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Introduction

Graphs are combinatorial objects that sit at the core of mathematical intu-
ition. They appear in numerous situations all throughout Mathematics and have
often constituted a source of inspiration for researchers. A striking instance of
this can be found within the classes of graph C∗-algebras and of Leavitt path
algebras. These are a class of algebras over fields that emanate from different
sources in the history yet quite possibly have a common future.

Let E be a graph, i.e. a collection of vertices and edges that connect them.
Very roughly, the process by which a C∗-algebra is associated to E consists of
decorating the vertices with orthogonal projections on a Hilbert space and the
edges by suitable operators. The ensuing C∗-subalgebra of B(H) is then the
graph C∗-algebra C∗(E).

For finite (connected) graphs this construction parallels the way by which
Cuntz and Krieger associated a C∗-algebra to a finite square matrix whose entries
are 0s and 1s, but a more systematic approach to graph C∗-algebras has been
carried out over the last decade or so. Important examples have been shown
to fall in this class, such as the Cuntz algebras, the Toeplitz algebra, and all
AF-algebras up to Morita equivalence. The development of the theory has also
produced new and interesting examples, especially the ones associated to infinite
graphs.

An algebraic version of these algebras has been recently introduced in a num-
ber of papers (see [3, 23]), where the fundamentals of the theory are established.
The basic construction parallels the one outlined above, except that one works
over an arbitrary field (whereas here C∗-algebras will always be over the complex
numbers) and no completion is involved. The algebras thereby constructed have
been termed Leavitt path algebras. The original Leavitt algebras arose in the
work of Leavitt (see [90, 91]) in his quest to find universal non-IBN algebras.
This construction was later (unadvertedly) rediscovered by Cuntz in the early
80s while looking for examples of simple C∗-algebras that had a purely infinite
character.

Both classes of algebras share a beautiful interplay between highly visual
properties of the graph and algebraic properties of the corresponding algebraic
object. For example, the lattice ideal structure can be understood to a great ex-
tent by using the so-called hereditary and saturated subsets of vertices, whereby
graded simplicity can be characterized in an elegant way: the absence of non-
trivial such subsets. Simplicity, pure infiniteness, the exchange/real rank zero
property and the possible values of the stable rank are also detected by looking
at graph conditions.

Despite the similarity of the results (but not its complete coincidence), it
must be said that there is a wealth of C∗-tools that are intrinsically analytic
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(notably the Cuntz-Krieger uniqueness theorems), and thus to work with just
Leavitt path algebras it is necessary to circumvent these obstacles. Rather than
being a detracting factor, this results in an enrichment of the algebraic techniques
at our disposal which hopefully will as well provide feedback to C∗-algebraists
and common ground for fruitful discussions (see also, e.g. [25, 103, 105] for other
instances of the transfer of technology between Analysis and Algebra).

The present set of notes serves the purpose of introducing the beginner as
well as the more advanced researcher to the world of graph algebras. In outline
it is divided in five chapters, each one corresponding to each speaker. For basic
notions on graph C∗-algebras, however, the interested reader is referred to [108].
In the first chapter a brief introduction with algebraic flavour to C∗-algebras is
given, together with some key ideas and results of the more specialised higher-
rank graph C∗-algebras. Some remarks on uniqueness theorems for Leavitt path
algebras are also included. Chapter 2 is devoted mainly to the structural pro-
perties of graph C∗-algebras, both for row-finite and infinite graphs: ideal lattice
structure, desingularization, etc. The way in which classification enters the pic-
ture is also explained via the explicit computation of the K-groups in terms of
generators and relations. Finally, other generalizations of these analytical objects
are examined.

The remaining three chapters are devoted to Leavitt path algebras. Chapter
3 begins with a historical overview of the subject, proceeding towards formal
definitions and the first structural results: characterization of simplicity and pure
infiniteness, among others. The lattice of ideals is analyzed in Chapter 4, and
its relationship with order-ideals coming from K-Theory. Conditions on minimal
ranks are also studied, such as the exchange property and the values of the stable
rank. Finally, Chapter 5 deals with the Realization Problem for von Neumann
regular rings, and shows that (countable) graph monoids can be realized. Some
other questions regarding the algebraic K-Theory of Leavitt path algebras are
also considered.

The material hereby presented covers a good deal of the theory of graph
algebras but it is by no means a complete treatment, although speakers have
displayed cutting edge results. For one thing, there are other existing sets of
notes for graph C∗-algebras and many published papers on the subject. The
results included in these notes have aimed at explaining the begin-the-scenes
story, therefore many details have been left out in favour of general ideas and
philosophy. The extensive reference list will provide the interested reader with
extremely good sources for pursuing an in-depth study of graph algebras, using
these notes as a very useful guidebook.

Meanwhile, the theory (like the universe) keeps expanding...
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Chapter 1

C*-algebras, higher rank
algebras and algebraic
uniqueness theorems, by
Iain Raeburn

1.1 C∗-algebras from an algebraic point of view

Abstract. This is the written version of a lecture given at the Workshop on
Graph Algebras at the University of Málaga on 2 July 2006. The object of the
lecture was to describe to participants with backgrounds in algebra what they
need to know about C∗-algebras before tackling the literature on graph C∗-
algebras.

For operator algebraists, a ∗-algebra is an associative algebra A over the
complex numbers C with an involution: a map a 7→ a∗ from A to A such that
(λa+µb)∗ = λa∗+µb∗, (a∗)∗ = a and (ab)∗ = b∗a∗. A ∗-algebra may or may not
have an identity element 1, but if so, 1∗ is also an identity, and hence 1∗ = 1.

Example 1.1.1. The set Mn(C) of n×n complex matrices is a ∗-algebra with the
usual vector-space operations and matrix multiplication, and with adjoint given
by the conjugate transpose: (aij)∗ = (aji).

A C∗-algebra is a ∗-algebra A with a norm a 7→ ‖a‖ : A → [0,∞) which
satisfies the usual axioms for a norm on a vector space:

‖ab‖ ≤ ‖a‖ ‖b‖ and ‖a‖2 = ‖a∗a‖ (the C∗-identity), (1.1.1)

1



2 1.1. C∗-algebras from an algebraic point of view

and for which the normed space (A, ‖ · ‖) is complete in the sense that Cauchy
sequences converge. It follows from (1.1.1) that the norm also satisfies ‖a∗‖ =
‖a‖, and, if A has an identity 1, that ‖1‖ = 1.

Example 1.1.2. Let X be a compact Hausdorff space (or a compact metric space
if you prefer). Then the set

C(X) := {f : X → C : f is continuous on X}

is a C∗-algebra with the algebra operations defined pointwise, with f∗(x) :=
f(x), and with ‖f‖ := sup{|f(x)| : x ∈ X}. This C∗-algebra is commutative
(that is, fg = gf) with identity given by the function 1 with constant value
1 ∈ C.

The first big theorem of the subject says that the algebras C(X) are essen-
tially the only commutative C∗-algebras. Here an isomorphism of C∗-algebras
is required to preserve all the structure, including the identity (but see Theo-
rem 1.1.6 below).

Theorem 1.1.3 (Gelfand and Naimark). Suppose A is a commutative C∗-
algebra with identity. Then there is a compact Hausdorff space X such that A is
isomorphic to C(X).

The proof of this theorem has serious analytic content, using results from
both complex and functional analysis (see [96, Theorem 2.1.10] or [46, Theo-
rem I.3.1]). The proof is not constructive in the technical sense, but it does say
what X is and what the isomorphism is in a way which is concrete enough to
help in specific applications. For example, if A is generated by a single element
a, then we can take for X the spectrum

σ(a) := {λ ∈ C : a− λ1 is invertible in A},

and then the isomorphism of Theorem 1.1.3 carries the generator a into the
identity function z (that is, the function z 7→ z : σ(a)→ C).1

Example 1.1.4. Let H be a Hilbert space: an inner-product space over C which
is complete in the norm ‖h‖ := (h |h)1/2 defined by the inner product. A linear
transformation T : H → H is bounded if it maps bounded sets to bounded
sets (and then for no good reason we call it a bounded linear operator on H);
a basic result says that T is bounded if and only if it is continuous. The set

1If B is a C∗-algebra with identity 1 and a is an element of B satisfying a∗a = aa∗ (we say
a is normal), then we can apply this to the C∗-subalgebra C∗(a) of B generated by a and 1,
and we obtain an isomorphism of C∗(a) onto C(σ(a)); the inverse of this isomorphism is an
injection of C(σ(a)) into B which carries z to a, and we think of the image f(a) of f ∈ C(σ(a))
as the result of sticking the element a into the formula for f . This construction is known as
the continuous functional calculus for the normal element a of B. See [96, Theorem 2.1.13].
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B(H) of bounded linear operators on H is a C∗-algebra with addition and scalar
multiplication given pointwise, with multiplication given by composition, with
the operator norm defined by

‖T‖op = sup{‖Th‖ : ‖h‖ ≤ 1},

and with the adjoint T ∗ of T given by the unique bounded operator satisfying

(T ∗h | k) = (h |Tk) for all h, k ∈ H

(it is a fundamental lemma that for each T there is exactly one such operator
T ∗).

WhenH = Cn, every linear transformation T is bounded, and passing from T
to its matrix with respect to the usual basis for Cn identifies B(H) with Mn(C).
This identification carries composition into matrix multiplication and adjoints
into conjugate transposes, so Mn(C) is a C∗-algebra in the operator norm.

Theorem 1.1.5 (Gelfand and Naimark). Every C∗-algebra A is isomorphic to
a closed ∗-subalgebra (or C∗-subalgebra) of B(H).

As with the first Gelfand-Naimark theorem, the proof of Theorem 1.1.5 pro-
vides additional information: it tells us how to build representations of A (that
is, homomorphisms of A into B(H)) from functionals f : A → C such that
f(a∗a) ≥ 0 for every a (see [96, Theorem 3.4.1] or [111, Theorem A.11], for ex-
ample). The idea is to consider the action of A by left multiplication on a copy
A0 of itself, and to define an inner product on A0 by (a | b) = f(b∗a). To make
this work, one has to mod out by vectors in A0 of length zero, complete the
quotient, and check that A then acts by bounded operators on the completion.
This is known as the GNS-construction, after Gelfand, Naimark and Segal.

We next point out a couple of standard conventions of the subject, both of
which come with important theorems which justify their use. The first concerns
homomorphisms. When we say that a map φ : A→ B between C∗-algebras is a
homomorphism, we always mean that it is a homomorphism of ∗-algebras. We
don’t need to mention that it is norm-bounded, because this is automatic:

Theorem 1.1.6. Suppose that A and B are C∗-algebras and φ : A → B is a
homomorphism. Then φ is norm-decreasing: ‖φ(a)‖ ≤ ‖a‖ for every a ∈ A. If φ
is injective, then φ is norm-preserving: ‖φ(a)‖ = ‖a‖ for every a ∈ A.

This theorem is proved, for example, in [46, Theorem I.5.5]. We stress that
it is crucial in Theorem 1.1.6 that the algebra A is complete. Many important
C∗-algebras are by definition the completions of very concrete ∗-algebras A0,
but we cannot apply Theorem 1.1.6 to a homomorphism φ0 : A0 → B unless we
already know that φ0 extends to a homomorphism φ on the completion A. To
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prove that φ0 extends, we need to prove that φ0 is bounded, which is usually
done by establishing a norm estimate.

Our second convention concerns ideals. When we say that I is an ideal in
a C∗-algebra, we mean that I is norm-closed and 2-sided. It then follows that
I is also closed under the adjoint operation (see [96, Theorem 3.1.3] or [46,
Lemma 1.5.1]), so the quotient A/I is a ∗-algebra.

Theorem 1.1.7. If I is an ideal in a C∗-algebra A, then the quotient A/I is a
C∗-algebra in the quotient norm

‖a‖I := inf{‖a+ i‖ : i ∈ I}.

For proofs of this theorem, see [96, Theorem 3.1.4] or [46, Theorem 1.5.4].
The proofs are not as routine as one might think: it takes considerable ingenuity
and some substantial general theory to prove that the quotient norm satisfies
the C∗-identity.

The theorems we have stated so far will be proved in any first course on C∗-
algebras, though probably not in the order we have given them, and probably
not in the first few weeks unless the students are unusually well-prepared. Our
goal now is to use these theorems to prove some facts which are used repeatedly
in the analysis of graph C∗-algebras. First of all:

Corollary 1.1.8. There is at most one norm on a ∗-algebra A under which A
is a C∗-algebra.

Proof. Suppose that ‖ · ‖1 and ‖ · ‖2 are two such norms, and apply the second
part of Theorem 1.1.6 to the identity map of (A, ‖ · ‖1) into (A, ‖ · ‖2).

Corollary 1.1.9. The range of every homomorphism φ : A → B between C∗-
algebras is a C∗-subalgebra of B.

To appreciate this result, one has to realise that in general the range of a
bounded linear transformation T : X → Y between Banach spaces need not be
closed. When T is norm-preserving, however, T (X) is always closed: to see this,
suppose Txn → y in Y . Then

Txn → y =⇒ {Txn} is a Cauchy sequence

=⇒ ‖Txm − Txn‖ → 0 as m,n→∞ independently

=⇒ ‖xm − xn‖ → 0 as m,n→∞ (because T is norm-preserving)

=⇒ {xn} is a Cauchy sequence

=⇒ there exists x such that xn → x as n→∞
=⇒ Txn → Tx (because T is continuous)

=⇒ y = Tx belongs to the range of T .
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Proof. Theorem 1.1.6 implies that φ is continuous, so kerφ is topologically
closed, and hence is an ideal of A. Theorem 1.1.7 implies that A/(kerφ) is a
C∗-algebra. The standard algebraic argument shows that there is an injective
∗-algebra homomorphism φ̃ : A/(kerφ)→ B such that φ̃(a+ kerφ) = φ(a), and
another application of Theorem 1.1.6 shows that φ̃ is norm-preserving. Since the
range of any ∗-algebra homomorphism is a ∗-subalgebra, and the range of any
norm-preserving linear operator is a closed subspace, the range of φ̃ is a closed
∗-subalgebra — that is, a C∗-subalgebra. Since φ and φ̃ have the same range,
this completes the proof.

Corollary 1.1.10. Suppose B is a C∗-algebra which is spanned (as a vector
space) by elements {eij : 1 ≤ i, j ≤ n} satisfying

e∗ij = eji and eijekl =

{
eil if j = k

0 if j 6= k.
(1.1.2)

If one eij is non-zero, then they all are, and the map φ : Mn(C)→ B defined by
φ((aij)) =

∑n
i,j=1 aijeij is an isomorphism. (The {eij} are called matrix units.)

Proof. If eij 6= 0, then for every k, l we have eij = eikeklelj , and hence ekl
cannot be zero either. Calculations using (1.1.2) show that φ is a ∗-algebra
homomorphism, and it is surjective because the eij span B. It is also injective:

φ((aij)) = 0 =⇒ ekk

(∑
i,j

aijeij

)
ell = 0 =⇒ aklekl = 0 =⇒ akl = 0

for all k, l, and hence (aij) = 0 in Mn(C). So Theorem 1.1.6 implies that φ is an
isomorphism.

The direct sum A⊕B of two C∗-algebras is a C∗-algebra with

‖(a, b)‖ := max{‖a‖, ‖b‖}.

Direct sums are easy to recognise:

Corollary 1.1.11. Suppose that C is a C∗-algebra and A, B are two C∗-
subalgebras of C such that ab = 0 for every a ∈ A and b ∈ B. Then span{A∪B}
is a C∗-subalgebra of C isomorphic to A⊕B.

Proof. Define φ : A ⊕ B → C by φ(a, b) = a + b. It is easy to check that φ is
linear and preserves the involution. To check that φ is multiplicative, observe
that we also have ba = (a∗b∗)∗ = 0 for every a ∈ A and b ∈ B, and multiply out
φ(a1, b1)φ(a2, b2). So φ is a ∗-algebra homomorphism. It is injective:

φ(a, b) = 0 =⇒ a = −b ∈ A ∩B =⇒ a∗a = 0 and b∗b = 0 =⇒ (a, b) = (0, 0).
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Since A ⊕ B is a C∗-algebra, Corollary 1.1.9 implies that the range of φ is
a C∗-subalgebra of C; since this range is just the span of A ∪ B, we deduce
that span{A ∪ B} is a C∗-algebra, and φ is an isomorphism of A ⊕ B onto
span{A ∪B}.

Corollary 1.1.12. Suppose that A is a C∗-algebra and {An : n ∈ N} are C∗-
subalgebras of A such that An ⊂ An+1 and A =

⋃∞
n=1An. If a homomorphism

φ : A→ B is injective on each An, then φ is injective on A.

Proof. Theorem 1.1.6 implies that each φ : An → B is isometric, and hence φ is
isometric on

⋃
nAn. But then φ is isometric on a dense subspace of A and hence

on all of A; this implies in particular that φ is injective on A.

These corollaries suggest that the category of C∗-algebras is essentially an
algebraic one. Indeed, as Gene Abrams commented after my lecture in Málaga:
“It seems that everything we’d expect to be true is true, it’s just that here the
proofs rely on deep theorems.” Again, we stress that for this to be correct, we
need to know that all the algebras in question are C∗-algebras, and in particular
that they are complete in the given norm. Our next example illustrates how this
can pose problems in practice. In this example, the C∗-algebra is by definition
the completion of a friendly-looking ∗-algebra, but strange things can happen in
the process of completing.

Example 1.1.13 (Group algebras). Let G be a group, and CG its complex group
algebra, viewed as a ∗-algebra. We view elements of CG as functions onG, so that
the point masses δg (which are 1 at g and 0 elsewhere) form a vector-space basis
for CG, and the multiplication and involution are characterised by δgδh = δgh
and δ∗g = δg−1 . As we shall see, the group algebra CG is itself characterised by
a universal property.

An element u of a ∗-algebra A with identity 1 is unitary if u∗u = uu∗ = 1,
and the set U(A) of unitary elements of A is a group under multiplication. When
A = B(H), for example, U(B(H)) is the group U(H) of unitary operators on
H, which are the inner-product preserving isomorphisms of H onto itself. The
map δ : g 7→ δg is a homomorphism of G into U(CG), and if u : G→ U(A) is a
homomorphism, the formula

πu

(∑
cgδg

)
=
∑

cgug

defines a ∗-algebra homomorphism πu : CG → A, from which we can recover u
as πu ◦ δ. In other words, the pair (CG, δ) is universal for homomorphisms u of
G into the unitary groups U(A) of ∗-algebras.

We want to convert this into a statement about homomorphisms of G into the
unitary groups of C∗-algebras A, and to do this we need to make CG into a C∗-
algebra. Since each unitary element v of a C∗-algebra satisfies ‖v‖2 = ‖v∗v‖ = 1,
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we have ∥∥∥πu(∑ cgδg

)∥∥∥ ≤∑ |cg| ‖ug‖ =
∑
|cg| (1.1.3)

for every u : G→ U(A), and we can define ‖ · ‖ : CG→ [0,∞) by

‖a‖ := sup{‖πu(a)‖ : u : G→ U(A) is a homomorphism}.

It is quite easy to check that ‖ ·‖ is a norm on CG: the only tricky bit is to prove
that ‖a‖ = 0 =⇒ a = 0, which is true because the left-regular representation
λ : G→ U(l2(G)) = U(B(l2(G))) defined by λg(ξ)(h) = ξ(g−1h) gives a faithful
representation πλ of CG. (To see that πλ is faithful, view the point masses as an
orthonormal basis {eg} for l2(G), and compute(

πλ

(∑
cgδg

)
ee

∣∣∣ eh) =
(
πλ

(∑
cgλg

)
ee

∣∣∣ eh) =
∑

cg(eg | eh) = eh,

so that πλ(
∑
cgδg) = 0 implies ch = 0 for all h ∈ G.)

The completion of (CG, ‖ · ‖) is a C∗-algebra, which is called the group C∗-
algebra and denoted C∗(G). The inequality (1.1.3) implies that when A is a C∗-
algebra and u : G→ U(A), the ∗-homomorphism πu extends to a homomorphism
of C∗(G) into A, and hence (C∗(G), δ) is universal for homomorphisms u of G
into the unitary groups of C∗-algebras. Since we can always apply this to a
unitary representation U : G→ U(H) = U(B(H)), and since representing a C∗-
algebra A faithfully as an algebra of operators on a Hilbert space H converts u :
G→ U(A) into a unitary representation of G on H, we often say a little loosely
that “C∗(G) is universal for unitary representations of G on Hilbert spaces”
(though I have learned from the puzzled reaction in Málaga that I shouldn’t do
this around algebraists).

We want to discuss two aspects of the relationship between the group alge-
bra CG and its completion C∗(G) which have parallels in the theory of graph
algebras.

Our first observations concern the group Z. Unitary representations of Z
are determined by the single unitary operator U1, and hence (C∗(Z), δ1) is the
universal C∗-algebra generated by a unitary element. The spectrum σ(u) of a
unitary element is always a subset of the unit circle T := {z ∈ C : |z| = 1};
the identity function z : z 7→ z : T → C in C(T) has spectrum T, and it
follows from Theorem 1.1.3 that (C∗(Z), δ1) is isomorphic to (C(T), z). This
isomorphism carries the group algebra CZ into the algebra span{zn : n ∈ Z} of
trigonometric polynomials, and the coefficients in the expansion p(z) =

∑
n cnz

n

are the Fourier coefficients of the function p. Every function f in the completion
C(T) has Fourier coefficients

f̂(n) :=
∫ 1

0

f(t)e−2πint dt,
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but the relationship between f(z) and its Fourier series
∑
n f̂(n)zn is analytically

subtle. When f is continuously differentiable, the partial sums converge uni-
formly to f , but for general f ∈ C(T) nothing of the sort is true. In other words,
the Z-grading of CZ has no nice topological analogue in the completion C(T).
Instead, the completion carries an action γ of the dual group T = Hom(Z,T)
given by γw(f)(z) = f(wz), or a coaction of the group C∗-algebra C∗(Z). The
more useful analogue of the grading is the action γ, and the gauge action on a
graph algebra plays a similar role as the analytic implementation of a natural
Z-grading on a dense subalgebra.

The second point we wish to discuss is a spatial analogue of the group-C∗-
algebra construction. Since the left-regular representation λ : G → U(l2(G))
gives a faithful representation of CG, we can also define a norm ‖ · ‖r on CG
by ‖a‖r := ‖πλ(a)‖. Completing CG in this norm, or equivalently taking the
closure of πλ(CG) in B(l2(G)), gives a C∗-algebra C∗r (G) called the reduced
group C∗-algebra, and the obvious question is whether this is just another way of
constructing C∗(G). The representation πλ extends uniquely to a homomorphism
πλ : C∗(G) → C∗r (G); the range of this homomorphism is a C∗-subalgebra of
C∗r (G) (by Corollary 1.1.9) containing the dense subalgebra CG, and hence πλ is
surjective. It turns out that πλ is injective if and only if the group G is amenable
(see, for example, [46, Theorem VII.2.5]). Since many groups are not amenable,
such as the free groups, the universally constructed algebra C∗(G) is in general
different from the spatially constructed algebra C∗r (G).

Other standard C∗-algebraic constructions, such as tensor products and
crossed products (skew products), have both universal and spatial versions, and
the two versions don’t always give the same C∗-algebras. Hypotheses like nucle-
arity and amenability are designed to make these differences go away, so that
both universal and spatial techniques are available. Fortunately, graph algebras
are always nuclear (see [108, Remark 4.3], for example), and the Cuntz-Krieger
uniqueness theorem says that for many graphs any spatial completion gives the
same C∗-algebra as the universal construction.

1.2 Simplicity of higher-rank graph C∗-algebras

Abstract. This is the written version of a lecture given at the Workshop on
Graph Algebras at the University of Málaga on 2 July 2006. We discuss a re-
cent theorem of David Robertson and Aidan Sims which gives necessary and
sufficient conditions for the simplicity of the C∗-algebra of a higher-rank graph,
and illustrate their theorem by applying it to several specific graphs of rank two
which have recently cropped up in other projects.

Higher-rank graphs were introduced by Kumjian and Pask [86] to provide vi-
sualisable models for the higher-rank Cuntz-Krieger algebras of (Guyan) Robert-
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son and Steger [116]. Operator algebras associated to higher-rank graphs have
recently been attracting a good deal of attention in the non-self-adjoint opera-
tor algebra community as well as the C∗-algebra community (see, for example,
[73, 84] and [60, 124, 125]). Here we review the elementary properties of these
graphs and their C∗-algebras, discuss a new uniqueness theorem and charac-
terisation of simplicity proved by (David) Robertson and Sims [115], and apply
them to some interesting examples of rank-2 graphs which have arisen in other
collaborations.

Higher-rank graphs are defined using the language of category theory. For
us, a category C consists of a set C0 (of objects), a set C∗ (of morphisms), two
functions s, r : C∗ → C0 (identifying the domain and codomain of morphisms),
and a partially defined product (f, g) 7→ fg (called composition), defined on
pairs satisfying s(f) = r(g) which is associative and admits local identities ιv
at each object v. If C and D are categories, a functor F : C → D consists of
functions F 0 : C0 → D0 and F ∗ : C∗ → D∗ which respect all this structure.

The following examples illustrate the definition and will be important for us.

Examples 1.2.1. (a) When C0 consists of a single point, the maps r and s have
to be constant, so the product is everywhere defined, and the category is just
a monoid. Of particular importance to us will be the monoid Nk consisting of
k-tuples of non-negative integers with the usual pointwise addition.

(b) In the path category P(E) of a directed graph E = (E0, E1, r, s), P(E)0
is the set E0 of vertices, P(E)∗ is the set E∗ of finite paths µ in E, µ ∈ E∗

has domain s(µ) and codomain r(µ), the composition2 of µ and ν is the product
µν = µ1 · · ·µ|µ|ν1 · · · ν|ν|, and the identity morphism on v ∈ E0 is the path v of
length 0.

A graph of rank k, or k-graph, consists of a countable category Λ, together
with a functor d : Λ → Nk (called the degree map) which has the following
factorisation property : for every morphism λ and every decomposition d(λ) =
m+n withm,n ∈ Nk, there exist unique morphisms µ and ν such that d(µ) = m,
d(ν) = n and λ = µν. We usually denote the k-graph simply by Λ.

Example 1.2.2. With d : E∗ → N defined by d(µ) = |µ|, the path category P(E)
of a directed graph becomes a 1-graph3. Indeed, we can view any 1-graph Λ as
the path category of the directed graph (Λ0,Λ1 := d−1(1), r, s).

In view of this example, we call objects v ∈ Λ0 vertices, morphisms λ ∈ Λn :=
d−1(n) paths of degree n from s(λ) to r(λ), and use the map v 7→ ιv to identify

2Here it is important that we are using the conventions of [108] regarding paths in directed
graphs: a path is a string µ = µ1µ2 · · ·µn such that s(µi−1) = r(µi), and s(µ) = s(µn),
r(µ) = r(µ1). If you prefer to have your paths going forwards, then you need to reverse them
when you define the path category.

3Again, this works because we use suitable conventions for paths in directed graphs. Other-
wise, 1-graphs and directed graphs are slightly different things (and they are different in [86],
for example).
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Figure 1.1: A path of degree (3,2).

Λ0 with a subset of Λ∗.

Example 1.2.3 (2-graphs). We visualise a 2-graph Λ as a blue graph and a red
graph on the same set of vertices Λ0, with the degree of edges defined by

d(e) =

{
(1, 0) if e is blue
(0, 1) if e is red.

Applying the factorisation property to (1, 1) = (0, 1) + (1, 0) = (1, 0) + (0, 1)
gives a bijection between the blue-red paths of length 2 and the red-blue paths
of length 2. We then visualise a path of degree (1, 1) as a square

•

•

h

���
�
�

•
g

oo

• foo

e

���
�
� (1.2.1)

(where we think of the solid arrows as blue edges and the dashed arrows as red
edges) in which the bijection matches up the blue-red path gh with the red-
blue path ef , so that gh = ef are the two factorisations of the path of degree
(1, 1). It turns out that a 2-graph is completely determined by a collection C
of squares (1.2.1) in which each blue-red and each red-blue path occur exactly
once. The paths of degree (3, 2) from w to v, for example, then consist of copies
of the rectangle in Figure 1.1 pasted round the blue-red graph, so that q lands
on w, p lands on v, and each constituent square is one of the given collection C.
Composition of paths involves taking the convex hull: if d(λ) = (1, 1) and d(µ) =
(1, 2), for example, then λµ is obtained by filling in the corners of the diagram
in Figure 1.2.3 with squares from C, which can be done in exactly one way
(there is only one square fitting ef , for example). This has the slightly unnerving
property that edges can appear in factorisations of λµ without appearing in any
factorisation of either λ or µ.
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Figure 1.2: Composing paths.

When k > 2, a k-graph is still determined by a collection C of squares, but
the collection C has to satisfy an associativity condition (see, for example, [64,
§2]). Composition still involves taking the convex hull. We call the underlying
k-coloured graph the skeleton of the k-graph.

A k-graph Λ is row-finite if Λnv := Λn ∩ r−1(v) is finite for every v ∈ Λ0

and every n ∈ Nk; equivalently, Λ is row-finite if its skeleton is row-finite. We
say that Λ has no sources if for every v ∈ Λ0 and every n ∈ Nk, there is a path
λ with r(λ) = v and d(λ) = n; equivalently, Λ has no sources if every vertex in
the skeleton receives edges of every colour.

Suppose that Λ is row-finite and has no sources. Then a Cuntz-Krieger Λ-
family S = {Sλ : λ ∈ Λ∗} is a collection of partial isometries satisfying:

• {Sv : v ∈ Λ0} are mutually orthogonal projections;

• SλSµ = Sλµ when s(λ) = r(µ);

• S∗λSλ = Ss(λ) for every λ ∈ Λ∗;

• Sv =
∑
λ∈Λnv SλS

∗
λ for every v ∈ Λ0 and every n ∈ Nk.

Because Λ has no sources, it suffices to impose the last axiom for the basis
elements n = ei; thus in a 2-graph, for example, we have two Cuntz-Krieger
relations at each vertex, which we call the blue and red Cuntz-Krieger relations.
The first and last axioms imply that the partial isometries associated to paths of
the same degree have orthogonal ranges, so that {SλS∗λ : d(λ) = n} is a mutually
orthogonal family of projections for each n ∈ Nk.

The C∗-algebra C∗(Λ) of a k-graph Λ is by definition the C∗-algebra gener-
ated by a universal Cuntz-Krieger family {sλ : λ ∈ Λ∗}; if S is a Cuntz-Krieger
λ-family on a Hilbert space, then we write πS for the corresponding representa-
tion of C∗(Λ). It is true (but not immediately obvious) that

C∗(Λ) = span{sλs∗µ : λ, µ ∈ Λ∗}
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(see, for example, [108, page 92]), and that there are Cuntz-Krieger families in
which each Sλ is non-zero, which implies in particular that each sλ is non-zero
(see [108, page 93]).

Example 1.2.4. Consider the coloured graph which has one vertex v, one blue
edge e, and one red edge f . This is the skeleton of a unique 2-graph Λ: the
only choice for the red-blue factorisation of ef is fe. The C∗-algebra C∗(Λ) is
generated by two elements se and sf , and the projection pv is an identity for
C∗(Λ). The generators satisfy s∗ese = pv = s∗fsf , ses

∗
e = pv (the blue Cuntz-

Krieger relation), sfs∗f = pv (the red Cuntz-Krieger relation), and sesf = sef =
sfe = sfse. So C∗(Λ) is the universal C∗-algebra generated by two commuting
unitary elements, and hence is isomorphic to C(T)⊗C(T) (where the two unitary
elements are z ⊗ 1 and 1⊗ z).

In their original paper [86], Kumjian and Pask proved a gauge-invariant
uniqueness theorem for the C∗-algebras of row-finite higher-rank graphs without
sources, and a Cuntz-Krieger uniqueness theorem for the C∗-algebras of a large
family of aperiodic higher-rank graphs. The aperiodicity condition imposed in
[86] involves infinite paths, and can be difficult to verify in examples. An alter-
native condition was proposed in [109], but it is not entirely satisfactory either,
and when the notes [108] were written, it was not clear whether the conditions
used in [86] and [109] were equivalent or not. This unsatisfactory situation has
recently been resolved by David Robertson and Aidan Sims, who proved in [115]
that the conditions in [86] and [109] are equivalent, and gave a new formulation
of the condition which involves only finite paths and is therefore much easier to
check.

To state their uniqueness theorem, we need some notation. For m,n ∈ Nk,
m ≤ n means that mi ≤ ni for 1 ≤ i ≤ k, and m ∨ n denotes the pointwise
maximum: (m ∨ n)i = max{mi, ni}. If m ≤ p ≤ q ≤ n, then the factorisation
property implies that there are unique paths µ, ν and τ with d(µ) = p − m,
d(ν) = q − p, d(τ) = n − q and λ = µντ , and then we write λ(p, q) := ν and
λ(p) := r(λ(p, q)) = r(ν) = s(µ).

Theorem 1.2.5. Suppose that Λ is a row-finite graph of rank k with no sources,
and that Λ has the following property:

(∗) For every v ∈ Λ0 and every m,n ∈ Nk with m 6= n, there exists a path λ
with d(λ) ≥ m ∨ n and

λ(m,m+ d(λ)−m ∨ n) 6= λ(n, n+ d(λ)−m ∨ n). (1.2.2)

Then for every Cuntz-Krieger Λ-family S with every Sv non-zero, the represen-
tation πS of C∗(Λ) is faithful.
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Figure 1.3: The segments of λ being compared in (1.2.2).

This theorem follows from [115, Lemma 3.3], which says that (∗) is equivalent
to the aperiodicity conditions used in [86] and [109], and either [86, Theorem 4.6]
or [109, Theorem 4.3].

To get some feel for the hypothesis (∗), we consider the case k = 2, where we
can draw pictures. We think of the path λ as a copy of the graph in Figure 1.3
pasted round Λ, with 0 pasted to the given vertex v. The segments we are asked
to compare in (1.2.2) are labelled in Figure 1.3 as λ(m, p) and λ(n, q): they have
ranges λ(m) and λ(n) and the same degree d(λ)−m∨ n. The two segments are
definitely not equal if λ(m) 6= λ(n), for example, but in general we just need to
be able to find λ so that arbitrarily large blocks ending at λ(m) and λ(n) are
different.

Robertson and Sims also gave a very useful characterisation of simplicity. An
infinite path in a k-graph Λ is defined loosely as a copy of the entire blue-red
quarter-plane pasted round Λ; for the precise definition see [86, Definition 2.1]
or [108, page 93]. We say that Λ is cofinal if for every vertex v and every infinite
path x, there are a path λ and n ∈ Nk such that s(λ) = x(n) and r(λ) = v.

Theorem 1.2.6 (D.I. Robertson and A. Sims, 2006). Let Λ be a row-finite k-
graph with no sources. Then C∗(Λ) is simple if and only if Λ satisfies (∗) and
is cofinal.

Theorem 1.2.6 is Theorem 3.2 in [115]. Kumjian and Pask had previously
proved that if Λ satisfies their aperiodicity condition, then C∗(Λ) is simple if and
only if Λ is cofinal [86, Proposition 4.8]. Since (∗) is equivalent to the aperiodicity
condition of Kumjian and Pask, this gives the “if” direction of Theorem 1.2.6.
However, the assertion of Robertson and Sims that simplicity of C∗(Λ) implies
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Figure 1.4: The 2-graph Λ(2∞).

(∗) is new.

