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Abstract. In this paper a bijection between the set of prime ideals of a Leavitt path
algebra LK(E) and a certain set which involves maximal tails in E and the prime spectrum
of K[x, x−1] is established. Necessary and sufficient conditions on the graph E so that the
Leavitt path algebra LK(E) is primitive are also found.

introduction

Leavitt path algebras of row-finite graphs have been recently introduced in [1] and [7]. They
have become a subject of significant interest, both for algebraists and for analysts working in
C*-algebras. The Cuntz-Krieger algebras C∗(E) (the C*-algebra counterpart of these Leavitt
path algebras) are described in [21]. The algebraic and analytic theories, while sharing some
striking similarities, they present some remarkable differences, as was shown for instance in
the “Workshop on Graph Algebras” held at the University of Málaga (see [11]), and more
deeply in the subsequent enlightening work of Tomforde [23].

For a field K, the algebras LK(E) are natural generalizations of the algebras investigated
by Leavitt in [19], and are a specific type of path K-algebras associated to a graph E (modulo
certain relations). The family of algebras which can be realized as the Leavitt path algebras
of a graph includes matrix rings Mn(K) for n ∈ N ∪ {∞} (where M∞(K) denotes matrices
of countable size with only a finite number of nonzero entries), the Toeplitz algebra, the
Laurent polynomial ring K[x, x−1], and the classical Leavitt algebras L(1, n) for n ≥ 2.
Constructions such as direct sums, direct limits, and matrices over the previous examples
can be also realized in this setting. But, in addition to the fact that these structures indeed
contain many well-known algebras, one of the main interests in their study is the comfortable
pictorial representations that their corresponding graphs provide.

A great deal of effort has been focused on trying to unveil the algebraic structure of LK(E)
via the graph nature of E. Concretely, the literature on Leavitt path algebras includes
necessary and sufficient conditions on a graph E so that the corresponding Leavitt path
algebra LK(E) is simple [1], purely infinite simple [2], exchange [10], finite dimensional [4],
locally finite (equivalently noetherian) [5] and semisimple [6]. Another remarkable approach

2000 Mathematics Subject Classification. Primary 16D70.
Key words and phrases. Leavitt path algebra, prime ideal, maximal tail, primitive ring.
The first author was supported by a Centre de Recerca Matemàtica Fellowship within the Research Pro-
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has been the research (performed quite intensively in [7], and only slightly in [6]) of their
monoids of finitely generated projective modules V (LK(E)).

The aim of this paper is to determine the prime and primitive Leavitt path algebras, which
has a twofold motivation. First, from the purely algebraic point of view, this enterprise is a
compulsory as well as a natural one. Throughout the mathematical literature, knowing the
prime and primitive spectra of rings (also of associative, Lie and Jordan algebras, etc) has
been crucial in order to succeed to give structural theorems (or in order to simply gain a
better understanding of the given algebraic system). Classically, one of the uses of the prime
spectrum for commutative rings is to carry information over from Algebra to Topology and
vice versa via the so-called Zariski topology (several generalizations of this construction for
noncommutative rings have been achieved [24, 17]). As for the primitive ideals of a ring,
they naturally correspond to the irreducible representations of it, which in turn represent
unquestionable tools in their analysis. Therefore, the knowledge of the prime and primitive
Leavitt path algebras can be regarded as a fundamental and necessary step towards the
ultimate goal of the classification of these algebras. In addition, the prime and primitive
questions are natural ones in the following sense: it is known (see [3, Proposition 6.1] or
[9, Proposition 1.1]) that every Leavitt path algebra is semiprime, and recently it has been
proved that every Leavitt path algebra is also semiprimitive [3, Proposition 6.3]. These results
obviously raised the questions of whether or not every Leavitt path algebra is also prime or
primitive.

The second motivation springs out of the complete description of the primitive spectrum
of a graph C*-algebra C∗(E) carried out by Hong and Szymański in [16]. Concretely, in [16,
Corollary 2.12], the authors found a bijection between the set Prim(C∗(E)) of primitive ideals
of C∗(E) and some sets involving maximal tails and points of the torus T. This result parallels
one of the main result of this article (Theorem 3.8). However, there is one subtlety here: it
is known that every primitive C*-algebra is prime and the converse holds for separable C*-
algebras [14]. It turns out that every graph C*-algebra is separable and therefore the concepts
of primeness and primitivity are indistinguishable for C∗(E). This is no longer the case for
Leavitt path algebras LK(E), and in fact Theorem 3.8 deals with the prime spectrum of a
Leavitt path algebra whereas its analytic counterpart [16, Corollary 2.12] considers primitive
ideals.

Hence, the primitive case for LK(E) deserves a different examination to the prime case,
and Theorem 4.6 states the primitive characterization for Leavitt path algebras. This result
does not correspond verbatim to the characterization of primitive (equivalently prime) graph
C*-algebras, the difference being the possibility of having cycles without exits. This difference
in graph criteria of a certain property for LK(E) and C∗(E) is not new, as it too showed up
in the computation of the stable rank for LK(E) in [10, Theorem 7.6], and of the stable rank
for C∗(E) in [13, Theorem 3.4].

The article is organized as follows. The Preliminaries section includes the basic definitions
and examples that will be used throughout. In addition, we describe several graph construc-
tions and more specific but general properties of LK(E) that will be of use in the rest of the
paper.

In Section 2 the first step of the investigation of prime ideals is carried out. We start by
analyzing some subset of vertices of the graph called maximal tails and then show that they
are in one-to-one correspondence with the set of graded prime ideals of LK(E). Further along
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in Section 2, several lemmas concerning prime but not necessarily graded ideals are obtained.
Those are key ingredients in the study of the prime spectrum in the the following section.
Informally, these results tell us how to uniquely obtain, out of a graded but not necessarily
prime ideal I, two things: a maximal tail and a graded prime ideal contained in I.

The classification of all prime ideals is accomplished in Section 3. Some preliminary results
discussing ideals generated by Pc(E) (that is, the vertices for which there are cycles without
exits based at them) are settled. Those and other partial results finally pave the way for the
proof of one of the main results of the paper (Theorem 3.8), which exhibits a bijection between
the set of prime ideals of LK(E), and the set formed by the disjoint union of the maximal tails
of the graph M(E) and the cartesian product of maximal tails for which every cycle has an
exit Mτ (E) and the nonzero prime ideals of the Laurent polynomial ring Spec(K[x, x−1]∗).
As noted before, Theorem 3.8 is the algebraic analog of the graph C*-algebra result stated in
[16, Corollary 2.12]. However, it is worth mentioning that their proofs are certainly unrelated
since they involve totally different methods and what is more, neither can be (at least readily)
obtained from the other.

The natural subsequent step is taken in Section 4, where the primitive Leavitt path algebras
are determined. In order to achieve this goal, several results on simple right LK(E)-modules
are established. Then, in the other main theorem of this paper (Theorem 4.6), necessary
and sufficient conditions are given so that a Leavitt path algebra LK(E) is left (equivalently
right) primitive. In contrast with the prime spectrum correspondence, this characterization
of primitive Leavitt path algebras lacks a graph C*-algebra version.

