second set are XY -compatible edges starting at v, while the
elements of the first set are such that their range vertices are in the conditions of Step 1
above, so that for each vertex r(g) where g belongs to the first set, there exist at most
finitely many XY -compatible paths starting at s(g). Considering all possible combina-
tions we obtain only finitely many possible XY -compatible paths starting at v.

In the second situation we are given v ∈ BX with r(s−1(v)) ⊆ X1 (v ∈ BY is similar).
Here, the edges α ∈ E1 such that v = s(α) and r(α) ∈ X cannot be the first edge of
any XY -compatible path starting at v so we must focus on the edges β ∈ E1 such that
v = s(β) and r(β) 6∈ X, of which only finitely many exist.
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Pick one such edge g and we have two cases for w = r(g). If w ∈ X0 then the edge g is
a XY -compatible edge and path starting at v which cannot be enlarged since w ∈ X ∪Y .
On the other hand, if w ∈ X1 \X0, then we apply the previous Step 1 to get that there
exist finitely many XY -compatible paths starting at that particular w. Thus, adding up
and multiplying all possible combinations, in the end only finitely many XY -compatible
paths starting at v can be found, as we wanted to prove.

This procedure continues by induction for any n ∈ N and v ∈ Xn \ Xn−1. Thus the
finiteness of the set of the XY -compatible path is hence shown. �

We now have both pieces to prove our main result.

Proof of Theorem 4.2. The theorem is now a consequence of Proposition 4.5 and Propo-
sition 4.6. �

5. Corollaries and Examples

When the graphs have a finite number of vertices (but they can have infinitely many
edges or even vertices which are infinite emitters), then a complete decomposition of
LK(E) into unique indecomposable Leavitt path algebras can be achieved. This is done
in the following result, which parallels [20, Corollary 4.2].

Corollary 5.1. Let E be an arbitrary graph. If LK(E) is a unital algebra, then it can
be decomposed as a finite direct sum of indecomposable Leavitt path algebras, which are
uniquely determined up to isomorphism. That is, LK(E) ∼=

⊕n
i=1 LK(Ei), where each

LK(Ei) is indecomposable and if LK(E) ∼=
⊕m

i=1 LK(Fi), then n = m and LK(Ei) ∼=
LK(Fσ(i)) for some permutation σ.

Proof. First, if LK(E) is indecomposable then there is nothing to prove. Otherwise, if
LK(E) is decomposable, following the proof of Proposition 4.6 then there exist nontrivial
hereditary and saturated subsets X and Y such that LK(E) = I(X,BX) ⊕ I(Y,BY ). Then,
using the construction of the quotient graphs and isomorphisms detailed in §3, we have

I(X,BX)
∼= LK(E)/I(Y,BY )

∼= LK(E \ (Y,BY )),

where the quotient graphs now reduce to:

(E\(Y,BY ))0 = (E0\Y ) ∪ {v′ : v ∈ BY \BY } = E0\Y ;

(E\(Y,BY ))1 = {e ∈ E1 : r(e) /∈ Y } ∪ {e′ : e ∈ E1, r(e) ∈ BY \BY } = r−1(E1 \ Y ).

Similarly we can say that I(Y,BY )
∼= LK(E \ (X,BX)) so that LK(E) ∼= LK(E \ (X,BX))⊕

LK(E \ (Y,BY )).
If LK(E) is unital then E0 is a finite set. Since X, Y 6= ∅ then |(E\(X,BX))0| =
|E0\X| < |E0|, and also |(E\(Y,BY ))0| < |E0|. This means that we can apply the same
procedure to LK(E \(X,BX)) and LK(E \(Y,BY )), and after at most |E0| steps we arrive
to an indecomposable decomposition. Note that we are using that the ideals in which we
are decomposing are isomorphic to Leavitt path algebras, and therefore have local units,
which in turn allows us to say that being an ideal is a transitive relation, i.e., if I is an
ideal of J and J is an ideal of LK(E), then I is an ideal of LK(E) (see for instance [30,
Lemma 4.14]). This shows that the decomposition exists.
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For the uniqueness, let ϕ :
⊕n

i=1 LK(Ei) →
⊕m

i=1 LK(Fi) be an algebra isomorphism.
Consider Ii = ϕ(LK(Ei)) which, since ϕ is an isomorphism, are ideals in

⊕m
i=1 LK(Fi)

such that
⊕n

i=1 Ii =
⊕m

i=1 LK(Fi). Now apply [22, Lemma (3.8)] to get that n = m and
Ii = LK(Fσ(i)) for some permutation σ. Now since Ii = ϕ(LK(Ei)) ∼= LK(Ei) we get the
desired conclusion. �

We can now give the characterization of the indecomposable Leavitt path algebras in
the simpler case that the graph E is finite and row-finite:

Corollary 5.2. Let E be a finite graph. The Leavitt path algebra LK(E) is decomposable if
and only if there exist nontrivial hereditary and saturated subsets X and Y with X∩Y = ∅
such that the following conditions hold:

(1) For every v ∈ E0 there exists a path joining v with X ∪ Y .
(2) The graph E0 \ (X ∪ Y ) is acyclic.