Example 1.2.7. This example of a 2-graph has arisen in joint work with David
Pask, Mikael Rørdam and Aidan Sims [101], and is an example of what we
call a rank-2 Bratteli diagram. To build such a diagram, we start with a blue
Bratteli diagram, and add disjoint red cycles in the different levels of the diagram.
For example, if we start with the Bratteli diagram for the Cantor set (see [46,
Example III.2.5]), and add one red cycle joining all 2n vertices at the nth level,
we obtain the skeleton shown in Figure 1.4. We have to be a little careful when
drawing the red cycles. If we start at u, for example, then the red edge must
go from u to x or to y to ensure that it is possible to factorise red-blue paths
beginning at u. Once we have chosen to go to x, the next edge must go to w to
ensure there is only one cycle at the 2nd level. But when we have done this, there
is only one possible factorisation property, and hence only one 2-graph Λ(2∞)
with this skeleton.

We aim to prove that C∗(Λ(2∞)) is simple. It is obviously cofinal. To see
that it satisfies (∗), we fix v (to stay on the picture, I’ll assume v is the root
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Figure 1.5: The 2-graph in Example 1.2.8.

of the blue Bratteli diagram, as shown) and m 6= n in N2. If m = (m1,m2),
n = (n1, n2) and m1 6= n1, choose any path λ with r(λ) = v and d(λ) = m ∨ n;
then λ(m) and λ(n) are at different levels of the blue Bratteli diagram, and in
particular are not equal. So it remains to consider the case where m = (p,m2)
and n = (p, n2), and, without loss of generality, n2 > m2. If 2p divides n2 −m2,
then every path with range v will satisfy λ(m) = λ(n). So we choose q ≥ p such
that 2q > n2 −m2, and then any path λ with r(λ) = v and d(λ) = (q, n2) will
have the required property. (The sources of the segments λ((p,m2), (q,m2)) and
λ((p, n2), (q, n2)) will be different points on the red cycle at the qth level.) Hence
Λ(2∞) satisfies (∗), and it follows from Theorem 1.2.6 that C∗(Λ(2∞)) is simple.

The C∗-algebra of the 2-graph Λ(2∞) is the Bunce-Deddens algebra with
supernatural number 2∞. (This is proved in [101, Example 6.7] by showing that
C∗(Λ(2∞)) is an AT-algebra with real-rank zero, computing its K-theory, and
applying Elliott’s classification theorem for such algebras [53].) Other examples
of rank-2 Bratteli diagrams provide models for the irrational rotation algebras
[101, Example 6.5]. We know that none of these simple algebras can be ordi-
nary graph algebras, because the dichotomy of [87] says that every simple graph
algebra is either purely infinite or AF, and these are AT-algebras.

Example 1.2.8. This example has arisen in joint work with David Pask and
Natasha Weaver. This 2-graph Λ is determined uniquely by the skeleton in Fig-
ure 1.5, in which the blue graph is the complete directed graph on 4 vertices,
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and the red graph consists of two disjoint cycles, one on 1 vertex and the other
on 3 vertices.

We claim that for this graph, (∗) fails with v the left-hand vertex, m = (0, 0)
and n = (0, 3). More precisely, we will prove by induction on k that for every path
λ with r(λ) = v, we have λ((0, 0), (k, l)) = λ((0, 3), (k, l+3)) for every (k, l) ∈ N2.
For k = 0, both paths are red, and the only red path with range v is eee · · · e,
so the result is trivially true. Suppose λ((0, 0), (k, l)) = λ((0, 3), (k, l + 3)), and
factor

λ((0, 0), (k + 1, l)) = λ((0, 0), (k, l))g, and

λ((0, 3), (k + 1, l + 3)) = λ((0, 3), (k, l + 3))h,

where g and h are blue edges; it suffices by the induction hypothesis to prove
that g = h. Notice that the induction hypothesis also implies that

r(g) = s(λ((0, 0), (k, l))) = s(λ((0, 3), (k, l + 3))) = r(h).

Whatever h is, there is only one red path µ of length 3 with s(µ) = s(h): either
µ = eee or µ goes once round the 3-cycle. Either way, r(µ) = s(µ) = s(h). But µ
must be λ((k+1, l), (k+1, l+3)), so r(µ) = s(λ((0, 0), (k+1, l)) = s(g). Thus g
and h are blue edges with the same range and source, which in this graph means
they have to be equal, as required.

We can now deduce from Theorem 1.2.6 that C∗(Λ) is not simple. (Notice
that this argument uses the new implication in the theorem of Robertson and
Sims.)

1.3 Uniqueness theorems for Leavitt path alge-
bras

Abstract. We establish uniqueness theorems for the Leavitt path algebra of a
directed graph by pulling over the arguments used to prove the gauge-invariant
uniqueness theorem and the Cuntz-Krieger uniqueness theorem for graph C∗-
algebras.

At the Málaga Workshop I gave two introductory lectures on graph C∗-
algebras and uniqueness theorems, covering roughly the material in the first
three chapters of [108]. The gauge-invariant and Cuntz-Krieger uniqueness the-
orems which I discussed are fundamental tools in the C∗-algebraic version of the
subject.

Mark Tomforde and I were surprised to see that similar uniqueness theorems
have apparently not been needed in the development of the algebraic theory. The
issue arose when Gene Abrams asked whether it was obvious that the natural
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map of the Leavitt path algebra LC(E) into the graph C∗-algebra C∗(E) is
injective, and Mark and I instinctively reached for a uniqueness theorem. Enrique
Pardo quickly settled Gene’s question by pointing out that injectivity follows
from the classification of graded ideals in L(E) in [23, Theorem 4.3], since the
natural map is Z-graded. (There is a subtlety here, since C∗(E) is not Z-graded
in the algebraic sense, but the dense ∗-subalgebra span{sµs∗ν} is, and the natural
map has range in this subalgebra. See Corollary 1.3.3.) Enrique’s argument is
perfectly satisfactory, of course, but it does seem to us C∗-algebraists to be
going uphill: we used uniqueness theorems heavily in our classification of ideals
[31, 30, 72], so his argument is not available to us.

The purpose of this note is to see to what extent the uniqueness theorems
for graph C∗-algebras and the arguments used to prove them carry over to
the algebraic setting. The results are not entirely satisfactory, since we need to
make assumptions about the ground field K, and our gauge-invariant uniqueness
theorem (Theorem 1.3.2) is therefore not as strong as one can get from the clas-
sification of graded ideals. We naturally wonder whether one could circumvent
the assumptions on K with some cleverer algebra.

We suppose throughout that K is a ∗-field with an involution c 7→ c which
is positive definite in the sense that

n∑
i=1

cici = 0 =⇒ ci = 0 for all i,

and that E is a row-finite directed graph with no sources.
The Leavitt path algebra LK(E) is by definition the K-algebra generated by

elements E0 ∪ E1 ∪ (E1)∗ subject to

1. vw = δv,wv;

2. e = r(e)e = es(e) and e∗ = s(e)e∗ = e∗r(e);

3. e∗f = δe,fs(e);

4. v =
∑
r(e)=v ee

∗ (which we call the Cuntz-Krieger relation at v).

(Sorry, I realise these are not quite the same as the relations used in the algebra
literature, but I wanted to follow the argument in [108, Chapter 3] as closely as
possible. The basic difference is that r and s are swapped, and this influences
our definition of path: see [108, page 9]. Since we have insisted that E has no
sources, we are imposing a non-trivial Cuntz-Krieger relation at each vertex.)

We know from [3, Lemma 1.5] that LK(E) is spanned by elements µν∗ where
µ, ν are paths in E. We want to claim that there is a conjugate linear involution
a 7→ a∗ on LK(E) such that (µν∗)∗ = νµ∗. (It is proved in [3] that there is
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a linear involution.) Consider the algebra LK(E)o defined by LK(E)o = {ao :
a ∈ LK(E)} with aobo = (ba)o and kao = (ka)o, check that the elements φ(e) =
(e∗)o, φ(f∗) = fo and φ(v) = vo satisfy the relations defining LK(E), and deduce
that φ extends to an algebra homomorphism φ : LK(E)→ LK(E)o; now define
a∗ by (a∗)o = φ(a).

We next need to know that LK(E) is Z-graded. The elements v⊗ δ0, e⊗ δ1,
e∗ ⊗ δ−1 of LK(E) ⊗ KZ satisfy the relations, hence give a homomorphism
G : LK(E) → LK(E) ⊗KZ. Define LK(E)n := {a : G(a) = a ⊗ δn}. Each µν∗

is in LK(E)|µ|−|ν|, so the subspaces LK(E)n span LK(E), and they have the
right algebraic properties. To see that LK(E) is the direct sum of the LK(E)n,
suppose

∑
an = 0. Then with εn : f 7→ f(n) : KZ → K, we have an =

(id⊗εn) ◦G
(∑

am
)

= 0 for all n.
So we can define Φ : LK(E)→ LK(E)0 by Φ(

∑
an) = a0.

Lemma 1.3.1. For a ∈ LK(E) we have Φ(a∗a) = 0 =⇒ a = 0.

For the proof we need to know that

LK(E)0 =
∞⋃
k=1

Fk := span{µν∗ : s(µ) = s(ν) and |µ| = |ν| = k} (1.3.1)

=
∞⋃
k=1

( ⊕
v∈E0

Fk(v) := span{µν∗ : s(µ) = s(ν) = v and |µ| = |ν| = k}
)

∼=
∞⋃
k=1

( ⊕
v∈E0

MEkv(K)
)
,

where Ekv is the set of paths of length k with source v.

Proof. Suppose a =
∑
cµ,νµν

∗ satisfies Φ(a∗a) = 0; we only consider terms in
which s(µ) = s(ν) (which doesn’t change a since the other terms are all 0). Let F
be the finite set of µ which appear, let G be the finite set of ν, and set cµ,ν = 0
for any pair (µ, ν) ∈ F × G which does not already appear. By applying the
Cuntz-Krieger relations, we may assume that |µ| = k for all µ ∈ F , and then we
have

a∗a =
∑

µ,α∈F, ν,β∈G

(cα,ββα∗)(cµ,νµν∗) =
∑
ν,β∈G

(∑
µ∈F

cµ,βcµ,ν

)
βν∗. (1.3.2)

Thus
Φ(a∗a) =

∑
ν,β∈G, |ν|=|β|

(∑
µ∈F

cµ,βcµ,ν

)
βν∗.

Choose l ∈ N such that l ≥ |ν| for all ν ∈ G. Notice that every term in (1.3.2)
with a non-zero coefficient has s(ν) = s(β) (because then there had to be a µ
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with cµ,β and cµ,ν non-zero). Thus applying the Cuntz-Krieger relation at each
s(ν) = s(β) gives

Φ(a∗a) =
∑

ν,β∈G, |ν|=|β|

∑
r(γ)=s(ν), |γ|=l−|ν|

(∑
µ∈F

cµ,βcµ,ν

)
βγ(νγ)∗

=
∑
v∈E0

( ∑
ν,β∈G, |ν|=|β|

∑
r(γ)=s(ν), |γ|=l−|ν|, s(γ)=v

(∑
µ∈F

cµ,βcµ,ν

)
βγ(νγ)∗

)
For fixed v, the βγ(νγ)∗ are non-zero matrix units, and hence we have∑

µ∈F
cµ,βcµ,ν = 0 (1.3.3)

for every β, ν ∈ G. But
∑
µ∈F cµ,βcµ,ν is the (β, ν) entry in the matrix C∗C

associated to the F ×G matrix C = (cµ,ν) with entries in K, so (1.3.3) says that
C∗C = 0. Since the involution is positive definite, KF and KG are inner-product
spaces, and for every v ∈ KG we have

(Cv |Cv) = (C∗Cv | v) = 0,

so the linear transformation v 7→ Cv is 0. Thus every entry cµ,ν for which there
exists an extension νγ with s(γ) = v is zero. Since we are assuming that E has
no sources4, this means that every cµ,ν = 0, and hence a = 0.

Theorem 1.3.2. Suppose that B is a Z-graded ∗-algebra over K and φ :
LK(E)→ B is a Z-graded ∗-homomorphism such that φ(v) 6= 0 for every v ∈ E0.
Then φ is injective.

Proof. Assuming φ(v) 6= 0 for all v ∈ E0 should ensure that φ is faithful on
the 0-graded subspace LK(E)0, which should follow from (1.3.1) as in [108,
Lemma 3.5]. Now suppose a ∈ LK(E) satisfies φ(a) = 0. Since B is Z-graded,
φ(a∗a) = φ(a)∗φ(a) = 0 implies that the 0-summand φ(a∗a)0 of φ(a∗a) is zero,
and since φ respects the gradings, this in turn implies that φ(Φ(a∗a)) = 0. Since
φ is faithful on LK(E)0, we deduce that Φ(a∗a) = 0, and Lemma 1.3.1 implies
that a = 0.

The grading on B was only used to prove the implication

φ(a∗a) = 0 =⇒ φ(Φ(a∗a)) = 0, (1.3.4)

so the argument will apply to any ∗-homomorphism φ of LK(E) into a ∗-algebra
B which satisfies (1.3.4).

4Though presumably one could still do this in the presence of sources using Yeend’s trick
from [109], as in [108, page 28].
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Corollary 1.3.3. The Leavitt path algebra LC(E) embeds in the graph C∗-
algebra C∗(E).

Proof. Since the canonical Cuntz-Krieger family {se, pv} which generates C∗(E)
satisfies the defining relations for LC(E), there is a homomorphism φ : LC(E)→
C∗(E) such that φ(µν∗) = sµs

∗
ν . The image φ(LC(E)) is the anonymous ∗-

subalgebra
A := span{sµs∗ν : µ, ν ∈ E∗}

of C∗(E). Writing An := span{sµs∗ν : |µ| − |ν| = n} gives a family of subspaces
of A which span A and satisfy AmAn ⊂ Am+n and A∗n = A−n. Since we can
recover an ∈ An from a =

∑
an using the gauge action of T on C∗(E), as

an =
∫

T z
−nγz(a) dz, we deduce that {An : n ∈ Z} is a Z-grading of A. Thus

Theorem 1.3.2 implies that φ is faithful.

Theorem 1.3.4. Suppose E is a row-finite graph without sources in which every
cycle has an entry. If B is a ∗-algebra over K and φ : LK(E) → B is a ∗-
homomorphism such that φ(v) 6= 0 for every v ∈ E0, then φ is injective.

Proof. Let b =
∑
cµ,νµν

∗. As we observed above, we just need to prove that

φ(b) = 0 =⇒ Φ(b) = 0.

So we suppose that φ(b) = 0. As in [108, page 30], we may suppose by ap-
plying the Cuntz-Krieger relations that every pair (µ, ν) with cµ,ν 6= 0 has
min(|µ|, |ν|) = k, and then

Φ(b) =
∑

|µ|=|ν|

cµ,νµν
∗

belongs to

span{µν∗ : |µ| = |ν| = k} = Fk =
⊕
v∈E0

Fk(v) ∼=
⊕
v∈E0

MEkv(K).

It suffices to prove that each summand
∑

|µ|=|ν|, s(µ)=s(ν)=v cµ,νµν
∗ vanishes. So

we fix v ∈ E0, and let G be the set of paths with source v which occur as either
µ or ν.

We now choose λ as in the middle of [108, page 30] (which is where we use
the “cycles have entries” hypothesis on E), and define Q :=

∑
τ∈G φ(τλλ∗τ∗);

notice that the hypothesis on φ implies that each summand in Q is non-zero.
Then, as in [108, pages 30–31],

Qφ(b)Q =
∑
µ,ν∈G

cµ,νφ(µλ(νλ)∗);
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since both {µν∗ : µ, ν ∈ G} and {φ(µλ(νλ)∗) : µ, ν ∈ G} are sets of non-zero
matrix units, the map c 7→ Qφ(c)Q is an isomorphism on span{µν∗ : µ, ν ∈
G} ⊂ Fk(v). Since Qφ(b)Q = 0, we deduce that the vth summand of Φ(b) in
Fk =

⊕
Fk(v) vanishes.

Since this argument works for every v ∈ E0, we deduce that Φ(b) = 0, and
the result follows.





Chapter 2

Structure of graph
C*-algebras and
generalizations, by Mark
Tomforde

These notes are an expanded version of the material covered by the author in
his four talks at the Graph Algebra Workshop in Málaga, Spain during July 3–8,
2006. These four talks were given on Tuesday, July 4 following Iain Raeburn’s
lectures on Monday, and throughout these notes we will assume familiarity with
some of the basic material he covered (much of which can be found in Chapters 1
and 2 of [108]. Our goal in these notes is to provide self-contained proofs of some
of the results concerning ideal structure of graph algebras, and also to survey
certain additional topics such as desingularization, K-theory and its applications
to classifying C∗-algebras, and various generalizations of graph algebras.

In these notes we will follow the convention of having the partial isometries
in a graph algebra go in a direction opposite the edge (so the source projection
of se is pr(e) and the range projection of se is dominated by ps(e)). This is the
convention used in most of the graph C∗-algebra literature. However, it is not
the convention recently adopted by Raeburn in his notes from this workshop and
in his book [108]. Nonetheless, the author feels there are several good reasons
for breaking from the convention used by Raeburn and instead have the edges
go the “classic” direction. In the author’s opinion, much of the notation and
many results in the subject take a more natural form when one has the edges
going this way; and furthermore, much of the notation agrees with notation and

23



24

conventions from other subjects. A few examples are:

1. With our convention, graph properties are often stated in terms of travers-
ing paths forward and being able to reach certain vertices. For example:
cofinality means that any vertex can reach any infinite path by following
edges forward; we will frequently talk of vertices being able to reach loops
by following edges forward; and a set H is said to be hereditary if, when
following edges forward, once one enters H one stays in H. If one uses the
alternate convention, one must instead rephrase all these results in terms
of “inverse reaching” or following directed edges backwards.

2. When we write a path e1 . . . en we have r(ei) = s(ei+1), so that the path
traverses edges in the same way one reads them: from left to right. Also
the source of this path is s(e1) and the range is r(en), and when we speak
of infinite paths they are of the form e1 . . . starting at s(e1). If one uses
the alternate convention, then a path e1 . . . en has source s(en) and range
r(e1) and one traverses the path from right to left. Also, in the alternate
convention infinite paths are of the form e1e2 . . . ending at r(e1).

3. If we want to realize the AF-algebra with Bratteli diagram E as a full
corner of the graph algebra C∗(E), then our convention agrees with the
conventions used in Bratteli diagrams. With the alternate convention, one
has to reverse the edges of the Bratteli diagram. (See [108, p.20–21] for
more details.)

4. Our convention agrees with the conventions used in Leavitt Path Algebras
(which are based off of graph conventions in Algebra). In particular, with
our convention, the partial isometries satisfy the same relations as the
generators of the Leavitt Path Algebra. Since Leavitt Path Algebras have
a great deal in common with graph C∗-algebras, this allows one to more
easily compare results for the two objects.

5. With our convention, if A is the vertex matrix of a graph then A(v, w)
is the number of edges from v to w. Again, this agrees with reading from
left to right, and it also agrees with the convention used in graph theory.
If one uses the alternate convention, then A(v, w) is the number of edges
from w to v, which forces one to read from right to left, and does not agree
with the matrix used by graph theorists. Similarly for the edge matrix B;
in our convention B(e, f) = 1 if and only if r(e) = s(f). In the alternate
convention, B(e, f) = 1 if and only if r(f) = s(e).

6. In most of the literature — particularly in many of the seminal papers on
graph C∗-algebras — our convention has been used. If one is first learning
the subject, or if one needs to refer to these papers frequently, it is much
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easier to use this convention. Of course, one can always argue that a person
simply needs to “reverse the edges” when reading these papers. But, this
is often trickier than it sounds, and the author (who tends to be right/left
challenged himself at times) wants to make the literature and its results
as accessible as possible to the non-expert.

Remark. While we use the conventions that our partial isometries go in a di-
rection opposite our edges, it is certainly true that for higher-rank graphs it is
useful to have the partial isometries go in the same direction as the edges. This is
because it is more natural categorically; in fact, in (2) above one sees that edges
in a path are “composed” in the same way as morphisms — from right to left.
However, despite the fact that ordinary graphs are rank 1 graphs, it does not
seem that this is sufficient reason for using the higher-rank graph convention
in this setting. (Regardless of what those working in higher rank graphs may
tell you!) Because these categorical considerations are less important in the rank
1 graph setting, and because many of the advantages of using the higher rank
convention disappear or become marginal in this special case, it seems that in
light of the reasons in (1)–(6) above it makes sense to have separate conventions
for higher rank graphs and for ordinary directed graphs.

We now establish some notation and terminology that we shall use frequently.
A directed graph E = (E0, E1, r, s) consists of a countable set E0 of vertices, a
countable set E1 of edges, and maps r, s : E1 → E0 identifying the range and
source of each edge. Since all our graphs will be directed, we will often simply
call a directed graph a “graph”. A vertex v ∈ E0 is called a sink if |s−1(v)| = 0,
and v is called an infinite emitter if |s−1(v)| = ∞. If v is either a sink or an
infinite emitter, then we call v a singular vertex. If v is neither a sink nor an
infinite emitter, then we say v is a regular vertex. A graph is said to be row-finite
if it has no infinite emitters. (Note that row-finite graphs are allowed to have
sinks.)

If E is a graph we define a Cuntz-Krieger E-family to be a set of mutually
orthogonal projections {pv : v ∈ E0} and a set of partial isometries {se : e ∈ E1}
with orthogonal ranges which satisfy the Cuntz-Krieger relations:

1. s∗ese = pr(e) for every e ∈ E1;

2. ses∗e ≤ ps(e) for every e ∈ E1;

3. pv =
∑
s(e)=v ses

∗
e for every v ∈ G0 with 0 < |s−1(v)| <∞.

The graph C∗-algebra C∗(E) is defined to be the C∗-algebra generated by a
universal Cuntz-Krieger E-family. We sometimes refer to the graph C∗-algebra
as simply the graph algebra.

A path in E is a sequence of edges α = α1α2 . . . αn with r(αi) = s(αi+1) for
1 ≤ i < n, and we say that α has length |α| = n. We let En denote the set of
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all paths of length n, and we let E∗ :=
⋃∞
n=0E

n denote the set of finite paths
in E. Note that vertices are considered paths of length zero. The maps r and s
extend to E∗, and for v, w ∈ G0 we write v ≥ w if there exists a path α ∈ E∗

with s(α) = v and r(α) = w. It is a consequence of the Cuntz-Krieger relations
that C∗(E) = span{sαs∗β : α, β ∈ E∗ and r(α) = r(β)}.

We say that a path α := α1 . . . αn of length 1 or greater is a loop if r(α) =
s(α), and we call the vertex s(α) = r(α) the base point of the loop. An exit for a
loop α1 . . . αn is an edge f ∈ E1 with the property that s(f) = s(αi) but αi 6= f
from some i ∈ {1, . . . n}. We say that a graph satisfies Condition (L) if every
loop in the graph has an exit.

By an ideal in a C∗-algebra A we will mean a closed, two-sided ideal in A.
If E is a graph, then by the universal property of C∗(E) there exists a gauge
action γ : T→ AutC∗(E) with the property that γz(pv) = pv and γz(se) = zse
for all z ∈ T. If γ : T→ AutA is this gauge action, then we say an ideal I in A
is gauge-invariant if γz(a) ∈ I for all a ∈ I and z ∈ T.

2.1 Simplicity and Ideal Structure

In this section we shall use the uniqueness theorems to analyze the structure of
ideals in a graph C∗-algebra and give conditions for simplicity.

Theorem 2.1.1 (Gauge-Invariant Uniqueness Theorem). Let E = (E0, E1, r, s)
be a directed graph and let ρ : C∗(E) → B be a ∗-homomorphism from C∗(E)
into a C∗-algebra B. Also let γ denote the standard gauge action on C∗(E). If
there exists an action β : T → AutB such that βz ◦ ρ = ρ ◦ γz for each z ∈ T,
and if ρ(pv) 6= 0 for all v ∈ E0, then ρ is injective.

Note that the condition βz ◦ ρ = ρ ◦ γz for each z ∈ T is sometimes summarized
by saying that ρ is equivariant for the gauge actions β and γ.

Theorem 2.1.2 (Cuntz-Krieger Uniqueness Theorem). Let E = (E0, E1, r, s)
be a directed graph satisfying Condition (L) and let ρ : C∗(E) → B be a ∗-
homomorphism from C∗(E) into a C∗-algebra B. If ρ(pv) 6= 0 for all v ∈ E0,
then ρ is injective.

Although both of these uniqueness theorems hold for arbitrary graphs, to
simplify our analysis in this section we shall only consider C∗-algebras of row-
finite graphs. We will discuss the general (non-row-finite) case in Section 2.2

Our analysis in this section will proceed in the following stages:

• First, we will use the Gauge-Invariant Uniqueness Theorem to classify the
gauge-invariant ideals of C∗(E). This will consist of showing the following
three facts:
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1. The gauge-invariant ideals of C∗(E) correspond to saturated heredi-
tary subsets of vertices of E0.

2. If IH is the gauge-invariant ideal corresponding to the saturated
hereditary subset H, then IH is Morita equivalent to the C∗-algebra
of the subgraph of E whose vertices are H and whose edges are the
edges of E whose source is a vertex in H.

3. If IH is the gauge-invariant ideal corresponding to the saturated
hereditary subset H, then the quotient C∗(E)/IH is isomorphic to
the C∗-algebra of the subgraph of E whose vertices are E0 \H and
whose edges are the edges of E whose range is a vertex in E0 \H.

• Next we shall derive a condition, called Condition (K), which is equiva-
lent to having all ideals of C∗(E) be gauge-invariant. Our classification of
gauge-invariant ideals then gives a complete description of the ideals of a
C∗-algebra associated to a graph satisfying Condition (K).

• Finally we shall obtain conditions for C∗(E) to be simple. We will give
various equivalent forms for these conditions.

As we work to prove these facts we will use the following definitions.
Definition 2.1.3. Let E = (E0, E1, r, s) be a graph. A subset H ⊆ E0 is heredi-
tary if for any e ∈ E1 we have s(e) ∈ H implies r(e) ∈ H. A hereditary subset
H ⊆ E0 is said to be saturated if whenever v ∈ E0 is a regular vertex with
{r(e) : e ∈ E1 and s(e) = v} ⊆ H, then v ∈ H. If H ⊆ E0 is a hereditary set,
the saturation of H is the smallest saturated subset H of E0 containing H.

Roughly speaking, a subset of vertices is hereditary if no vertex in H points
outside of H. This set H is also saturated if whenever a regular vertex points
only into H then that vertex is in H.
Example 2.1.4. In the graph

u

��

// v //

��

w

x y

OO

// z

OOWW

the set X = {v, w, z} is hereditary but not saturated. However, the set H =
{v, w, y, z} is both saturated and hereditary. We see that X = H.

For any graph, the saturated hereditary subsets of vertices form a lattice with
the ordering given by set inclusion, the infimum given by H1 ∧H2 := H1 ∩H2,
and the supremum given by H1 ∨H2 := H1 ∪H2.
Definition 2.1.5. For v, w ∈ E0 we write v ≥ w if there exists a path α ∈ E∗

with s(α) = v and r(α) = w. In this case we say that v can reach w.
Note that of H is a hereditary subset and v ≥ w with v ∈ H, then w ∈ H.
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2.1.1 Classification of Gauge-Invariant Ideals

We wish to prove the following theorem. Our approach will be similar to the
proof of [31, Theorem 4.1].

Theorem 2.1.6. Let E = (E0, E1, r, s) be a row-finite graph. For each subset
H ⊆ E0 let IH denote the ideal in C∗(E) generated by {pv : v ∈ H}.

(a) The map H 7→ IH is an isomorphism from the lattice of saturated heredi-
tary subsets of E onto the lattice of gauge-invariant ideals of C∗(E).

(b) If H is a saturated hereditary subset of E0, and we let E\H be the subgraph
of E whose vertices are E0 \ H and whose edges are E1 \ r−1(H), then
C∗(E)/IH is canonically isomorphic to C∗(E \H).

(c) If X is any hereditary subset of E0, then IX = IX . Furthermore, if we
let EX denote the subgraph of E whose vertices are X and whose edges
are s−1(X), then C∗(EX) is canonically isomorphic to the subalgebra
C∗({se, pv : e ∈ s−1(X) and v ∈ X}), and this subalgebra is a full cor-
ner of the ideal IX .

Remark 2.1.7. Observe that in (b) the fact that H is hereditary implies that if
e ∈ E1\r−1(H), then s(e) ∈ E0\H. Likewise in (c) the fact that X is hereditary
implies that if e ∈ s−1(X), then r(e) ∈ X.

Example 2.1.8. If E is the graph

u
��
MM

  @@@@@@@

v // w // x
��
ZZ

y YY
��

??�������

then the saturated hereditary subsets of E are: ∅, {v, w, x}, {u, v, w, x},
{v, w, x, y}, and E0 = {u, v, w, x, y}. When these subsets are ordered by in-
clusion we have the following lattice
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E0

NNNNNNNNNNN

ppppppppppp

{u, v, w, x}

MMMMMMMMMM
{v, w, x, y}

qqqqqqqqqq

{v, w, x}

∅

and by Part (a) of Theorem 2.1.6 the lattice of gauge-invariant ideals in C∗(E)
is

IE0 = C∗(E)

OOOOOOOOOOO

ooooooooooo

I{u,v,w,x}

NNNNNNNNNNN
I{v,w,x,y}

ppppppppppp

I{v,w,x}

I∅ = {0}

Hence C∗(E) has three proper nontrivial gauge-invariant ideals. If we let H =
{v, w, x}, then E \H and EH are the following graphs

E \H u
��
MM

y YY
��

EH

v // w // x
��
ZZ
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and by Parts (b) and (c) of Theorem 2.1.6 we have C∗(E)/IH ∼= C∗(E \H) ∼=
O2 ⊕O2 and C∗(EH) is a full corner (and hence Morita equivalent) to IH .

In addition, if we let X = {x}, then X is hereditary (but not saturated) and
X = H. We see that the graph EX is

EX x
��
ZZ

Part (c) of Theorem 2.1.6 tells us that C∗(EX) ∼= O2 is also a full corner of the
ideal IX = IX = IH . Thus C∗(EH) and C∗(EX) are Morita equivalent. However,
the C∗-algebras C∗(EH) and C∗(EX) are not isomorphic — with a little bit of
work one can show that C∗(EH) ∼= M3(O2).

Before we can provide a proof of Theorem 2.1.6 we will need a few lemmas.

Lemma 2.1.9. Let E be a graph, and let I be an ideal in C∗(E). Then H :=
{v ∈ E0 : pv ∈ I} is a saturated hereditary subset of E0.

Proof. Suppose e ∈ E1 with s(e) ∈ H. Then ps(e) ∈ I, and because I is an ideal
we have pr(e) = s∗ese = s∗eps(e)se ∈ I. Hence r(e) ∈ H and H is hereditary.

Next suppose v ∈ E0 is a regular vertex and {r(e) : e ∈ E1 and s(e) =
v} ⊆ H. Then pr(e) ∈ I for every e ∈ s−1(v), and since I is an ideal ses∗e =
sepr(e)s

∗
e ∈ I for every e ∈ s−1(v). Because v is a regular vertex we have that

pv =
∑
s(e)=v ses

∗
e ∈ I. Thus v ∈ H and H is saturated.

Remark 2.1.10. Notice that in order to prove H is saturated in the above lemma,
we needed to have the relation pv =

∑
s(e)=v ses

∗
e. This is why the definition of

saturated only requires that {r(e) : e ∈ E1 and s(e) = v} ⊆ H implies v ∈ H
when v is a regular vertex.

Lemma 2.1.11. Let E be a graph, and let X be a hereditary subset of E0. Then

IX = span{sαs∗β : α, β ∈ E∗ and r(α) = r(β) ∈ X}. (2.1.1)

In particular, this implies that IX = IX and that IX is gauge invariant.

Proof. We first note that it follows from Lemma 2.1.9 that {v ∈ E0 : pv ∈ IX} is
a saturated set containing X, and thus containing X. Thus the right hand side
of (2.1.1) is contained in IX . Furthermore, any non-zero product of the form
(sαs∗β)(sγs

∗
δ) collapses to a term of the form sµs

∗
ν , and by examining the various

possibilities µ and ν, and using the hereditary property of X we deduce that the
right hand side of (2.1.1) is an ideal. Since the right hand side of (2.1.1) contains
the generators of IX , the equality in (2.1.1) holds.
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Lemma 2.1.12. Let E be a graph and let H be a saturated hereditary subset of
E0. If IH is the ideal in C∗(E) generated by {pv : v ∈ H}, then {v ∈ E0 : pv ∈
IH} = H.

Proof. We trivially have that v ∈ H implies pv ∈ IH , soH ⊆ {v ∈ E0 : pv ∈ IH}.
For the reverse inclusion, choose a Cuntz-Krieger (E \ H)-family {Se, Pv : e ∈
(E\H)1, v ∈ (E\H)0} that generates C∗(E\H). We may extend this to a Cuntz-
Krieger E-family by setting Pv = 0 when v ∈ H and Se = 0 when r(e) ∈ H. To
see that this is a Cuntz-Krieger E-family notice that H hereditary implies the
Cuntz-Krieger relations holds at vertices in H, and H saturated implies there
are no vertices in (E \H)0 = E0 \H at which a new Cuntz-Krieger relation is
being imposed (in other words, all sinks of E \H are sinks in E). The universal
property of C∗(E) then gives a homomorphism ρ : C∗(E)→ C∗({Se, Pv}) which
vanishes on IH since it kills all the generators {pv : v ∈ H}. But ρ(pv) = Pv 6= 0
for v /∈ H, so v /∈ H implies pv /∈ IH . Thus {v ∈ E0 : pv ∈ IH} ⊆ H.

Lemma 2.1.13. Let E be a graph and let X be any subset of E0. Then there
exists a projection pX ∈M(C∗(E)) such that

pXsαs
∗
β =

{
sαs

∗
β if s(α) ∈ X

0 if s(α) /∈ X
.

Proof. IfX is finite, then the projection pX :=
∑
v∈X pv has the required proper-

ties. Therefore, we need only consider the case when X is infinite. If X is infinite
list the elements of X as X = {v1, v2, . . .}. For each N ∈ N let pN :=

∑N
n=1 pvn .

Then

pNsαs
∗
β =

{
sαs

∗
β if s(α) = vn for some n ≤ N

0 otherwise.

Thus for any a ∈ span{sαs∗β : α, β ∈ E∗ and r(α) = r(β)}, the sequence
{pNa}∞N=1 is eventually constant. An ε/3 argument then shows that {pNa}∞N=1 is
Cauchy for every a ∈ C∗(E). Thus we may define p : A→ A by p(a) = lim

N→∞
pNa.

Since

〈b, p(a)〉 = b∗p(a) = lim
N→∞

pNa = lim
N→∞

(pNb)∗a = p(b)∗a = 〈p(b), a〉

we see that the map p is an adjointable operator on the Hilbert C∗-module
AA with p∗ = p. Consequently we have defined a multiplier p of A [111, Theo-
rem 2.47] satisfying the required equalities. Finally, we see that

p2(a) = p(lim
N
pNa) = lim

M
pM (lim

N
pNa) = lim

M
(lim
N
pMpNa) = lim

M
pMa = p(a)

so that p2 = p, and p is a projection.
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We will now prove the various parts of Theorem 2.1.6. We will find it conve-
nient to first prove Part (b), and then to prove Part (a) and Part (c).

Proof of Theorem 2.1.6(b). Let H be a saturated hereditary subset of H. If
{se, pv : e ∈ E1, v ∈ E0} is a Cuntz-Krieger E-family generating C∗(E), then
the collection {se + IH , pv + IH : e ∈ (E \ H)0, v ∈ (E \ H)1} in C∗(E)/IH
is a Cuntz-Krieger (E \H)-family. — The first two Cuntz-Krieger relations are
immediate. To see the third, notice that if e ∈ E1 with r(e) ∈ H, then pr(e) ∈ IH
and se = sepr(e) ∈ IH , so se + IH = 0 + IH and

pv + IH =

 ∑
{e∈E1:s(e)=v}

ses
∗
e

+ IH

=
∑

{e∈E1\r−1(H):s(e)=v}

(se + IH)(se + IH)∗

+
∑

{e∈r−1(H):s(e)=v}

(se + IH)(se + IH)∗

=
∑

{e∈(E\H)1:s(e)=v}

(se + IH)(se + IH)∗.