1. Preliminaries

A (directed) graph E = (E0, E1, r, s) consists of two countable sets E0, E1 and maps r, s :
E1 → E0. The elements of E0 are called vertices and the elements of E1 edges. If s−1(v) is a
finite set for every v ∈ E0, then the graph is called row-finite. Throughout this paper we will
be concerned only with row-finite graphs. If E0 is finite, then, by the row-finite hypothesis,
E1 must necessarily be finite as well; in this case we say simply that E is finite.

A vertex which emits no edges is called a sink. A path µ in a graph E is a sequence of
edges µ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n− 1. In this case, s(µ) := s(e1) is
the source of µ, r(µ) := r(en) is the range of µ, and n is the length of µ. For n ≥ 2 we define
En to be the set of paths of length n, and E∗ =

⋃
n≥0E

n the set of all paths. Throughout
the paper K will denote an arbitrary field.

Let K be a field and E a directed graph. Denote by KE the K-vector space which has
as a basis the set of paths. It is possible to define an algebra structure on KE as follows:
for any two paths µ = e1 . . . em, ν = f1 . . . fn, we define µν as zero if r(µ) 6= s(ν) and as
e1 . . . emf1 . . . fn otherwise. This K-algebra is called the path algebra of E over K.

We define the Leavitt path K-algebra LK(E), or simply L(E) if the base field is understood,
as the K-algebra generated by a set {v | v ∈ E0} of pairwise orthogonal idempotents, together
with a set of variables {e, e∗ | e ∈ E1}, which satisfy the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(4) v =

∑
{e∈E1|s(e)=v} ee

∗ for every v ∈ E0 that emits edges.
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Relations (3) and (4) are called of Cuntz-Krieger.
The elements of E1 are called real edges, while for e ∈ E1 we call e∗ a ghost edge. The set
{e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e), and we let s(e∗) denote
r(e). If µ = e1 . . . en is a path, then we denote by µ∗ the element e∗n . . . e

∗
1 of L(E), and by µ0

the set of its vertices, i.e., {s(µ1), r(µi) | i = 1, . . . , n}. It was shown in [1, Lemma 1.5] that
every monomial in L(E) is of the form: kv, with k ∈ K and v ∈ E0, or ke1 . . . emf

∗
1 . . . f

∗
n for

k ∈ K, m,n ∈ N, ei, fj ∈ E1. For any subset H of E0, we will denote by I(H) the ideal of
L(E) generated by H.

Note that if E is a finite graph then we have
∑

v∈E0 v = 1L(E). On the other hand, if
E0 is infinite, then by [1, Lemma 1.6] L(E) is a nonunital ring with a set of local units. In
fact, in this situation, L(E) is a ring with enough idempotents (see e.g. [15] or [23]), and we
have the decomposition L(E) = ⊕v∈E0L(E)v as left L(E)-modules. (Equivalently, we have
L(E) = ⊕v∈E0vL(E) as right L(E)-modules.)

Examples 1.1. By considering some basic configurations one can realize many algebras as
the Leavitt path algebra of some graph. Thus, for instance, the ring of Laurent polynomials
K[x, x−1] is the Leavitt path algebra of the graph

•
��

Matrix algebras Mn(K) can be achieved by considering a line graph with n vertices and
n− 1 edges

• // • // • • // •
Classical Leavitt algebras L(1, n) for n ≥ 2 are obtained as L(Rn) where Rn is the rose

with n petals graph

• ee
rr
��

RR

Of course, combinations of the previous examples are possible. For example, the Leavitt
path algebra of the graph

• // • // • • // • ee
rr
��

RR

is Mn(L(1,m)), where n denotes the number of vertices in the graph and m denotes the
number of loops. In addition, the algebraic counterpart of the Toeplitz algebra T is the
Leavitt path algebra of the graph E having one loop and one exit

•%% // •

It is shown in [1] that L(E) is a Z-graded K-algebra, spanned as a K-vector space by
{pq∗ | p, q are paths in E}. In particular, for each n ∈ Z, the degree n component L(E)n
is spanned by elements of the form pq∗ where l(p) − l(q) = n. The degree of an element x,
denoted deg(x), is the lowest number n for which x ∈

⊕
m≤n L(E)m.
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For us, by a countable set we mean a set which is either finite or countably infinite. The
symbol M∞(K) will denote the K-algebra of matrices over K of countable size but with only
a finite number of nonzero entries.

We will analyze the structure of various graphs in the sequel. An important role is played
by the following three concepts. An edge e is an exit for a path µ = e1 . . . en if there exists i
such that s(e) = s(ei) and e 6= ei. If µ is a path in E, and if v = s(µ) = r(µ), then µ is called
a closed path based at v. If s(µ) = r(µ) and s(ei) 6= s(ej) for every i 6= j, then µ is called a
cycle. A graph which contains no cycles is called acyclic.

An edge e is an exit for a path µ = e1 . . . en if there exists i such that s(e) = s(ei) and
e 6= ei. We say that a graph E satisfies Condition (L) if every cycle in E has an exit.

We define a relation ≥ on E0 by setting v ≥ w if there is a path µ ∈ E∗ with s(µ) = v
and r(µ) = w. A subset H of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H. A
hereditary set is saturated if every vertex which feeds into H and only into H is again in H,
that is, if s−1(v) 6= ∅ and r(s−1(v)) ⊆ H imply v ∈ H. Denote by HE the set of hereditary
saturated subsets of E0.

The set T (v) = {w ∈ E0 | v ≥ w} is the tree of v, and it is the smallest hereditary subset of
E0 containing v. We extend this definition for an arbitrary setX ⊆ E0 by T (X) =

⋃
x∈X T (x).

The hereditary saturated closure of a set X is defined as the smallest hereditary and saturated
subset of E0 containing X. It is shown in [7, 12] that the hereditary saturated closure of a
set X is X =

⋃∞
n=0 Λn(X), where

Λ0(X) = T (X), and
Λn(X) = {y ∈ E0 | s−1(y) 6= ∅ and r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X), for n ≥ 1.

Recall that an ideal J of L(E) is graded if and only if it is generated by idempotents; in
fact, J = I(H), where H = J ∩E0 ∈ HE. (See the proofs of [7, Proposition 4.2 and Theorem
4.3].) We will use this fact freely throughout.

We recall here some graph-theoretic constructions which will be of interest. For a hereditary
subset of E0, the quotient graph E/H is defined as

(E0 \H, {e ∈ E1| r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1),

and the restriction graph is

EH = (H, {e ∈ E1| s(e) ∈ H}, r|(EH)1 , s|(EH)1).

Sometimes it is useful to view L(E) constructed as the quotient of the path algebra of a
certain graph as follows: recall that given a graph E the extended graph of E is defined as

the new graph Ê = (E0, E1 ∪ (E1)∗, r′, s′) where (E1)∗ = {e∗i : ei ∈ E1} and the functions r′

and s′ are defined as

r′|E1 = r, s′|E1 = s, r′(e∗i ) = s(ei) and s′(e∗i ) = r(ei).