Proof. Since E does not contain infinite emitters by hypothesis, an application of Theorem
4.2 shows that condition (i) in the Theorem is then a tautology. On the other hand, the
existence of a path α = α1 . . . αk in Theorem 4.2 corresponds to (1) in the statement of
the Corollary. The fact that there are finitely many XY -compatible paths is related to
item (2) of the statement as follows:

Suppose that there exist infinitely many XY -compatible paths α = α1 . . . αk starting
at v. Since E is finite, there are finitely many vertices to choose from for the s(αi).
But in addition to this, since E is row-finite, this necessarily implies that E1 is finite as
well. Thus, the only way we can get infinitely many XY -compatible paths is through the
existence of a cycle c, having at least one vertex outside X ∪ Y . Now, since X ∪ Y is
hereditary, actually all the vertices c0 must lie outside X ∪ Y , which contradicts (2). The
converse can be proved using similar ideas. �

The result in Corollary 5.1 can be generalized when the Leavitt path algebra satisfies a
two-sided chain condition, concretely when it is either two-sided noetherian (i.e., it satisfies
the a.c.c. in the set of two-sided ideals), or it is two-sided artinian (i.e., it satisfies d.c.c.
on the set of two-sided ideals). These two conditions were characterized in [7, Theorem
3.6] and [7, Theorem 3.9] respectively for Leavitt path algebras of arbitrary graphs.

Corollary 5.3. Let E be an arbitrary graph. If LK(E) is either two-sided noetherian or
two-sided artinian, then it can be decomposed as a finite direct sum of indecomposable Leav-
itt path algebras, which are uniquely determined up to isomorphism. That is, LK(E) ∼=⊕n

i=1 LK(Ei), where each LK(Ei) is indecomposable and if LK(E) ∼=
⊕m

i=1 LK(Fi), then
n = m and LK(Ei) ∼= LK(Fσ(i)) for some permutation σ.

Proof. First we prove that the decomposition exists. If LK(E) is indecomposable there
is nothing to prove, otherwise following the proof of Corollary 5.1 there exist (nontrivial)
hereditary and saturated subsets X and Y of E such that LK(E) = I1 ⊕ I2 where I1 =
LK(E \ (X,BX)) and I2 = LK(E \ (Y,BY )). If both I1 and I2 are indecomposable, we
are finished. Otherwise, suppose for instance that I2 = LK(E \ (Y,BY )) is decomposable
and again find nontrivial ideals I3 and I4, isomorphic to appropriate Leavitt algebras,
such that I2 = I3 ⊕ I4, and again an application of [30, Lemma 4.14] gives that I3 and
I4 are ideals of LK(E) as well, so that we have a decomposition LK(E) ∼= I1 ⊕ I3 ⊕ I4.
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If this process were to continue, we would find a nontrivial decomposition for I4 say, as
I4 = I5 ⊕ I6, etc.

Thus, in the case that LK(E) was two-sided noetherian we would obtain an infinite
ascending chain I1 ⊂ I1 ⊕ I3 ⊂ I1 ⊕ I3 ⊕ I5 ⊂ ..., which would give a contradiction,
whereas in the situation that LK(E) was two-sided artinian, we would use the infinite
descending chain LK(E) ⊃ I2 ⊃ I4 ⊃ ... to reach to the desired contradiction. In either
case the indecomposable decomposition must therefore exist.

To see the uniqueness we use the argument given in Corollary 5.1, where in order to
make use of [22, Lemma (3.8)] we must make sure that if R = B1 ⊕ · · · ⊕Bn where Bi is
an ideal of R (and R might not be unital but has local units as does LK(E)), then each
ideal I of R has the form I = I1 ⊕ · · · ⊕ In, where Ii is an ideal of the ring Bi.

Indeed, define Ii = I ∩ Bi and we claim that I ⊆ I1 ⊕ · · · ⊕ In. Let a ∈ I and find
e = e2 ∈ R a local unit for a such that a = ae. Write e = e1 + · · ·+ en with ei = e2

i ∈ Bi.
Then a = ae = ae1 + · · ·+ aen ∈ I1 ⊕ · · · ⊕ In. The reverse containment is obvious. This
finishes the proof.

�

We conclude the paper with several examples which illustrate our results.