By the universal property of C∗(E\H) there is a homomorphism ρ : C∗(E\H)→
C∗(E)/IH taking the generators of C∗(E \ H) canonically to the elements of
{se + IH , pv + IH : e ∈ (E \ H)0, v ∈ (E \ H)1}. Since IH is gauge invariant
by Lemma 2.1.11, the gauge action on C∗(E) descends to a gauge action on
C∗(E)/IH , and by checking on generators it is straightforward to verify that ρ
is equivariant for the gauge actions on C∗(E/H) and C∗(E)/IH . Furthermore,
since H is saturated and hereditary Lemma 2.1.12 implies that pv /∈ IH when
v /∈ H, and thus ρ(pv) = pv+IH 6= 0 when v ∈ (E \H)0. It then follows from the
Gauge-Invariant Uniqueness Theorem that ρ is injective. In addition, we know
that the elements of {pv+IH , se+IH : v ∈ E0, e ∈ E1} generate C∗(E)/IH , and
because pv + IH = 0 + IH when v ∈ H and se + IH = 0 + IH when r(e) ∈ H, we
have that the elements {pv + IH , se + IH : v ∈ (E \H)0, e ∈ (E \H)1} generate
C∗(E)/IH . Thus ρ is surjective, and an isomorphism.

Proof of Theorem 2.1.6(a). It follows from Lemma 2.1.11 that the mapping
H 7→ IH maps from the lattice of saturated hereditary subsets of E0 into the lat-
tice of gauge-invariant ideals of C∗(E). We shall show that this mapping is surjec-
tive. Let I be a gauge-invariant ideal in C∗(E), and set H := {v ∈ E0 : pv ∈ I}.
It follows from Lemma 2.1.9 that H is saturated and hereditary. Since IH ⊆ I,
we see that pv /∈ I implies pv /∈ IH . Hence I and IH contain exactly the same set
of projections {pv : v ∈ H}. Also, because IH ⊆ I we may define a quotient map
q : C∗(E)/IH → C∗(E)/I by q(a+ IH) = a+ I. (Strictly speaking, q is simply
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the quotient map from C∗(E)/IH onto (C∗(E)/IH)/(I/IH).) Theorem 2.1.6(b)
implies that there is a canonical isomorphism ρ : C∗(E \H)→ C∗(E)/IH . If we
consider the composition q ◦ρ : C∗(E \H)→ C∗(E)/I, then because ρ is canon-
ical, and because I and IH contain the same set of projections {pv : v ∈ H},
it follows that q ◦ ρ is nonzero on the generating projections of C∗(E \ H).
Furthermore, since I is gauge invariant, the gauge action on C∗(E) descends
to a gauge action on C∗(E)/I and by checking on generators (and once again
using the fact that ρ is canonical) we can verify that q ◦ ρ is equivariant for
the gauge actions on C∗(E \H) and C∗(E)/I. The Gauge-Invariant Uniqueness
Theorem then implies that ρ ◦ q is injective. Therefore q is injective, and since
q : C∗(E)/IH → C∗(E)/I is the quotient map, this implies that I = IH . Hence
the mapping H 7→ IH is surjective.

Next we shall show that the map H 7→ IH is injective. If H and K are
saturated hereditary subsets with IH = IK , then {v ∈ E0 : pv ∈ IH} = {v ∈
E0 : pv ∈ IK} and Lemma 2.1.12 implies that H = K.

Finally, we need to show that the map H 7→ IH is a lattice isomorphism.
Since H ⊂ K implies that IH ⊆ IK , we see that the map preserves the order
structure of the lattices. Because the map is also a bijection, this implies that it
is a lattice isomorphism.

Proof of Theorem 2.1.6(c). Fix a hereditary subset X of E, and let pX be the
projection in M(C∗(E)) defined in Lemma 2.1.13. The fact that IX = IX follows
from Lemma 2.1.11. Furthermore, Lemma 2.1.11 implies that IX = span{sαs∗β :
α, β ∈ E∗ and r(α) = r(β) ∈ X}. Because X is hereditary, the elements {se, pv :
e ∈ s−1(X), v ∈ X} forms a Cuntz-Krieger EX -family. (In particular, to get the
third Cuntz-Krieger relation we use the fact that X is hereditary to conclude
that pr(e) is in this set whenever ps(e) is in the set.) By the universal property of
C∗(EX) there exists a surjective homomorphism ρ : C∗(EX)→ C∗({se, pv : e ∈
s−1(X), v ∈ X}), and since the gauge action on C∗(E) restricts to a gauge action
on C∗({se, pv : e ∈ s−1(X), v ∈ X}), an application of the Gauge-Invariant
Uniqueness Theorem shows that ρ is an isomorphism.

Furthermore, since compression by the projection pX is linear and continuous,
and since X is hereditary, we have that

pXIXpX = span{pXsαs∗βpX : α, β ∈ E∗ and r(α) = r(β) ∈ X}
= span{sαs∗β : α, β ∈ E∗, s(α) ∈ X, s(β) ∈ X, and r(α) = r(β)}
= C∗(EX).

Finally, we see that the corner pXIXpX is full since {pv : v ∈ X} generates
IX .
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2.1.2 Condition (K)

In the previous section we described and analyzed the structure of the gauge-
invariant ideals in a graph algebra. However, typically a graph algebra will have
many ideals besides the gauge-invariant ones. In this section we shall derive a
condition on a graph, called Condition (K), that will ensure all ideals in the
associated C∗-algebra are gauge invariant. Thus for C∗-algebras of row-finite
graphs satisfying Condition (K), Theorem 2.1.6 gives a complete description of
the ideals.

If E is a row-finite graph, and I is an arbitrary ideal in C∗(E), then we
must ask: “What conditions on E would require that I be gauge invariant?”
Theorem 2.1.6(a) shows that any gauge-invariant ideal is of the form IH , and
therefore is generated by the pv’s which it contains. So we are really trying to
show that given an ideal I we can recover it as I = IH for H = {v ∈ E0 : pv ∈ I}.

This is reminiscent of what we had to do when we proved that the map H 7→
IH is surjective in the first paragraph of the proof of Theorem 2.1.6(a). There
we created a map q ◦ ρ : C∗(E \H)→ C∗(E)/I, and used the Gauge-Invariant
Uniqueness Theorem to conclude that this map was injective and I = IH . But
what if we do not know a priori that I is gauge invariant? We can still create
the map q ◦ ρ : C∗(E \ H) → C∗(E)/I, but we will not be able to apply the
Gauge-Invariant Uniqueness Theorem because we do not know that C∗(E)/I
has the necessary gauge action. However, not all is lost — we could instead
apply our other uniqueness theorem: The Cuntz-Krieger Uniqueness Theorem.
We will not be able to do this in general, however; in order to apply the Cuntz-
Krieger Uniqueness Theorem we need to know that the subgraph E \H satisfies
Condition (L).

This is exactly the condition we want to ensure that all ideals are gauge
invariant: For any saturated hereditary set E the subgraph E \H satisfies Con-
dition (L). However, because this is not a condition that is easy to check by
quickly looking at a graph, we will give a different formulation of this condition
in terms of “simple loops”, and then prove the two notions are equivalent.

Definition 2.1.14. A simple loop in a graph E is a loop α ∈ E∗ with the property
that s(αi) 6= s(α1) for i ∈ {2, 3, . . . , |α|}.

In particular, a simple loop is allowed to repeat vertices or edges as it traverses
through the graph, provided that it returns to the base point only at the end of
its journey and not before.

Definition 2.1.15. A graph E is said to satisfy Condition (K) if no vertex in E
is the base point of exactly one simple loop; that is, every vertex in E is either
the base point of no loops or of more than one simple loop.

Beware the subtleties of Condition (K)! It is not uncommon for someone who
first encounters this definition to think they understand Condition (K) only to
come across an example at a later time that causes confusion. For example, the
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graph

v
e ((

w f
yy

g

hh

satisfies Condition (K) because eg and efg are two simple loops based at v, and
f and ge are two simple loops based at w. (There are, of course, many other
simple loops besides the ones we mentioned. For example, effg is also a simple
loop based at v.)

Likewise, the graph

v
((
66 w //

��

x

y

__@@@@@@@@

satisfies Condition (K), because there are no loops based at x and every other
vertex is the base point of at least two simple loops.
Remark 2.1.16. Notice that Condition (K) implies Condition (L). To see this,
let E be a graph satisfying condition (K). If α is a loop in E, then v = s(α) is
the base point of a loop, and hence there is at least one simple loop based at
v. But then α must have an exit, for otherwise there would be a unique simple
loop based at v.

Proposition 2.1.17. If E is a graph, then E satisfies Condition (K) if and
only if for every saturated hereditary subset H of E0 the subgraph E \H satisfies
Condition (L).

Proof. Suppose E satisfies Condition (K). If H is a saturated hereditary subset
of E0, and α is a loop in E \ H, then v = s(α) is a vertex in E0 \ H. Since
α is also a loop in E, there must exist a second loop β in E based at v. Since
s(β) /∈ H, and since H is hereditary, it follows that each of the elements of
{r(βi)}|β|i=1 is an element of E0 \ H. Thus the edges {βi}|β|i=1 are elements of
(E \H)1 = E1 \ r−1(H), and β is a loop in E \H based at v. Since there are
two distinct loops in E \H based at v, it follows that α has an exit in E \H.

Conversely, suppose that E \ H satisfies Condition (L) for every saturated
hereditary subset H of E0. Let v be a vertex, and let α be a simple loop based
at v. Define H := {w ∈ E0 : w � v}. It is straightforward to verify that H is
hereditary, and since v is on a loop H is also saturated. Because the vertices on
α can all reach v, α is a loop in E \H. By hypothesis α has an exit e ∈ (E \H)1.
Suppose that s(e) = s(αk) for some k ∈ {1, 2, . . . , |α|}. Since r(e) ∈ (E \H)0 =
E0 \H, we have that r(e) /∈ H and r(e) ≥ v. Thus there exists a path µ ∈ E∗

with s(µ) = r(e) and r(µ) = v, and furthermore we may choose the path µ so
that r(µi) 6= v for 1 ≤ i < |µ|. But then β := α1 . . . αkeµ is a simple loop based
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at v, which is distinct from α. In addition, since the vertices on β can reach v,
it follows that β is a loop in E \H. Hence E \H satisfies Condition (K).

We shall now show that Condition (K) characterizes those row-finite graphs
having C∗-algebras whose ideals are all gauge-invariant. To do this we will first
need a lemma showing that if E is a graph containing a loop with no exits, then
C∗(E) has an ideal that is not gauge invariant — in fact, we will show there are
many ideals in C∗(E) that are not gauge invariant.

Lemma 2.1.18. If E is a row-finite graph containing a loop with no exits, then
C∗(E) contains an uncountable number of ideals that are not gauge invariant.

Proof. Let α be a loop in E that has no exits, and letX = {s(αi)}|α|i=1. Then since
α has no exits we see that for all i ∈ {1, 2, . . . , |α|} it is the case that αi is the only
edge whose source is s(αi) . Thus X is hereditary. If we let pX :=

∑|α|
i=1 ps(αi),

then as shown in the proof of Theorem 2.1.6(c), we have that C∗(EX) is canon-
ically isomorphic to the full corner pXIXpX of the ideal IX . Since EX is a
simple loop on |α| vertices, we have that C∗(EX) ∼= C(T,M|α|(C)) (see [108,
Example 2.14] for details of this). Since EX is a finite graph, Theorem 2.1.6(c)]
implies that the gauge-invariant ideals of C∗(EX) are in one-to-one correspon-
dence with certain subsets of E0

X , and therefore the number of gauge-invariant
ideals of C∗(EX) is finite. However, C(T,Mn(C) has uncountably many ideals
(corresponding to the closed subsets of T) so we may conclude that C∗(EX) has
uncountably many ideals that are not gauge invariant.

Because C∗(EX) is canonically isomorphic to pXIXpX , it follows that
pXIXpX has uncountably many ideals that are not gauge invariant. Furthermore,
since pXIXpX is a full corner of IX , the Rieffel Correspondence I 7→ pXIpX
is an isomorphism from the lattice of ideals of IX onto the lattice of ideals of
pXIXpX (see [111, Theorem 3.22] and [111, Proposition 3.24]). In addition, since
γz(pXapX) = pXγz(a)pX for all a ∈ A and for all z ∈ T, it follows that the iso-
morphism I 7→ pXIpX takes gauge-invariant ideals to gauge-invariant ideals.
Because pXIXpX has uncountably many ideals that are not gauge invariant, it
follows that IX has uncountably many ideals that are not gauge invariant. But
since any ideals of IX are also ideals of C∗(E) (recall that if I is an ideal off
a C∗-algebra A, and if J is an ideal of I, then J is an ideal of A), we may
conclude that C∗(E) has an uncountable number of ideals that are not gauge
invariant.

Theorem 2.1.19. A row-finite graph E satisfies Condition (K) if and only if
all ideals of C∗(E) are gauge invariant.

Proof. Suppose E satisfies Condition (K). If I is an ideal in C∗(E), then we may
let H = {v ∈ E0 : pv ∈ I} and proceed exactly as in the first paragraph of the
proof of Theorem 2.1.6(a)] to form the map q ◦ρ : C∗(E \H)→ C∗(E)/I, which



2. Mark Tomforde 37

is nonzero on the projections of the generating Cuntz-Krieger (E \ H)-family.
By Proposition 2.1.17, the graph E \H satisfies Condition (L), and thus we may
use the Cuntz-Krieger Uniqueness Theorem to conclude that q ◦ ρ is injective.
Hence the quotient map q is injective and I = IH . By Lemma 2.1.11, the ideal
I is gauge invariant.

Conversely, suppose that E does not satisfy Condition (K). By Proposi-
tion 2.1.17 there exists a saturated hereditary subsetH such that the graph E\H
does not satisfy Condition (L). It follows that E \H contains a loop without an
exit, and therefore Lemma 2.1.18 implies that C∗(E \H) contains an ideal that
is not gauge invariant. If γ denotes the gauge action on C∗(E), then because IH
is gauge invariant, γ descends to a gauge action γIH on C∗(E)/IH . Furthermore,
since C∗(E \H) is canonically isomorphic to C∗(E)/IH by Theorem 2.1.6(b), it
follows that C∗(E)/IH contains an ideal J that is not gauge invariant with re-
spect to the gauge action γIH . Because the quotient map q : C∗(E)→ C∗(E)/IH
has the property that q ◦ γz = γIHz for all z ∈ T (to see this simply verify the
equality holds on generators) we see that q−1(J) is an ideal in C∗(E) that is not
gauge invariant.

Corollary 2.1.20. If E is a row-finite graph satisfying Condition (K), then all
ideals of C∗(E) are gauge invariant, and the map H 7→ IH is a lattice isomor-
phism from the saturated hereditary subsets of E0 onto the ideals of C∗(E).

Example 2.1.21. Since the graph E of Example 2.1.8 satisfies Condition (K),
we see all of the ideals of C∗(E) are gauge invariant and the lattice of ideals
obtained in Example 2.1.8 describes all the ideals of C∗(E). In particular, C∗(E)
has exactly three proper nontrivial ideals.

2.1.3 Simplicity of Graph Algebras

We shall now use our knowledge of gauge-invariant ideals to provide a charac-
terization of simplicity for C∗-algebras of row-finite graphs. The amazing thing
about this result is that it is a statement about all ideals — not simply the
gauge-invariant ones.
Definition 2.1.22. We say that a graph E is cofinal if for every v ∈ E0 and every
infinite path α ∈ E∞, there exists i ∈ N for which v ≥ s(αi).
In other words, E is cofinal if every vertex in E can reach every infinite path in
E.

Theorem 2.1.23. Let E be a row-finite graph. Then the following are equivalent.

1. C∗(E) is simple

2. E satisfies Condition (L), E is cofinal, and if v, w ∈ E0 with v a sink,
then w ≥ v
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3. E satisfies Condition (K), E is cofinal, and if v, w ∈ E0 with v a sink,
then w ≥ v

4. E satisfies Condition (L) and E0 has no saturated hereditary subsets other
than ∅ and E0

5. E satisfies Condition (K) and E0 has no saturated hereditary subsets other
than ∅ and E0

Proof. (1) =⇒ (2) Suppose that E is simple. Since C∗(E) does not contain any
ideals that are not gauge invariant, and by Lemma 2.1.18 E does not contain a
loop with no exits. Hence E satisfies Condition (L).

Next let α ∈ E∞ be an infinite path in E. Define

H := {v ∈ E0 : v � s(αi) for all i ∈ N}.

It is straightforward to verify that H is saturated and hereditary. Because C∗(E)
is simple, the only gauge-invariant ideal of C∗(E) are {0} and C∗(E), and it
follows from Theorem 2.1.6(a) that the only saturated hereditary subsets of E0

are ∅ and E0. Since H is not equal to all of E0 (the vertex s(α1) /∈ H, for
example), we must have that H = ∅. But then every vertex in E0 can reach the
infinite path α.

Finally, let v ∈ E0 be a sink. If we let H := {w ∈ E0 : w � v}, then one can
verify that H is a saturated hereditary subset. As in the previous paragraph we
must have that H equals either ∅ or E0. Since v /∈ H, we must have H = ∅. But
then every vertex in E can reach v.

(2) =⇒ (3) It suffices to show that under the hypotheses of (2), E satisfies
Condition (K). Let v be the base point of a simple loop α. Since E satisfies
Condition (L), it follows that α has an exit e, with s(e) = s(αi) from some
i ∈ {1, 2, . . . , |α|}. If we consider the infinite path ααα . . ., then because E is
cofinal we know that r(e) can reach this infinite path, and thus r(e) can reach
v. Let µ be the shortest path with s(µ) = r(e) and r(µ) = v. Then α1 . . . αi−1eµ
is a simple loop based at v that is distinct from α. Hence there are two simple
loops based at v, and since v was arbitrary, E satisfies Condition (K).

(3) =⇒ (4) Since Condition (K) is a stronger condition than Condition (L),
we have that E satisfies Condition (L). We shall suppose that H is a saturated
hereditary subset with H 6= ∅ and H 6= E0, and arrive at a contradiction.
Choose v ∈ E0 \ H. Since H is nonempty and hereditary, we know that there
are vertices in H that cannot reach v. Thus, due to our hypotheses, v is not a
sink. Since E is row-finite and since H is saturated, it must be the case that
there is an edge e1 ∈ E1 with s(e1) = v and r(e1) /∈ H. Since r(e1) /∈ H we
may repeat this argument to produce and edge e2 ∈ E1 with s(e2) = r(e1) and
r(e2) /∈ H. Continuing in this fashion we produce an infinite path e1e2e3 . . .
with the property that r(ei) /∈ H for all i ∈ N. But since H is nonempty and
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hereditary, there are vertices in H that cannot reach r(ei) for any i ∈ N. This
contradicts the fact that E is cofinal. Hence we may conclude that the only
saturated hereditary subsets of E0 are ∅ and E0.

(4) =⇒ (5) It suffices to show that under the hypotheses of (4), E satisfies
Condition (K). Let v be the base point of a simple loop α. Since E satisfies
Condition (L), it follows that α has an exit e, with s(e) = s(αi) from some
i ∈ {1, 2, . . . , |α|}. If we let

H = {w ∈ E0 : w � s(αi) for all i = 1, 2, . . . , |α|},

then one can verify that H is a saturated hereditary subset. By hypothesis,
either H = ∅ or H = E0. Since the vertex v /∈ H, we must have H = ∅. But then
every vertex in E can reach the vertices on the loop α, and hence every vertex
can reach v. Let µ be the shortest path with s(µ) = r(e) and r(µ) = v. Then
α1 . . . αi−1eµ is a simple loop based at v that is distinct from α. Hence there are
two simple loops based at v, and since v was arbitrary, E satisfies Condition (K).

(5) =⇒ (1) If E satisfies Condition (K), then Theorem 2.1.19 implies that
every ideal of C∗(E) is gauge invariant. The result then follows from Theo-
rem 2.1.6(a).

Corollary 2.1.24. If E is a row-finite graph with two or more sinks, then C∗(E)
is not simple.

Proof. If v1 and v2 are sinks in E, then v1 cannot reach v2. Thus the hypotheses
of (2) in Theorem 2.1.23 are not satisfied.

Corollary 2.1.25. If E is a row-finite graph containing a sink, and if C∗(E)
is simple, then E contains no loops and no infinite paths.

Proof. Let v be a sink in E. If α is a loop in E, then v cannot reach the infinite
path ααα . . ., which implies that E is not cofinal and the hypotheses of (2) in
Theorem 2.1.23 are not satisfied. Similarly, if α is an infinite path.

As shown in the above corollary, simplicity of C∗(E) imposes restrictions on
the number of sinks and the presence of loops. In fact, more can be said about
simple C∗-algebras of row-finite graphs: they are all either AF-algebras or purely
infinite algebras.

Remark 2.1.26. A C∗-algebra is an AF-algebra (AF stands for approximately
finite-dimensional) if it can be written as the closure of the increasing union of
finite-dimensional C∗-algebras; or, equivalently, if it is the direct limit of a se-
quence of finite-dimensional C∗-algebras. It has been shown in [87, Theorem 2.4]
that if E is a row-finite graph, then C∗(E) is AF if and only if E has no loops.
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Remark 2.1.27. If A is a C∗-algebra, we say that a C∗-subalgebra B of A is a
hereditary subalgebra if bab′ ∈ B for all a ∈ A and b, b′ ∈ B (or, equivalently,
if a ∈ A+ and b ∈ B+ the inequality a ≤ b implies a ∈ B). Two projections p
and q in a C∗-algebra A are said to be equivalent if there exists u ∈ A such that
p = uu∗ and q = u∗u, and a projection p is said to be infinite if it is equivalent
to a proper subprojection.

A simple C∗-algebra A is purely infinite if every nonzero hereditary subal-
gebra of A contains an infinite projection. (The definition of purely infinite for
non-simple C∗-algebra is more complicated, see [83].) It has been shown in [31,
Proposition 5.3] and [87, Theorem 3.9] that if E is a row-finite graph, then every
nonzero hereditary subalgebra of C∗(E) contains an infinite projection if and
only if E satisfies Condition (L) and every vertex in E connects to a loop. Com-
bined with Theorem 2.1.23, this allows us to characterize purely infinite simple
C∗-algebras of row-finite graphs.

In fact, we have the following dichotomy for simple C∗-algebras of row-finite
graphs.

Proposition 2.1.28 (The Dichotomy for Simple Graph Algebras). Let E be a
row-finite graph. If C∗(E) is simple, then either

1. C∗(E) is an AF-algebra if E contains no loops; or

2. C∗(E) is purely infinite if E contains a loop.

Proof. If E has no loops, the fact that C∗(E) is an AF-algebra follows [87,
Theorem 2.4]. On the other hand, if E contains a loop α, then since C∗(E) is
simple we know from Theorem 2.1.23(2) that E is cofinal, and every vertex in
E can reach the infinite path ααα . . .. Thus every vertex in E can reach a loop.
Furthermore, Theorem 2.1.23(2) also tells us that E satisfies Condition (L), and
thus [31, Proposition 5.3] implies that C∗(E) is purely infinite.

Remark 2.1.29. AF-algebras and purely infinite C∗-algebras are very different.
An AF-algebra, being the direct limit of finite-dimensional C∗-algebras, is close
to being a finite-dimensional C∗-algebra, and as a result cannot contain any
infinite projections. On the other hand, purely infinite C∗-algebras contain an
abundance of infinite projections — one in every nonzero hereditary subalgebra
— which shows that they are very far from being finite dimensional C∗-algebras.
As the dichotomy for simple graph algebras shows, the presence of loops in a
graph E causes the associated C∗-algebra C∗(E) to be spacious, in the sense
that each loop results in the existence of infinite projections C∗(E).

2.1.4 Concluding Remarks

With the results of this section was has a very good understanding of the gauge-
invariant ideals in the C∗-algebra of a row-finite graph, as well as simplicity of
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C∗(E). However, one may ask: What about general ideals? Can one describe the
structure of all ideals of C∗(E), even when E does not satisfy Condition (K)?
This question has been answered affirmatively by Hong and Szymański in [72].

One way of describing the ideals in a C∗-algebra is in terms of primitive ideals.
An ideal is primitive if it is the kernel of an irreducible representation (and, for
separable C∗-algebras, an ideal is primitive if and only if it is prime). The set of
primitive ideals in a C∗-algebra A is denoted by PrimA, and every ideal in A
is the intersection of the primitive ideals containing it [111, Proposition A.17].
Furthermore, for an ideal I of A, the set h(I) := {P ∈ PrimA : I ⊆ P} are
the closed sets of a topology on PrimA [111, Proposition A.27], and PrimA
endowed with this topology is called the primitive ideal space of A. Thus if
one can describe the set PrimA as well as the topology on PrimA, one has a
description of all ideals in A.

In [72] Hong and Szymański have carried out this program for graph algebras.
They give a description of the primitive ideals in C∗(E) in terms of maximal
tails of vertices, and they also give a description of the topology on the space
PrimC∗(E). (In fact they do this for arbitrary graphs, without any assumption
of row-finiteness!) As expected, this description is fairly involved (even if one
restricts to the row-finite case), so we will not attempt to state it here.

2.2 C∗-algebras of Arbitrary Graphs

In the previous section we restricted our attention to row-finite graphs to avoid
complications that arise when infinite emitters are present. This is fairly com-
mon in the subject, and when the theory of graph C∗-algebras was developed,
theorems were often proven first in the row-finite case, and later extended to the
general setting.

The theory of C∗-algebras of arbitrary graphs is significantly different from
the theory of C∗-algebras of row-finite graphs. Although theorems for row-finite
graph algebras sometimes remain true when one removes the word “row-finite”
from their statements, it is not uncommon for new phenomena to appear in the
non-row-finite case that require substantially new descriptions and theorems.
More importantly, many of the proofs of theorems for row-finite graph algebras
rely heavily on the non-row-finite assumption so that in the general setting
entirely new methods and techniques must be developed to prove results.

In this section we will describe a construction called “desingularization” that
allows one to bootstrap results from the row-finite case to the general setting.
If E is an arbitrary graph, then one can “desingularize” E to form a row-finite
graph F with no sinks that has the property that C∗(E) is isomorphic to a full
corner of C∗(F ). This allows one to use Morita Equivalence to study C∗(E) in
terms of C∗(F ).
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In this section we will frequently draw graphs that have an infinite number
of edges between vertices. We will use the notation

v
(∞) // w

in our graphs to indicate that there are a countably infinite number of edges
from v to w.

In order to desingularize graphs, we will need to remove sinks and infinite
emitters.

Definition 2.2.1. If E is a graph and v0 is a sink in E, then by adding a tail at
v0 we mean attaching a graph of the form

v0 // v1 // v2 // v3 // · · ·

to E at v0.

Definition 2.2.2. If E is a graph and v0 is an infinite emitter in E, then by
adding a tail at v0 we mean performing the following process: We first list the
edges g1, g2, g3, . . . of s−1(v0). Then we add a graph of the form

v0
e1 // v1

e2 // v2
e3 // v3

e4 // · · ·

to E at v0, remove the edges in s−1(v0), and for every gj ∈ s−1(v0) we draw
an edge fj from vj−1 to r(gj). We will find it convenient to use the following
notation: For any gj ∈ s−1(v0) we let αgjv0 denote the path αgjv0 := e1e2 . . . ej−1fj
in F .

Definition 2.2.3. If E is a graph, then a desingularization of E is a graph F
formed by adding a tail to every sink and infinite emitter of E.

Remark 2.2.4. We speak of “a” desingularization because the process of adding a
tail to an infinite emitter is not unique; it depends on the ordering of the edges in
s−1(v0). Thus there may be different graphs F that are desingularizations of E.
In addition, one can see that a desingularization of a graph is always row-finite
and has no sinks.

Example 2.2.5. Here is an example of a graph E and a desingularization F of
E.

E v0

(∞)

��
w ZZ

F v0

f1

��

e1 // v1
e2 //

f2

}}||||||||
v2

e3 //
f3

vvmmmmmmmmmmmmmmm · · ·

f4
tthhhhhhhhhhhhhhhhhhhhhh

w ZZ
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Example 2.2.6. Suppose E is the following graph:

w

  AAAAAAAA x0

v0

(∞)

!!BBBBBBBB

g3

==||||||||

g1

��

g2

EE

y

>>}}}}}}}}
z0

Let us label the edges from v0 to z0 as {g4, g5, g6, . . .}. Then a desingularization
of E is given by the following graph F .

w

  AAAAAAAA x0 // x1 // x2 // x3 // · · ·

v0

f1

�� e1 // v1
e2 //

f2

ii v2
e3 //

f3
aaCCCCCCCC

v3
e4 //

f4

vvmmmmmmmmmmmmmmm v4
e5 //

f5

ttiiiiiiiiiiiiiiiiiiiiiii · · ·

f6
ssffffffffffffffffffffffffffffff

y

>>}}}}}}}}
z0 // z1 // z2 // z3 // · · ·

Example 2.2.7. If E is the O∞ graph shown here, then a desingularization is
given by the graph F :

E v0

(∞)

EE F v0 //
77 v1 //
QQ v2 //
SS v3 //
UU v4 //
XX · · ·ZZ

The following fact is what will allow us to use desingularization to extend
results for row-finite graph algebras to the general setting.

Theorem 2.2.8. Let E be a graph. If F is a desingularization of E and pE0 is
the projection in M(C∗(F )) described in Lemma 2.1.13, then C∗(E) is isomor-
phic to the corner pE0C∗(F )pE0 , and this corner is full.

Proof. Let {se, pv : e ∈ F 1, v ∈ F 0} be a Cuntz-Krieger F -family that generates
C∗(F ).

For any z ∈ T we see that

{se : e ∈ F 1 and r(e) /∈ E0} ∪ {zse : e ∈ F 1 and r(e) ∈ E0} ∪ {pv : v ∈ F 0}
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is a Cuntz-Krieger F -family, and thus induces a homomorphism βz : C∗(F ) →
C∗(F ) with βz(pv) = pv and

βz(se) =

{
se if r(e) /∈ E0

zse if r(e) ∈ E0.

Furthermore, βz is an inverse for βz, so βz ∈ AutC∗(F ), and we have defined a
gauge action β : T→ AutC∗(F ).

For v ∈ E0 we define qv := pv, and for e ∈ E1 we define

te :=

{
sαe

s(e)
if s(e) is an infinite emitter

se if s(e) is not an infinite emitter

where αes(e) is the path in F described in Definition 2.2.2. It is straightforward
to verify that {te, qv : e ∈ E1, v ∈ E0} is a Cuntz-Krieger E-family (recall that
if v0 is an infinite emitter in E, then the third Cuntz-Krieger relation does not
impose any requirements on qv0). Thus, by the universal property of C∗(E),
there exists a homomorphism ρ : C∗(E)→ C∗(F ) taking the generating partial
isometries to the te’s and the generating projections to the qv’s.

Let γ denote the standard gauge action on C∗(E). Since the only edge of the
path αes(e) = e1 . . . ej−1fj whose range is in E0 is fj we see that

βz(sαe
s(e)

) = βz(se1 . . . sej−1sfj ) = se1 . . . sej−1(zsfj ) = zse1 . . . sej−1sfj = zsαe
s(e)

.

Thus βz ◦ ρ and ρ ◦ γz agree on the generators of C∗(E), and consequently
βz ◦ ρ = ρ ◦ γz. Since qv 6= 0 for all v ∈ E0, the Gauge-Invariant Uniqueness
Theorem tells us that ρ is injective. Thus ρ is an isomorphism onto im ρ =
C∗({te, qv : e ∈ E1, v ∈ E0}).

We see that pE0qv = pE0pv = pv for all v ∈ E0. Furthermore, when e ∈ E1

with s(e) not an infinite emitter we have pE0te = pE0se = se = te, and when
e ∈ E1 with s(e) an infinite emitter we have pE0te = pE0sαe

s(e)
= sαe

s(e)
= te.

Thus im ρ is contained the corner pE0C∗(F )pE0 .
Conversely, since a 7→ pE0apE0 is continuous and linear

pE0C∗(F )pE0 = span{pE0sαs
∗
βpE0 : α, β ∈ F ∗, r(α) = r(β)}

= span{sαs∗β : α, β ∈ F ∗, r(α) = r(β), s(α) ∈ E0, r(α) ∈ E0}.

Any path α in F whose source is in E0 may be written as α1 . . . αke1e2 . . . en,
where each αi is either an edge in E1 or a path of the form αs(e)e for e ∈ E1,
and where e1 . . . en is a path along a tail. Thus to show that pE0C∗(F )pE0 is
contained in im ρ it suffices to show that se1...ens

∗
e1...en is contained in im ρ. We
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shall show this by induction on n. If n = 0, then se1...ens
∗
e1...en = ps(e) ∈ im ρ.

Assume that se1...ens
∗
e1...en ∈ im ρ. Then there are two edges, en+1 and fj , whose

source is r(en). Hence pr(en) = sen+1s
∗
en+1

+ sfjs
∗
fj

, and

se1...en+1s
∗
e1...en+1

= se1...en(pr(en) − sfjs∗fj )s
∗
e1...en = se1...ens

∗
e1...en − sαes(e)s

∗
αe
s(e)

which is in im ρ. Thus pE0C∗(F )pE0 = im ρ.
Finally, to see that pE0C∗(F )pE0 is full, suppose I is an ideal containing

this corner. Then pv ∈ pE0C∗(F )pE0 ⊆ I when v ∈ E0. When v ∈ F 0 \ E0,
then v = r(e1 . . . en) for some path e1 . . . en on an added tail. Thus se1...en =
ps(e1)se1...en ∈ I, and pr(e) = s∗e1...ense1...en ∈ I. Since {pv : v ∈ F 0} ⊆ I, and F
is row-finite, it follows from Theorem 2.1.6(a) that I is all of C∗(F ).

The advantage of the process of desingularization is that it is very concrete,
and it allows us to use the row-finite graph F to see how the properties of C∗(E)
are reflected in the graph E. We will see examples of this in the following proofs,
as we show how to extend results for C∗-algebras of row-finite graphs to general
graph algebras.

Theorem 2.2.9. Let E be a graph. The graph algebra C∗(E) is an AF-algebra
if and only if E has no loops.

Proof. Let F be a desingularization of E. Since F is row-finite, it follows from
[87, Theorem 2.4] that C∗(F ) is an AF-algebra if and only if F has no loops.
It follows from [51, Theorem 9.4] that Morita equivalence preserves AF-ness for
separable C∗-algebra. Thus C∗(E) is an AF-algebra if and only if F has no loops.
Since E has no loops if and only if F has no loops, the result follows.

Theorem 2.2.10. Let E be a graph. If E satisfies Condition (L) and every
vertex in E connects to a loop in E, then there exists an infinite projection in
every nonzero hereditary subalgebra of C∗(E).

Proof. Let F be a desingularization of E. We see that if E satisfies Condition (L),
then F satisfies Condition (L). Also, if every vertex in E connects to a loop
in E, then every vertex in F connects to a loop in F . It then follows from
[31, Proposition 5.3] that there exists an infinite projection in every nonzero
hereditary subalgebra of C∗(F ). Since this is a property that is preserved by
passing to corners, there exists an infinite projection in every nonzero hereditary
subalgebra of C∗(E).