For a field K and a row-finite graph E, the Leavitt path algebra of E with coefficients in

K can also be regarded as the path algebra over the extended graph Ê, with relations:

(CK1) e∗i ej = δijs(ej) for every ej ∈ E1 and e∗i ∈ (E1)∗.
(CK2) vi =

∑
{ej∈E1:r(ej)=vi} eje

∗
j for every vi ∈ E0 which is not a source.
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Thus, an element of L(E) will be of the form x, with x ∈ KÊ. In fact, by [1, Lemma
1.5], x can be chosen as a linear combination of vertices and elements of the form pq∗, with
p, q ∈ E∗.

This alternative description of L(E) allows us to define, for x ∈ L(E), the following

Rx =

{∑
piq
∗
i ∈ KÊ | x =

∑
piq∗i

}
.

Consider an element a = e1 . . . erf
∗
1 . . . f

∗
s ∈ KÊ, with ei, fj ∈ E1. We say that s is the degree

of e1 . . . erf
∗
1 . . . f

∗
s in ghost edges, and denote it by degge(a). If a ∈ KE, then we say that a

has zero degree in ghost edges, while the degree in ghost edges of f ∗1 . . . f
∗
s is s. For a ∈ KÊ,

a =
∑

i piqi, with pi, q
∗
i ∈ E∗, the degree of a in ghost edges is: max{degge(piq

∗
i )}. Finally,

the degree in ghost edges of an element x of the Leavitt path algebra L(E) is defined by:

degge(x) := min{degge(y) | y ∈ Rx}.

2. Prime Ideals and Maximal Tails

The main goal of this section is the study maximal tails and their relation with prime
(graded or not) ideals of L(E). These connections will be essential in the prime spectrum
correspondence results (Theorem 3.8).

Let us recall first the definition of maximal tail (which is a particular case of that of [12]):
for a graph E, a nonempty subset M ⊆ E0 is said to be a maximal tail if it satisfies the
following properties:

(MT1) If v ∈ E0, w ∈M and v ≥ w, then v ∈M .
(MT2) If v ∈M with s−1(v) 6= ∅, then there exists e ∈ E1 with s(e) = v and r(e) ∈M .
(MT3) For every v, w ∈M there exists y ∈M such that v ≥ y and w ≥ y.

Lemma 2.1. Let E be a graph. Then, M ⊆ E0 satisfies Conditions (MT1) and (MT2) if
and only if H = E0 \M ∈ HE.

Proof. Suppose first that M is a maximal tail. Consider v ∈ H and w ∈ E0 such that
v ≥ w. If w 6∈ H then w ∈ M , and by Condition (MT1) we get v ∈ M = E0 \ H, a
contradiction. This shows that H is hereditary. Now, let v ∈ E0 with s−1(v) 6= ∅, and
suppose that r(s−1(v)) ⊆ H. If v 6∈ H then by Condition (MT2), there exists e ∈ s−1(v) such
that r(e) 6∈ H, a contradiction. This proves that H is saturated.

Let us see the converse. Take v ∈ E0 and w ∈M such that v ≥ w. If v 6∈M then, as H is
hereditary, we get that w ∈ H. Consider now v ∈M with s−1(v) 6= ∅. If for every e ∈ s−1(v)
we have that r(e) 6∈M , then that means r(s−1(v)) ⊆ H, and by saturation we obtain v ∈ H,
a contradiction. �

Notation. Following [12], given X ⊆ E0 we denote

Ω(X) = {w ∈ E0 \X | w 6≥ v for every v ∈ X}.

Lemma 2.2. If M ⊆ E0 satisfies Condition (MT1), then Ω(M) = E0 \M .

Proof. By definition Ω(M) ⊆ E0 \ M . Now, let w ∈ E0 \ M . If v ∈ M and w ≥ v, by
Condition (MT1) we get that w ∈M , a contradiction, so E0 \M ⊆ Ω(M), as desired. �
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Corollary 2.3. Let E be a graph. If M ⊆ E0 satisfies Conditions (MT1) and (MT2), then
Ω(M) ∈ HE.

Proof. Apply Lemmas 2.1 and 2.2. �

Recall that a graded ideal I of a graded ring R is said to be graded prime if for every pair
of graded ideals J,K of R such that JK ⊆ I, it is necessary that either J ⊆ I or K ⊆ I.
The definition of prime ideal is analogous to the previous one by eliminating the condition of
being graded. It follows by [20, Proposition II.1.4] that for an algebra graded by an ordered
group (as it is the case of Leavitt path algebras), a graded ideal is graded prime if and only
if it is prime.

It will be useful to recall that in [10, Remark 5.5] it was shown that if J,K ∈ HE, then
I(J)I(K) = I(J ∩K). We will use this fact without referencing it.

For the sake of completion, we re-state here the following proposition:

Proposition 2.4. ([10, Proposition 5.6]) Let E be a graph, and let H ∈ HE. Then, the
following are equivalent:

(1) The ideal I(H) is (graded) prime.
(2) M = E0 \H is a maximal tail.

The following definitions can be found in [12].

Definitions 2.5. Let M be a subset of E. A path in M is a path α in E with α0 ⊆ M .
We say that a path α in M has an exit in M if there exits e ∈ E1 an exit for α such that
r(e) ∈ M . For a graph E, we denote by M(E) the set of maximal tails of E. We denote by
Mγ(E) the set of maximal tails M such that every closed simple path p in M has an exit in
M . We will also denote Mτ (E) =M(E) \Mγ(E).

The following notation will be useful throughout the sequel.

Notation. Keeping in mind that gauge-invariant ideals in graph C*-algebras correspond to
graded ideals in Leavitt path algebras, we can adapt some notation of [16] to our situation.
Concretely, given a Z-graded algebra A, we will denote by Specγ(A) the set of all prime
ideals of A which are graded, and by Specτ (A) the set of all prime ideals L(E) which are
not graded. Then Spec(A) = Specγ(A)∪ Specτ (A). As usual, we denote by Spec(A)∗ the set
Spec(A) \ {0}.

Lemma 2.6. Let E be a graph. Let I be an ideal of L(E). Let H = I ∩E0 and M = E0 \H.
If M ∈Mγ(E) then I = I(H).

Proof. First we suppose that H is nonempty. By [1, Lemma 3.9] H ∈ HE, and by [10,
Lemma 2.3] L(E)/I(H) ∼= L(E/H). Clearly I(H) ⊆ I. Suppose that I(H) 6= I, then
0 6= I/I(H) / L(E/H). Note that, as M ∈ Mγ(E) by hypothesis, then E/H satisfies
Condition (L). Thus, we are in a position to apply the same reasoning in [10, Proposition 3.3]
to reach a contradiction.

In the case when H = ∅, the condition M ∈ Mγ(E) is just having Condition (L) in the
graph E. Then, if I 6= 0, an application of [2, Proposition 6] yields H 6= ∅, a contradiction. �

Lemma 2.7. Let E be a graph. Let I be a non-graded prime ideal of L(E). Let H = I ∩E0,
then:
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(i) I(H) / L(E) is (graded) prime.
(ii) M = E0 \H ∈Mτ (E).