Examples 5.4. (i) There exist indecomposable Leavitt path algebras which are not sim-
ple: Let E∞ denote the infinite edges graph given by

E∞ = •w
(∞)
// •x

where the label (∞) denotes an infinite set of edges. By [3, Examples 3.2] this algebra
is not simple. However, it is indecomposable by Theorem 4.2 because the only nontrivial
hereditary and saturated set is {x}.

(ii) The row-finite and arbitrary graph cases are different, in the following sense: con-
sider the graph E given by

•w
(∞)
//

(∞) !!

•x

•y

Then the only nontrivial hereditary and saturated subsets are X = {x} and Y = {y}, so
if LK(E) was decomposable, then (X, Y ) would be the only possible pair to be considered
in Theorem 4.2. Now since w 6∈ BX ∪ BY , then all the edges in the graph are XY -
compatible edges so that there exist infinitely many XY -compatible paths starting at
w = E0 \ (X ∪ Y ), a contradiction. Thus LK(E) is indecomposable.

However, the two conditions of Corollary 5.2 are clearly satisfied, with E0 finite, which
shows that the hypothesis of the row-finiteness in Corollary 5.2 cannot be removed (oth-
erwise it would yield that LK(E) is decomposable, which we know is false).
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(iii) The condition of the finiteness of the graph in Corollary 5.2 cannot be removed
either. To show this, consider the infinite graph F given by

•x

... •v4

44

**

•v3oo

66

((

•v2oo

==

!!

•v1oo

OO

��
•y

Then the only nontrivial hereditary and saturated sets are X = {x} and Y = {y} (if
any vi was contained in some other hereditary and saturated subset H, by hereditariness
we have vj ∈ H for all j > i, and also x, y ∈ H. At this point apply saturation to get
vi−1 ∈ H, and go backwards in the graph to get vi−2 ∈ H, etc.)

The graph F does not have infinite emitters, and since x and y are sinks, then clearly
every edge in the graph is a XY -compatible edge, so that there exist infinitely many
XY -compatible paths starting at every vk. Then Theorem 4.2 gives that LK(F ) is inde-
composable.

Now suppose that Corollary 5.2 could be applied (the only hypothesis which is not sat-
isfied is the finiteness of F 0). In this scenario, since conditions (1) and (2) in Corollary 5.2
are clearly satisfied for (X, Y ), it would give that LK(F ) is decomposable, a contradiction.

(iv) The following example illustrates the subtleties which appear with infinite emitters.
Consider the following three graphs E1, E2 and E3 given by

E1 = •w //

!!

•x

•y

E2 = •w
(∞)
//

(∞) !!

•x

•y

E3 = •w
(∞)
//

(n) !!

•x

•y

where (n) denotes that there are n ∈ N parallel edges from w to y. From [5, Proposition
3.5] we know that LK(E1) ∼= M2(K)⊕M2(K) and therefore it is decomposable.

However, if we have infinitely many edges, as we have seen in (ii), we get that the graph
E2 gives an indecomposable Leavitt path algebra LK(E2). Note that this happens despite
having a “bifurcation” at w, which is what essentially gives the direct sum decomposition
in [5, Proposition 3.5].

Moreover, by further changing the graph to E3 we again get a decomposable Leavitt
path algebra LK(E3): the reason is that X := {x} and Y := {y} meet the hypotheses
of Theorem 4.2. Indeed, w ∈ BX \ BY and also none of the edges in r−1(x) can be
XY -compatible edges starting at w; but at the same time, all the edges in r−1(y) are
XY -compatible, so that there exist finitely many XY -compatible paths starting at w.

(v) Furthermore, we can get the indecomposable decomposition of the graph E3 above.
Following (iv), the pair X = {x} and Y = {y} satisfy the hypotheses of Theorem 4.2,
so that we can follow the proof of Corollary 5.1 and we get that LK(E3) ∼= LK(E3 \
(X,BX))⊕ LK(E3 \ (Y,BY )). Now the quotient graph constructions give that

E3 \ (X,BX) = •w
(n)
// •y E3 \ (Y,BY ) = •w

(∞)
// •x
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so that an application of [5, Proposition 3.5] and the previous item (i), respectively, give
that LK(E3) ∼= Mn(K)⊕LK(E∞) is the desired indecomposable decomposition of LK(E3).

Note however that for the graph E2 in (iv), we have that LK(E2) 6∼= LK(E∞)⊕LK(E∞),
contrary to intuition.
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[14] G. Aranda Pino. K. L. Rangaswamy, L. Vaš, ∗-regular Leavitt path algebra of arbitrary graphs,

Acta Math. Sin., 28 (5), (2012), 957–968.
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