Remark 2.2.11. The corollary of Theorem 2.2.10 is also true; the proof of [87,
Theorem 3.9] works for arbitrary graphs.
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In each of the above theorems we have seen that we have the same descrip-
tions as in the row-finite case, and basically each of the theorems for row-finite
graph algebras remains true when we remove the term “row-finite” from the the-
orem’s statement. Next we characterize simplicity for C∗-algebras of arbitrary
graphs. In this situation we shall see that there are new phenomena occurring,
which will require a description different from that in the row-finite case.

The following theorem generalizes the characterization given in Theo-
rem 2.1.23(2).

Theorem 2.2.12. If E is a graph, then C∗(E) is simple if and only if E has
the following four properties:

1. E satisfies Condition (L),

2. E is cofinal,

3. if v, w ∈ E0 with v a sink, then w ≥ v, and

4. if v, w ∈ E0 with v an infinite emitter, then w ≥ v.

Proof. Let F be a desingularization of E. Since simplicity is preserved by Morita
equivalence, C∗(E) is simple if and only if C∗(F ) is simple. But since F is row-
finite with no sinks, Theorem 2.1.23(2) implies that C∗(F ) is simple if and only if
F satisfies Condition (L) and F is cofinal. We see that F satisfies Condition (L)
if and only if E satisfies Condition (L), giving (1). Also, we see that the infinite
paths of F are of two types: either they come from infinite paths in E or they
are paths that go along the tails added in forming the desingularization. Thus
F is cofinal if and only if every vertex w in E can reach every infinite path in
E, which occurs if and only if every vertex w in F can reach every infinite path
in E, every sink in E, and every infinite emitter in E; this gives (2), (3), and
(4).

Definition 2.2.13. We say that a graph E is transitive if for every v, w ∈ E0 it
is the case that v ≥ w and w ≥ v.

Corollary 2.2.14. If E is a graph in which every vertex is an infinite emitter,
then C∗(E) is simple if and only if E is transitive.

Using our characterization of simplicity, we can now show that the dichotomy
for simple graph algebras holds even when the graph is not row-finite.

Proposition 2.2.15 (The Dichotomy for Simple Graph Algebras). Let E be a
graph. If C∗(E) is simple, then either

1. C∗(E) is an AF-algebra if E contains no loops; or

2. C∗(E) is purely infinite if E contains a loop.
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Proof. If E has no loops, the fact that C∗(E) is an AF-algebra follows The-
orem 2.2.9. On the other hand, if E contains a loop α, then since C∗(E) is
simple we know from Theorem 2.2.12 that E is cofinal, and every vertex in E
can reach the infinite path ααα . . .. Thus every vertex in E can reach a loop.
Furthermore, Theorem 2.2.12 also tells us that E satisfies Condition (L), and
thus Theorem 2.2.10 implies that C∗(E) is purely infinite.

Finally, we shall use the process of desingularization to analyze the ideal
structure of C∗-algebras corresponding to graphs satisfying Condition (K). This
will be more involved than our prior applications of desingularization, and we
shall see that that structure of ideals in C∗(E) will require more than just the
saturated hereditary subsets of E as it does in the row-finite case.

We first need to identify the saturated hereditary subsets of F in terms of E.
Recall that if E is a directed graph, then a set H ⊆ E0 is hereditary if whenever
e ∈ E1 with s(e) ∈ H, then r(e) ∈ H. A hereditary set H is called saturated if
every vertex that is not a sink or infinite emitter and that feeds only into H is
itself in H; that is, if

v not a sink or infinite emitter, and {r(e) | s(e) = v} ⊆ H implies v ∈ H.

Let E be a graph that satisfies Condition (K). When E is row-finite Theo-
rem 2.1.6(a) and Theorem 2.1.19 show that the saturated hereditary subsets of
E correspond to the ideals of C∗(E) via the map H 7→ IH , where IH is the ideal
generated by {pv : v ∈ H}. When E is not row-finite, this is not the case. For an
arbitrary graph E, one can check that H 7→ IH is still injective, just as shown
in the proof of Theorem 2.1.6(a). However, it is no longer true that this map is
surjective; that is, there may exist ideals in C∗(E) that are not of the form IH
for some saturated hereditary set H. The reason the proof for row-finite graphs
no longer works is that if I is an ideal, then {se+I, pv+I} will not necessarily be
a Cuntz-Krieger E \H-family for the graph E \H defined in Theorem 2.1.6(a).
(And, consequently, it is sometimes not true that C∗(E)/IH ∼= C∗(E \H).) To
describe an ideal in C∗(E) we will need a saturated hereditary subset and one
other piece of information. Loosely speaking, this additional piece of information
tells us how close {se + I, pv + I} is to being a Cuntz-Krieger E \H-family.
Definition 2.2.16. Given a saturated hereditary subset H ⊆ E0, we define the
breaking vertices of H to be the set

BH := {v ∈ E0 : v is an infinite-emitter and 0 < |s−1(v) ∩ r−1(E0 \H)| <∞}.

We see that BH is the set of infinite-emitters that point to a finite (and nonzero)
number of vertices not in H. Also, since H is hereditary, BH is disjoint from H.

Now fix a saturated hereditary subset H of E and let S be any subset of BH .
Let {se, pv} be the canonical generating Cuntz-Krieger E-family and define

I(H,S) := the ideal in C∗(E) generated by {pv : v ∈ H} ∪ {pHv0 : v0 ∈ S},
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where pHv0 is the gap projection defined by

pHv0 := pv0 −
∑

s(e)=v0
r(e)/∈H

ses
∗
e.

Note that the definition of BH ensures that the sum on the right is finite.

Definition 2.2.17. Let E be a graph. We say that (H,S) is an admissible pair
for E if H is a saturated hereditary subset of vertices of E and S ⊆ BH . For
a fixed graph E we order the collection of admissible pairs for E by defining
(H,S) ≤ (H ′, S′) if and only if H ⊆ H ′ and S ⊆ H ′ ∪ S′.
Example 2.2.18. Let E be the graph

v
(∞) // w

(∞) //

��

x

y

Then the saturated hereditary subsets of E are E0, {w, x, y}, {x, y}, {x}, {y},
and ∅. Also B{x} = {w}, and BH = ∅ for all other saturated hereditary H in E.
Thus the admissible pairs of E are:

(E0, ∅), ({w, x, y}, ∅), ({x, y}, ∅), ({x}, {w}), ({x}, ∅), ({y}, ∅), (∅, ∅)

and these admissible pairs are ordered in the following way.

(E0, ∅)

({w, x, y}, ∅)

OOOOOOOOOOO

ooooooooooo

({x, y}, ∅)

WWWWWWWWWWWWWWWWWWWWWWWW ({x}, {w})

({y}, ∅)

OOOOOOOOOOO
({x}, ∅)

oooooooooooo

(∅, ∅)
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We shall show that the correspondence (H,S) 7→ I(H,S) is an inclusion-
preserving bijection. To do this we will first describe a correspondence between
admissible pairs in E and saturated hereditary subsets of vertices in a desingu-
larization of E.

Definition 2.2.19. Suppose that E is a graph and let F be a desingulariza-
tion of E. Also let (H,S) be an admissible pair for E. We define a saturated
hereditary subset HS ⊆ F 0 as follows. We first define H̃ := H ∪ {vn ∈ F 0 :
vn is on a tail added to a vertex in H}. Now for each v0 ∈ S let Nv0 be the
smallest nonnegative integer such that r(fj) ∈ H for all j > Nv0 . (The number
Nv0 exists since v0 ∈ BH implies that there must be a vertex on the tail added
to v0 beyond which each subsequent vertex points only to the next vertex on the
tail and into H.) Define Tv0 := {vn : vn is on the tail added to v0 and n ≥ Nv0}
and define

HS := H̃ ∪
⋃
v0∈S

Tv0 .

Note that for v0 ∈ BH we have v0 /∈ HS . Furthermore, the tail attached to v0
will eventually be inside HS if and only if v0 ∈ S. It is easy to check that HS is
hereditary, and choosing Nv0 to be minimal ensures that HS is saturated.

Example 2.2.20. Let E be the graph shown in Example 2.2.6. If we let H = {z0},
then H is saturated hereditary and BH = {v0}. Suppose S = {v0}. Then
H̃ = {z0, z1, z2, . . .} and Nv0 = 3, so Tv0 = {v3, v4, v5, . . .}, and HS =
{z0, z1, . . . , v3, v4, . . .}.

In a similar manner we can see that H∅ = {z0, z1, z2, . . .}.

Lemma 2.2.21. Let E be a graph and let F be a desingularization of E. The
map (H,S) 7→ HS is an order-preserving bijection from the lattice of admissible
pairs of E onto the lattice of saturated hereditary subsets of F .

Proof. Let K be a saturated hereditary subset of F . Define

SK := {v0 ∈ BK∩E0 : past a certain point all vertices on the tail

added to v0 are in the set K}.

One can easily check that the map K 7→ (K ∩E0, SK) is an inverse for the map
(H,S) 7→ HS , and that the map (H,S) 7→ HS is inclusion preserving.

To analyze the ideals of C∗(E) we will make use of the Rieffel correspondence.
Whenever two C∗-algebra A and B are Morita equivalent, there is a lattice
isomorphism between the lattice of ideals of A and the lattice of ideals of B.
When one of these C∗-algebras is a full corner of the other, this correspondence
takes the following form:
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Lemma 2.2.22. Suppose A is a C∗-algebra, p is a projection in the multiplier
algebra M(A), and pAp is a full corner of A. Then the map I 7→ pIp is an
order-preserving bijection from the ideals of A to the ideals of pAp; its inverse
takes an ideal J in pAp to

AJA := span{aba′ : a, a′ ∈ A and b ∈ J}.

Proof. Suppose I is an ideal in A. The continuity of a 7→ pap shows that pIp is
closed in pAp, and (pAp)(pIp)(pAp) = p(Ap)I(pA)p ⊆ pIp shows that pIp is an
ideal in pAp. Furthermore,

A(pIp)A = Ap(AIA)pA = ApAIApA = AIA = I.

Conversely, if J is an ideal in pAp, then

pAJAp = pAJAp = pA(pAp)J(pAp)Ap = (pAp)J(pAp) = J.

The above two paragraphs show that the maps under discussion are inverses
of each other. It is also clear that these maps preserve ordering by inclusion.

Proposition 2.2.23. Let E be a graph and let F be a desingularization of E.
Let pE0 be the projection in M(C∗(F )) described in Lemma 2.1.13, and identify
C∗(E) with pE0C∗(F )pE0 as described in Theorem 2.2.8. If H is a saturated
hereditary subset of E0 and S ⊆ BH , then then pE0IHSpE0 = I(H,S).

Proof. Let {se, pv : e ∈ F 1, v ∈ F 0} be a generating Cuntz-Krieger F -family. As
shown in the proof of Theorem 2.2.8, the set {te, qv : e ∈ E1, v ∈ E0}, where
qv := pv and

te :=

{
sαe

s(e)
if s(e) is an infinite emitter

se if s(e) is not an infinite emitter

is a Cuntz-Krieger E-family that generates a C∗-subalgebra of C∗(F ) isomorphic
to C∗(E), and furthermore, this C∗-subalgebra is equal to the corner of C∗(F )
determined by pE0 .

It follows from Lemma 2.1.11 that

IHS = span{sαs∗β : α, β ∈ F ∗ and r(α) = r(β)}.

Thus

pE0IHSpE0

= span{pE0sαs
∗
βpE0 : α, β ∈ F ∗ and r(α) = r(β) ∈ HS}



2. Mark Tomforde 51

= span{sαs∗β : α, β ∈ F ∗, s(α) ∈ E0, s(α) ∈ E0, and r(α) = r(β) ∈ HS}

If sαs∗β is an element of this ideal with r(α) = r(β) ∈ H, then sαs∗β is of the form
tµt

∗
ν for µ, ν ∈ E∗ with r(µ) = r(ν) ∈ H, and hence sαs∗β ∈ I(H,S). On the other

hand, if sαs∗β is an element of this ideal with r(α) = r(β) ∈ Tv0 for some v0 ∈ S,
then sαs

∗
β is of the form tµse1...eks

∗
e1...ek

t∗ν for µ, ν ∈ E∗ with r(µ) = r(ν) = v0.
But then

sαs
∗
β = tµse1...eks

∗
e1...ek

t∗ν

= tµse1...ek−1(pvk−1 − sfks∗fk)s
∗
e1...ek−1

t∗ν

= tµse1...ek−1s
∗
e1...ek−1

t∗ν − tµse1...ek−1fks
∗
e1...ek−1fk

t∗ν

...

= tµt
∗
ν −

k∑
j=1

tµtgj t
∗
gj t

∗
ν

= tµ(qv0 −
∑

s(g)=v0
r(g)/∈H

tgt
∗
g)t

∗
ν −

∑
r(gj)∈H
j≤k

tµgj t
∗
µgj

= tµq
H
v0t

∗
ν −

∑
r(gj)∈H
j≤k

tµgj t
∗
µgj

∈ I(H,S)

Hence we have shown that pE0IHSpE0 ⊆ I(H,S).
To verify the reverse inclusion we shall show that the generators {qv : v ∈

H} ∪ {qHv0 : v0 ∈ S} of I(H,S) are in pE0IHSpE0 . Clearly for v ∈ H we have
qv = pv = pE0pvpE0 ∈ pE0IHSpE0 , so all that remains to show is that for every
v0 ∈ S we have qHv0 ∈ pE0IHSpE0 .

Let v0 ∈ S and n := Nv0 . Then

pv0 = se1s
∗
e1 + sf1s

∗
f1

= se1pv1s
∗
e1 + sf1s

∗
f1

= se1(se2s
∗
e2 + sf2s

∗
f2)s

∗
e1 + sf1s

∗
f1

= se1e2pv2s
∗
e1e2 + se1f2s

∗
e1f2 + sf1s

∗
f1

...

= se1...ens
∗
e1...en +

n∑
j=1

tgj t
∗
gj
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Now since r(en) = vn ∈ HS we see that pvn ∈ IHS and hence sen = senpvn ∈
IHS . Consequently, se1...ens

∗
e1...en ∈ IHS . Similarly, whenever r(gj) ∈ H, then

tgj t
∗
gj ∈ IHS . Now, by definition, every gj with r(gj) /∈ H has j < n.
Therefore the above equation shows us that

qHv0 = qv0 −
∑

s(gj)=v0
r(gj)/∈H

tgj t
∗
gj

= pv0 −
∑

s(gj)=v0
r(gj)/∈H

tgj t
∗
gj

=
∑

r(gj)∈H
j<n

tgj t
∗
gj + se1...ens

∗
e1...en

which is an element of IHS by the previous paragraph. Hence IHS ⊆ IH,S .

Theorem 2.2.24. Let E be a graph that satisfies Condition (K). Then the map
(H,S) 7→ I(H,S) is an inclusion-preserving bijection from admissible pairs for E
onto the ideals of C∗(E).

Proof. Let F be a desingularization of E. First, it follows from Lemma 2.2.21
that the map (H,S) 7→ HS is an order-preserving bijection from the admis-
sible pairs of E onto the saturated hereditary subsets of F . Second, since the
loops in E are in one-to-one correspondence with the loops in F , we see that F
satisfies Condition (K); because F is row-finite, it follows from Theorem 2.1.6
and Theorem 2.1.19 that the map H 7→ IH is an order-preserving bijection
from the saturated hereditary subsets of F onto the ideal of C∗(F ). Third, we
see from Theorem 2.2.8 and Lemma 2.2.22 that the map I 7→ pE0IpE0 is an
order-preserving bijection from the ideals of C∗(F ) onto the ideals of C∗(E).

Composing these three maps gives (H,S) 7→ pE0IHSpE0 , and the result then
follows from Proposition 2.2.23.

Remark 2.2.25. When E does not satisfy Condition (K), the ideals I(H,S) are
precisely the gauge-invariant ideals in C∗(E) [30, Theorem 3.6]. In addition,
although we have spoken of the collection of admissible pairs as being an ordered
set, it is also a lattice and the map (H,S) 7→ I(H,S) is a lattice isomorphism. This
lattice structure is described in [50, §3], but because it is somewhat complicated
we left it out of our discussion to avoid non-insightful technicalities.

Furthermore, we have already discussed how the quotient C∗(E)/I(H,S) is
not necessarily isomorphic to C∗(E \H) because the collection {se+ I(H,S), pv+
I(H,S)} may fail to satisfy the third Cuntz-Krieger relation at breaking vertices
for H. However, one can show that C∗(E)/I(H,S) is isomorphic to C∗(FH,S),
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where FH,S is the graph defined by

F 0
H,S := (E0\H) ∪ {v′ : v ∈ BH\S}
F 1
H,S := {e ∈ E1 : r(e) /∈ H} ∪ {e′ : e ∈ E1, r(e) ∈ BH\S}

and r and s are extended by s(e′) = s(e) and r(e′) = r(e)′. (One can see that
FH,S is formed by outsplitting E \ F at the the breaking vertices not in S, and
this adds a sink to E \ H for each vertex in BH \ S.) A construction of this
isomorphism can be found in [30, Corollary 3.5]. One can also see that when
S = BH , we have FH,S = E \H. So if H is a saturated hereditary subset of E,
then C∗(E)/I(H,BH)

∼= C∗(E \H).
We conclude this section by mentioning that desingularization has also been

used to generalize many other results for row-finite graph algebras to general
graph algebras: In [50, Corollary 2.12] desingularization was used to extend the
Cuntz-Krieger Uniqueness Theorem, in [50, §4] desingularization was used to
extend the description of PrimC∗(E) when E satisfies Condition (K), in [49]
desingularization was used to extend the computations of K-theory and Ext
for C∗(E), and in [54] desingularization was used to extend characterizations of
liminal and Type I graph algebras to the general setting.

As with any construction, it is good to understand not only the uses of desin-
gularization, but also its limitations. If we look at the proof of Theorem 2.2.8
we see that C∗(E) is isomorphic to a full corner of C∗(F ). However, this iso-
morphism is not equivariant for the gauge actions on C∗(E) and C∗(F ) — in
fact, in order to apply the Gauge-Invariant Uniqueness Theorem in the proof of
Theorem 2.2.8, we had to create a new gauge action β on C∗(F ). One of the
consequences of this fact is that there is no obvious way to use desingularization
to extend the Gauge-Invariant Uniqueness Theorem for row-finite graph algebras
to general graph algebras. Currently, all known proofs of the Gauge-Invariant
Uniqueness Theorem for arbitrary graphs either prove the result directly or
use approximations by subalgebras that are isomorphic to C∗-algebras of finite
graphs (see [110, §1] and [30, Theorem 2.1]. However, if it is possible, it might
be interesting to have a proof of the Gauge-Invariant Uniqueness Theorem that
uses desingularization.

2.3 K-theory of Graph Algebras

In K-theory one associates to each C∗-algebra A two abelian groups K0(A) and
K1(A). These groups reflect a great deal of the structure of A, and they have a
number of remarkable properties. Unfortunately, the subject of K-theory can be
rather technical (in fact entire books [138, 119] have been written with the goal
of giving the reader a mere introduction to the subject). Therefore in this section
we will give a brief description of K-theory, survey the K-theory computations
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that have been accomplished for graph algebras, and discuss how classification
theorems for C∗-algebras can be applied to graph algebras.
Definition 2.3.1. If A is a unital C∗-algebra, the group K0(A) is formed as
follows: For each natural number n we let ProjMn(A) be the set of projections in
Mn(A). By identifying p ∈ ProjMn(A) with the projection p⊕0 in ProjMn+1(A)
formed by adding a row and column of zeros to the bottom and right of p, we may
view ProjMn(A) as a subset of ProjMn+1(A). With this identification we let
Proj∞(A) =

⋃∞
n=1 ProjMn(A). We define an equivalence relation on Proj∞(A)

by saying p ∼ q if there exists u ∈ Proj∞(A) with p = uu∗ and q = u∗u. We let
[p]0 denote the equivalence class of p ∈ Proj∞(A). We define an addition on these
equivalence classes by setting [p]0 + [q]0 equal to

[( p 0
0 q

)]
0
. With this operation

of addition, the equivalence classes of Proj∞(A) are an abelian semigroup. We
define K0(A) to be the Grothendieck group of this semigroup; that is, K0(A) is
the abelian group of formal differences

K0(A) := {[p]0 − [q]0 : p, q ∈ Proj∞(A)}

with ([p]0 − [q]0) + ([p′]0 − [q′]0) := ([p]0 + [p′]0)− ([q]0 + [q′]0).
Definition 2.3.2. The group K1(A) is defined using the groups U(Mn(A)) of
unitary elements in Mn(A). We embed U(Mn(A)) into U(Mn+1(A)) by u 7→
u ⊕ 1, where u ⊕ 1 is the matrix formed by adding a 1 to the bottom right-
hand corner and zeroes elsewhere in the right column and bottom row. We then
let U∞(A) :=

⋃∞
n=1 U(Mn(A)). We define an equivalence relation on U∞(A) as

follows: If u ∈ Um(A) and v ∈ Un(A), we write u ∼ v if there exists a natural
number k ≥ max{m,n} such that

(
u 0
0 1k−n

)
is homotopic to

(
v 0
0 1k−m

)
in Uk(A)

(i.e., there exists a continuous map h : [0, 1]→ Uk(A) such that h(0) =
(
u 0
0 1k−n

)
and h(1) =

(
v 0
0 1k−m

)
. We denote the equivalence class of u ∈ U∞(A) by [u]1.

We define K1(A) to be

K1(A) := {[u]1 : u ∈ U∞(A)}

with addition given by [u]1 + [v]1 := [( u 0
0 v )]1. It is true (but not obvious) that

K1(A) is an abelian group.
The K-groups K0(A) and K1(A) can also be defined when A is nonunital.

We refer the reader to [138] and [119] for these definitions as well as for details
of the definitions in the unital case.
Remark 2.3.3. If φ : A → B is a homomorphism between C∗-algebras, then φ
induces homomorphisms φn : Mn(A) → Mn(B) by φ((aij)) = (φ(aij)). Since
the φn’s map projections to projections and unitaries to unitaries, they induce
homomorphisms K0(φ) : K0(A) → K0(B) and K1(φ) : K1(A) → K1(B). This
process is functorial : the identity homomorphism induces the identity map on
K-groups, and Ki(φ ◦ ψ) = Ki(φ) ◦ Ki(ψ) for i = 1, 2. Thus K0 and K1 are
functors from the category of C∗-algebras to the category of abelian groups.
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Remark 2.3.4. An ordered abelian group (G,G+) is an abelian group G together
with a distinguished subset G+ ⊆ G satisfying

(i) G+ +G+ ⊆ G+, (ii) G+ ∩ (−G+) = {0}, (iii) G+ −G+ = G.

We call G+ the positive cone of G, and it allows us to define an ordering on G
by setting g1 ≤ g2 if and only if g2 − g1 ∈ G+.

If A is a C∗-algebra, and we set

K0(A)+ := {[p]0 : p ∈ Proj∞(A)},

then (K0(A),K0(A)+) satisfies condition (i) above, but will not necessarily
satisfy (ii) and (iii). However, if A is an AF-algebra, then (K0(A),K0(A)+)
does satisfy conditions (ii) and (iii) and (K0(A),K0(A)+) is an ordered abelian
group. (More generally, if A has an approximate unit consisting of projections,
then (K0(A),K0(A)+) satisfies condition (iii), and ifA is also stably finite then
(K0(A),K0(A)+) satisfies condition (ii).)

We shall often have to consider isomorphisms from the K-groups of a C∗-
algebra to abelian groups, and frequently we will want these isomorphisms to
preserve the ordering or take an element in the K-group to a distinguished
element in the group. Therefore we establish the following notation.
Definition 2.3.5. Let A be a C∗-algebra, and let G be an abelian group and
g ∈ G. If p ∈ A is a projection, then we write (K0(A), [p]0) ∼= (G, g) if there
is an isomorphism α : K0(A) → G with α([p]0) = g. If G+ ⊆ G is a positive
cone of G, then we write (K0(A),K0(A)+) ∼= (G,G+) if there is an isomorphism
α : K0(A) → G with α(K0(A)+) = G+, and we write (K0(A),K0(A)+, [p]0) ∼=
(G,G+, g) if there is an isomorphism α : K0(A) → G with α(K0(A)+) = G+

and α([p]0) = g.
Remark 2.3.6. If E is a graph and v ∈ E0 is a vertex that is neither a sink nor
an infinite emitter, then pv =

∑
s(e)=v ses

∗
e, and in K0(C∗(E)) we have

[pv]0 =

 ∑
s(e)=v

ses
∗
e


0

=
∑
s(e)=v

[ses∗e]0 =
∑
s(e)=v

[s∗ese]0 =
∑
s(e)=v

[pr(e)]0.

Theorem 2.3.9 says, among other things, that K0(C∗(E)) is generated by the
collection {[pv]0 : v ∈ E0} and that this collection is subject only to the above
relations.

2.3.1 Computing K-theory

For our K-theory computation we will associate a matrix to a directed graph
that will summarize the relations in Remark 2.3.6.
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Definition 2.3.7. Let E = (E0, E1, r, s) be a row-finite directed graph with no
sinks. The vertex matrix of E is the (possibly infinite) E0×E0 matrix AE whose
entries are the non-zero integers

AE(v, w) := #{e ∈ E1 : s(e) = v and r(e) = w}.

Remark 2.3.8. Let E be a row-finite graph and let
⊕

E0 Z denote the direct
sum of copies of Z indexed by E0 (i.e. sequences of integers that only have a
finite number of nonzero terms). If E is row-finite, then each row of the matrix
AE contains a finite number of nonzero entries (in fact, this is where the term
row-finite come from!), and each column of the transpose AtE contains a finite
number of nonzero entries. Therefore, we have a map AtE :

⊕
E0 Z →

⊕
E0 Z

defined by left multiplication. (The column-finiteness of AtE ensures that AtEx ∈⊕
E0 Z for each x ∈

⊕
E0 Z.) If {se, pv : e ∈ E1, v ∈ E0} is a Cuntz-Krieger

E-family generating C∗(E), and if we identify each [pv]0 with the element δv ∈⊕
E0 Z containing a 1 in the vth position and 0’s elsewhere, then the relation in

Remark 2.3.6 may be summarized as saying (AtE − I)δv is equivalent to 0 for all
v ∈ E0.

We are now in a position to describe how to compute the K-theory of the
C∗-algebra of a row-finite graph with no sinks. This computation was first done
in [110, Theorem 3.2]. The computation and its proof have also been discussed
in [108, Chapter 7]. (In both cases sinks were allowed in the graphs, but for the
sake of simplicity we state the result here for row-finite graphs without sinks.

Theorem 2.3.9 (K-theory for Graph Algebras: The Row-Finite, No Sinks
Case). Let E = (E0, E1, r, s) be a row-finite graph with no sinks. If AE is the
vertex matrix of E, and AtE − I :

⊕
E0 Z→

⊕
E0 Z by left multiplication, then

K0(C∗(E)) ∼= coker(AtE − I)

via an isomorphism taking [pv]0 to [δv] for each v ∈ E0, and

K1(C∗(E)) ∼= ker(AtE − I).

Theorem 2.3.9 shows that to calculate the K-theory of C∗(E) for a row-finite
graph E with no sinks, we simply have to write down the matrix AtE − I, and
then calculate the cokernel and kernel of AtE − I. When E has a finite number
of vertices, this can be done very easily.

Remark 2.3.10 (Computing the Kernel and Cokernel of a Finite Matrix). Let
A be an m × n matrix with integer entries, and consider A : Zn → Zm by left
multiplication. By performing elementary row and column operations to A, we
may obtain an m×n matrix whose only nonzero entries are on the diagonal and
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of the form

D =



d1 · · · 0
. . .

...
dk

0
...

. . .
...

0 · · · · · · 0


where d1, . . . , dk are nonzero integers with k ≤ min{m,n}. Warning: Remember
that since we are viewing A as a map from the Z-module Zn into the Z-module
Zm, the allowed elementary row (resp. column) operations are: (1) adding an
integer multiple of one row (resp. column) to another row (resp. column), (2) in-
terchanging any two rows (resp. columns), (3) multiplying an row (resp. column)
by the unit 1 or the unit −1.

Since performing row operations to a matrix corresponds to postcomposing
A with an automorphism on Zm and performing column operations corresponds
to precomposing A with an automorphism on Zm, we see that performing row
and column operations will not change the isomorphism class of cokerA or kerA.
Hence

cokerA ∼= Z/d1Z⊕ . . .Z/dkZ⊕ Z⊕ . . .⊕ Z︸ ︷︷ ︸
m−k

and
kerA ∼= Z⊕ . . .⊕ Z︸ ︷︷ ︸

n−k

.

Example 2.3.11. Let E be the graph

v
��
ZZ:: whh
vv ��

xoo hh
vv

BB
�� ��
\\

Then E is row-finite with no sinks, and the vertex matrix of this graph is AE =(
3 0 0
2 1 0
0 3 4

)
and AtE − I =

(
2 2 0
0 0 3
0 0 3

)
. One can perform elementary row and column

operations on AtE − I to obtain
(

2 0 0
0 3 0
0 0 0

)
, and therefore

K0(C∗(G)) ∼= Z/2Z⊕ Z/3Z⊕ Z and K1(C∗(G)) ∼= Z.

When a graph has an infinite number of vertices, the matrix AtE − I will be
infinite, so we cannot use the method described in Remark 2.3.10 to calculate
the kernel and cokernel. However, in many situations, it is still possible to deduce
what these groups are, as the following example shows.
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Example 2.3.12. Let E be the graph

v1
��
EE v2oo v3oo v4oo · · ·oo

Then E is row-finite with no sinks, and the vertex matrix of this graph is AE =( 2 0 0 0 ···
1 0 0 0
0 1 0 0
...

. . .

)
and AtE − I =

 1 1 0 0 ···
0 −1 1 0
0 0 −1 1

...
. . .

. We see that an element
( x1
x2

...

)
∈⊕∞

i=1 Z is in the kernel of AtE − I if an only if the equations

x1 + x2 = 0, x2 − x3 = 0, x3 − x4 = 0, . . .

are satisfied. Since the xi’s are eventually zero this implies that x1 = x2 = . . . =

0. Thus K1(C∗(E)) = ker(AtE−I) = 0. In addition, if ~y =

(
y1
y2

...

)
∈
⊕∞

i=1 Z, then

from some n we have yi = 0 for i ≥ n, and we see that ~x :=


y1+...+yn
−y2−...−yn
−y3−...−yn

...
−yn

0
...

 ∈
⊕∞

i=1 Z. Since (AtE−I)~x = ~y we see that AtE−I is surjective, and K0(C∗(E)) =
coker(AtE − I) = 0.

Having seen how to calculate K-theory in the case of a row-finite graph with
no sinks, we now turn our attention to arbitrary graphs. In [128, Proposition 2]
the K-theory computation for graph algebras was extended to non-row-finite
graphs with a finite number of vertices. Additionally, in [49, Theorem 3.1] desin-
gularization was used to extend Theorem 2.3.9 to all non-row-finite graphs. We
present this result here.

Theorem 2.3.13 (K-theory for Graph Algebras: The General Case). Let E =
(E0, E1, r, s) be a graph. Also let J be the set vertices of E that are either sinks
or infinite emitters, and let I := E0\J . Then with respect to the decomposition
E0 = I ∪ J the vertex matrix of E will have the form

AE =
(
B C
∗ ∗

)
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where B and C have entries in Z and the ∗’s have entries in Z∪ {∞}. If we let(
Bt − I
Ct

)
:
⊕

I Z→
⊕

I Z⊕
⊕

J Z by left multiplication, then

K0(C∗(E)) ∼= coker
(
Bt − I
Ct

)
via an isomorphism taking [pv]0 to [δv] for each v ∈ E0, and

K1(C∗(E)) ∼= ker
(
Bt − I
Ct

)
.

Note that for a graph with a finite number of vertices, the matrix
(
Bt − I
Ct

)
will be finite and the method described in Remark 2.3.10 can be used to calculate
the K-theory.

Example 2.3.14. Let E be the graph

v //

��

w rr

x
(∞)
// y

(∞)

OO

Then x and y are infinite emitters, and AE =
(

0 1 1 0
0 1 0 0
0 0 0 ∞
0 ∞ 0 0

)
, so that B = ( 0 1

0 1 ) and

C = ( 1 0
0 0 ). Thus

(
Bt − I
Ct

)
=
(−1 0

1 0
1 0
0 0

)
: Z2 → Z4. By performing elementary

row and column operations to this matrix we obtain
(

1 0
0 0
0 0
0 0

)
. Thus K0(C∗(E)) ∼=

coker
(
Bt − I
Ct

)
∼= Z3 and K1(C∗(E)) ∼= ker

(
Bt − I
Ct

)
∼= Z.

Remark 2.3.15 (The K-groups of graph algebras). Suppose that E is a graph.
The calculation of K-theory described in Theorem 2.3.13 has the following im-
plications.

• For any graph E, the group K1(C∗(E)) is free. This follows from the fact

that
⊕

I Z is a free group, and K1(C∗(E)) ∼= ker
(
Bt − I
Ct

)
is a subgroup

of this free group, and therefore also free. Remarkably, this is the only
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restriction on the K-theory; in fact, Szymański has shown in [129] that
if G0 and G1 are countably generated abelian groups with G1 free, then
there exists a row-finite, transitive graph E such that K0(C∗(E)) ∼= G0

and K1(C∗(E)) ∼= G1. (Warning: In some of the graph algebra literature
the word free has been mistakenly replaced by torsion-free. Recall that
while these two notions are the same for finitely generated abelian groups,
for countably generated abelian groups the free groups are a proper class
of the torsion-free groups; for example, the additive group Q is a countably
generated abelian group that is torsion-free but not free.)

• If E is a finite graph with no sinks, then all the K-theory information of
C∗(E) is contained in K0(C∗(E)). In particular, the following hold:

1. the K-groups of C∗(G) are finitely generated

2. K1(C∗(G)) is a free group

3. K0(C∗(G)) ∼= T ⊕K1(C∗(G)) for some finite torsion group T

Consequently, if E1 and E2 are finite graphs, then K0(C∗(E1)) ∼=
K0(C∗(E2)) implies that K1(C∗(E1)) ∼= K1(C∗(E2)).

• If E is a graph that has a finite number of vertices (but possibly an infinite
number of edges), then rankK0(C∗(E)) ≥ rankK1(C∗(E)). The reason for
this is that Theorem 2.3.13 gives the short exact sequence:

0 −→ K1(C∗(G)) −→ ZI −→ ZI ⊕ ZJ −→ K0(C∗(G)) −→ 0

and since I and J are finite we have rankK0(C∗(G)) ≥ rankK1(C∗(G)).

• If E is a graph in which every vertex is either a sink or an infinite emitter,
then K0(C∗(E)) ∼=

⊕
E0 Z and K1(C∗(E)) ∼= 0. This is because the set I

described in Theorem 2.3.13 is empty so
⊕

I Z = 0.

In addition to the vertex matrix, one may also use the edge matrix to calculate
the K-theory of a graph algebra.

Definition 2.3.16. Let E = (E0, E1, r, s) be a row-finite directed graph with no
sinks. The edge matrix of E is the (possibly infinite) E1 ×E1 matrix BE whose
entries are

BE(e, f) :=

{
1 if r(e) = s(f)
0 otherwise.

Note that if E is row-finite, then any row of BE will have at most a finite
number of nonzero entries. Thus we have a well-defined map BtE − I :

⊕
E1 Z→⊕

E1 Z given by left multiplication.
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Proposition 2.3.17. If E is a row-finite graph with no sinks, and we let AtE−I :⊕
E0 Z→

⊕
E0 Z and BtE − I :

⊕
E1 Z→

⊕
E1 Z by left multiplication, then

coker(AtE − I) ∼= coker(BtE − I) and ker(AtE − I) ∼= ker(BtE − I).