Proof. (i). By [1, Lemma 3.9] we know that H ∈ HE. Now, consider graded ideals I1, I2 of
L(E) such that I1I2 ⊆ I(H). Find Hi ∈ HE with Ii = I(Hi), for i = 1, 2. As I(H) ⊆ I and
I is prime, we have that I(Hi) ⊆ I, for some i. Then, for this i we get Hi ⊆ I(Hi) ∩ E0 ⊆
I ∩ E0 = H, so that I(Hi) ⊆ I(H), as we wanted.

(ii). Apply (i) and Proposition 2.4 to get that M is a maximal tail. If M ∈ Mγ(E), then
Lemma 2.6 gives that I = I(H), contradicting the fact that I is not graded. �

We end this section by providing algebraic characterizations of Condition (L) and Condi-
tions (L) plus (MT3), that will appear in the sequel. First we need the following definitions,
which are particular cases of those appearing in [13, Definition 1.3]:

Let E be a graph, and let ∅ 6= H ∈ HE. Define

FE(H) = {α = (α1, . . . , αn) | αi ∈ E1, s(α1) ∈ E0 \H, r(αi) ∈ E0 \H for i < n, r(αn) ∈ H}.

Denote by FE(H) another copy of FE(H). For α ∈ FE(H), we write α to denote a copy of α
in FE(H). Then, we define the graph HE = (HE

0,HE
1, s′, r′) as follows:

(1) HE
0 = (HE)0 = H ∪ FE(H).

(2) HE
1 = (HE)1 = {e ∈ E1 | s(e) ∈ H} ∪ FE(H).

(3) For every e ∈ E1 with s(e) ∈ H, s′(e) = s(e) and r′(e) = r(e).
(4) For every α ∈ FE(H), s′(α) = α and r′(α) = r(α).

Proposition 2.8. Let E be a graph.

(i) E satisfies Conditions (L) and (MT3) if and only if I ∩ J ∩ E0 6= ∅ for every nonzero
ideals I and J of L(E).

(ii) E satisfies Condition (L) if and only if I ∩ E0 6= ∅ for every nonzero ideal I of L(E).

Proof. (i). Suppose that E satisfies Conditions (L) and (MT3) and take nonzero ideals I
and J of L(E). Apply [2, Proposition 6] to find vertices v ∈ I and w ∈ J . Use Condition
(MT3) to find u ∈ E0 such that v, w ≥ u and paths µ, ν such that s(µ) = v, s(ν) = w and
r(µ) = r(ν) = u. Thus u = µ∗vµ = ν∗wν ∈ I ∩ J ∩ E0.

Let us see the converse. By Proposition 2.4, E satisfies Condition (MT3). Suppose now
that there is a cycle without exists c based at v. Let J denote the ideal of L(E) generated
by v + c. By a standard argument (see [1, Proof of Theorem 3.11]) v 6∈ J . If w ∈ J for
some w ∈ E0, as we have Condition (MT3), there exists u such that v, w ≥ u. Because c
has no exits u ∈ c0, so that for some path τ , we have τ = wτv. This gives v = τ ∗wτ ∈ J , a
contradiction.

(ii). Apply [2, Proposition 6] to show that Condition (L) implies I ∩ E0 6= ∅ for every
nonzero ideal I of L(E).

To see the converse, suppose that c is a cycle without exits and write H = c0. By [8,
Lemma 1.2] L(HE) ∼= I(H) via an isomorphism Φ : L(HE) → I(H) such that for every
v ∈ I(H), v = Φ(v). Take a nonzero ideal J of L(HE), then Φ(J) is an ideal of I(H). By
[23, Lemma 3.21], Φ(J) is an ideal of L(E). Use the hypothesis to show that Φ(J) contains
a vertex w which is in I(H), hence w ∈ J because Φ(w) = w. This shows that the graph

HE satisfies that every ideal of L(HE) contains a vertex. On the other hand, as shown in [6,
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Proposition 3.6 (iii)], HE is a comet tail. Thus, it satisfies Condition (MT3). Now, consider
the ideal J ′ of L(HE) generated by v + c. We can prove as in (i) that J ′ does not contain
vertices, a contradiction. �

Remark 2.9. The fact that Condition (L) implies I∩E0 6= ∅ for every nonzero ideal I of L(E)
was first proved (although not explicitly stated in this form) in [2, Proposition 6]. Despite its
simplicity, this is a recurrently invoked fact in a great number of proofs that have followed.
What Proposition 2.8 (ii) shows then is that the converse of this well-known statement holds
too. In addition, Proposition 2.8 (i) provides a generalization of this aforementioned result,
which in turn happens to be equivalent to the left (or right) semiprimitivity of L(E), as will
be shown in Theorem 4.6.

3. The prime spectrum correspondence

In this section the computation of the prime spectrum of the Leavitt path algebra is
completed. The bijection between the set of prime ideals of L(E) and certain families of
maximal tails together with the set of nonzero prime ideals of K[x, x−1] is fully achieved in
Theorem 3.8.

First we will need some preliminary results that will be useful tools in both directions of
the correspondence of that Theorem.

As in [6], we denote by Pc(E) the set of vertices in the cycles without exits of E.

Lemma 3.1. Let E be a graph and J an ideal of L(E) such that J ∩E0 = ∅. Then J ∩KE∩
L(E)u ⊆ I(Pc(E)) for every u ∈ E0.

Proof. We can assume J 6= 0. Apply [22, Proposition 2.2] to find 0 6= x = xu ∈ J ∩ KE.
Write x =

∑r
i=1 kiαi, with 0 6= ki ∈ K, αi = αiu ∈ E∗ for every i and αi 6= αj for every

i 6= j and assume that deg(αi) ≤ deg(αi+1) for every i = 1, . . . , r − 1. We will prove that
u ∈ I(Pc(E)) by induction on the number r of summands.

Note that r 6= 1 as otherwise we would have k−1
1 α∗1x = u ∈ J , a contradiction to the

hypothesis. So the base case for the induction is r = 2. Suppose first that deg(α1) = deg(α2).
In this case, since α1 6= α2, we get α∗1α2 = 0 so that k−1

1 α∗1x = u ∈ J , a contradiction again.
This gives deg(α1) < deg(α2) and then α∗1x = k1u + k2e1 . . . et for some e1, . . . , et ∈ E1. By
multiplying on the left and right hand sides by u we get

y1 := uα∗1xu = k1u+ k2ue1 . . . etu ∈ J.

Observe that u and e1 . . . en have different degrees and since k1u 6= 0 we obtain that y1 6= 0.
Moreover, as J does not contain vertices we have that c := ue1 . . . etu 6= 0 is a closed path
based at u. We will prove that c does not have exits: suppose on the contrary that there
exist w ∈ T (u) and e, f ∈ E1 such that e 6= f , s(e) = s(f) = w, c = aweb = aeb for some
a, b ∈ E∗. Then ν = af satisfies ν∗c = f ∗a∗aeb = f ∗eb = 0 so that ν∗y1ν = k1r(ν) ∈ J , again
a contradiction. This is saying that u ∈ Pc(E) so, in particular, x = xu ∈ I(Pc(E)).

Let us assume the result holds for r and prove it for r + 1. Assume then that x = xu =∑r+1
i=1 kiαi and distinguish two situations.
First, consider deg(αj) = deg(αj+1) for some j = 1, . . . , r. The element α∗jxuαj =

α∗jxuαju ∈ J is nonzero as follows: clearly each monomial remains with positive degree
as deg(α∗jαiαj) = deg(αi) ≥ 0. Moreover, at least αj = α∗jαjαj appears in the expression for
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α∗jxuαj because if we had αj = α∗jαiαj for some i 6= j, then deg(αi) = deg(αj) which implies
α∗jαi = 0 and therefore αi = 0, a contradiction. This shows that α∗jxuαj has at least a nonzero
monomial, and because distinct elements of KE are linearly independent (see [22, Lemma
1.1]), then α∗jxuαj 6= 0. Now, this element has at most r summands because α∗jαj+1αj = 0
and it satisfies the induction hypothesis, so that u ∈ Pc(E).

The second case is when deg(αi) < deg(αi+1) for every i = 1, . . . , r. Then 0 6= α∗1x =
k1u+

∑r+1
i=2 kiβi with βiu = βi ∈ E∗. Multiply again as follows:

y2 := uβ∗r+1uα
∗
1xuβr+1u = k1u+

r+1∑
i=2

uβ∗r+1uβiuβr+1u ∈ J.

A similar argument to the previous paragraph shows that y2 is nonzero so that, in case
some monomial of y2 becomes zero, then y2 is satisfies the induction hypothesis, therefore
u ∈ Pc(E). If this is not the case, since βr+1 has maximum degree among the βi, then

y2 = k1u+ k2γ1 + k3γ1γ2 + · · ·+ kr+1γ1 . . . γr,

where γi are closed paths based at u. Let us focus on γ1. By proceeding in a similar fashion
as before, we can conclude that it cannot have exists as otherwise there would exist a path δ
with s(δ) = u and δ∗γ1 = 0. That would give δ∗y2δ = k1r(δ) ∈ J , a contradiction. Then, γ1

is a cycle without exits so that u ∈ Pc(E), and finally x = xu ∈ I(Pc(E)). �

Proposition 3.2. Let E be a graph and J an ideal of L(E) such that J ∩ E0 = ∅. Then
J ⊆ I(Pc(E)).

Proof. Let 0 6= x ∈ J , and write x =
∑
xui for some ui ∈ E0 with 0 6= xui. As J is an ideal,

0 6= xui ∈ J , so that we can assume without loss of generality that 0 6= x = xu.
We will show, by induction on the degree in ghost edges, that if xu ∈ J , with u ∈ E0, then

xu ∈ I(Pc(E)). If degge(xu), the result follows by Lemma 3.1. Suppose the result true for
degree in ghost edges strictly less than degge(xu) and show it for degge(xu).

Write x =
∑r

i=1 βie
∗
i + β, with βi ∈ L(E), β = βu ∈ KE and ei ∈ E1, being ei 6= ej for

every i 6= j. Then xuei = βi + βei ∈ J ; since degge(xuei) < degge(xu), by the induction
hypothesis βi + βei ∈ I(Pc(E)), for every i ∈ {1, . . . , r}.

If u =
∑r

i=1 eie
∗
i , then xu =

∑r
i=1 βie

∗
i +

∑r
i=1 βeie

∗
i =

∑r
i=1(βi + βei)e

∗
i ∈ I(Pc(E)), and

we have finished.
If u =

∑r
i=1 eie

∗
i +

∑s
j=1 fjf

∗
j (where fj ∈ E1), then xufj = βfj ∈ J ∩ KE. By Lemma

3.1 βfj ∈ I(Pc(E)), for every j ∈ {1, . . . , s}, hence xu =
∑r

i=1(βi + βei)e
∗
i +

∑s
j=1 βfjf

∗
j ∈

I(Pc(E)). �

For a graph E, let {cj}j∈Λ be the set of all different cycles without exits. By abusing of
notation, identify two cycles that have the same vertices. Then we can obtain the following

Corollary 3.3. Let J be a prime ideal of a Leavitt path algebra L(E) which does not contain
vertices. Then ⊕

i∈Λ′

Mni(K[x, x−1]) ⊆ J ⊆
⊕
i∈Λ

Mni(K[x, x−1]),

where Λ′ has exactly one element less than Λ, |Λ| ≤ ℵ0 and ni ∈ N ∪ {∞}.
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Proof. We will show
I({c0

j}j∈Λ′) ⊆ J ⊆ I(Pc(E)).

Then, apply [6, Proposition 3.6 (iii)].
Suppose that there exist z1 ∈ I(c1) and z2 ∈ I(c2), for c1 and c2 different cycles without exits

in L(E) and such that z1, z2 /∈ J . By [6, Proposition 3.6 (i)] z1I(Pc(E))z2 = z1I(Pc(E))z2 = 0.

Since J is a prime ideal and J ⊆ I(Pc(E)), by Proposition 3.2, I(Pc(E)) := I(Pc(E))/J is
a prime ring. This means z1 = 0 or z2 = 0, that is z1 ∈ J or z2 ∈ J , a contradiction. This
shows our claim. �

Corollary 3.4. Let F be a graph such that there is a unique cycle µ without exits (but there
might be other cycles with exits).

(i) If F ∈M(F ) and H ∈ HF \ {∅}, then µ0 ⊆ H.

(ii) If J is an ideal of L(F ) such that J ∩ F 0 = ∅, then J ⊆ I(µ0).

Proof. (i). Applying [16, Lemma 2.1], we know that Ω(F 0) = Ω(µ0), but since Ω(F ) = ∅,
then this means that for every w ∈ F 0 \ µ0 we have w ≥F v for some v ∈ µ0. Now, given
h ∈ H, as µ is a cycle we in fact have that h ≥ v for every v ∈ µ0, and as H is hereditary,
this means that µ0 ⊆ H. Now, because H is also saturated we get µ0 ⊆ H.

(ii) It is a particular case of Proposition 3.2. �

We recall here some definitions which were introduced in [6]. We say that an infinite path
γ = (en)∞n=1 ends in a cycle if there exists m ≥ 1 and a cycle c such that the infinite subpath
(en)∞n=m is just the infinite path ccc . . . . We say that a graph E is a comet if it has exactly
one cycle c, T (v)∩ c0 6= ∅ for every vertex v ∈ E0, and every infinite path ends in the cycle c.

Next propositions will be the pieces from which the main theorem of this section (Theorem
3.8) will rely on.

Proposition 3.5. Let E be a graph. There is a map

Θ : Specτ (L(E))→Mτ (E)× Spec(K[x, x−1])∗.