Proof. Let S denote the E0 × E1 matrix defined by

S(v, e) :=

{
1 if s(e) = v

0 otherwise.

Also let R denote the E1 × E0 matrix defined by

R(e, v) :=

{
1 if r(e) = v

0 otherwise.

Then we see that
SR = AE and RS = BE

and
RtSt = AtE and StRt = BtE . (2.3.1)

We define a map from coker(AtE − I) → coker(BtE − I) by x + im(AtE − I) 7→
Stx+im(BtE−I). This is well-defined because if x+im(AtE−I) = y+im(AtE−I),
then x− y = (AtE − I)z for some z and

Stx− Sty = St(x− y) = St(AtE − I)z = (BtES
t − St)z = (Bt − I)Stz

so Stx+ im(BtE − I) = Sty + im(BtE − I). In a similar manner we may define a
map from coker(BtE−I)→ coker(AtE−I) by x+im(BtE−I) 7→ Rtx+im(AtE−I).
We see that these maps are inverses of each other because

RtStx+ im(AtE − I) = AtEx+ im(AtE − I)
= [x+ (AtE − I)x] + im(AtE − I) = x+ im(AtE − I)

and

StRtx+ im(BtE − I) = BtEx+ im(BtE − I)
= [x+ (BtE − I)x] + im(BtE − I) = x+ im(BtE − I).

Thus coker(AtE − I) ∼= coker(BtE − I).
In addition, we may define a map from ker(AtE−I) to ker(BtE−I) by x 7→ Stx.

We see that this map takes values in ker(BtE − I), because if x ∈ ker(At − I)
then

(BtE − I)Stx = (StAtE − St)x = St(AtE − I)x = 0.
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Similarly, we may define a map from ker(BtE − I) to ker(AtE − I) by x 7→ Rtx.
We see that these maps are inverses of each other because if x ∈ ker(AtE − I),
then

RtStx = AtEx = x+ (AtE − I)x = x

and if x ∈ ker(BtE − I), then

StRtx = BtEx = x+ (BtE − I)x = x.

Thus ker(AtE − I) ∼= ker(BtE − I).

The above proposition together with Theorem 2.3.9 gives the following.

Proposition 2.3.18. Let E = (E0, E1, r, s) be a row-finite graph with no sinks.
If BE is the vertex matrix of E, and BtE − I :

⊕
E1 Z→

⊕
E1 Z by left multipli-

cation, then
K0(C∗(E)) ∼= coker(BtE − I)

via an isomorphism taking [pv]0 to
∑
s(e)=v[δe] for each v ∈ E0, and

K1(C∗(E)) ∼= ker(BtE − I).

Remark 2.3.19. Theorem 2.3.9 and Proposition 2.3.18 show that when E is a
row-finite graph with no sinks, then to calculate the K-theory of C∗(E) we may
use either the vertex matrix AE or the edge matrix BE . In certain situations,
one of these matrices may be easier to use than the following: The edge matrix
has the advantage that all its entries are in {0, 1} and this simplifies row and
column operations. However, the edge matrix has the disadvantage that it is
typically much larger than the vertex matrix.
Remark 2.3.20. In addition to computing the isomorphism classes of the K-
groups of a graph algebra, one often wants to compute the ordering on
K0(C∗(E)). When E is a row-finite graph (possibly with sinks) it follows from
[133, Lemma 2.1] that if E is row-finite (but possibly has sinks), then the
isomorphism described in Theorem 2.3.13 takes K0(C∗(E))+ to {[x] : x ∈⊕

I N ⊕
⊕

J N}, where [x] denotes the class of x in coker
(
Bt − I
Ct

)
. If E is

not row-finite, then [133, Theorem 2.2] shows that the isomorphism described

in Theorem 2.3.13 takes K0(C∗(E))+ onto the semigroup of coker
(
Bt − I
Ct

)
generated by the set

{[δv] : v ∈ E0} ∪ {[δv]−
∑
e∈S

[δr(e)] : v is an infinite emitter and S

is a finite subset of s−1(v)}.
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Remark 2.3.21. We conclude by commenting that Ext, the dual theory for K-
theory, has also been computed for C∗-algebras of graph satisfying Condition (L).
This was done for row-finite graph algebras in [131, Theorem 5.16] and arbitrary
graph algebras in [49, Theorem 3.1]. Specifically, if AE = (B C

∗ ∗ ) is the decom-
position described in Theorem 2.3.13, then (B − I C) :

∏
I Z ⊕

∏
J Z →

∏
I Z

defines a mapping by left multiplication and Ext(C∗(E)) ∼= coker(B − I C).
(Note that the domain and codomain of this map involve direct products rather
than direct sums.)

2.3.2 Classification Theorems

One wants to calculate the K-theory of a C∗-algebra because it provides an
invariant. K-theory can always be used to tell if two C∗-algebras are differ-
ent: If two C∗-algebras have non-isomorphic K-theory, for example, then those
C∗-algebras are not Morita equivalent (and hence also not isomorphic). More im-
portantly, in certain situations K-theory can be used to tell when C∗-algebras
are the same.

Elliott has conjectured that all nuclear C∗-algebras can be classified by K-
theoretic information, which is now called the Elliott invariant. (For a general
nuclear C∗-algebra the Elliott invariant involves K-theoretic information beyond
the K0 and K1 groups that we have not discussed. However, for the classes of
C∗-algebras we consider, the invariant will only involve the ordered K0-group
and the K1-group.) The Elliott conjecture has been verified in a number of spe-
cial cases, including AF-algebras and certain simple purely infinite C∗-algebras.
Using these results we shall describe how all simple graph algebras are classified
by their K-theory, and we shall give an algorithm for determining whether two
simple graph algebras are isomorphic and whether they are Morita equivalent.

AF-algebras

If A is an AF-algebra, then K1(A) = 0. Hence all the K-theoretic information
of A is contained in the group K0(A). The AF-algebras were one of the first
class of C∗-algebras to be classified by K-theory, and this was done by Elliott in
the 1970’s [52]. It was this success that inspired Elliott to conjecture that wider
classes of C∗-algebras can be classified by K-theoretic information.

The following theorem appears in most books on operator algebra K-theory;
see, for instance, [138, Theorem 12.1.3].

Theorem 2.3.22 (Elliott’s Theorem). Let A and B be AF-algebras. Then A and
B are Morita equivalent if and only if (K0(A),K0(A)+) ∼= (K0(B),K0(B)+).
That is, the ordered K0-group is a complete Morita equivalence invariant for
AF-algebras.
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If A and B are both unital, then A and B are isomorphic if and only if
(K0(A),K0(A)+, [1A]0) ∼= (K0(B),K0(B)+, [1B ]0). That is, the ordered K0-
group together with the position of the unit is a complete isomorphism invariant
for AF-algebras.

Remark 2.3.23. If E is a graph with no loops, then as described in Remark 2.1.26,
C∗(E) is an AF-algebra. Using Theorem 2.3.13 and Remark 2.3.20, we can cal-
culate (K0(C∗(E)),K0(C∗(E))+) and determine the Morita equivalence class of
C∗(E).
Remark 2.3.24. Although Theorem 2.3.22 only talks of the Morita equiva-
lence class of nonunital AF-algebras, the isomorphism class of a nonunital
AF-algebra is also determined by K-theoretic information. As described in
[138, Theorem 12.1.3] if A is an AF-algebra, then the scaled ordered group
(K0(A),K0(A)+, D(A)) is a complete isomorphism invariant of A. We have not
discussed the scale D(A) := {[p]0 : p ∈ Proj(A)} of the K0-group because the
author does not know of an easy way to calculate it for graph algebras, and so
it does not fit easily into our current discussion. However, when A is unital, the
scale D(A) may be replaced by the position of the class of the unit in the K0,
as described in our statement of Theorem 2.3.22.

Kirchberg-Phillips Algebras

In addition to AF-algebras, certain simple purely infinite C∗-algebras have been
classified by their K-theory. This result is known as the Kirchberg-Phillips Clas-
sification Theorem, and was proven independently by Kirchberg and Phillips
using different methods. Phillips’ result appears in [106]. Kirchberg’s version is
not yet published, but a preliminary account, including proofs of his “Geneva
Theorems” and partial proofs of his version of the classification theorem, was
circulated in 1994.

Theorem 2.3.25. Let A and B be purely infinite, simple, separable, nuclear
C∗-algebras that satisfy the Universal Coefficients Theorem.

1. If A and B are both unital, then A is isomorphic to B if and only if
(K0(A), [1A]0) ∼= (K0(B), [1B ]0) and K1(A) ∼= K1(B).

2. If A and B are nonunital, then A is isomorphic to B if and only if K0(A) ∼=
K0(B) and K1(A) ∼= K1(B).

Remark 2.3.26. Let K denote the compact operators on a separable infinite-
dimensional Hilbert space. We say that a C∗-algebra is stable if A ⊗ K ∼= A.
For any C∗-algebra, we see that A ⊗ K will be stable because K ⊗ K ∼= K.
We call A⊗K the stabilization of A. The stabilization of a C∗-algebra is always
nonunital, and both pure infiniteness and AF-ness are preserved by stabilization.
In addition, K0(A⊗K) ∼= K0(A) and K1(A⊗K) ∼= K1(A).
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The Brown-Green-Rieffel Theorem asserts that two separable C∗-algebras A
and B are Morita equivalent if and only if A⊗K ∼= B⊗K. Furthermore, Zhang’s
dichotomy [143] says that all separable, nonunital purely infinite C∗-algebras are
stable, and thus all separable, nonunital purely infinite C∗-algebras are Morita
Equivalent if and only if they are isomorphic.

Using these facts, the Kirchberg-Phillips Classification Theorem gives the
following.

Corollary 2.3.27. Let A and B be purely infinite, simple, separable, nuclear
C∗-algebras that satisfy the Universal Coefficients Theorem. Then three cases
can occur.
Case 1: A and B are both unital.

Then A and B are isomorphic if and only if (K0(A), [1A]0) ∼= (K0(B), [1B ]0)
and K1(A) ∼= K1(B). In addition, A and B are Morita equivalent if and only if
K0(A) ∼= K0(B) and K1(A) ∼= K1(B), and in this case A⊗K ∼= B ⊗K.
Case 2: A and B are both nonunital.

Then A and B are isomorphic if and only if K0(A) ∼= K0(B) and K1(A) ∼=
K1(B). In addition, A and B are Morita equivalent if and only if A and B are
isomorphic.
Case 3: One of A and B is nonunital and the other is unital.

Suppose A is nonunital and B is unital. Then A and B are not isomorphic,
and A and B are Morita equivalent if and only if K0(A) ∼= K0(B) and K1(A) ∼=
K1(B), in which case A ∼= B ⊗K.

Graph Algebras

To apply these classifications to graph algebras, we first consider when a graph
algebra will satisfy the hypotheses of Theorem 2.3.25. To begin, we see that all
graph algebras are separable since they are generated by the countable collection
{se, pv : e ∈ E1, v ∈ E0}. In addition, it is shown in [85, Proposition 2.6] that for
any directed graph E the crossed product C∗(E) ×α T is an AF-algebra. (The
proof in [85] is for row-finite graphs, but it should hold for arbitrary graphs
as well.) Therefore from the Takesaki-Takai duality theorem (see [102, Theo-
rem 7.9.3]) one has

C∗(E)⊗K(L2(T)) ∼= (C∗(E)×α T)×α̂ Z

and hence C∗(E) is stably isomorphic to the crossed product of an AF-algebra by
Z. It then follows from [40, Corollary 3.2] and [42, Proposition 6.8] that C∗(E)
is nuclear, and it follows from [121, Theorem 1.17] and [35, Chapter 23] that
C∗(E) satisfies the UCT. Hence the Kirchberg-Phillips Classification Theorem
applies to any purely infinite simple graph algebra.
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Moreover, if E = (E0, E1, r, s) is a graph, then C∗(E) is unital if and only if
E0 is finite. When E0 is finite, one can easily check that the Cuntz-Krieger rela-
tions imply that 1 =

∑
v∈E0 pv is a unit for C∗(E). Note that the isomorphisms

in Theorem 2.3.9 and Theorem 2.3.13 take [1]0 to the element

 1
1
1
.
.
.

 in the

appropriate cokernel.
Since the dichotomy for simple graph algebras given in Proposition 2.2.15 im-

plies that all simple graph algebras are either AF or purely infinite (depending
on whether or not the graph has a loop), we may use Theorem 2.3.22, Theo-
rem 2.3.25, and Corollary 2.3.27 to classify simple graph algebras. We summarize
the implications of these results here.

Theorem 2.3.28 (Classification of Simple Graph Algebras). Let E and F be
graphs, and suppose that C∗(E) and C∗(F ) are simple (characterized for row-
finite graphs in Theorem 2.1.23 and for arbitrary graphs in Theorem 2.2.12).
Then there are three possible cases.

Case 1: Both E and F have no loops.

Then C∗(E) and C∗(F ) are AF, and C∗(E) and C∗(F ) are Morita equivalent
if and only if (K0(C∗(E)),K0(C∗(E))+) ∼= (K0(C∗(F )),K0(C∗(F ))+), in which
case C∗(E)⊗K ∼= C∗(F )⊗K.

Furthermore, if A and B are unital, then C∗(E) ∼= C∗(F ) if and only if
(K0(C∗(E)),K0(C∗(E))+, [1C∗(E)]0) ∼= (K0(C∗(F )),K0(C∗(F ))+, [1C∗(F )]0).

Case 2: Both E and F each have at least one loop.
Then C∗(E) and C∗(F ) are purely infinite and there are three subcases.

(i) If E0 and F 0 are both finite, then C∗(E) ∼= C∗(F ) if and only
if (K0(C∗(E)), [1C∗(E)]0) ∼= (K0(C∗(F )), [1C∗(F )]0) and K1(C∗(E)) ∼=
K1(C∗(F )). Furthermore, C∗(E) and C∗(F ) are Morita equivalent if and
only if K0(C∗(E)) ∼= K0(C∗(F )) and K1(C∗(E)) ∼= K1(C∗(F )), in which
case C∗(E)⊗K ∼= C∗(F )⊗K.

(ii) If E0 and F 0 are both infinite, then C∗(E) ∼= C∗(F ) if and only if
K0(C∗(E)) ∼= K0(C∗(F )) and K1(C∗(E)) ∼= K1(C∗(F )). In addition,
C∗(E) and C∗(F ) are isomorphic if and only if C∗(E) and C∗(F ) are
Morita equivalent.

(iii) If one of E0 and F 0 is infinite and the other is finite (let us say E0

is infinite and F 0 is finite), then C∗(E) and C∗(F ) are not isomor-
phic. In addition C∗(E) and C∗(F ) are Morita equivalent if and only if
K0(C∗(E)) ∼= K0(C∗(F )) and K1(C∗(E)) ∼= K1(C∗(F )) in which case
C∗(E) ∼= C∗(F )⊗K.
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Case 3: One of E and F has at least one loop and the other has no
loops.

Then one of C∗(E) and C∗(F ) is purely infinite while the other is an AF-
algebra. Hence C∗(E) and C∗(F ) are not Morita equivalent (and therefore also
not isomorphic).

Remark 2.3.29. Notice that in Case 1 we did not give sufficient conditions for
C∗(E) and C∗(F ) to be isomorphic when C∗(E) and C∗(F ) are nonunital. This
is the only case missing from the above theorem, and if we were able to describe
the scale of the K0-group of a graph algebra, then as described in Remark 2.3.24
we would have a complete description.

When calculating the K-theory of a unital graph algebra C∗(E), we need

to calculate the kernel and cokernel of the finite matrix
(
Bt − I
Ct

)
:
⊕

I Z →⊕
I Z⊕

⊕
J Z, but in addition, we need to keep track of the position of the unit 1

1
1
.
.
.

.

Remark 2.3.30 (Computing the Position of the Unit). This remark is a follow-
up to Remark 2.3.10. If A is an m × n matrix and A : Zn → Zm by left
multiplication, then as described in Remark 2.3.10 we may perform elementary
row and column operations on A to form a matrix D whose only nonzero en-
tries d1, . . . , dk are on the diagonal. Since performing elementary row operations
(resp. column operations) corresponds to multiplying A on the left (resp. right)
by an elementary matrix, by keeping track of the row and column operations,
we may write MAN = D for some invertible matrices M and N . Since M
and N are invertible, we see that kerA ∼= kerD = Z⊕ . . .⊕ Z︸ ︷︷ ︸

n−k

. We also see that

cokerA ∼= cokerD = Z/d1Z⊕ . . .Z/dkZ⊕Z⊕ . . .⊕ Z︸ ︷︷ ︸
m−k

and that this isomorphism

takes the class x+ imA ∈ cokerA to the class M−1x+ imD ∈ cokerD.
We now consider some examples which make use of Theorem 2.3.28.

Example 2.3.31. Let E and F be the following graphs.

E v
��
ZZ::

((
whh
��
eeDD F v

��
ddDD

$$

Then C∗(E) and C∗(F ) are simple and purely infinite, and the graphs fall into
Case 2(i) of Theorem 2.3.28. We see that AF = (4), and

AtF − I = (3) : Z→ Z.
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Thus we have (K0(C∗(F )), [1C∗(F )]0) ∼= (Z3, [1]) and K1(C∗(E)) = 0.

Furthermore, AE =
(

3 1
1 3

)
and AtE− I =

(
2 1
1 2

)
: Z2 → Z2. We shall now

reduce this matrix to a diagonal matrix, keeping track of the row and column
operations that we use.

(
2 1
1 2

)
∼
(

2 1
−3 0

)
(−2 times Row 1 added to Row 2)

∼
(

0 1
−3 0

)
(−2 times Column 2 added to Column 1)

∼
(
−3 0
0 1

)
(Exchange Row 1 and Row 2)

∼
(

3 0
0 1

)
(−1 times Column 1)

Since row operations correspond to multiplying on the left by the associated
elementary matrices, and column operations correspond to multiplying on the
right by the associated elementary matrices, we have(

0 1
1 0

)(
1 0
−2 1

)(
2 1
1 2

)(
1 0
−2 1

)(
−1 0
0 1

)
=
(

3 0
0 1

)
and if we let M =

(
0 1
1 0

)(
1 0
−2 1

)
=

(
−2 1
1 0

)
, and N =(

1 0
−2 1

)(
−1 0
0 1

)
=
(
−1 0
2 1

)
, then M

(
2 1
1 2

)
N =

(
3 0
0 1

)
.

Thus we see that coker(AtE − I) ∼= Z3⊕ 0 and since M−1 =
(

0 1
1 2

)
we have

M−1

(
1
1

)
+ im

(
3 0
0 1

)
=
(

1
3

)
+ im

(
3 0
0 1

)
=
(

1
0

)
+ im

(
3 0
0 1

)
.

Thus (K0(C∗(E)), [1C∗(E)]0) ∼= (Z3, [1]) and K1(C∗(E)) = 0.
It follows that C∗(E) ∼= C∗(F ).

Remark 2.3.32. Notice that although we were able to determine that C∗(E) ∼=
C∗(F ) in Example 2.3.31, we have no idea what the isomorphism is (since the
Kirchberg-Phillips Classification Theorem only tells us of the existence of the
isomorphism between C∗-algebras). It would be interesting, and possibly diffi-
cult, to show how in situations such as this one can exhibit a Cuntz-Krieger
E-family in C∗(F ), so that the isomorphism may be described explicitly.
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Example 2.3.33. Let E be the graph in Example 2.3.12, and let F be the graph

v:: dd

Then C∗(E) and C∗(F ) are simple and purely infinite, and the graphs fall into
Case 2(iii) of Theorem 2.3.28. We see that AF = (2), and

AtF − I = (1) : Z→ Z.

Thus we have K0(C∗(F )) = 0 and K1(C∗(F )) = 0. Since it was shown in
Example 2.3.12 that K0(C∗(E)) = 0 and K1(C∗(E)) = 0, we have that C∗(F ) ∼=
C∗(E)⊗K.

Moreover, since we know that C∗(E) is the Cuntz algebra O2, we have that
C∗(F ) ∼= O2 ⊗K so that C∗(F ) is the stabilization of O2.

We conclude this section by discussing which AF-algebras and which
Kirchberg-Phillips algebras arise as graph algebras.

It was shown in [48] and [135] that every AF-algebra is Morita equivalent to
a graph algebra. In addition, it is known that there are AF-algebras that are not
isomorphic to any graph algebra.

With regards to the Kirchberg-Phillips algebras, Szymański has proven the
following in [129, Theorem 1.2].

Theorem 2.3.34. Let G0 and G1 be countable abelian groups with G1 free. If
g ∈ G0, then there is a row-finite, transitive graph E with an infinite number
of vertices, and a vertex v ∈ E0 such that (K0(C∗(E)), [pv]0) ∼= (G0, g) and
K1(C∗(E)) ∼= G1.

The proof of Szymański’s theorem is very concrete, and in fact he describes
how to construct the graph E from (G0, g) and G1. Also, note that if E is a
row-finite, transitive graph with an infinite number of vertices, then C∗(E) is
simple, purely infinite, and nonunital.

The Kirchberg-Phillips Classification Theorem then gives the following two
corollaries.

Corollary 2.3.35. Let A be a purely infinite, simple, separable, nonunital, nu-
clear C∗-algebra that satisfies the Universal Coefficient Theorem. If K1(A) is
free, then A is isomorphic to the C∗-algebra of a row-finite, transitive graph.

Corollary 2.3.36. Let A be a purely infinite, simple, separable, unital, nuclear
C∗-algebra that satisfies the Universal Coefficient Theorem. If K1(A) is free,
then A is isomorphic to a full corner of the C∗-algebra of a row-finite, transitive
graph.
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Proof. Choose a row-finite, transitive graph E and a vertex v such that
(K0(C∗(E)), [pv]0) ∼= (K0(A), [1A]0) and K1(C∗(E)) ∼= K1(A). If we consider
the corner pvC∗(E)pv, then since C∗(E) is simple, we see that this corner is full.
Hence pvC∗(E)pv is Morita equivalent to C∗(E), and pvC∗(E)pv is purely infi-
nite, simple, separable, nuclear, and satisfies the Universal Coefficient Theorem.
Furthermore, the projection pv is a unit for pvC∗(E)pv, and since the inclusion
of pvC∗(E)pv into C∗(E) preserves K-theory [99, Proposition 1.2], we have that
(K0(pvC∗(E)pv), [pv]0) ∼= (K0(A), [1A]0) and K1(pvC∗(E)pv) ∼= K1(A). Thus
pvC

∗(E)pv ∼= A.

2.4 Generalizations of Graph Algebras

Since the introduction of graph algebras, various authors have considered a myr-
iad of generalizations in which a C∗-algebra is associated to an object other than
a directed graph. In particular generalizations this object may be a matrix, a
Hilbert C∗-module, or something more exotic. The goal in these generalizations
is to produce a class of C∗-algebras with the following properties:

1. the class includes graph algebras in a natural way, as well as C∗-algebras
that are not graph algebras; and

2. for each C∗-algebra in the class, the structure of the C∗-algebra is reflected
in the object from which it is created.

In this section, we will discuss some of the generalizations which have become
prominent in the literature in the past few years. Because each of these classes
has been the subject of many papers, a complete description of each of the
theories and their developments is beyond our scope. Instead, we will simply
attempt a whirlwind survey of a handful of important classes. In each case, our
goal will be to

1. define the basic objects that will be used in place of directed graphs, and
discuss how a C∗-algebra can be constructed from such an object,

2. explain how graph algebras are special cases of these C∗-algebras, and

3. compare and contrast the theory for these C∗-algebras to the theory for
graph C∗-algebras.

We will consider four classes of C∗-algebras that generalize graph algebras:
Exel-Laca algebras, ultragraph algebras, Cuntz-Pimsner algebras, and topologi-
cal quiver algebras.
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2.4.1 Exel-Laca Algebras

The Exel-Laca algebras, which were introduced in [56], can be thought of as
Cuntz-Krieger algebras for infinite matrices. The idea is that one begins with
a countable square matrix A with entries in {0, 1}. One then defines the Exel-
Laca algebra OA to be the C∗-algebra generated by partial isometries (one for
each row) satisfying relations determined by A. These relations are meant to
generalize the relations used to define a Cuntz-Krieger algebra (and when A is
finite, they reduce to precisely these relations). The difficulty comes in defining
the relations when A is not row-finite.

Definition 2.4.1 (Exel-Laca). Let I be a countable set and let A = {A(i, j)i,j∈I}
be a {0, 1}-matrix over I with no identically zero rows. The Exel-Laca algebra
OA is the universal C∗-algebra generated by partial isometries {si : i ∈ I}
with commuting initial projections and mutually orthogonal range projections
satisfying s∗i sisjs

∗
j = A(i, j)sjs∗j and∏
x∈X

s∗xsx
∏
y∈Y

(1− s∗ysy) =
∑
j∈I

A(X,Y, j)sjs∗j (2.4.1)

whenever X and Y are finite subsets of I such that the function

j ∈ I 7→ A(X,Y, j) :=
∏
x∈X

A(x, j)
∏
y∈Y

(1−A(y, j))

is finitely supported.

To understand where this last relation comes from, notice that combinations
of formal infinite sums obtained from the original Cuntz-Krieger relations could
give relations involving finite sums, and (2.4.1) says that these finite relations
must be satisfied in OA; see the introduction of [56] for more details.

Although there is reference to a unit in (2.4.1), this relation applies to alge-
bras that are not necessarily unital, with the convention that if a 1 still appears
after expanding the product in (2.4.1), then the relation implicitly states that
OA is unital. It is also important to realize that the relation (2.4.1) also applies
when the function j 7→ A(X,Y, j) is identically zero. This particular instance of
(2.4.1) is interesting in itself so we emphasize it by stating the associated relation
separately: ∏

x∈X
s∗xsx

∏
y∈Y

(1− s∗ysy) = 0 (2.4.2)

whenever X and Y are finite subsets of I such that A(X,Y, j) = 0 for every
j ∈ I.
Remark 2.4.2. If E is a graph with no sinks or sources, then C∗(E) is an Exel-
Laca algebra. In fact, it is shown in [61, Proposition 9] that if E has no sinks
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or sources, and if {se, pv : e ∈ E1, v ∈ E0} is a Cuntz-Krieger E-family, then
{se : e ∈ E1} is a collection of partial isometries satisfying the relations defining
OBE , where BE is the edge matrix of E.

Not all graph algebras are Exel-Laca algebras; there are examples of graphs
with sinks, and other examples of graphs with sources, whose C∗-algebras are
not isomorphic to any Exel-Laca algebra.

There is a Cuntz-Krieger Uniqueness Theorem for Exel-Laca algebras. If A is
a countable square matrix over I with entries in {0, 1}, then we define a directed
graph Gr(A), by letting the vertices of this graph be I, and then drawing an
edge from i to j if and only if A(i, j) = 1.

The following theorem is an equivalent reformulation of [56, Theorem 13.1].

Theorem 2.4.3 (Cuntz-Krieger Uniqueness Theorem). Let I be a countable
set and let A = {A(i, j)i,j∈I} be a {0, 1}-matrix over I with no identically zero
rows. If Gr(A) satisfies Condition (L), and if ρ : OA → B is a ∗-homomorphism
between C∗-algebras with the property that ρ(Si) 6= 0 for all i ∈ I, then ρ is
injective.

The graph Gr(A) is also useful in describing pure infiniteness of Exel-Laca
algebras. It is shown in [56, Theorem 16.2] that every nonzero hereditary subal-
gebra of OA contains an infinite projection if and only if Gr(A) satisfies Condi-
tion (L) and every vertex in Gr(A) can reach a loop in Gr(A).

Simplicity for Exel-Laca algebras is more complicated. Exel and Laca showed
in [56, Theorem 14.1] that if Gr(A) is transitive and not a single loop, then OA is
simple. A complete characterization of simplicity was obtained by Szymański in
[127], where he defined a notion of saturated hereditary subset for A, and proved
thatOA is simple if and only if Gr(A) satisfies Condition (L) and A has no proper
nontrivial saturated hereditary subsets. (We mention that there are examples of
a matrix A such that OA is simple, but C∗(Gr(A)) is not simple!) Szymański’s
result can also be used to show that the dichotomy holds for simple Exel-Laca
algebras: every simple Exel-Laca algebra is either AF or purely infinite.

In addition, the universal property of OA gives a gauge action γ : T →
AutOA with γz(Si) = zSi, and there is a gauge-invariant uniqueness theorem
for Exel-Laca algebras. Exel and Laca also calculate the K-theory of OA in [57].

2.4.2 Ultragraph Algebras

One difficulty with Exel-Laca algebras is that the matrix A lacks the visual ap-
peal one finds in a graph. In fact when describing appropriate version of graph
notions, such as Condition (L) or vertices being able to reach loops, one in-
troduces an associated graph Gr(A). However, as we saw in our description of
simplicity, the graph Gr(A) does not fully reflect the structure of OA. In ad-
dition, when working with Exel-Laca algebras one must deal with complicated
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relations among generators, such as in (2.4.1), which again lack the visual appeal
of graph algebras.

An attempt to study Exel-Laca algebras using a generalized notion of a graph,
called an “ultragraph”, was undertaken in [130] and [132]. Roughly speaking, an
ultragraph is a directed graph in which the range of an edge is allowed to be a
set of vertices rather than a single vertex.
Definition 2.4.4. An ultragraph G = (G0,G1, r, s) consists of a countable set
of vertices G0, a countable set of edges G1, and functions s : G1 → G0 and
r : G1 → P (G0), where P (G0) denotes the collection of nonempty subsets of G0.
Remark 2.4.5. Note that a graph may be viewed as a special type of ultragraph
in which r(e) is a singleton set for each edge e.
Example 2.4.6. A convenient way to draw ultragraphs is to first draw the set G0

of vertices, and then for each edge e ∈ G1 draw an arrow labeled e from s(e) to
each vertex in r(e). For instance, the ultragraph given by

G0 = {v, w, x} s(e) = v s(f) = w s(g) = x

G1 = {e, f, g} r(e) = {v, w, x} r(f) = {x} r(g) = {v, w}

may be drawn as

v

e

-- e //

e

  AAAAAAA w

f

��
x

g

WW

g

WW

We then identify any arrows with the same label, thinking of them as being a
single edge. Thus in the above example there are only three edges, e, f , and g,
despite the fact that there are six arrows drawn.

A vertex v ∈ G0 is called a sink if |s−1(v)| = 0 and an infinite emitter if
|s−1(v)| =∞.

For an ultragraph G = (G0,G1, r, s) we let G0 denote the smallest subcollec-
tion of the power set of G0 that contains {v} for all v ∈ G0, contains r(e) for all
e ∈ G1, and is closed under finite intersections and finite unions. Roughly speak-
ing, the elements of {v : v ∈ G0} ∪ {r(e) : e ∈ G1} play the role of “generalized
vertices” and G0 plays the role of “subsets of generalized vertices”.
Definition 2.4.7. If G is an ultragraph, a Cuntz-Krieger G-family is a collection of
partial isometries {se : e ∈ G1} with mutually orthogonal ranges and a collection
of projections {pA : A ∈ G0} that satisfy

1. p∅ = 0, pApB = pA∩B , and pA∪B = pA + pB − pA∩B for all A,B ∈ G0

2. s∗ese = pr(e) for all e ∈ G1
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3. ses∗e ≤ ps(e) for all e ∈ G1

4. pv =
∑
s(e)=v ses

∗
e whenever 0 < |s−1(v)| <∞.

We define C∗(G) to be the C∗-algebra generated by a universal Cuntz-Krieger
G-family. When A is a singleton set {v}, we write pv in place of p{v}.

When G has the property that r(e) is a singleton set for every edge e, then G
may be viewed as a graph (and, in fact, every graph arises this way). In this case
G0 is simply the finite subsets of G0, and if {se, pv} is a Cuntz-Krieger family
for the graph algebra associated to G, then by defining pA :=

∑
v∈A pv we see

that {pA, se} is a Cuntz-Krieger G-family, and thus the graph algebra and the
ultragraph algebra for G coincide. (The details of this argument are carried out
in [130, Proposition 3.1].)

When G is an ultragraph with an edge e such that r(e) is an infinite set, then
the projection pr(e) will dominate pv for all v ∈ r(e), but pr(e) will not be the
sum of any finite collection of pv’s. It is projections such as these that allow for
ultragraph algebras that are not graph algebras.

In addition to containing all graph algebras, it is shown in [130, §4] that all
Exel-Laca algebras are ultragraphs. Furthermore, it is shown in [132] that there
are ultragraph algebras that are neither Exel-Laca algebras nor graph algebras.
Thus the ultragraph algebras provide us with a strictly larger class than graph
algebras and Exel-Laca algebras.

A path in an ultragraph G is a sequence of edges α1 . . . αn with s(αi) ∈
r(αi−1) for i = 2, 3, . . . , n

Definition 2.4.8. If G is an ultragraph, then a loop is a path α1 . . . αn with
s(α1) ∈ r(αn). An exit for a loop is either of the following:

1. an edge e ∈ G1 such that there exists an i for which s(e) ∈ r(αi) but
e 6= αi+1

2. a sink w such that w ∈ r(αi) for some i.

An exit for a loop is simply something (an edge or sink) that allows one to
avoid repeating the same sequence α1 . . . αn as one follows edges in G. Also note
that if α1 . . . αn is a loop without an exit, then r(αi) is a single vertex for all i.
We now extend Condition (L) to ultragraphs.

Condition (L): Every loop in G has an exit; that is, for any loop α := α1 . . . αn
there is either an edge e ∈ G1 such that s(e) ∈ r(αi) and e 6= αi+1 for some i, or
there is a sink w with w ∈ r(αi) for some i.

A version of the Cuntz-Krieger Uniqueness Theorem for ultragraph algebras
first appeared in [130, Theorem 6.1].
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Theorem 2.4.9 (Cuntz-Krieger Uniqueness Theorem). Let G be an ultragraph
satisfying Condition (L). If ρ : C∗(G) → B is a ∗-homomorphism between C∗-
algebras, and if ρ(pv) 6= 0 for all v ∈ G0, then ρ is injective.

Note that if ρ(pv) 6= 0 for all v ∈ G0, then ρ(pA) 6= 0 for all nonempty
A ∈ G0, since pA dominates pv for all v ∈ A.

Furthermore, by the universal property for C∗(G) there exists a gauge action
γz : T → AutC∗(G) with γz(pA) = pA and γz(se) = zse for all A ∈ G0 and e ∈
G1. It is shown in [130, Theorem 6.2] that there is a Gauge-Invariant Uniqueness
Theorem for ultragraph algebras.

Theorem 2.4.10 (Gauge-Invariant Uniqueness Theorem). Let G be an ultra-
graph, let {se, pA} the canonical generators in C∗(G), and let γ the gauge action
on C∗(G). Also let B be a C∗-algebra, and ρ : C∗(G)→ B be a ∗-homomorphism
for which ρ(pv) 6= 0 for all v ∈ G0. If there exists a strongly continuous action
β of T on B such that βz ◦ ρ = ρ ◦ γz for all z ∈ T, then ρ is injective.

Conditions for simplicity of an ultragraph algebra have been obtained in [132].
In order to state these conditions, one needs a notion of saturated hereditary
collections.
Definition 2.4.11. A subcollection H ⊂ G0 is hereditary if

1. whenever e is an edge with {s(e)} ∈ H, then r(e) ∈ H

2. A,B ∈ H, implies A ∪B ∈ H

3. A ∈ H, B ∈ G0, and B ⊆ A, imply that B ∈ H.

Definition 2.4.12. A hereditary subcollection H ⊂ G0 is saturated if for any
v ∈ G0 with 0 < |s−1(v)| <∞ we have that

{r(e) : e ∈ G1 and s(e) = v} ⊆ H implies {v} ∈ H.