Proof. Let J be a prime ideal of L(E) which is not graded. As the zero ideal {0} is graded,
then J 6= 0. Consider H = E0 ∩ J ∈ HE by [1, Lemma 3.9]. Then write F = E/H so that
[10, Lemma 2.1] gives that L(F ) ∼= L(E)/I(H). Note that in the case H = ∅ we simply have
F = E and we do not invoke any result. Thus, Lemma 2.7 gives that I(H) is graded prime
and that M = E0 \H = F 0 ∈Mτ (E). In particular this is saying that L(F ) is a prime ring
as L(F ) ∼= L(E)/I(H).

Moreover, the ideal J = J/I(H) is prime in L(F ). To see this, first note that I(H) ⊆ J
but I(H) 6= J , as J is nongraded by hypothesis. Hence J 6= 0. Furthermore,

L(F )/J ∼=
L(E)/I(H)

J/I(H)
∼= L(E)/J

is a prime ring as J is a prime ideal in L(E), so that J is a prime ideal in L(F ). Obviously
it is not graded because otherwise it would imply that the ideal J to which it lifts is graded
too.

Now, since F 0 ∈Mτ (E), we will prove that F 0 ∈Mτ (F ). Clearly F 0\F 0 = ∅ is hereditary
and saturated in F , so that by Lemma 2.1 F 0 satisfies Conditions (MT1) and (MT2). Let us
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check Condition (MT3): take v, w ∈ F 0. Since F 0 is a maximal tail in E, there exists y ∈ F 0

such that v, w ≥E y, which means that there exist p, q ∈ E∗ such that s(p) = v, s(q) = w and
r(p) = r(q) = y. Then, since y 6∈ H, by hereditariness we have that (p0 ∪ q0) ∩H = ∅, and
thus p0, q0 ⊆ F 0, which implies, by the way that F is defined, that v, w ≥F y. Finally, we
can find a cycle c in F without exits in F when seen inside E, but this same cycle will not
have exits in F when regarded in F . This proves that F 0 ∈Mτ (F ).

Applying [16, Lemma 2.1] to F we get that there exists a unique cycle µ in F without exits
(but there could be other cycles with exists). In this case we also have that ∅ = Ω(F ) = Ω(µ0),
or in other words, every vertex in F 0 connects to the cycle µ.

Note that since J ∩ E0 = H, then J ∩ (E/H)0 = J ∩ F 0 = ∅, so that we are in position

to apply Corollary 3.4(ii) to get that J ⊆ I(µ0). Now, by [8, Lemma 2.1] we obtain I(µ0) ∼=
L(µ0F ) as nonunital rings. In the notation of [6], we have Pµ(F ) = µ0 so that µ0 = Pµ(F ).
First, we can show that every infinite path in F ends in the cycle µ by just readapting the
ideas in [6, Proposition 3.6 (iii)]. Moreover, this fact also implies that µ is the only cycle
in µ0F , because any other cycle would produce an infinite path which would not end in µ.
Clearly, by the way F and µ0F were constructed, every vertex in the latter connects to µ.

This proves that µ0F is in fact a comet, so that invoking [6, Proposition 3.5] one gets

that L(µ0F ) ∼= Mn(K[x, x−1]), where n ∈ N if µ0F is finite, or n = ∞ otherwise. By the
composition of the two previously determined isomorphism, we have a univocally defined
K-algebra isomorphism

φµ : I(µ0)→Mn(K[x, x−1]).

We will show now that J is a prime ideal in I(µ0). Consider A,B ideals of I(µ0) such that

J ⊆ A,B and AB ⊆ J . Since I(µ0) is (isomorphic to) the Leavitt path algebra of µ0F , it has

a set of local units so that an application of [23, Lemma 3.21] yields that A,B are ideals of
L(F ) as well, but J was prime in L(F ) so that A ⊆ J or B ⊆ J , as we needed.

Then, φµ(J ) is a prime ideal in Mn(K[x, x−1]), and it is well known that in this case there
exists a unique ideal P of K[x, x−1] such that φµ(J ) = Mn(P ). Moreover, this ideal P is
prime in K[x, x−1] (see for instance [18]). Moreover, note that P 6= 0 because J 6= 0.

That way we have associated a maximal tail M ∈Mτ (E) and a prime ideal P in K[x, x−1]
to J . In other words we have defined Θ(J) = (M,P ). �

Proposition 3.6. Let E be a graph. There is a map

Λ :Mτ (E)× Spec(K[x, x−1])∗ → Specτ (L(E)).

Proof. Pick P 6= 0 any prime ideal in K[x, x−1] and M ∈ Mτ (E). As K[x, x−1] is an
Euclidean domain, we have that every nonzero prime ideal in K[x, x−1] is maximal.

On the other hand, by [16, Lemma 2.1], there exists a cycle µ contained in M but without
exits in M . This cycle is unique (up to a permutation of its edges) and Ω(M) = Ω(µ0). Let
H = E0 \M ∈ HE and F = E/H. Note that F 0 = M , and that by the way that F is defined,
µ0 ⊆ F 0 and µ1 ⊆ F 1. The fact that µ ⊆ E does not have exits inM translates to the fact that
µ does not have exits when seen inside the graph F . The same reasoning used in Proposition
3.5 shows that I(µ0) ∼= L(µ0F ) ∼= Mm(K[x, x−1]) for some m ∈ N ∪ {∞}. As in the proof of

Proposition 3.5, we can consider the K-algebra isomorphism φµ : I(µ0)→Mn(K[x, x−1]).
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Clearly Mm(P ) is a maximal ideal [18] in Mm(K[x, x−1]) so that J = φ−1
µ (Mm(P )) is a

maximal ideal in I(µ0). Using again [23, Lemma 3.21] and the fact that I(µ0) has local units,
we have that J is in fact an ideal of L(F ). We will show that it is prime in L(F ). Consider
then A,B ideals of L(F ) with J ⊆ A,B and AB ⊆ J . Write HA = A∩F 0 and HB = B∩F 0.
We know that HA, HB ∈ HF .

Suppose that HA, HB 6= ∅, then an application of Corollary 3.4 (i) gives that µ0 ⊆ HA∩HB

so that I(µ0) ⊆ I(HA ∩HB) = I(HA)I(HB) ⊆ AB ⊆ J ( I(µ0), where the last containment
is proper as J is a maximal ideal. This is a contradiction so that this case cannot happen.

Without loss of generality we may assume that HA = ∅, in this case we apply Corollary 3.4
(ii) to obtain that A ⊆ I(µ0) so that J ⊆ A ⊆ I(µ0). But J was a maximal ideal in I(µ0)
so that J = A, as needed.

Then since J = J/I(H) is prime in L(F ) ∼= L(E)/I(H), then J is certainly prime in L(E).
If J is a graded ideal, then J would be graded too. Thus we have that J = I(HJ ) for

HJ = J ∩ F 0, and as P 6= 0, we have J 6= 0 so that HJ 6= ∅. Thus, an application of
Corollary 3.4 (i) shows that µ0 ⊆ HJ . On the other hand, since I(HJ ) = J ⊆ I(µ0), then

we have that HJ = I(HJ ) ∩ F 0 ⊆ I(µ0) ∩ F 0 = µ0. That is, HJ = µ0, and consequently

J = I(µ0). This implies, via the isomorphism φµ, that P = K[x, x−1], which contradicts the
fact that P is prime.