Then [132, Theorem 3.10] states that an ultragraph algebra G is simple if
and only if G satisfies Condition (L) and G0 contains no saturated hereditary
subcollections other than ∅ and G0.

In addition, the dichotomy holds for simple ultragraph algebras; it is shown
in [132, Proposition 4.5] that every simple ultragraph algebra is either AF or
purely infinite.
Remark 2.4.13. In the forthcoming article [82] the collection G0 is defined to
be the smallest subcollection of the power set of G0 that contains {v} for all
v ∈ G0, contains r(e) for all e ∈ G1, and is closed under finite intersections,
finite unions, and relative complements (i.e. A,B ∈ G0 implies A \ B ∈ G0).
Using this definition, one obtains the same C∗-algebra C∗(G), however, this
alternate definition is sometimes more convenient and allows one to avoid certain
technicalities.
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2.4.3 Cuntz-Pimsner Algebras

The Cuntz-Pimsner algebras are a vast generalization of graph algebras in which
a C∗-algebra is associated to a C∗-correspondence (sometimes also called a
Hilbert bimodule). In addition to graph algebras, Cuntz-Pimsner algebras gen-
eralize crossed products by Z, ultragraph algebras, and many other well-known
C∗-algebras.

Definition 2.4.14. If A is a C∗-algebra, then a right Hilbert A-module is a Banach
space X together with a right action of A on X and an A-valued inner product
〈·, ·〉A satisfying

(i) 〈ξ, ηa〉A = 〈ξ, η〉Aa

(ii) 〈ξ, η〉A = 〈η, ξ〉∗A

(iii) 〈ξ, ξ〉A ≥ 0 and ‖ξ‖ = 〈ξ, ξ〉1/2A

for all ξ, η ∈ X and a ∈ A. For a Hilbert A-module X we let L(X) denote the
C∗-algebra of adjointable operators on X, and we let K(X) denote the closed
two-sided ideal of compact operators given by

K(X) := span{Θξ,η : ξ, η ∈ X}

where ΘX
ξ,η is defined by Θξ,η(ζ) := ξ〈η, ζ〉A.

Definition 2.4.15. If A is a C∗-algebra, then a C∗-correspondence is a right
Hilbert A-module X together with a ∗-homomorphism φ : A → L(X). We
consider φ as giving a left action of A on X by setting a · x := φ(a)x.

Definition 2.4.16. If X is a C∗-correspondence over A, then a Toeplitz repre-
sentation of X into a C∗-algebra B is a pair (ψ, π) consisting of a linear map
ψ : X → B and a ∗-homomorphism π : A→ B satisfying

(i) ψ(ξ)∗ψ(η) = π(〈ξ, η〉A)

(ii) ψ(φ(a)ξ) = π(a)ψ(ξ)

(iii) ψ(ξa) = ψ(ξ)π(a)

for all ξ, η ∈ X and a ∈ A.
If (ψ, π) is a Toeplitz representation of X into a C∗-algebra B, we let C∗(ψ, π)
denote the C∗-algebra generated by ψ(X) ∪ π(A).

A Toeplitz representation (ψ, π) is said to be injective if π is injective. Note
that in this case ψ will be isometric since

‖ψ(ξ)‖2 = ‖ψ(ξ)∗ψ(ξ)‖ = ‖π(〈ξ, ξ〉A)‖ = ‖〈ξ, ξ〉A‖ = ‖ξ‖2.
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Definition 2.4.17. For a Toeplitz representation (ψ, π) of a C∗-correspondence
X on B there exists a ∗-homomorphism π(1) : K(X) → B with the property
that

π(1)(Θξ,η) = ψ(ξ)ψ(η)∗.

Definition 2.4.18. For an ideal I in a C∗-algebra A we define

I⊥ := {a ∈ A : ab = 0 for all b ∈ I}

and we refer to I⊥ as the annihilator of I in A. If X is a C∗-correspondence
over A, we define an ideal J(X) of A by

J(X) := φ−1(K(X)).

We also define an ideal JX of A by

JX := J(X) ∩ (kerφ)⊥.

Definition 2.4.19. If X is a C∗-correspondence over A, we say that a Toeplitz
representation (ψ, π) is coisometric on JX if

π(1)(φ(a)) = π(a) for all a ∈ JX .

We say that a Toeplitz representation (ψX , πA) which is coisometric on JX
is universal if whenever (ψ, π) is a Toeplitz representation of X into a C∗-
algebra B which is coisometric JX , then there exists a ∗-homomorphism ρ(ψ,π) :
C∗(ψX , πA) → B with the property that ψ = ρ(ψ,π) ◦ ψX and π = ρ(ψ,π) ◦ πA.
That is, the following diagram commutes:

X
ψ

''
ψX !!CCCCCCCC

OX
ρ(ψ,π) // B

A

π

77
πA

=={{{{{{{{

Definition 2.4.20. If X is a C∗-correspondence over A, then the Cuntz-Pimsner
algebra OX is the C∗-algebra C∗(ψX , πA) where (ψX , πA) is a universal Toeplitz
representation of X which is coisometric on JX .

Now that we have a definition of the Cuntz-Pimsner algebras OX , we shall
describe how to view graph algebras as Cuntz-Pimsner algebras. In particular,
if E is a directed graph we shall describe how to construct a C∗-correspondence
X(E) from E whose Cuntz-Pimsner algebra OX(E) is isomorphic to the graph
algebra C∗(E).
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Example 2.4.21 (The Graph C∗-correspondence). If E = (E0, E1, r, s) is a graph,
we define A := C0(E0) and

X(E) := {x : E1 → C : the function v 7→
∑

{f∈E1:r(f)=v}

|x(f)|2 is in C0(E0) }.

Then X(E) is a C∗-correspondence over A with the operations

(x · a)(f) := x(f)a(r(f)) for f ∈ E1

〈x, y〉A(v) :=
∑

{f∈E1:r(f)=v}

x(f)y(f) for f ∈ E1

(a · x)(f) := a(s(f))x(f) for f ∈ E1

and we call X(E) the graph C∗-correspondence associated to E. Note that we
could write X(E) =

⊕0
v∈E0 `2(r−1(v)) where this denotes the C0 direct sum

(sometimes called the restricted sum) of the `2(r−1(v))’s. Also note that X(E)
and A are spanned by the point masses {δf : f ∈ E1} and {δv : v ∈ E0},
respectively.

Theorem 2.4.22 ([61, Proposition 12]). If E is a graph and X = X(E), then
OX ∼= C∗(E). Furthermore, if (ψX , πA) is a universal Toeplitz representation of
X that is coisometric on JX , then {ψX(δe), πA(δv)} is a universal Cuntz-Krieger
E-family in OX .

We now examine how properties of the graph relate to properties of the graph
correspondence. We say that a C∗-correspondence is full if

span{〈x, y〉 : x, y ∈ X} = A,

and we say a C∗-correspondence is essential if

span{φ(a)x : x ∈ X and a ∈ A} = X.

It was shown in [63, Proposition 4.4] that

J(X(E)) = span{δv : |s−1(v)| <∞}

and if v emits finitely many edges, then

φ(δv) =
∑

{f∈E1:s(f)=v}

Θδf ,δf and πA(φ(δv)) =
∑

{f∈E1:s(f)=v}

ψX(δf )ψX(δf )∗.

Furthermore, one can see that δv ∈ kerφ if and only if v is a sink in E. Also
δv ∈ span{〈x, y〉A} if and only if v is a source, and since δs(f) · δf = δf we see
that spanA · X = X and X(E) is essential. These observations show that we
have the following correspondences between the properties of the graph E and
the properties of the graph C∗-correspondence X(E).
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Property of X(E) Property of E
φ(δv) ∈ K(X(E)) v emits a finite number of edges
φ(A) ⊆ K(X(E)) E is row-finite
φ is injective E has no sinks
X(E) is full E has no sources

X(E) is essential always

Remembering these properties will help us as we consider results for Cuntz-
Pimsner algebras. For example, if X is a C∗-correspondence with φ(A) ⊆ K(X),
then the theory for OX is similar to the theory for row-finite graph algebras.
Likewise, if φ(A) ⊆ K(X) and φ is injective, then the theory for OX is similar
to the theory for row-finite graph algebras with no sinks.

Remark 2.4.23. If E is a graph with no sinks, then φ(δv) = 0 if and only if v is
a sink, and δv ∈ (kerφ)⊥ if and only if v is not a sink. Thus

JX(E) = span{δv : 0 < |s−1(v)| <∞}.

Remark 2.4.24. Suppose that OX is a Cuntz-Pimsner algebra associated to a
C∗-correspondence X, and that (ψ, π) is a universal Toeplitz representation of
X which is coisometric on JX . Then for any z ∈ T we have that (zψ, π) is
also a universal Toeplitz representation which is coisometric on K. Hence by
the universal property, there exists a homomorphism γz : OX → OX such that
γz(π(a)) = π(a) for all a ∈ A and γz(ψ(ξ)) = zψ(ξ) for all ξ ∈ X. Since γz−1

is an inverse for this homomorphism, we see that γz is an automorphism. Thus
we have an action γ : T→ AutOX with the property that γz(π(a)) = π(a) and
γz(ψ(ξ)) = zψ(ξ).

There exists a Gauge-Invariant Uniqueness Theorem for Cuntz-Pimsner al-
gebras [81, Theorem 6.4].

Theorem 2.4.25 (Gauge-Invariant Uniqueness Theorem). Let X be a C∗-
correspondence and let ρ : OX → B be a ∗-homomorphism between C∗-algebras
with the property that ρ|πA(A) is injective. If there exists a gauge action β of T
on B such that βz ◦ ρ = ρ ◦ γz for all z ∈ T, then ρ is injective.

In addition, the gauge-invariant ideals for a Cuntz-Pimsner algebra can be
classified, in analogy with Theorem 2.1.6 and Theorem 2.2.24. As with graph
algebras, this description takes the nicest form when φ(A) ⊆ K(X) and φ is
injective.

Definition 2.4.26. Let X be a C∗-correspondence over A. We say that an ideal
I / A is X-invariant if φ(I)X ⊆ XI. We say that an X-invariant ideal I / A is
X-saturated if

a ∈ JX and φ(a)X ⊆ XI =⇒ a ∈ I.
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The next theorem follows from [94, Theorem 6.4] and [62, Corollary 3.3].

Theorem 2.4.27. Let X be a C∗-correspondence with the property that φ(A) ⊆
X and φ is injective. Also let (ψX , πA) be a universal Toeplitz representation
of X that is coisometric on JX . Then there is a lattice isomorphism from the
X-saturated X-invariant ideals of A onto the gauge-invariant ideals of OX given
by

I 7→ I(I) := the ideal in OX generated by πA(I).

Furthermore, OX/I(I) ∼= OX/XI , and the ideal I(I) is Morita equivalent to
OXI .

For general C∗-correspondences the gauge-invariant ideals of OX correspond
to admissible pairs of ideals (I, J) coming from A. (See [76, Theorem 8.6] for
more details.)

Although simplicity of OX has been characterized for C∗-correspondences
satisfying certain hypotheses, there is no general characterization of simplicity for
OX . In addition, it is unknown whether there is an analogue of Condition (L) for
C∗-correspondences, and currently there does not exist a Cuntz-Krieger Unique-
ness Theorem for Cuntz-Pimsner algebras. It is also known that the dichotomy
does not hold for Cuntz-Pimnser algebras: there are simple Cuntz-Pimsner al-
gebras that are neither AF nor purely infinite.

In addition, a six-term exact sequence for the K-groups of OX has been
established in [77, Theorem 8.6] generalizing that of [107, Theorem 4.9]. This
sequence allows one to calculate the K-theory of OX in certain situations. It is a
fact that all possible K-groups can be realized as the K-theory of Cuntz-Pimsner
algebras.

2.4.4 Topological Quiver Algebras

Because the Cuntz-Pimsner algebras encompass such a wide class of C∗-algebras
and exhibit a variety of behavior, it is sometimes difficult to study them in full
generality. Therefore, authors will sometimes seek a “nice” subclass of Cuntz-
Pimsner algebras whose behavior is similar to familiar C∗-algebras. One such
subclass is the topological quiver algebras, which we will define by generalizing
the construction of the graph C∗-correspondence described in Example 2.4.21.
(We refer the reader to [95] for a more detailed exposition of topological quivers
and their C∗-algebras.)
Definition 2.4.28. A topological quiver is a quintuple Q = (E0, E1, r, s, λ) con-
sisting of a second countable locally compact Hausdorff space E0 (whose ele-
ments are called vertices), a second countable locally compact Hausdorff space
E1 (whose elements are called edges), a continuous open map r : E1 → E0, a
continuous map s : E1 → E0, and a family of Radon measures λ = {λv}v∈E0 on
E1 satisfying the following two conditions:
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1. suppλv = r−1(v) for all v ∈ E0

2. v 7→
∫
E1 ξ(α)dλv(α) is an element of Cc(E0) for all ξ ∈ Cc(E1).

The term “quiver” was chosen because of the relation of the notion to ring
theory where finite directed graphs are called quivers. In addition, we see that
directed graphs are topological quivers in which the vertex and edge spaces have
the discrete topology and the measure λv is counting measure for all vertices v.

We mention that if one is given E0, E1, r, and s as described in Defini-
tion 2.4.28, then there always exists a family of Radon measures λ = {λv}v∈E0

satisfying Conditions (1) and (2) (the existence relies on the fact that E1 is
second countable). However, in general this choice of λ is not unique.

When the map r is a local homeomorphism and λv is chosen as counting
measure, we call the quiver a topological graph. Topological graphs have been
studied extensively in [77, 78, 79, 80].

A topological quiver Q = (E0, E1, r, s, λ) gives rise to a C∗-correspondence in
the following manner: We let A := C0(E0) and define an A-valued inner product
on Cc(E1) by

〈ξ, η〉A(v) :=
∫
r−1(v)

ξ(α)η(α) dλv(α) for v ∈ E0 and ξ, η ∈ Cc(E1).

We shall let X denote the closure of Cc(E1) in the norm arising from this inner
product. We define a right action of A on X by setting

ξ · f(α) := ξ(α)f(r(α)) for α ∈ E1, ξ ∈ Cc(E1), and f ∈ C0(E0)

and extending to all of X. We also define a left action φ : A→ L(X) by setting

φ(f)ξ(α) := f(s(α))ξ(α) for α ∈ E1, ξ ∈ Cc(E1), and f ∈ C0(E0)

and extending to all of X. With this inner product and these actions X is a C∗-
correspondence over A, and we refer to X as the C∗-correspondence associated
to Q.
Definition 2.4.29. If Q is a topological quiver, then we define C∗(Q) := OX ,
where X is the C∗-correspondence associated to Q. We let (ψQ, πQ) denote the
universal Toeplitz representation of X into C∗(Q) that is coisometric on JX .

Since A := C0(E0) is a commutative C∗-algebra, it follows that the ideals of
A correspond to open subsets of E0. In the following definition we identify some
of these subsets for important ideals associated with X.
Definition 2.4.30. If Q = (E0, E1, r, s, λ) is a topological quiver, we define the
following:

1. E0
sinks = E0\s(E1)
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2. E0
fin = {v ∈ E0 : there exists a precompact neighborhood V of v such that

s−1(V ) is compact and r|s−1(V ) is a local homeomorphism}

3. E0
reg := E0

fin\E0
sinks

Remark 2.4.31. The notation and terminology of Definition 2.4.30 is meant to
generalize the various types of vertices found in directed graphs. It can be shown
that φ−1(0) = C0(E0

sinks), φ
−1(K(X)) = C0(E0

fin), JX = C0(E0
reg). And when Q

is a discrete graph, the sets E0
sinks, E

0
fin, and E0

reg correspond to the sinks, finite-
emitters, and regular vertices (i.e., vertices that are neither sinks nor infinite
emitters).

Because they are Cuntz-Pimsner algebras, quiver algebras have a natural
gauge action γ : T → AutC∗(Q) with γz(πQ(a)) = πQ(a) and γz(ψQ(x)) =
zψQ(x) for a ∈ A and x ∈ X. There is also a Gauge-Invariant Uniqueness
Theorem for quiver algebras.

Theorem 2.4.32 (Guage-Invariant Uniqueness Theorem). Let Q be a topo-
logical quiver and let X be the C∗-correspondence over A associated to Q. Let
ρ : C∗(Q) → B be a ∗-homomorphism between C∗-algebras with the property
that ρ|πQ(A) is injective. If there exists a gauge action β : T→ AutB such that
βz ◦ ρ = ρ ◦ γz, then ρ is injective.

In addition, the gauge-invariant ideals of C∗(Q) can be described. In analogy
with graph algebras, this takes the nicest form when E0

reg = E0.

Definition 2.4.33. Let Q = (E0, E1, r, s, λ) be a topological quiver. We say that
a subset U ⊆ E0 is hereditary if whenever α ∈ E1 and s(α) ∈ U , then r(α) ∈
U . We say that a hereditary subset U is saturated if whenever v ∈ E0

reg and
r(s−1(v)) ⊆ U , then v ∈ U .

Theorem 2.4.34. Let Q = (E0, E1, r, s, λ) be a topological quiver with the
property that E0

reg = E0. Then there is a bijective correspondence from the set of
saturated hereditary open subsets of E0 onto the gauge-invariant ideals of C∗(Q)
given by

U 7→ IU := the ideal in C∗(Q) generated by πQ(C0(U)).

Furthermore, for any saturated hereditary open subset U we have that IU is
Morita equivalent to C∗(QU ), where QU is the subquiver of Q whose vertices are
U and whose edges are s−1(U), and C∗(Q)/IU ∼= C∗(Q\U), where Q\U is the
subquiver of Q whose vertices are E0 \ U and edges are E1 \ r−1(U).

For general topological quivers, the gauge-invariant ideals of C∗(Q) corre-
spond to pairs (U, V ) of admissible subsets. (See [95, §8] for more details.)
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In addition there is a version of Condition (L), and a Cuntz-Krieger Unique-
ness Theorem for quiver algebras. Note that Condition (L) makes use of the
topology on E0.

Condition (L): The set of base points of loops in Q with no exits has empty
interior.

Theorem 2.4.35 (Cuntz-Krieger Uniqueness Theorem). Let Q be a topological
quiver that satisfies Condition (L), and let X be the C∗-correspondence over A
associated to Q. If ρ : C∗(Q) → B is a ∗-homomorphism from C∗(Q) into a
C∗-algebra B with the property that the restriction ρ|πQ(A) is injective, then ρ is
injective.

Furthermore, simplicity of quiver algebras has been characterized: The quiver
algebra C∗(Q) is simple if and only if Q satisfies Condition (L) and there are no
saturated hereditary open subsets of E0 other than ∅ and E0 [95, Theorem 10.2].

We mention also that the dichotomy does not hold for quiver algebras: There
are simple quiver algebras that are neither AF nor purely infinite.

Also, a there is version of Condition (K) for quiver algebras.
Definition 2.4.36. If Q = (E0, E1, r, s, λ) is a topological quiver and v, w ∈ E0,
then we write w ≥ v to mean that there is a path α ∈ En with s(α) = w and
r(α) = v. We also define v≥ := {w ∈ E0 : w ≥ v}.
Condition (K): The set

{v ∈ E0 : v is the base point of exactly one simple loop

and v is isolated in v≥ }

is empty.

Theorem 2.4.37. ([95, Theorem 9.10]) Let Q = (E0, E1, r, s, λ) be a topological
quiver that satisfies Condition (K). Then every ideal in C∗(Q) is gauge invariant.

Remark 2.4.38. It has been shown by Katsura that every AF algebra is isomor-
phic to the C∗-algebra of a topological graph, and that every Kirchberg-Phillips
algebra is isomorphic to the C∗-algebra of a topological graph. In addition, in
a forthcoming paper of Katsura, Muhly, Sims, and Tomforde it will be shown
that every ultragraph algebra is the C∗-algebra of a topological graph. Hence the
class of quiver algebras contains all ultragraph algebras and also all Exel-Laca
algebras. Furthermore, the only known conditions that a topological graph alge-
bra must satisfy are: (1) it must be nuclear, and (2) it must satisfy the UCT. At
the time of this writing it is an open question whether any nuclear C∗-algebra
satisfying the UCT is isomorphic to a topological graph algebra.





Chapter 3

Leavitt path algebras:
history and first structural
results, by Gene Abrams

3.1 The Leavitt path algebra of a graph

Abstract. In this first lecture we present a history and an overview of the subject
of Leavitt path algebras.

Introduction / The early years

Regardless of where in the world you were trained in mathematics, it is more
than likely that the first examples of rings you studied included: fields; Z; n×n
matrix rings; and polynomial rings. Of course these are fundamental examples.
As it turns out, any one of these rings R has the ’Invariant Basis Number’
property:

If m and m′ are integers with the property that the free left modules RR
m

and RR
m′

are isomorphic, then m = m′.

In words, the IBN property says that any two bases (i.e., linearly independent
spanning sets) for a free left R-module have the same number of elements. Many
classes of rings have this property, including noetherian rings and commutative
rings. But the IBN property does NOT hold for all rings. Here’s an easy example.

Non-IBN Example. Let K be a field, and let V be a countably infinite
dimensional vector space over K. Concretely, let V = K(N). Let R = EndK(V ).

85
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Use the standard basis for V , view the elements of V as row-vectors, and apply
transformations on the right. Then R ∼= RFMN(K), the ’countable row-finite
matrices over K’.

It is easy to show that RRm ∼= RR
m′

for ALL m,m′ ∈ N.
Here’s a quick proof: RR

1 ∼= RR
2 by the map which associates X ∈ R

with the pair of matrices (X1, X2), where X1 (resp. X2) is built from the odd-
numbered (resp. even numbered) columns of X. But then RR

1 ∼= RR
2 gives

RR
1⊕RR

1 ∼= RR
2⊕RR

1 , so RR
2 ∼= RR

3 , and the result follows by continuing
in this way.

Algebraically it is easy to determine whether or not for a ring R we have
RR

1 ∼= RR
n for some n > 1. The point is that such an isomorphism exists if

and only if there is a set of 2n elements in R which produce the appropriate
isomorphisms as matrix multiplications by an n-row vector and an n-column
vector with entries in R. Specifically, it is easy to show that RR

1 ∼= RR
n for

some n > 1 if and only if there exist elements x1, ..., xn, y1, ..., yn for which
xiyj = δij1R for all i, j, and

∑n
i=1 yixi = 1R.

Definition of module type. Suppose R does not have IBN. Let m ∈ N be
minimal with RR

m ∼= RR
n for some n > m. Find the minimal such n for m.

Then R has module type (m,n).
Notational warning: Some authors call the module type of such a ring (m,n−

m).

Proposition. [90] If R has module type (m,n), then for a, a′ ≥ m, RRa ∼=
RR

a′ ⇔ a ≡ a′ mod(n−m).

RFMN(K) has module type (1,2). Other examples?
Leavitt’s Existence Theorem. [90] For each pair of positive integers n >

m and field K there exists a K-algebra of module type (m,n).

Overview of proof: Isomorphisms between free modules can be realized as
matrix multiplications by matrices having coefficients in R. So we need only
construct algebras which contain elements which behave “correctly”. Do this as
a quotient of a free associative K-algebra in the appropriate number of variables
satisfying the appropriate relations.

For example, to get an algebra of type (1,3) we need an algebra containing
elements x1, x2, x3, y1, y2, y3 for which xiyj = δij1R for all i, j, and

∑3
i=1 yixi =

1R. Consider the polynomial algebra over a fieldK in 6 non-commuting variables.
Then factor by the ideal generated by the appropriate relations.

Here’s a possible problem: Is the quotient zero? Answer: NO. This is not
difficult to show if m ≥ 2. But this is much more difficult to show (directly) if
m = 1.
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The definition of the Leavitt algebra LK(m,n). The quotient algebra
described above is denoted LK(m,n), and called the Leavitt K-algebra of type
(m,n).

It turns out that if m > 1 then LK(m,n) is a domain, and not simple. But
LK(1, n) is clearly not a domain, and not so clearly ...

Simplicity of Leavitt algebras. [91] For all n ≥ 2, and for any field K,
LK(1, n) is simple.

Proof. We will revisit this construction later. We note here that the specific
structure of K does not play a role. So we will often write L(1, n) in place of
LK(1, n).

Remark: LK(1, 2) is NOT isomorphic to RFMN(K).

It seems that after Leavitt’s papers [90] and [91] appeared in the early 1960’s,
no further work in which the algebras LK(1, n) were investigated appeared for at
least a decade. Then, in his seminal paper [32], Bergman (1974) built rings based
on properties of their finitely generated projective modules. Roughly speaking,
if you want a ring whose finitely generated projective modules possess specified
direct sum decomposition behavior, then there are such algebras having such
behavior. In fact, among those algebras, there is one which acts ’universally’
with respect to this property. For the particular case where you want an algebra
all of whose finitely generated projectives are free, and for which RR

m ∼= RR
n is

the generating relation among the finitely generated projectives, then Leavitt’s
algebra LK(m,n) has this property, and is in fact the universal algebra with this
property. So it turns out that Leavitt was indeed looking in the right place, in
that he not only constructed algebras having module type (m,n), he actually
constructed the universal ones. We note that Bergman’s construction includes
many classes of algebras other than the just the Leavitt algebras.

Here is an easy observation: RRk ∼= RR
k′ implies that the matrix rings Mk(R)

and Mk′(R) are isomorphic. Is the converse true?

Answer: No. For instance, there exists a subring T of L(1, 4) having M1(T ) ∼=
M2(T ) but for which the free left T -modules TT 1 and TT

2 are NOT isomorphic.
(The speaker worked way too hard in [1] to show this.) But here’s an easy example
(due to Bergman) which shows that the free module behavior does not determine
the matrix ring behavior at all. Let R be the (unital) direct limit of matrix rings
limt∈NMt(K). Then R ∼= Mn(R) for all n ≥ 1. But R is IBN.

The ring R in the previous paragraph is an example of an ultramatricial
algebra. Intuitively, this is an algebra in which every finite subset can be viewed
as living inside a finite dimensional matrix ring. These can be built as direct
limits of finite dimensional matrix rings.
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The Renaissance of Leavitt algebras,
and connections with the C*-algebra people

2002: Abrams / Ánh showed in [2]:
(1) Inside L(1, n) there is a natural IBN subring (in fact, an ultramatricial

algebra) which is the intersection of isomorphic copies of L(1, n).
(2) If t divides a power of n, then Mt(L(1, n)) ∼= L(1, n).
Idea of the proof of (2): Write down the ’correct’ 2n matrices in Mt(L(1, n)),

then use the universal property to show existence of a ring homomorphism from
L(1, n) to Mt(L(1, n)). The injectivity follows from the simplicity of L(1, n), and
surjectivity follows by a straightforward (but long) computation.

(So in fact the speaker definitely worked too hard in [1], because L(1, 4) itself
has the desired property.)

Here’s a connection: The proof of (2) is essentially identical to the proof
given by Paschke and Salinas [100] of the fact that when k divides a power of
n, then Mk(On) ∼= On, where On is the Cuntz algebra of order n, or, in the
language of the first two days of lectures, is the graph C∗-algebra for the rose
with n petals graph.

2004: Ara, González-Barroso, Goodearl, Pardo [19]: “Fractional skew monoid
rings”. VERY roughly, these are rings which, in the particular case where the
monoid is Z+, behave something like skew polynomial rings.

As a particular example of an algebra of this form, the authors considered
the following construction. If A is an n × n matrix with entries in {0, 1}, and
no row or column of A is identically zero, and A is not a permutation matrix,
then the algebraic Cuntz-Krieger algebra associated to A is the K-algebra
CKA(K) having generators and relations exactly the same as those of the Cuntz-
Krieger C∗-algebra described in the lectures from the previous two days. As a
reminder, these are

(1) xiyixi = xi and yixiyi = yi for all 1 ≤ i ≤ n.
(2) xiyj = 0 for all i 6= j.
(3) xiyi =

∑n
j=1 aijyjxj for all i.

(4)
∑n
j=1 yjxj = 1.

When A is the n × n matrix having all entries equal to 1, then the corre-
sponding CKA(K) gives exactly LK(1, n).

Historical note: The goal of the article [19] was to investigate a specific class of
algebras, the fractional skew monoid rings. The conditions on the matrix A given
above were imposed only “to avoid degenerate and trivial cases”. Nonetheless,
it is appropriate to ascribe to Ara, González-Barroso, Goodearl, and Pardo the
first appearance in print of an investigation of an algebraic structure which
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generalizes the Leavitt algebras (and which is included in the general definition
which will follow).

More about the module-theoretic nature of the Leavitt algebras was given in
[12] in 2004. Specifically, Ara gives a description of the finitely presented modules
over LK(1, n).

There are no substitutes for physical connections in mathematics!

- Ánh was in Colorado Springs with the speaker in Fall 2002. Connections
between Leavitt algebras and Cuntz algebras were discussed. These discussions
were motivated by the referee’s report on [2], in which the connection to Paschke
and Salinas’ article was noted.

- Ánh then went to the University of Iowa in Spring 2003 to work with
Kent Fuller; during that visit, Ánh met Paul Muhly, an expert in C*-algebras.
The Paschke / Salinas result was discussed further, this time with more of a
C∗-algebra approach in mind.

- Seeing possible connections between the algebraic and analytic structures,
Muhly invited a number of algebraists (including Ánh, Laszlo Márki, Eduard
Ortega, and the speaker) to the CBMS conference on graph C∗-algebras, held in
Spring 2004 at University of Iowa. This conference was organized by Muhly,
had Iain Raeburn as the principal speaker, and included Mark Tomforde as an
invited speaker.

- In Fall 2004, at the suggestion of his thesis advisor Mercedes Siles Molina,
Gonzalo Aranda Pino visited Colorado Springs for six months. Abrams and
Aranda Pino read and discussed Raeburn’s CBMS conference notes (which even-
tually were organized and published in [108]). Those discussions led in part to
the following ideas.

Recall some notation from the first two days of lectures. A (directed) graph
E = (E0, E1, r, s) consists of two countable sets E0, E1 and functions r, s : E1 →
E0. The elements of E0 are called vertices and the elements of E1 edges. For
each edge e, s(e) is the source of e and r(e) is the range of e. If s(e) = v and
r(e) = w, then we also say that v emits e and that w receives e. E is called
row-finite in case s−1(v) is finite for every v ∈ E0. Throughout this series of
lectures, ’graph’ will mean ’row-finite graph’.

Now, a reminder of a standard algebraic construction, the path algebra of a
graph.

Let K be a field and E be a graph. The path K-algebra over E is defined
as the free K-algebra K[E0 ∪ E1] with the relations:

(1) vivj = δijvi for every vi, vj ∈ E0.
(2) ei = eir(ei) = s(ei)ei for every ei ∈ E1. This algebra is denoted by

AK(E).
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Here is the key idea in building the algebras of interest from these classical
path algebras. Given a graph E we define the extended graph of E as the
new graph Ê = (E0, E1 ∪ (E1)∗, r′, s′) where (E1)∗ = {e∗i : ei ∈ E1} and the
functions r′ and s′ are defined as

r′|E1 = r, s′|E1 = s, r′(e∗i ) = s(ei) and s′(e∗i ) = r(ei).

We sometimes refer to the edges in the original graph E as the “real” edges,
and the new edges which are added as the “ghost” edges. The description of the
extended graph now leads naturally to the central theme for the remainder of
the workshop.

The definition of Leavitt path algebras

Let K be a field and E be a row-finite graph. The Leavitt path algebra
of E with coefficients in K is defined as the path algebra over the extended
graph Ê, with relations:

(CK1) e∗i ej = δijr(ej) for every ej ∈ E1 and e∗i ∈ (E1)∗.

(CK2) vi =
∑

{ej∈E1:s(ej)=vi} eje
∗
j for every vi ∈ E0 which is not a sink.

This algebra is denoted by LK(E) (or more commonly simply by L(E) when
the field K is understood.)

It is easy to show, using the (CK1) relation, that the algebra
LK(E) is spanned as a K-vector space by monomials of the form
{pq∗|p, q are paths in E for which r(p) = r(q)} (where for a path q = q1 . . . qn,
we denote by q∗ the ghost path q∗n . . . q

∗
1). Paths of length 0 (i.e., vertices) are

allowed here, so that LK(E) contains all the vertices, real paths, and ghost paths
of the graph Ê. Rephrased,

LK(E) = span{pq∗|p, q are paths in E for which r(p) = r(q)}.

Examples of Leavitt path algebras

(1) Matrix algebras Mn(K): Consider the ’oriented n-line’ graph E defined
by E0 = {v1, . . . , vn}, E1 = {e1, . . . , en−1} and s(ei) = vi and r(ei) = vi+1 for
i = 1, . . . , n−1. Then LK(E) ∼= Mn(K), via the map vi 7→ e(i, i), ei 7→ e(i, i+1),
and e∗i 7→ e(i + 1, i) (where e(i, j) denotes the standard (i, j)-matrix unit in
Mn(K)).

(2) Laurent polynomial algebras K[x, x−1]: Consider the ’one vertex, one
loop’ graph E defined by E0 = {∗}, E1 = {x}. Then clearly LK(E) ∼= K[x, x−1].
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and, of course, ...
(3) Consider the ’rose with n petals’ graph E defined by E0 = {∗}, E1 =

{y1, . . . , yn} (where n ≥ 2). Then LK(E) ∼= LK(1, n).

In order to try to give you a feel for how the relations work ... here’s an
indication of why the matrix algebras Mn(K) are indeed Leavitt path algebras.
We note that each vertex v in the oriented n-line graph emits at most one edge.
Thus if e is an edge which connects vertex v to vertex w, then we have not only
the usual relation e∗e = w in LK(E), but we have also the relation ee∗ = v.
In this way, the set {e, e∗} generates a set of elements in LK(E) which behave
precisely as the matrix units in Mn(K).

The connection

Consider the situation where K = C. Effectively, LC(E) is the algebra de-
scribed in [108], a few lines from the bottom of page 10, where it is presented
as

span{SµS∗ν : µ, ν ∈ E∗, s(µ) = s(ν)}

Raeburn’s focus is to investigate the C*-algebra C∗(E) which results from com-
pleting the displayed C-algebra in an appropriate norm. In that sense, the people
who work in C*-algebras view the algebra span{SµS∗ν : µ, ν ∈ E∗, s(µ) = s(ν)}
as an intermediate construction which is considered along the highway to their
main destination. (¡Heck, this algebra isn’t even given a name in [108]!)

Our goal, on the other hand, is to analyze the inherent ring-theoretic pro-
perties of this algebra.

Intuitively, the one major difference (the essential difference?) between the
structure of the Leavitt path algebra LC(E) and its completion C∗(E) is that,
unlike the situation in C∗(E), we can view the elements of LC(E) as finite sums
or polynomials generated by these monomials pq∗.

Given the intimate relationship between LC(E) and C∗(E), are there
some immediate connections which can be established between their
structures? History has shown some surprising connections between
these two structures. Many of these connections will be discussed in
the rest of today’s lectures, and over the next few days. But there
seems to be no “Rosetta stone” which would allow immediate trans-
lation of results from the rings to the C∗-algebras, or vice versa.

We finish this first lecture by pointing out some basic properties of
LK(E):

(1) If E0 is finite then LK(E) is unital.
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(2) If E0 is infinite, then LK(E) is not unital, but is an algebra with local
units (specifically, the set generated by finite sums of distinct elements of E0).

(3) LK(E) is a Z-graded algebra, with grading induced by setting

deg(vi) = 0 for all vi ∈ E0; deg(ei) = 1; deg(e∗i ) = −1 for all ei ∈ E1.

That is, LK(E) =
⊕

n∈Z LK(E)n, where LK(E)n is generated as a vector space
by monomials of the form pq∗ having deg(p)− deg(q) = n.

(4) The involution. LK(E) supports an involution x 7→ x defined in the
monomials by:

(a) kivi = kivi with ki ∈ K and vi ∈ E0,

(b) kei1 . . . eiσe∗j1 . . . e
∗
jτ

= kejτ . . . ej1e
∗
iσ
. . . e∗i1 where k ∈ K; σ, τ ≥ 0, σ+τ >

0, eis ∈ E1 and ejt ∈ (E1)∗,

and extending linearly to LK(E).

Note that the involution transforms a polynomial in only real edges into a
polynomial in only ghost edges and vice versa. If J is an ideal of LK(E) then so is
J . We note here that while Leavitt path algebras behave somewhat like their C∗-
algebra siblings, they are indeed different in many respects. For instance, whereas
in C∗-algebras every two-sided ideal J is self-adjoint (i.e. J = J), this is not the
case in the Leavitt path algebras setting. For instance, let LK(E) = K[x, x−1]
and let J be the ideal < 1 + x + x3 > of LK(E). Then J is not self-adjoint, as
follows: by contradiction, if J = J , then f(x) = 1 + x−1 + x−3 ∈ J and thus
x3f(x) = 1+x2+x3 ∈ J . Now K[x, x−1] being a unital commutative ring implies
that there exists p =

∑∞
i=−∞ aix

i with p(1 + x + x3) = 1 + x2 + x3. A degree
argument on the highest power on the left hand side of the previous equation
leads to ai = 0 for every i ≥ 1. By reasoning in a similar fashion on the lowest
power we also get ai = 0 for every i ≤ −1, that is, p = a0, which is absurd.

3.2 Simple Leavitt path algebras

Abstract. In this second lecture we identify the simple Leavitt path algebras.

Leavitt’s main objective was to study rings without Invariant Basis Number.
He succeeded quite well in achieving this objective! He was able to show that for
every pair (m,n) there exists a K-algebra LK(m,n) having module type (m,n).
In looking back, it is interesting to note that the rings Leavitt discovered had two
very different behaviors. As noted in Lecture 1, the rings of form LK(1, n) turned
out to be significantly different than the rings of form LK(m,n) for m ≥ 2. For
us, the most important of these properties for LK(1, n) is:
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Theorem: Simplicity of the Leavitt algebras. [91, Theorem 2] For any
field K, LK(1, n) is simple for all n ≥ 2.

(Actually, Leavitt proved this is true with ’field’ replaced by ’division ring’.)
We will eventually get Leavitt’s result as a specific case of our main theorem.
But I think it is very instructive to see how Leavitt’s original proof proceeds,
because his ideas were definitely the roadmap for the general result. Recall that
LK(1, n), the Leavitt algebra of type (1, n), is the free associative K-algebra
with generators {xi, yi : 1 ≤ i ≤ n} and relations

(1) xiyj = δij1R for all 1 ≤ i, j ≤ n, and (2)
n∑
i=1

yixi = 1R.

There are two steps in Leavitt’s proof.
Step 1. Show that if an ideal I of LK(1, n) contains a nonzero element in

only y variables, then I = LK(1, n).
Step 2. Show that the general case can be reduced to Step 1.

We demonstrate algorithmically how Leavitt’s proof proceeds. Here’s an out-
line of the proof of Step 1.

Let α ∈ I be nonzero, and suppose we can write

α = y1α
(1)
1 + ...+ ynα

(1)
n + c0

with c0 ∈ K. Suppose deg(α) = m. Then the degree of each α
(1)
i is less than or

equal to m− 1. Here each α(1)
i is expressible in only y-terms.

We show that there exists a nonzero element in I, written only in y variables,
having smaller degree than α. After a finite number of steps this leads to a
nonzero element of the field K being in I, and we are done.

If c0 = 0 then for i having α
(1)
i 6= 0 we have xiα ∈ I. So we may assume

c0 6= 0.

Then x1α = α
(1)
1 + c0x1.

Then there are two cases depending on whether or not α(1)
1 is zero.

If α(1)
1 = 0 then x1α = c0x1, so by multiplying on the right by y1 we get

x1αy1 = c0 ∈ I, and we are done.

If α(1)
1 6= 0 then there are two cases, depending on the degree of α(1)

1 .

If deg(α(1)
1 ) = 0 then α(1)

1 = c1 6= 0, so that x1α = c1 + c0x1. Now here’s a
trick that we will mimic later in the general situation. We multiply by
x2 on the left, and y2 on the right, and get

x2(x1α)y2 = x2(c1 + c0x1)y2 = c1 + 0 = c1
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But c1 6= 0, and x2(x1α)y2 ∈ I, so we are done in this case.
Note: We use heavily here that n ≥ 2, so that we have an element

y2 which is orthogonal on the right to x1.

In the other situation we have deg(α(1)
1 ) > 0. Then we write

α
(1)
1 = y1α

(2)
1 + ...+ ynα

(2)
n + c1

where the degree of each α(2)
i is less than or equal to m− 2.

Now continue (for at most m steps). Eventually we get either α(m)
1 = 0, or

0 6= α
(m)
1 ∈ K. But in either case we are done, because:

In case α(m)
1 = 0 we can show that xm1 αy

m
1 ∈ I is a polynomial of the correct

form, having smaller degree than α.

In case 0 6= α
(m)
1 ∈ K then we get 0 6= x2x

m
1 αy2 ∈ K ∩ I.

Of course, the same sort of idea can be used to show that if an ideal I of
LK(1, n) contains a nonzero element in only x-variables, then I = LK(1, n) as
well.

Now that we have seen the idea in Leavitt’s proof, we are in position to
look at the proof of the result for general Leavitt path algebras. In this lecture
we will visit the main result of [3]. Specifically, we give necessary and sufficient
conditions on the row-finite graph E so that the Leavitt path algebra LK(E) is
simple. The ideas will extend the ideas presented by Leavitt. Importantly, the
conditions which yield the simplicity of LK(E) are independent of the field K.
Finally, perhaps intriguingly, we show that the conditions which arise here are
PRECISELY THE SAME CONDITIONS on E for which the graph C∗-algebra
C∗(E) is simple.

A quick review of the examples of Leavitt path algebras which arise as
’known’ algebras includes:

1. Matrix algebras Mn(K), which arise as LK(E) for the oriented n-line graph
E

•v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

2. Laurent polynomial algebras K[x, x−1], which arise as LK(E) for the ’one
vertex, one loop’ graph E

•v xgg

and, of course ...
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3. Leavitt algebras LK(1, n), which arise as LK(E) for the ’rose with n-petals’
graph E for n ≥ 2

•v y1gg

y2

ss

y3

��

yn

RR...

First, there are as many proofs of the fact that the matrix algebra Mn(K) is
simple as there are grains of sand on the beaches of the Costa del Sol. Second,
it is easily shown that K[x, x−1] is not simple, since, for instance, < 1+x > is a
nontrivial ideal. Third, we know that LK(1, n) is simple for n ≥ 2 by the work
we just did.

The point is this ... whatever necessary and sufficient conditions we give on
the graph E so that LK(E) is simple must make LK(E) for the ’oriented n-line
graph’ simple, the ’one vertex, one loop’ graph not simple, and the ’rose with n
petals’ graph (n ≥ 2) simple.

So we begin our finer analysis of the Leavitt path algebras. Note that the
grading on LK(E) allows us to define the degree of an arbitrary polynomial in
LK(E) as the maximum of the degrees of its monomials. We say that a monomial
in LK(E) is a real path (resp. a ghost path) if it contains no terms of the
form e∗i (resp. ei); we say that p ∈ LK(E) is a polynomial in only real edges
(resp. in only ghost edges) if it is a sum of real (resp. ghost) paths.

If α ∈ LK(E) and d ∈ Z+, then we say that α is representable as an
element of degree d in real (resp. ghost) edges in case α can be written
as a sum of monomials from the spanning set {pq∗ | p, q are paths in E} in
such a way that d is the maximum length of a path p (resp. q) which appears
in such monomials. We note that an element of LK(E) may be representable
as an element of different degrees in real (resp. ghost) edges, depending on the
particular representation used for α. For instance, for E the ’one vertex, one
loop’ graph, xx−1 is representable as an element of degree 0 in real edges in
LK(E), as xx−1 = 1.

To see what is happening at the graph level, we need some additional defini-
tions. If µ is a path in E having s(µ) = r(µ) and s(µi) 6= s(µj) for every i 6= j,
then µ is a called a cycle. As is the case in the study of graph C∗-algebras, the
notion of an exit for a path will play a fundamental role. An edge e is an exit
to the path µ = µ1 . . . µn if there exists i such that s(e) = s(µi) and e 6= µi.
A closed path based at v is a path µ = µ1 . . . µn, with µj ∈ E1, n ≥ 1 and
such that s(µ) = r(µ) = v. Denote by CP (v) the set of all such paths. A closed
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simple path based at v is a closed path based at v, µ = µ1 . . . µn, such that
s(µj) 6= v for every j > 1. Denote by CSP (v) the set of all such paths.

Remark. It is useful to keep in mind that a cycle is a closed simple path
based at any of its vertices, but not every closed simple path based at v is a
cycle. For instance, a closed simple path may visit some of its vertices (but not
v) more than once. Also, every closed simple path is in particular a closed path,
while the converse is false.

Lemma: Products of closed simple paths.

1. Let µ, ν ∈ CSP (v). Then µ∗ν = δµ,νv.

2. For every p ∈ CP (v) there exist unique c1, . . . , cm ∈ CSP (v) such that
p = c1 . . . cm.

Proof. (1) We first assume α and β are arbitrary paths and write α =
ei1 . . . eiσ and β = ej1 . . . ejτ .

Case 1: deg(α) = deg(β) but α 6= β. Define b ≥ 1 the subindex of the first
edge where the paths α and β differ. That is, eia = eja for every a < b but
eib 6= ejb . Then one eventually gets α∗β = 0.

Case 2: α = β. Proceeding as above, α∗β =
δr(ei1 ),s(ei2 ) . . . δr(eiσ−1 ),s(eiσ )r(eiσ ) = r(α).

Case 3: Now let µ, ν ∈ CSP (v) with deg(µ) < deg(ν). Write ν = ν1ν2 where
deg(ν1) = deg(µ), deg(ν2) > 0. Now if µ = ν1 then we have that v = r(µ) =
r(ν1) = s(ν2), contradicting that ν ∈ CSP (v), so µ 6= ν1 and thus case 1 applies
to obtain µ∗ν = µ∗ν1ν2 = 0.

The case deg(µ) > deg(ν) is analogous to what we just did by changing the
roles of µ and ν.

For (2), write p = ei1 . . . ein . Let T = {t ∈ {1, . . . , n} : r(eit) = v} and
list t1 < · · · < tm = n all the elements of T . Then c1 = ei1 . . . eit1 and cj =
eitj−1

. . . eitj for j > 1 give the desired decomposition. To prove the uniqueness,
write p = c1 . . . cr = d1 . . . ds with ci, dj ∈ CSP (v). Multiply by c∗1 on the left
and use (1) to obtain 0 6= vc2 . . . cr = c∗1d1 . . . ds, and therefore c1 = d1. Now an
induction process finishes the proof.

It will be useful to have some observations about the structure of graphs.
These results are not deep, but give a good flavor of the ideas in the graphs which
will eventually produce interesting properties inside LK(E). For p ∈ CP (v)
we define the return degree (at v) of p to be the number m ≥ 1 in the
decomposition above. (So, in particular, CSP (v) is the subset of CP (v) having
return degree equal one.) We denote it by RD(p) = RDv(p) = m. We extend this
notion to vertices by setting RDv(v) = 0, and to nonzero linear combinations of
the form

∑
ksps, with ps ∈ CP (v) ∪ {v} and ks ∈ K − {0} by: RD(

∑
ksps) =

max{RD(ps)}.
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Closed Paths With Exits Lemma. For a graph E the following conditions
are equivalent.

1. Every cycle has an exit.

2. Every closed path has an exit.

3. Every closed simple path has an exit.

4. For every vi ∈ E0, if CSP (vi) 6= ∅, then there exists c ∈ CSP (vi) having
an exit.

(We omit the proof.)

We now have all the information we need about graphs and the basic struc-
ture of LK(E) to prove the main result of this lecture. We use the idea presented
by Leavitt in [91] as a guide. We start by looking at some graph concepts which
apply directly to the ideal structure in LK(E). These are the SAME ideas that
were presented in the lectures of Raeburn and Tomforde.

For a graph E we define a preorder ≥ on the vertex set E0 given by:

v ≥ w if and only if v = w or there is a path µ with s(µ) = v and r(µ) = w.

We say that a subset H ⊆ E0 is hereditary if v ∈ H and v ≥ w imply w ∈ H.
We say that H is saturated if whenever s−1(v) 6= ∅ and {r(e) : s(e) = v} ⊆ H,
then v ∈ H. (In other words, H is saturated if, for any vertex v in E, if all of
the range vertices r(e) for those edges e having s(e) = v are in H, then v must
be in H as well.)

Hereditary and Saturated Lemma. If J is an ideal of LK(E), then J∩E0

is a hereditary and saturated subset of E0.

Proof. The idea for hereditariness is simply that if there is an edge e from v to
w, and v ∈ J , then w = e∗e (by CK1), which in turn is e∗ve, and so w ∈ J . Now
use induction. For saturated we use CK2: take v so that {r(e) : s(e) = v} ⊆ J .
Then v =

∑
{ej∈E1:s(ej)=v} eje

∗
j =

∑
{ej∈E1:s(ej)=v} ejr(ej)e

∗
j ∈ J.

Exits Reduce Degree Proposition. Let E be a graph with the property
that every cycle has an exit. If α ∈ LK(E) is a polynomial in only real edges with
deg(α) > 0, then there exist a, b ∈ LK(E) such that aαb 6= 0 is a polynomial in
only real edges and deg(aαb) < deg(α).
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Proof. Write α =
∑
ei∈E1 eiαei+

∑
vl∈E0 klvl, where αei are polynomials in only

real edges, and deg(αei) < deg(α) = m.
Case (A): kl = 0 for every l. Since α 6= 0, there exists i0 such that ei0αei0 6= 0.

Let b ∈ LK(E) have αb = α. Then a = e∗i0 , b give e∗i0αb = αei0 6= 0 is a
polynomial in only real edges and deg(αei0 ) < deg(α).

Case (B): There exists kl0 6= 0. Then we can write

vl0αvl0 = kl0vl0 +
∑

p∈CP (vl0 )

kpp, kp ∈ K.

Note that this is a polynomial in only real edges, and is nonzero because kl0 is
nonzero.

Case (B.1): deg(vl0αvl0) < deg(α). Then we are done with a = vl0 and
b = vl0 .

Case (B.2): deg(vl0αvl0) = deg(α) = m > 0. Then there exists p0 ∈ CP (vl0)
such that kp0p0 6= 0. Now by the Products of Closed Paths Lemma we can write
p0 = c1 . . . cσ, σ ≥ 1 and thus CSP (vl0) 6= ∅. We apply now the Closed Paths
With Exits Lemma to find cs0 ∈ CSP (vl0) which has ei0 as an exit, that is, if
cs0 = ei1 . . . eis0 then there exists j ∈ {1, . . . , s0} such that s(eij ) = s(ei0) but
eij 6= ei0 . Since s(eij ) = s(ei0) we can therefore build the path given by z =
ei1 . . . eij−1ei0 . This path has c∗s0z = 0 because c∗s0z = e∗is0

. . . e∗i1ei1 . . . eij−1ei0 =
· · · = e∗is0

. . . e∗ijei0 = 0. (We will use this observation later on.) Again the lemma
allows us to write

vl0αvl0 = kl0vl0 +
∑

cs∈CSP (vl0 )

csα
(1)
cs

where γ = RD(vl0αvl0) > 0, and α(1)
cs are polynomials in only real edges satisfy-

ing RD(α(1)
cs ) < γ.

We now present a process in which we decrease the return degree of the
polynomials by multiplying on both sides by appropriate elements in LK(E). In
particular, multiplying the displayed equation on the left by c∗s0 gives

c∗s0(vl0αvl0) = kl0c
∗
s0 + α(1)

cs0
.

Case 1: α(1)
cs0

= 0. Then A = c∗s0 and B = cs0 are such that A(vl0αvl0)B =
kl0vl0 6= 0 is a polynomial in only real edges and RD(A(vl0αvl0)B) = 0 < γ =
RD(vl0αvl0).

Case 2: α(1)
cs0
6= 0 but RD(α(1)

cs0
) = 0. Then α

(1)
cs0

= k(2)vl0 for some 0 6=
k(2) ∈ K. Using the path z with an exit for c∗s0 we have: z∗c∗s0(vl0αvl0)z =
z∗(kl0c

∗
s0 + k(2)vl0)z = z∗(0 + k(2)z) = k(2)r(z) 6= 0. So we have A = z∗c∗s0
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and B = z such that A(vl0αvl0)B 6= 0 is a polynomial in only real edges and
RD(A(vl0αvl0)B) = 0 < γ = RD(vl0αvl0).

Case 3: RD(α(1)
cs0

) > 0. We can write

α(1)
cs0

= k(2)vl0 +
∑

cs∈CSP (vl0 )

csα
(2)
cs ,

where α(2)
cs are polynomials in only real edges with return degree less than the

return degree of α(1)
cs0

. Now 0 < RD(α(1)
cs0

) < γ implies γ ≥ 2. Multiply this last
equation by c∗s0 to get

(c∗s0)
2(vl0αvl0) = kl0(c

∗
s0)

2 + k(2)c∗s0 + α(2)
cs0
.

We are now in position to proceed in a manner analogous to that described
in Cases 1, 2, and 3 above.

Case 3.1: α(2)
cs0

= 0. Then (c∗s0)
2(vl0αvl0)(cs0)

2 = kl0vl0 +k(2)cs0 and hence we
have found A = (c∗s0)

2 and B = (cs0)
2 such that A(vl0αvl0)B 6= 0 is a polynomial

in only real edges and RD(A(vl0αvl0)B) = 1 < 2 ≤ γ = RD(vl0αvl0).
Case 3.2: α(2)

cs0
6= 0 but RD(α(2)

cs0
) = 0. Then α

(2)
cs0

= k(3)vl0 for some 0 6=
k(3) ∈ K, and then z∗(c∗s0)

2(vl0αvl0)z = z∗(kl0(c
∗
s0)

2 + k(2)c∗s0 + k(3)vl0)z =
z∗(0 + k(3)z) = k(3)r(z) 6= 0. Thus, we get A = z∗(c∗s0)

2 and B = z such that
A(vl0αvl0)B 6= 0 is a polynomial in only real edges and RD(A(vl0αvl0)B) = 0 <
γ = RD(vl0αvl0).

Case 3.3: RD(α(2)
cs0

) > 0. We write

α(2)
cs0

= k(3)vl0 +
∑

cs∈CSP (vl0 )

csα
(3)
cs ,

where α(3)
cs are polynomials in only real edges with return degree less than the

return degree of α(2)
cs0

. Now 0 < RD(α(2)
cs0

) < RD(α(1)
cs0

) < γ implies γ ≥ 3. And
by multiplying (§) by c∗s0 we get (c∗s0)

3(vl0αvl0) = kl0(c
∗
s0)

3+k(2)(c∗s0)
2+k(3)c∗s0 +

α
(3)
cs0

.
We continue the process of analyzing each such equation by considering three

cases. If at any stage either of the first two cases arise, we are done. But since at
each stage the third case can occur only by producing elements of subsequently
smaller return degree, then after at most γ stages we must have one of the first
two cases.

Thus, by repeating this process at most γ times we are guaranteed to
find Ã, B̃ such that Ã(vl0αvl0)B̃ 6= 0 is a polynomial in only real edges and
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RD(Ã(vl0αvl0)B̃) = 0. But this then gives 0 = deg(Ã(vl0αvl0)B̃) < deg(α). So
a = Ãvl0 and b = vl0B̃ are the desired elements.

The Exits Reduce Degree Proposition is the key computational tool which
we will use to get our desired result about simple Leavitt path algebras. As a
consequence of Exits Reduce Degree, we get ...

Corollary. Let E be a graph with the property that every cycle has an exit.
If α 6= 0 is a polynomial in only real edges then there exist a, b ∈ LK(E) such
that aαb ∈ E0.

Proof. Apply Exits Reduce Degree Proposition as many times as needed (deg(α)
at most) to find a′, b′ such that a′αb′ is a nonzero polynomial in only real edges
with deg(a′αb′) = 0; that is, a′αb′ =

∑t
i=1 kivi 6= 0. So there exists j with

kj 6= 0, and finally a = k−1
j a′ and b = b′vj give that aαb = vj ∈ E0.

... which then immediately gives ...

Corollary. Let E be a graph with the property that every cycle has an exit.
If J is an ideal of LK(E) and contains a nonzero polynomial in only real edges,
then E0 ∩ J 6= ∅.

We can define sets and quantities for ghost paths analogous to those given
for real paths. Using the involution on LK(E), we get in an identical way the
’ghost’ version of the previous Corollary, namely, ...

Corollary. Let E be a graph with the property that every cycle has an exit.
If J is an ideal of LK(E) and contains a nonzero polynomial in only ghost edges,
then E0 ∩ J 6= ∅.

... which then gives the following ...

Method For Simplicity. Let E be a graph with the following properties:

1. The only hereditary and saturated subsets of E0 are ∅ and E0.

2. Every cycle has an exit.

If J is a nonzero ideal of LK(E) which contains a nonzero polynomial in only
real edges (or a nonzero polynomial in only ghost edges), then J = LK(E).

Proof. Apply the previous Corollaries to get that J ∩ E0 6= ∅. Now by the
Hereditary and Saturated Lemma and (1) we have J ∩ E0 = E0. Therefore J
contains a set of local units for LK(E), and hence J = LK(E).
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We are now in position to prove the main result of Lecture 2.

SIMPLICITY THEOREM. Let E be a row-finite graph. Then the Lea-
vitt path algebra LK(E) is simple if and only if E satisfies the following condi-
tions.

1. The only hereditary and saturated subsets of E0 are ∅ and E0, and

2. Every cycle in E has an exit.

Proof. First we assume that (1) and (2) hold and we will show that LK(E) is
simple.

Suppose that J is a nonzero ideal of LK(E). Choose 0 6= α ∈ J representable
as an element having minimal degree in the real edges. If this minimal degree
is 0, then α is a polynomial in only ghost edges, so that by the Method for
Simplicity we have J = LK(E), and we are done.

So suppose this degree in real edges is at least 1. Then we can write

α =
m∑
n=1

einαein + β

where m ≥ 1, einαein 6= 0 for every n, and each αein is representable as an
element of degree less than that of α in real edges, and β is a polynomial in only
ghost edges (possibly zero).

Suppose v is a sink in E. Then we may assume vβ = 0, as follows. Multiplying
the displayed equation by v on the left gives vα = v

∑m
n=1 einαein +vβ. But since

v is a sink we have vein = 0 for all 1 ≤ n ≤ m, so that vα = vβ ∈ J . But vβ 6= 0
would then yield a nonzero element of J in only ghost edges, so that again by
the Method for Simplicity we have J = LK(E), and we are done.

For an arbitrary edge ej ∈ E1, we have two cases:
Case 1: j ∈ {i1, . . . , im}. Then e∗jα = αej +e

∗
jβ ∈ J . If this element is nonzero

it would be representable as an element with smaller degree in the real edges
than that of α, contrary to our choice. So it must be zero, and hence αej = −e∗jβ,
so that ejαej = −eje∗jβ.

Case 2: j 6∈ {i1, . . . , im}. Then e∗jα = e∗jβ ∈ J . If e∗jβ 6= 0, then as before
we would have a nonzero element of J in only ghost edges, so that J = LK(E)
and we are done. So we may assume that e∗jβ = 0, so that in particular we have
0 = −eje∗jβ.

Now let
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S1 = {vj ∈ E0 : vj = s(ein) for some 1 ≤ n ≤ m}

and let

S2 = {vk1 , ..., vkt} where (
t∑
i=1

vki)β = β.

(Such a set S2 exists because LK(E) has a set of local units.) We note that
wβ = 0 for every w ∈ E0 − S2. Also, by definition there are no sinks in S1,
and by a previous observation we may assume that there are no sinks in S2. Let
S = S1 ∪ S2. Then in particular we have (

∑
v∈S v)β = β.

We now argue that in this situation α must be zero, which will contradict
our original choice of α and we will then be done. Here we go:

α =
m∑
n=1

einαein + β =
m∑
n=1

−eine∗inβ + β (by Case 1)

=
m∑
n=1

−eine∗inβ − (
∑

j /∈{i1,...,im},s(ej)∈S

eje
∗
j )β + β

(by Case 2, the newly subtracted terms equal 0)

= −(
∑
v∈S

v)β + β (no sinks in S implies that CK2 applies at each v ∈ S)

= −β + β = 0.

Thus we have shown that if E satisfies the two indicated properties, then LK(E)
is simple. So we are done with the first part of the proof.

Before we prove the converse, this seems to be a good place to stop and
show how Leavitt’s result of the simplicity of LK(1, n) ∼= L(Rn) for n ≥ 2
follows from what we just did. Trivially, the only hereditary and saturated
subsets of Rn are trivial (including n = 1). When n ≥ 2 then every cycle in Rn
has an exit. And that’s it !

Now for the converse. There are two pieces to the converse. We must show
that LK(E) is not simple when either of these two conditions hold: (1) In case
E contains a cycle p having no exit, and (2) in case there exists a nontrivial
hereditary saturated subset of E0.

For the first situation, suppose that there is a cycle p having no exit. We will
prove that LK(E) cannot be simple.
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Intuitively, the proof is similar to the proof that K[x, x−1] ∼= LK(C1) is not
simple. For instance, the ideal < 1+x > of LK(C1) is nontrivial. (There are many
other nontrivial ideals in K[x, x−1] ∼= LK(C1) as well.) In K[x, x−1] ∼= LK(C1)
the element v is the identity, while x corresponds to the loop ` based at v. So
inside LK(C1), we have the nontrivial ideal < v + ` >. In the general situation,
we will find that analogous elements of the form v + c will generate nontrivial
ideals precisely when c is a cycle based at v for which there are no exits. Here
are the details.

Let v be the base of that cycle. We will show that for α = v + p, < α >
is a nontrivial ideal of LK(E) because v 6∈< α >. Write p = ei1 . . . eiσ . Since
this cycle does not have an exit, for every eij there is no edge with source s(eij )
other than eij itself, so that the CK2 relation at this vertex yields s(eij ) = eije

∗
ij

.
This easily implies pp∗ = v (we recall here that p∗p = v always holds), and that
CSP (v) = {p}.

Now suppose that v ∈< α >. So there exist nonzero monic monomials
an, bn ∈ LK(E) and cn ∈ K with v =

∑m
n=1 cnanαbn. Since vαv = α, by

multiplying by v if necessary we may assume that vanv = an and vbnv = bn for
all 1 ≤ n ≤ m.

We claim that for each an (resp. bn) there exists an integer u(an) ≥ 0 (resp.
u(bn) ≥ 0) such that an = pu(an) or an = (p∗)u(an) (resp. bn = pu(bn) or
bn = (p∗)u(bn)).

Now a1 is of the form ek1 . . . ekce
∗
j1
. . . e∗jd with c, d ≥ 1. (Otherwise we are in

a simple case that will be contained in what follows.) Since a1 starts and ends
in v we can consider the elements: g = min{z : r(e∗jz ) = v} and f = max{z :
s(ekz ) = v}, and we will focus on a′1 = ekf . . . ekce

∗
j1
. . . e∗jg .

First, since v = r(e∗jg ) = s(ejg ) and ei1 is the only edge coming from v, then
ejg = ei1 . Now, s(ejg−1) = r(e∗jg−1

) = s(e∗jg ) = r(ejg ) = r(ei1) = s(ei2), and
again the only edge coming from s(ei2) is ei2 and therefore ejg−1 = ei2 . This
process must stop before we run out of edges of p because by our choice of g
we have that v 6∈ {r(e∗jz ) : z < g}. So in the end there exists γ < σ such that
e∗j1 . . . e

∗
jg

= e∗iγ . . . e
∗
i1

.
With the same (reversed) ideas in the paragraph above we can find δ < σ

such that ekf . . . ekc = ei1 . . . eiδ . Thus, a′1 = ei1 . . . eiδe
∗
iγ
. . . e∗i1 , and we have

two cases:
Case 1: δ 6= γ. We know that p is a cycle, so that r(eiδ) 6= r(eiγ ) = s(e∗iγ ), so

eiδe
∗
iγ

= 0, which is absurd because a1 6= 0.
Case 2: δ = γ. In this case a′1 = p0p

∗
0 for a certain subpath p0 of p, and by

using again the argument of the CK2 relation in this case, we obtain p0p
∗
0 = v.

Hence, we get a1 = ek1 . . . ekf−1e
∗
jg+1

. . . e∗jd = xy∗, with x, y ∈ CP (v). (Obvi-
ously, the case c ≥ 1, d = 0 yields a1 = x, the case c = 0, d ≥ 1 yields a1 = y∗ and
c = d = 0 yields a1 = v.) We have x = c(1) . . . c(ν) for some c(µ) ∈ CSP (v) = {p},
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and the same happens with y. In this way we have a1 = pu(p∗)v for some u, v ≥ 0,
and taking into account that pp∗ = v we finally obtain that a1 is of the form pu

or (p∗)u for some u ≥ 0 as claimed. An identical argument holds for the other
coefficients an and bn.

Now since both p and p∗ commute with p, p∗ and α, we use the conclusion
of the previous paragraph to write the sum v =

∑m
n=1 cnanαbn as v = αP (p, p∗)

for some polynomial P having coefficients in K. Specifically, P (p, p∗) can be
written as P (p, p∗) = k−m(p∗)m + · · · + k0v + · · · + knp

n ∈
⊕n

j=−m LK(E)σj ,
where m,n ≥ 0. First, we claim that k−i = 0 for every i > 0, as follows. If
not, let m0 be the maximum i having k−i 6= 0. Then αP (p, p∗) = k−m0(p

∗)m0 +
terms of greater degree = v, and since m0 > 0 we get that k−m0 = 0, which

is absurd. In a similar way we obtain ki = 0 for every i > 0, and therefore
P (p, p∗) = k0v. But this would yield v = αP (p, p∗) = αk0v = k0α, which is
impossible.

Thus we have shown that if E contains a cycle which has no exit, then LK(E)
is not simple. So the first part of the converse is done. Note that what
we have essentially done is to simply generalize the idea that < 1 + x > is a
nontrivial ideal in K[x, x−1].

Now we will consider the second part of the converse, the situation where
E0 contains a nontrivial hereditary and saturated subset H, and we show how
to conclude in this case as well that LK(E) is not simple. We give an outline of
the idea.

We construct a new graph F = (F 0, F 1, rF , sF ) = (E0 − H, r−1(E0 −
H), r|E0−H , s|E0−H). In other words, F is the graph consisting of all vertices
not in H, together with all edges whose range is not in H. To make sure that F
is well-defined, we must check that sF (F 1) ∪ rF (F 1) ⊆ F 0. That rF (F 1) ⊆ F 0

is clear. On the other hand, if e ∈ F 1 then s(e) ∈ F 0, since otherwise we have
s(e) ∈ H; but since r(e) ≥ s(e) and H is hereditary, we get r(e) ∈ H, which
contradicts e ∈ F 1. So F is a well defined graph.

We now produce a K-algebra homomorphism Ψ : LK(E) → LK(F ). Essen-
tially, Ψ simply sends vertices and edges to themselves in case they are not in
H, and to 0 if they are in H. After some tedious checking (using the (CK2)
condition to make sure that the map factors through the appropriate relations
in LK(E)), we get that Ker(Ψ) is a nontrivial ideal in LK(E). (In fact, LK(E)
contains a nontrivial graded ideal. This will be shown tomorrow.)

Thus we conclude that the negation of either condition (1) or condition (2)
yields that LK(E) is not simple, which completes the proof of the Sim-
plicity Theorem.

So we have a way to determine directly from the graph E whether or not
LK(E) is simple. Note that this is completely independent of the field K. Also,
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of the two conditions on E which must be satisfied so that LK(E) is simple, the
“every cycle has an exit” condition is usually easy to see, but the “hereditary
and saturated subsets” condition is usually not so obvious.

We restate as a corollary the result which we observed in the previous proof.

Leavitt’s result of the simplicity of LK(1, n) ∼= LK(Rn) for n ≥ 2. The
only subsets of Rn are trivial (including n = 1). When n ≥ 2 then every cycle
in Rn has an exit. And that’s it !

Each of us has her or his favorite proof that the ring of n× n matrices over
a field is simple. Here is ours.

Matrix rings are simple. For every integer n and fieldK, Mn(K) is simple.
Our favorite proof. Mn(K) ∼= LK(E), where E is the ’oriented n-line graph’.

Every cycle certainly has an exit, vacuously. So let’s show that E has only trivial
hereditary and saturated subsets. If H 6= ∅ is a set of vertices which is hereditary
and saturated, let vi ∈ H. By hereditariness we have that vi+1, . . . , vn ∈ H. Now
if we use the condition of being saturated at vi−1 we get that vi−1 ∈ H, and
inductively vi−1, . . . , v1 ∈ H and therefore H = E0.

The cycle graphs don’t give simple algebras. Let Cn denote the graph
having n vertices and n edges, where the edges form a single cycle. (In particular,
the “one vertex, one loop” graph which we wrote down before is the graph C1.)
Then LK(Cn) is not simple for all n, since the single cycle contains no exit.

We close this lecture by noting that the Leavitt path algebras which arise
as “algebraic Cuntz-Krieger algebras” of [19] (which we described in the first
lecture) do not include either the Mn(K) situation, nor the K[x, x−1] situation.
The idea is that the edge matrix which yields the ring Mn(K) is

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 ,

which contains both a zero column and a zero row, which is not allowable in the
discussion of simplicity in [19]. Similarly, the edge matrix for the cycle graph Cn
is 

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 ,
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which is a permutation matrix, and this one is not allowed either. So the Sim-
plicity Theorem really does extend the results of [19]

3.3 Purely infinite simple Leavitt path algebras

Abstract. In this third lecture we describe purely infinite simple algebras, and
identify precisely those Leavitt path algebras which have this property.

An idempotent e in a ring R is called infinite if eR is isomorphic as a right
R-module to a proper direct summand of itself. R is called purely infinite
in case every nonzero right ideal of R contains an infinite idempotent. Much
recent attention has been paid to the structure of rings which are both purely
infinite and simple (we will call such rings purely infinite simple), from both an
algebraic (see e.g. [13], [19], [22]) as well as an analytic (see e.g. [31], [87], [106])
point of view. Such algebras may seem unfamiliar at first: they are very far from
possessing any sort of chain condition. We will show that these arise naturally
in the context of Leavitt path algebras.

We begin by considering algebras which in some sense are at the opposite
end of the spectrum from the purely infinite simple ones.

Lemma: Finite Acyclic is Finite Dimensional. Let E be a finite acyclic
graph. Then L(E) is finite dimensional.

Proof. Since the graph is row-finite, the given condition on E is equivalent to the
condition that E∗ is finite. The result now follows from the previous observation
that L(E) is spanned as a K-vector space by {pq∗ | p, q are paths in E}.

The lemma is precisely the tool we need to establish the following key result.

The Acyclic Proposition. Let E be a graph. Then E is acyclic if and only
if L(E) is a union of a chain of finite dimensional subalgebras.