Therefore we have associated a nongraded prime ideal J in L(E) to any maximal tail
M ∈Mτ (E) and a prime ideal P in K[x, x−1]. So that we define Λ(M,P ) = J . �

Proposition 3.7. Let E be a graph. There is a bijection between

Mτ (E)× Spec(K[x, x−1])∗ ←→ Specτ (L(E)).

Proof. By following the correspondences consecutively in Propositions 3.5 and 3.6 one can
check that Θ and Λ are inverses one another. Concretely the equation

ΛΘ = 1|Specτ (L(E))

can be checked with no difficulty, and the only nontrivial part of proving

ΘΛ = 1|Mτ (E)×Spec(K[x,x−1])∗

arises when we have J = Λ(M,P ) and we would like to establish that, in order to apply Θ,
we obtain H ′ = H and therefore M ′ = M and so on. This is so because when defining J in
the Λ-process, we obtained J ∩ F 0 = ∅ so that J ∩E0 ⊆ H, as F = E/H and J = J/I(H).
But the latter implies I(H) ⊆ J , and therefore H = I(H) ∩ E0 ⊆ J ∩ E0 ⊆ H. That is,
H ′ = J ∩ E0 = H, and the rest follows trivially. �

Putting together Proposition 3.7 and Lemma 2.4, we obtain the main result of this section.

Theorem 3.8. Let E be a graph. There is a bijection between

M(E) ∪ (Mτ (E)× Spec(K[x, x−1])∗)←→ Spec(L(E)).

Remark 3.9. This Theorem is the algebraic version of [16, Corollary 2.12]. Note that the
role of T in that result is played in Theorem 3.8 by Spec(K[x, x−1])∗. This replacement agrees
with the fact that both K[x, x−1] and T are attached to the same underlying graph in the
following sense: K[x, x−1] is the Leavitt path algebra of the loop graph E given by
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•
��

whereas the continuous functions over T is precisely the graph C*-algebra of that graph, that
is, C∗(E) ∼= C(T).

Note that although L(E) is always semiprime (see for instance [9, Proposition 1.1]), is it
not necessarily prime, and in fact we can prove the following easy corollary

Corollary 3.10. Let E be a graph. L(E) is prime if and only if E ∈M(E) if and only if E
satisfies Condition (MT3).

Proof. L(E) is prime if and only if {0} = I(∅) ∈ Spec(E). Then by the way the correspon-
dence in Theorem 3.8 is defined, this occurs precisely when E0 \ ∅ = E0 ∈M(E). Then, as ∅
is always a hereditary and saturated subset of E0, Lemma 2.1 yields that E0 always satisfies
Conditions (MT1) and (MT2). Hence, E0 ∈ M(E) if and only if E0 satisfies Condition
(MT3). �

4. Primitive Leavitt path algebras

Having completely determined the prime Leavitt path algebras, the natural next step is
to be able to proceed in the same way with the primitive ones (every primitive algebra is
in particular prime, and the reverse implication holds for instance for the class of separable
C*-algebras [17], and consequently for the class of graph C*-algebras).

In view of Corollary 3.10, and contrasting with the graph C*-algebra situation, next lemma
shows that among the class of Leavitt path algebras, the notions of primeness and primitivity
do not coincide.

Lemma 4.1. If E ∈Mτ (E), then L(E) is not left (nor right) primitive.

Proof. Apply again [16, Lemma 2.1] to find µ the only cycle without exits of E, and suppose
that µ is based at the vertex v. By repeating the arguments in [10, Proof of Theorem 4.3] we
obtain that K[x, x−1] ∼= vL(E)v, which is not a primitive ring (note that a commutative ring
is primitive if and only if it is a field). Clearly, as corners of primitive rings are primitive,
then we get the result. �

Lemma 4.2. If E ∈M(E) and Pl(E) 6= ∅, then L(E) is left (and right) primitive.

Proof. Pick v ∈ Pl(E) and use [9, Theorem 2.9] to get that M = L(E)v is a minimal left
ideal of L(E), or in other words, M is a simple left L(E)-module. Now consider a ∈ L(E)
such that aM = aL(E)v = 0. As v 6= 0 and L(E) is prime, we get that a = 0, so that M is a
simple and faithful left L(E)-module. This shows that L(E) is left primitive. By proceeding
dually we get that L(E) is right primitive too. �

Recall that a ring R is right primitive if and only if there exists a simple and faithful right
R-module M . Given that the focus at this point is on determining when a Leavitt path
algebra L(E) is (right) primitive, it is evident that a knowledge of the simple (and faithful)
right L(E)-modules is required. This is done in the next few results.

Lemma 4.3. If M is a simple right L(E)-module, then M ∼= vL(E)/J , for some v ∈ E0 and
some right L(E)-module J , maximal (as a right L(E)-module) in vL(E).



PRIME SPECTRUM AND PRIMITIVE LEAVITT PATH ALGEBRAS 15

Proof. We know that M ∼= L(E)/I for some maximal right ideal I of L(E). Take v ∈ E0 such
that v 6∈ I. By the maximality of I, I+vL(E) = L(E). So, M ∼= L(E)/I ∼= (I+vL(E))/I ∼=
vL(E)/(I ∩ vL(E)). Observe that J = I ∩ vL(E) is a right L(E)-module, maximal in
vL(E). �

We will denote by Mod-L the category of all right L-modules.

Proposition 4.4. Let E be a graph. For a vertex u ∈ E0, define the set

Su = {M ∈ Mod-L | M ∼= uL(E)/J,where J is a maximal right submodule of uL(E)}.

Let u, v ∈ E0 and α a path with s(α) = u and r(α) = v. Then

(i) Sv = Su.
(ii) If J is a maximal right submodule of uL(E), then uL(E)/J ∼= vL(E)/α∗J .

Proof. Denote L(E) by L. Define the following map

ϕ : uL → vL
x 7→ α∗x

Since α∗uα = v, ϕ is an epimorphism of right L-modules whose kernel is (u− αα∗)L. Then,
uL/Ker(ϕ) ∼= vL via the isomorphism

ϕ : uL/Ker(ϕ) → vL
x+ Ker(ϕ) 7→ α∗x

Let us see first that Sv ⊆ Su. Let T be a maximal submodule of vL. By using the
isomorphism ϕ we know that there exists J a submodule of uL such that Ker(ϕ) ⊆ J and
J/Ker(ϕ) ∼= T . Then we have

vL/T ∼= (uL/Ker(ϕ))/(J/Ker(ϕ)) ∼= uL/J.

Now we will check that Su ⊆ Sv. Suppose first that J + Ker(ϕ) = uL. Consider

ρ : uL/(J ∩Ker(ϕ)) → vL
y + (J ∩Ker(ϕ)) 7→ α∗y

It is well-defined because y ∈ J ∩ Ker(ϕ) ⊆ Ker(ϕ) means y = (u − αα∗)y, which implies
α∗y = 0.

Clearly, it is surjective, as α∗α = v and s(α) = u, and therefore (uL/(J∩Ker(ϕ)))/Ker(ρ) ∼=
vL via the isomorphism ρ given by (y+(J ∩Ker(ϕ)))+Ker(ρ) 7→ α∗y. Apply twice the Third
Isomorphism Theorem to obtain

uL/J ∼= (uL/(J ∩Ker(ϕ)))/(J/(J ∩Ker(ϕ))) ∼=((
uL/(J ∩Ker(ϕ))

)
/Ker(ρ)

)
/
((
J/(J ∩Ker(ϕ)) + Ker(ρ)

)
/Ker(ρ)

)
∼= vL/α∗J

since α∗J is the image of
(
J/(J ∩Ker(ϕ)) + Ker(ρ)

)
/Ker(ρ) by ρ.

Suppose now that Ker(ϕ) ⊆ J . Then, (uL/Ker(ϕ))/(J/Ker(ϕ)) ∼= uL/J . As uL/J is a sim-
ple module, J/Ker(ϕ) is maximal inside uL/Ker(ϕ). Using the isomorphism ϕ we have that
ϕ(J/Ker(ϕ)) = α∗J is a maximal submodule of vL and uL/J ∼= (uL/Ker(ϕ))/(J/Ker(ϕ)) ∼=
vL/α∗J . �
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Proposition 4.5. Let E be a graph, u a vertex with |s−1(u)| ≥ 2, and uL(E)/J a simple
right L(E)-module. Then

uL(E)/J ∼= vL(E)/e∗L(E)

for some e ∈ s−1(u), being v = r(e).

Proof. Write L = L(E). Use relation (4) to write u = ee∗ +
∑

i fif
∗
i (note that i ≥ 1). For

every y ∈ J we may write y = uy = ee∗y +
∑
fif
∗
i y, so that J ⊆ ee∗J ⊕

(⊕
fif
∗
i J
)
⊆ uL.

By the maximality of J we have two possibilities.
Case 1: ee∗J ⊕

(⊕
fif
∗
i J
)

= uL. For any l ∈ L write ee∗l = ee∗a +
∑
fif
∗
i bi with

a, bi ∈ J . Multiply on the right hand side by ee∗ to obtain ee∗l = ee∗a ∈ ee∗J . Hence,
ee∗L ⊆ ee∗J ⊆ ee∗L, that is, ee∗L = ee∗J . Apply Proposition 4.4 (ii) for α = e to get
uL(E)/J ∼= vL(E)/e∗J = vL(E)/e∗L.

Case 2: ee∗J ⊕
(⊕

fif
∗
i J
)

= J . In this situation

uL/J ∼=
(
ee∗L⊕

(⊕
fif
∗
i L
))
/
(
ee∗J ⊕

(⊕
fif
∗
i J
)) ∼= ee∗L/ee∗J ⊕

(⊕
fif
∗
i L/fif

∗
i J
)
.

The simplicity of uL/J implies that every summand but one must be zero. We may sup-
pose that ee∗L/ee∗J = 0. Then, Proposition 4.4 (ii) applies again to have uL(E)/J ∼=
vL(E)/e∗J = vL(E)/e∗L. �

We now have all the ingredients in hand to prove the final result of the article.

Theorem 4.6. Let E be a graph. The following conditions are equivalent.

(i) L(E) is left primitive.
(ii) L(E) is right primitive.

(iii) E satisfies Conditions (L) and (MT3).
(iv) I ∩ J ∩ E0 6= ∅ for every nonzero ideals I and J of L(E).

Proof. (ii) ⇒ (iii). If L(E) is right primitive, then it is prime so that Proposition 2.4 yields
that E satisfies Condition (MT3). If E does not satisfy Condition (L), then E ∈ Mτ (E),
and by Lemma 4.1, L(E) is not right primitive, a contradiction.

(iii) ⇒ (ii). Denote L = L(E). If Pl(E) 6= ∅, we finish by Lemma 4.2. So, suppose
Pl(E) = ∅. Since E satisfies Condition (L), there exists u ∈ E0 with |s−1(u)| ≥ 2. Given
any v ∈ E0, by Condition (MT3) there exists w ∈ E0 such that u, v ≥ w. In this situation
Proposition 4.4 (i) gives Su = Sw = Sv, so that Sv = Su.

By Lemma 4.3 every simple right module M is isomorphic to vL/J for some vertex v ∈ E0

and some maximal submodule J of vL. Hence, Proposition 4.5 implies that

{Ann(M) | M is a simple right L-module } =

{Ann(r(e)L/e∗L), with e ∈ s−1(u) and r(e)L/e∗L simple} (†)
Clearly the second set is finite. If all its elements are nonzero, then we can apply Proposition
2.8 (i) to get ⋂

e∈s−1(u), r(e)L/e∗L simple

Ann(r(e)L/e∗L) ∩ E0 6= ∅.
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If we denote by J(L) the Jacobson radical of L, we know that J(L) = 0 by [3, Proposition
6.3]. Now (†) gives

J(L) =
⋂

M simple

Ann(M) =
⋂

e∈s−1(u), r(e)L/e∗L simple

Ann(r(e)L/e∗L) 6= 0,

a contradiction. Thus, Ann(r(e)L/e∗L) = 0 for some simple L-module r(e)L/e∗L, as desired.
(i) ⇔ (iii) is proved analogously.
(iii) ⇔ (iv) is Proposition 2.8 (i). �

Remark 4.7. In noncommutative Ring Theory, one-sided conditions tend not to be left-right
symmetric (perhaps with the remarkable exception of semisimplicity). However, for Leavitt
path algebras, the natural phenomena seem to be the opposite: for instance, in [4, Theorem
3.10] it was shown that L(E) is left noetherian if and only if it is right noetherian, and later
on in [6, Theorem 2.2] the left-right symmetry was established for the artinian condition as
well. Moreover, in [6, Theorem 2.6] and [6, Theorem 3.8], similar situations arose for the
locally artinian and locally noetherian properties.

In this sense, Theorem 4.6 adds the primitive condition to the list of left-right symmetric
properties for Leavitt path algebras, and therefore yields stronger support to the claim that
L(E) carries some type of extra symmetry within.

Examples 4.8. In contrast with Remark 4.7, the containments

{R | R is simple } ⊆ {R | R is left primitive } ⊆ {R | R is prime }
are proper for Leavitt path algebras in the same way that they so are for general rings. To
exhibit such examples, one simply uses the characterizations of prime (Corollary 3.10), left
primitive (Theorem 4.6) and simple ([1, Theorem 3.11]) Leavitt path algebras in terms the
properties of their underlying graphs. Thus, perhaps the easiest examples can be built out
of the following graphs:

E : •
��

F : •%% // •
By using the results above, it is straightforward to check that L(E) is prime but not left
(nor right) primitive, whereas L(F ) is left (and right) primitive but not simple. In fact
L(E) ∼= K[x, x−1] (see [1, Examples 1.4]), and L(F ) ∼= T where T denotes the algebraic
Toeplitz algebra (see [22, Theorem 5.3]).
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