Proof. Assume first that E is acyclic. If E is finite, then the lemma gives
the result. So now suppose E is infinite, and rename the vertices of E0 as
a sequence {vi}∞i=1. We now define a sequence {Fi}∞i=1 of subgraphs of E.
Let Fi = (F 0

i , F
1
i , r, s) where F 0

i := {v1, . . . , vi} ∪ r(s−1({v1, . . . , vi}), F 1
i :=

s−1({v1, . . . , vi}), and r, s are induced from E. In particular, Fi ⊆ Fi+1 for all i.
For any i > 0, L(Fi) is a subalgebra of L(E). Here’s why. First note that we

can construct φ : L(Fi)→ L(E) a K-algebra homomorphism because the Cuntz-
Krieger relations in L(Fi) are consistent with those in L(E), in the following way:
Consider v a sink in Fi (which need not be a sink in E), then we do not have CK2
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at v in L(Fi). If v is not a sink in Fi, then there exists e ∈ F 1
i := s−1({v1, . . . , vi})

such that s(e) = v. But s(e) ∈ {v1, . . . , vi} and therefore v = vj for some j, and
then F 1

i := s−1({v1, . . . , vi}) ensures that all the edges coming from v are in Fi,
so CK2 at v is the same in L(Fi) as in L(E). The other relations offer no difficulty.
Now, with a similar construction and argument to that used in the proof of the
Simplicity Theorem we find ψ : L(E)→ L(Fi) a K-algebra homomorphism such
that ψφ = Id|L(Fi), so that φ is a monomorphism, which we view as the inclusion
map. By construction, each vertex in E0 is in Fi for some i; furthermore, the
edge e has e ∈ F 1

j , where s(e) = vj . Thus we conclude that L(E) = ∪∞i=1L(Fi).
(We note here that the embedding of graphs j : Fi ↪→ E is a complete graph
homomorphism in the sense of [23], so that the conclusion L(E) = ∪∞i=1L(Fi)
can also be achieved by invoking [23, Lemma 2.1].)

Since E is acyclic, so is each Fi. Moreover, each Fi is finite since, by the row-
finiteness of E, in each step we add only finitely many vertices. Thus, because
Finite Acyclic is Finite Dimensional, L(E) is indeed a union of a chain of finite
dimensional subalgebras.

For the converse, let p ∈ E∗ be a cycle in E. Then {pm}∞m=1 is a linearly
independent infinite set, so that p is not contained in any finite dimensional
subalgebra of L(E).

We note that when E is finite and acyclic then L(E) can be shown to be
isomorphic to a finite direct sum of full matrix rings over K, and, for any acyclic
E, L(E) is a direct limit of subalgebras of this form. We will look at that in
more detail later.

Lemma: Acyclic implies no infinite idempotents. Suppose A is a union
of finite dimensional subalgebras. Then A is not purely infinite. In fact, A con-
tains no infinite idempotents.

Proof. It suffices to show the second statement. So just suppose e = e2 ∈ A is
infinite. Then eA contains a proper direct summand isomorphic to eA, which in
turn, by definition and a standard argument, is equivalent to the existence of
elements g, h, x, y ∈ A such that g2 = g, h2 = h, gh = hg = 0, e = g + h, h 6=
0, x ∈ eAg, y ∈ gAe with xy = e and yx = g. But by hypothesis the five elements
e, g, h, x, y are contained in a finite dimensional subalgebra B of A, which would
yield that B contains an infinite idempotent, and thus contains a non-artinian
right ideal, which is impossible.

Recall that on the way to the Simplicity Theorem presented in the previous
lecture, we obtained two ’Method for Simplicity’ results, one for real edges and
one for ghost edges. Here is essentially the same result, rearranged in one place.
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Proposition: Exits Give Vertices. Let E be a graph with the property
that every cycle has an exit. Then for every nonzero α ∈ L there exist a, b ∈ L(E)
such that aαb ∈ E0.

The proof is essentially the same as the process described in the proof of the
Simplicity Theorem given in the previous lecture, and so is omitted.

For any subset X ⊆ E0 we define the following subsets. H(X) is the set of
all vertices that can be obtained by one application of the hereditary condition
at any of the vertices of X; that is, H(X) := r(s−1(X)). Similarly, S(X) is the
set of all vertices obtained by applying the saturated condition among elements
of X, that is, S(X) := {v ∈ E0 : ∅ 6= {r(e) : s(e) = v} ⊆ X}. We now define

G0 := X, and for n ≥ 0 we define inductively Gn+1 := H(Gn) ∪ S(Gn) ∪Gn.

It is not difficult to show that the smallest hereditary and saturated subset of
E0 containing X is the set G(X) :=

⋃
n≥0Gn. We call G(X) the hereditary

saturated closure of X.
Recall from the previous lecture that a closed simple path based at v is a

path µ = µ1 . . . µn, with µj ∈ E1, n ≥ 1 such that s(µj) 6= v for every j > 1
and s(µ) = r(µ) = v. Denote by CSP (v) the set of all such paths. We define the
following subsets of E0:

V0 = {v ∈ E0 : CSP (v) = ∅} V1 = {v ∈ E0 : |CSP (v)| = 1} V2 = E0−(V0∪V1)

As we will see, the set V1 will play an important role here. First ...

Empty V1 Lemma. Let E be a graph. If L(E) is simple, then V1 = ∅.

Proof. If not, then there exists v ∈ V1, so that CSP (v) = {p}. We show that a
contradiction arises. In this case p is clearly a cycle. By the Simplicity Theorem
we can find an edge e which is an exit for p. Let A be the set all vertices in the
cycle. Since p is the only cycle based at v, and e is an exit for p, we conclude that
r(e) 6∈ A. Consider then the set X = {r(e)}, and construct G(X) as described
above. Then G(X) is nonempty and, by construction, hereditary and saturated.

Now the Simplicity Theorem implies that G(X) = E0, so we can find n =
min{m : A ∩Gm 6= ∅}. Take w ∈ A ∩Gn. We are going to show that r(e) ≥ w.
First, since r(e) 6∈ A, then n > 0 and therefore w ∈ H(Gn−1)∪S(Gn−1)∪Gn−1.
Here, w ∈ Gn−1 cannot happen by the minimality of n. If w ∈ S(Gn−1) then
∅ 6= {r(e) : s(e) = w} ⊆ Gn−1. Since w is in the cycle p, there exists f ∈ E1 such
that r(f) ∈ A and s(f) = w. In that case r(f) ∈ A ∪ Gn−1 again contradicts
the minimality of n. So the only possibility is w ∈ H(Gn−1), which means that
there exists ei1 ∈ E1 such that r(ei1) = w and s(ei1) ∈ Gn−1.

We now repeat the process with the vertex w′ = s(ei1). If w′ ∈ Gn−2 then we
would have w ∈ Gn−1, again contradicting the minimality of n. If w′ ∈ S(Gn−2)
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then, as above, {r(e) : s(e) = w′} ⊆ Gn−2, so in particular would give w =
r(ei1) ∈ Gn−2, which is absurd. So therefore w′ ∈ H(Gn−2) and we can find
ei2 ∈ E1 such that r(ei2) = w′ and s(ei2) ∈ Gn−2.

After n steps we will have found a path q = ein . . . ei1 with r(q) = w and
s(q) = r(e). In particular we have s(e) ≥ w, and therefore there exists a cycle
based at w containing the edge e. Since e is not in p we get |CSP (w)| ≥ 2. Since
w is a vertex contained in the cycle p, we then get |CSP (v)| ≥ 2, contrary to
the definition of the set V1.

Proposition: V0 gives NOT purely infinite. Let E be a graph. Suppose
that w ∈ E0 has the property that, for every v ∈ E0, w ≥ v implies v ∈ V0.
Then the corner algebra wL(E)w is not purely infinite.

Proof. Consider the graph H = (H0,H1, r, s) defined by H0 := {v : w ≥ v},
H1 := s−1(H0), and r, s induced by E. (We will sometimes refer to this graph as
the tree of w in the sequel.) The only nontrivial part of showing that H is a well
defined graph is verifying that r(s−1(H0)) ⊆ H0. Take z ∈ H0 and e ∈ E1 such
that s(e) = z. But we have w ≥ z and thus w ≥ r(e) as well, that is, r(e) ∈ H0.
In addition, using the definition, it is clear that H is hereditary.

Using that H is acyclic, along with the same argument as given previously,
we have that L(H) is a subalgebra of L(E). Thus the Acyclic Proposition ap-
plies, which yields that L(H) is the union of finite dimensional subalgebras, and
therefore contains no infinite idempotents by the appropriately-named Lemma.
As wL(H)w is a subalgebra of L(H), it too contains no infinite idempotents,
and thus is not purely infinite.

We claim that wL(H)w = wL(E)w. To see this, given α =
∑
piq

∗
i ∈ L(E),

then wαw =
∑
pijq

∗
ij

with s(pij ) = w = s(qij ) and therefore pij , qij ∈ L(H) as
H is hereditary. Thus wL(E)w is not purely infinite as desired.

We thank Pere Ara for indicating the following result, which will provide the
direction of proof for the main theorem of this lecture. A right A-module T is
called directly infinite in case T contains a proper direct summand T ′ such
that T ′ ∼= T . (In particular, the idempotent e is infinite precisely when eA is
directly infinite.)

Multiplicative Description of Purely Infinite Simple Rings. Let A
be a ring with local units. The following are equivalent:

(i) A is purely infinite simple.
(ii) A is simple, and for each nonzero finitely generated projective right A-

module P , every nonzero submodule C of P contains a direct summand T of
P for which T is directly infinite. (In particular, the property ‘purely infinite
simple’ is a Morita invariant of the ring.)

(iii) wAw is purely infinite simple for every nonzero idempotent w ∈ A.
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(iv) A is simple, and there exists a nonzero idempotent w in A for which
wAw is purely infinite simple.

(v) A is not a division ring, and A has the property that for every pair of
nonzero elements α, β in A there exist elements a, b in A such that aαb = β.

Proof. (i) ⇔ (ii). Suppose A is purely infinite simple. Let P be any nonzero
finitely generated projective right A-module. Then the simplicity of A gives
that P is a generator for Mod−A by a standard argument on trace ideals. (The
argument works just fine even for rings with local units.) This observation allows
us to argue exactly as in the proof of [22, Lemma 1.4 and Proposition 1.5] that
if e = e2 ∈ A, then there exists a right A-module Q for which eA ∼= P ⊕Q. Since
A is purely infinite, there exists an infinite idempotent e ∈ A. The indicated
isomorphism yields that any submodule C of P is isomorphic to a submodule C ′
of eA, so that by the hypothesis that A is purely infinite we have that C ′ contains
a submodule T ′ which is directly infinite, and for which T ′ is a direct summand
of eA. But by a standard argument, any direct summand of eA is equal to fA
for some idempotent f ∈ A, so that T ′ = fA for some infinite idempotent f
of A. Let T be the preimage of T ′ in P ⊕ Q under the isomorphism. Then T
is directly infinite, and since fA is a direct summand of eA we have that T is
a direct summand of P ⊕ Q which is contained in P , and hence T is a direct
summand of P .

By [9, Proposition 3.3], the lattice of two-sided ideals of Morita equivalent
rings are isomorphic, so that any ring Morita equivalent to a simple ring is
simple. Therefore, since the indicated property is clearly preserved by equivalence
functors, we have that ‘purely infinite simple’ is a Morita invariant.

For the converse, let I be a nonzero right ideal of A. We show that I contains
an infinite idempotent. Let 0 6= x ∈ I, so that xA ≤ I. But x = ex for some
e = e2 ∈ A, so xA ≤ eA. So by hypothesis, xA contains a nonzero direct
summand T of eA, where T is directly infinite. But as noted above we have that
T = fA for f = f2 ∈ A, where f is infinite. Thus f ∈ T ≤ xA ≤ I and we are
done.

(ii) ⇒ (iii). Since we have established the equivalence of (i) and (ii), we may
assume A is purely infinite simple. Then the simplicity of A gives that AwA = A
for any nonzero idempotent w ∈ A, which yields by [9, Proposition 3.5] that A
and wAw are Morita equivalent, so that (iii) follows immediately from (ii).

(iii) ⇒ (iv). It is tedious but straightforward to show that if A is any ring
with local units, and wAw is a simple (unital) ring for every nonzero idempotent
w of A, then A is simple.

(iv) ⇒ (i). Since A is simple we get AwA = A, so that A and wAw are
Morita equivalent by the previously cited [9, Proposition 3.5].

Thus we have established the equivalence of statements (i) through (iv).
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(i) ⇒ (v). Suppose A is purely infinite simple. Then A is not left artinian,
so that A cannot be a division ring. Now choose nonzero α, β ∈ A. Then there
exists a nonzero idempotent w ∈ A such that α, β ∈ wAw. But wAw is purely
infinite simple by (i) ⇔ (iii), so by [22, Theorem 1.6] there exist a′, b′ ∈ wAw
such that a′αb′ = w. But then for a = a′, b = b′β we have aαb = β. Conversely,
suppose A is not a division ring, and that A satisfies the indicated property.
Since A is not a division ring and A is a ring with local units, there exists a
nonzero idempotent w of A for which wAw is not a division ring. Let α ∈ wAw.
Then by hypothesis there exist a′, b′ in A with a′αb′ = w. But since α ∈ wAw,
by defining a = wa′w and b = wb′w we have aαb = w. Thus another application
of [22, Theorem 1.6] (noting that w is the identity of wAw) gives the desired
conclusion.

(v) ⇒ (iv). The indicated multiplicative property yields that any nonzero
ideal of A will contain a set of local units for A, so that A is simple. Since A is
not a division ring and A has local units there exists a nonzero idempotent w of
A such that wAw is not a division ring. Let α, β ∈ wAw; in particular, wαw = α
and wβw = β. By hypothesis there exists a, b ∈ A such that aαb = β. But then
(waw)α(wbw) = wβw = β, which yields that wAw is purely infinite simple by
[22, Theorem 1.6].

We now have all the necessary ingredients in hand to prove the main result
of this lecture.

Purely Infinite Simplicity Theorem. Let E be a graph. Then L(E) is
purely infinite simple if and only if E has the following properties.

1. The only hereditary and saturated subsets of E0 are ∅ and E0.

2. Every cycle in E has an exit.

3. Every vertex connects to a cycle.

Proof. First, assume (1), (2) and (3) hold. By the Simplicity Theorem, (1) and
(2) imply that L(E) is simple. By the Multiplicative Description of Purely Infi-
nite Simple Rings, it suffices to show that L(E) is not a division ring, and that
for every pair of elements α, β in L(E) there exist elements a, b in L(E) such
that aαb = β. Conditions (2) and (3) easily imply that |E1| > 1, so that L(E)
has zero divisors, and thus is not a division ring.

We now apply the Exits Give Vertices Proposition to find a, b ∈ L(E) such
that aαb = w ∈ E0. By condition (3), w connects to a vertex v 6∈ V0. Either
w = v or there exists a path p such that r(p) = v and s(p) = w. By choosing
a′ = b′ = v in the former case, and a′ = p∗, b′ = p in the latter, we have produced
elements a′, b′ ∈ L(E) such that a′wb′ = v.
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An application of the Empty V1 Lemma yields that v ∈ V2, so there exist
p, q ∈ CSP (v) with p 6= q. For any m > 0 let cm denote the closed path pm−1q.
Using [3, Lemma 2.2], it is not difficult to show that c∗mcn = δmnv for every
m,n > 0.

Now consider any vertex vl ∈ E0. Since L(E) is simple, there exist {ai, bi ∈
L(E) | 1 ≤ i ≤ t} such that vl =

∑t
i=1 aivbi. But by defining al =

∑t
i=1 aic

∗
i

and bl =
∑t
j=1 cjbj , we get

alvbl =

(
t∑
i=1

aic
∗
i

)
v

 t∑
j=1

cjbj

 =
t∑
i=1

aic
∗
i vcibi = vl.

Now let s be a left local unit for β (i.e., sβ = β), and write s =
∑
vl∈S vl for

some finite subset of vertices S. By letting ã =
∑
vl∈S alc

∗
l and b̃ =

∑
vl∈S clbl,

we get
ãvb̃ =

∑
vl∈S

alc
∗
l vclbl =

∑
vl∈S

vl = s.

Finally, letting a = ãa′a and b = bb′b̃β, we have that aαb = β as desired.
For the converse, suppose that L(E) is purely infinite simple. By the Sim-

plicity Theorem we have (1) and (2). If (3) does not hold, then there exists a
vertex w ∈ E0 such that w ≥ v implies v ∈ V0. Applying the V0 Gives Not
Purely Infinite Proposition we get that wL(E)w is not purely infinite. But then
the Multiplicative Description of Purely Infinite Simple Rings implies that L(E)
is not purely infinite, contrary to hypothesis.

Examples.

1. Let E be the oriented n-line graph. Then L(E) ∼= Mn(K) which of course
is simple, but not purely infinite since no vertex in E0 connects to a cycle.

2. Let n ≥ 2. Let E be the rose with n petals graph. Then L(E) ∼= L(1, n),
the Leavitt algebra. Since n ≥ 2 we see that all the hypotheses of Purely
Infinite Simplicity Theorem are satisfied, so that L(1, n) is purely infinite
simple.

3. Let E be the following graph.

•
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Then E satisfies the hypotheses of the Purely Infinite Simplicity Theorem,
so that L(E) is purely infinite simple. We will revisit this graph later.

(We note that our other standard example, when E is the ’one vertex, one
loop’ graph, is not germane here since then L(E) is not simple.)

Having realized the main goal of this lecture, we now look at a class of purely
infinite simple Leavitt path algebras. Since the purely infinite simple property is
a Morita invariant, it is inherited by matrix rings. Thus, since LK(1, n) is purely
infinite simple, so is Mm(LK(1, n)) for any m ∈ N. We now show that these
matrix rings can in fact be realized as Leavitt path algebras for appropriate
graphs.

Proposition: Matrix rings over Leavitt algebras are Leavitt path
algebras. Let n ≥ 2 and m ≥ 1. We define the graph Emn by setting E0 :=
{v1, . . . , vm}, E1 := {f1, . . . , fn, e1, . . . , em−1}, r(fi) = s(fi) = vm for 1 ≤ i ≤ n,
r(ei) = vi+1, and s(ei) = vi for 1 ≤ i ≤ m− 1. As a picture, Emn is

•v1
e1 // •v2

e2 // •v3 •vm−1
em−1 // •vm f1hh

f2

vv

f3

��

fn

RR

Then L(Emn ) ∼= Mm(L(1, n)).

Proof. We define Φ : K[E0 ∪ E1 ∪ (E1)∗]→ Mm(L(1, n)) on the generators by

Φ(vi) = eii for 1 ≤ i ≤ m Φ(ei) = eii+1 and Φ(e∗i ) = ei+1i for 1 ≤ i ≤ m− 1

Φ(fi) = yiemm and Φ(f∗i ) = xiemm for 1 ≤ i ≤ n

and extend linearly and multiplicatively to obtain a K-homomorphism. We now
verify that Φ factors through the ideal of relations in L(Emn ).

First, Φ(vivj − δijvi) = eiiejj − δijeii = 0. If we consider the relations ei −
eir(ei) then we have Φ(ei− eir(ei)) = Φ(ei− eivi+1) = eii+1− eii+1ei+1i+1 = 0,
and analogously Φ(ei− s(ei)ei) = 0. For the relations fi− fir(fi) we get Φ(fi−
fir(fi)) = Φ(fi−fivm) = yiemm−yiemmemm = 0, and similarly Φ(fi−s(fi)fi) =
0. With similar computations it is easy to also see that Φ(e∗i −e∗i r(e∗i )) = Φ(e∗i −
s(e∗i )e

∗
i ) = Φ(f∗i − f∗i r(f∗i )) = Φ(f∗i − s(f∗i )f∗i ) = 0.

We now check the Cuntz-Krieger relations. First, Φ(e∗i ej − δijr(ej)) =
Φ(e∗i ej − δijvj+1) = ei+1iejj+1 − δijej+1j+1 = δijei+1j+1 − δijej+1j+1 = 0. Sec-
ond, Φ(f∗i fj−δijr(fj)) = Φ(f∗i fj−δijvm) = xiemmyjemm−δijemm = 0, because
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of the relation (1) in L(1, n). Finally, Φ(f∗i ej − δfi,ejr(ej)) = Φ(f∗i ej − 0vj+1) =
Φ(f∗i ej) = xiemmejj+1 = 0, and similarly Φ(e∗i fj − δei,fjr(fj)) = 0.

With CK2 we have two cases. First, for i < m, Φ(vi−eie∗i ) = eii−eii+1ei+1i =
0. And for vm we have Φ(vm −

∑n
i=1 fif

∗
i ) = emm −

∑n
i=1 yiemmxiemm = 0,

because of the relation (2) in L(1, n).
This shows that we can factor Φ to obtain a K-homomorphism of algebras

Φ : L(Emn )→ Mm(L(1, n)). We will see that Φ is onto. Consider any matrix unit
eij and xk ∈ L(1, n). If we take the path p = ei . . . en−1f

∗
k e

∗
n−1 . . . e

∗
j ∈ L(Emn )

then we get Φ(p) = eii+1 . . . en−1n(xkenn)enn−1 . . . ej+1j = xkeij . Similarly
Φ(ei . . . en−1fke

∗
n−1 . . . e

∗
j ) = ykeij . In this way we get that all the generators

of Mm(L(1, n)) are in Im(Φ).
Finally, it is not hard to see that Emn satisfies the conditions of the Simplicity

Theorem, which yields the simplicity of L(Emn ). This implies that Φ is necessarily
injective, and therefore an isomorphism.

We finish this lecture with two observations.

First, if R denotes the Leavitt algebra LK(1, n) (for any n ≥ 2), then R ∼= Rn

as leftR-modules, so that by taking endomorphism rings we get thatR ∼= Mn(R).
So the previous proposition gives a situation where non-isomorphic graphs yield
isomorphic Leavitt path algebras. We will see this phenomenon again in the next
lecture.

Second, our Purely Infinite Simplicity result yields the following dichotomy.
If LK(E) is a simple Leavitt path algebra, then two things can happen. Either
every vertex connects to a cycle (in which case the algebra is purely infinite
simple), or NOT every vertex connects to a cycle. But it turns out that this
second possibility implies that there are NO CYCLES in E, as follows. Because
LK(E) is simple, then in particular the only hereditary saturated subsets of E
are trivial by the Simplicity Theorem. Thus by [28, Lemma 2.8], if there is a cycle
in E, then every vertex must connect to it, contrary to hypothesis. In particular,
we have shown that if LK(E) is simple, then either it is purely infinite simple,
or is a limit of finite dimensional matrix rings by the Acyclic Proposition.

3.4 Various classes of Leavitt path algebras

Abstract. In this final lecture we discuss various classes of Leavitt path algebras,
including: finite dimensional; locally finite; locally finite just infinite; and simple
non-IBN.

The Leavitt path algebras which have been the center of attention throughout
the first three lectures arose as generalizations of the Leavitt algebras LK(1, n)
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(for n ≥ 2). We have seen that for each n ≥ 2, the Leavitt algebra LK(1, n) is
simple, and is not IBN. In casting the wider Leavitt path algebra net, we cer-
tainly are still catching these original Leavitt algebras, but many additional fish
are now included in our harvest, fish which are of completely different species
than LK(1, n). We have already seen some examples of these different species,
including finite dimensional matrix rings Mn(K), and Laurent polynomial rings
K[x, x−1]. Of course, for every n ≥ 1 Mn(K) is simple, and is IBN, while
K[x, x−1] is not simple, and is IBN.

In this final lecture we give three natural examples of classes of Leavitt
path algebras which can be viewed as very different from the Leavitt algebras
LK(1, n). We then conclude by making some observations about a class of Lea-
vitt path algebras which can be viewed as very similar to the Leavitt algebras.
Specifically, we take a look at the simple, non-IBN Leavitt path algebras.

3.4.1 Finite dimensional Leavitt Path Algebras

(Details of the results in this section appear in [5].)

For any field K, a finite dimensional K-algebra necessarily is IBN, since
in particular any artinian ring is IBN. So at first glance, the two classes of K-
algebras “finite dimensional K-algebra” and “Leavitt algebra LK(1, n)” are very
distant from each other. However, we have seen examples of finite dimensional
Leavitt path algebras: for example, the matrix ring Mn(K) arises as LK(E) for
the oriented n-line graph. So if there are some finite dimensional Leavitt path
algebras, might we be able to describe all of them? The answer is yes, and that
is the topic of this first section. We start by classifying exactly those directed
graphs E for which LK(E) is finite dimensional.

Proposition: The Graphs Which Give Finite Dimensional LPAs.
The Leavitt path algebra LK(E) is a finite dimensional K-algebra if and only if
E is finite and acyclic.

Proof. If E has infinitely many vertices then the collection of vertices would
give an infinite linearly independent set in LK(E). Similarly, if E contains a
cycle then the collection of powers of the cycle would also yield such an infinite
linearly independent set. Conversely, if E is finite and acyclic then it is easy to
show that there are only a finite number of distinct paths in E. Since the set
{pq∗} (where p and q are paths in E) span LK(E) as a K-vector space the result
follows.

Using the information from this Proposition, we will see that the only finite
dimensional Leavitt path K-algebras are isomorphic to finite direct sums of finite
dimensional matrix rings overK. With this information in hand, we then produce
two collections of connected graphs from which, modulo the one-dimensional
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ideals, all finite dimensional Leavitt path algebras arise. We show that the two
given collections of graphs are minimal, in the sense that different graphs from
each of these collections produce nonisomorphic Leavitt path algebras.

The following results mimic very much the corresponding result for graph
C∗-algebras found in [108, Proposition 1.18]. The Main Theorem given below
was part of the Ph.D. thesis of Gonzalo Aranda Pino [27].

A vertex v in a graph E is isolated if it is both a source and a sink. For any
K-vector space V we denote the K-dimension of V by dimK(V ).

Since LK(E) is Z-graded, we can talk about the graded ideal structure of
LK(E). This will be discussed in depth during tomorrow’s lectures. But it will
be useful to use the following result here: If an ideal I of LK(E) is graded, then
necessarily there is a subset H of E0 for which I =< H >, the ideal generated
by H.

It turns out that in an analysis of the finite dimensional Leavitt path algebras
LK(E), the one-dimensional ideals play a somewhat unique role in the ideal
lattice.

Lemma. If I is an ideal of LK(E) for which dimK(I) = 1, then every element
of I is homogeneous, and has degree zero.

Proof. Consider a nonzero element x ∈ I with redeg(x) minimal. The ele-
ment x generates I as a K-vector space. Write x = x−m+· · ·+x0+· · ·+xn where
xi is the i-homogeneous component of x in LK(E). There exists u ∈ E0 such that
0 6= ux. Then ux = ux−m+· · ·+ux0+· · ·+uxn = kx−m+· · ·+kx0+· · ·+kxn for
some k ∈ K. If we compare each i-component we have that k = 1 and xi = uxi,
i. e., x = ux. Reasoning analogously on the right-hand side, we find a vertex
w ∈ E0 such that x = xw.

An outline (without details) of the remainder of the proof goes as follows.
We distinguish four cases.

Case 1: x is in only real edges. Then by the minimality of redeg(x) we can
show that x has degree zero as required.

Case 2: x is in only ghost edges and u = w. Essentially a dual argument to
case 1 can be used.

Case 3: x is in only ghost edges and u 6= w. We then argue that I must
contain two linearly independent elements, contrary to hypothesis.

Case 4: x contains both real and ghost edges. Then we can use a reduction
argument similar to the one used in the proof of the simplicity of LK(E) from
Lecture 2 to show that x = 0, contrary to hypothesis.

Proposition on one dimensional ideals. The algebra LK(E) contains a
one-dimensional ideal if and only if E has an isolated vertex.
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Proof. Let J be a one-dimensional ideal. It is graded (in fact, homogeneous
of degree 0) by the Lemma. So necessarily J =< H > for some subset H of E0.
Clearly H can only contain one vertex v as the set {v, w} is linearly independent
over K for v 6= w ∈ E0. In addition, v must be isolated, as otherwise J would
contain an element (an edge) of nonzero degree. The converse is obvious by the
relations defining LK(E).

Let E be a graph. We say that E is connected if E cannot be written as
the union of two disjoint subgraphs. Equivalently, E is connected in case the
corresponding undirected graph of E is connected.

It is easy to show that if E is the disjoint union of subgraphs {Fi | 1 ≤ i ≤ t},
then LK(E) ∼= ⊕ni=1LK(Fi). In particular, using an observation made in the first
lecture, any algebra of the form A =

⊕t
i=1 Mni(K) can be realized as the Leavitt

path algebra of a (not necessarily connected) graph having t different connected
components, in which the ith component can be taken to be the oriented line
graph with ni vertices.

The natural question: Given a K-algebra of the form A =
⊕t

i=1 Mni(K),
can we find a connected graph E for which LK(E) ∼= A? In general the answer is
no, because the one-dimensional ideals correspond to isolated vertices. In other
words, if A =

⊕t
i=1 Mni(K), and if ni = 1 for some i, then there does not exist

a connected graph E such that LK(E) ∼= A.
However, in spite of this observation, the realization of A =

⊕t
i=1 Mni(K) as

LK(E) for some connected graph E will be possible whenever ni ≥ 2 for every i.
To show this, we start by giving the algebraic analogs of [87, Corollaries 2.2 and
2.3]. The main idea here is realizing that the following number plays a central
role.

For a vertex v of E, the range index of v, denoted by n(v), is the cardinality
of the set R(v) = {α ∈ E∗ : r(α) = v}.

Although n(v) may indeed be infinite (for instance, if there is a cycle based
at v), it is always nonzero because v ∈ R(v) for every v ∈ E0.

Ideals From Sinks Proposition. Let E be a finite and acyclic graph and
v ∈ E0 a sink. Then

Iv :=
∑
{kαβ∗ : α, β ∈ E∗, r(α) = v = r(β), k ∈ K}

is an ideal of LK(E), and
Iv ∼= Mn(v)(K).

Proof. The goal here is to identify a set of elements inside Iv which be-
have like the standard matrix units in Mn(v)(K). Here’s how to do that. First
we show that Iv is an ideal. So consider αβ∗ ∈ Iv and a nonzero monomial
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ei1 . . . eine
∗
j1
. . . e∗jm = γδ∗ ∈ LK(E). If γδ∗αβ∗ 6= 0 we have two possibilities:

Either α = δp or δ = αq for some paths p, q ∈ E∗.
In the latter case deg(q) ≥ 1 cannot happen, since v is a sink.
Therefore we are in the first case (possibly with deg(p) = 0), and then

γδ∗αβ∗ = (γp)β∗ ∈ Iv

because r(γp) = r(p) = v. This shows that Iv is a left ideal. Similarly we can
show that Iv is a right ideal as well.

Let n = n(v) (which is finite because the graph is acyclic, finite and row-
finite), and rename {α ∈ E∗ : r(α) = v} as {p1, . . . , pn} so that

Iv :=
∑
{kpip∗j : i, j = 1, . . . , n; k ∈ K}.

Take j 6= t. If (pip∗j )(ptp
∗
l ) 6= 0, then as above, pt = pjq with deg(q) > 0 (since

j 6= t), which contradicts that v is a sink.
Thus, (pip∗j )(ptp

∗
l ) = 0 for j 6= t. It is clear that

(pip∗j )(pjp
∗
l ) = pivp

∗
l = pip

∗
l .

We have shown that {pip∗j : i, j = 1, . . . , n} is a set of matrix units for Iv, and
the result now follows.

Now we glue together the matrix rings from the Ideals From Sinks Proposition
to get the result we want.

Main Theorem for finite dimensional Leavitt path algebras
(MTFDLPA). ([27]) Let E be a finite and acyclic graph. Let {v1, . . . , vt} be
the sinks. Then

LK(E) ∼=
t⊕
i=1

Mn(vi)(K).

Proof. We show that LK(E) ∼=
⊕t

i=1 Ivi , where Ivi are the sets described
in the previous result.

Consider 0 6= αβ∗ with α, β ∈ E∗. If r(α) = vi for some i, then αβ∗ ∈ Ivi . If
r(α) 6= vi for every i, then r(α) is not a sink, and (CK2) applies to yield:

αβ∗ = α

 ∑
e∈E1

s(e)=r(α)

ee∗

β∗ =
∑
e∈E1

s(e)=r(α)

αe(βe)∗.

Now since the graph is finite and there are no cycles, for every sum-
mand in the final expression above, either the summand is already in some Ivi , or
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we can repeat the process (expanding as many times as necessary) until reaching
sinks. In this way αβ∗ can be written as a sum of terms of the form αγ(βγ)∗

with r(αγ) = vi for some i. This allows us to conclude that LK(E) =
∑t
i=1 Ivi .

Now we show that the sum is direct. So consider i 6= j, αβ∗ ∈ Ivi and
γδ∗ ∈ Ivj . Since vi and vj are sinks, we know (using the same idea as in the
proof of the Proposition) that there are no paths of the form βγ′ or γβ′, and
hence (αβ∗)(γδ∗) = 0. This shows that IviIvj = 0, which together with the facts
that LK(E) is unital and LK(E) =

∑t
i=1 Ivi , implies that the sum is direct.

Finally, the Ideals From Sinks Proposition applies to give the result.

The MTFDLPA and the Graphs Which Give Finite Dimensional LPAs result
yield an algebraic description of all the finite dimensional Leavitt path algebras:

Corollary. The only finite dimensional K-algebras which arise as LK(E) for
a graph E are of the form A =

⊕t
i=1 Mni(K).

This essentially finishes the question about finite dimensional Leavitt path
algebras. We know which graphs yield finite dimensional Leavitt path algebras,
and we know up to isomorphism which K-algebras arise in this way. But keep in
mind that different graphs (up to isomorphism of graphs) can yield the SAME
Leavitt path algebra (up to isomorphism of algebras). We have seen this before,
when we analyzed matrices over the Leavitt algebras. We also get a good example
of this behavior by looking again at the Ideals From Sinks Proposition. If we
consider the two graphs

• •oo •oo • // • •oo

then:
1) these are clearly NOT isomorphic as graphs, but
2) the MTFDLPA says that the Leavitt path algebra of each graph is iso-

morphic to M3(K).
This means that there really is another question to be asked in the context of

finite dimensional Leavitt path algebras: Can we give a set of graphs which yield
(up to isomorphism) all of the finite dimensional Leavitt path algebras, but for
which no two graphs in the set give the same Leavitt path algebra? (Let’s call
such a set a “minimal realizing set”.)

The answer turns out to be YES. In fact, we give three different minimal
realizing sets. The MTFDLPA and the Artin-Wedderburn theorem are the key
tools here. One consequence of Artin-Wedderburn is that if two direct sums of
matrix rings over a field K are isomorphic, then necessarily all of the matrix
sizes are the same.

The first minimal realizing set is one we have already mentioned.
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Proposition: Minimal realizing set #1. The set of disjoint unions of
oriented line graphs is a minimal realizing set for the isomorphism classes of
finite dimensional Leavitt path algebras.

So it is not too hard to find a minimal realizing set.

But can we find a minimal realizing set in which all of the graphs are con-
nected? By our results on one-dimensional ideals, the answer is NO. However,
it turns out that if we treat the one-dimensional summands in an algebra of the
form A =

⊕t
i=1 Mni(K) as being special, then we can find connected graphs

which give all the remaining summands. For instance, as one consequence of the
MTFDLPA we see immediately that if A =

⊕t
i=1 Mni(K) with each ni ≥ 2,

then the graph E given here

•v12 // •v13 •v
1
n1−1 // •v

1
n1

•v

??~~~~~~~~
//

��2
2222222222222 •v22 // •v23 •v

2
n2−1 // •v

2
n2

. . . . . . . . .

•vt2 // •vt3 •v
t
nt−1 // •v

t
nt

yields a connected graph for which LK(E) ∼= A.
For a vertex v in a directed graph E, the out-degree of v, denoted outdeg(v),

is the number of edges in E having s(e) = v; in other words, outdeg(v) =
card(s−1(v)). The total-degree of the vertex v is the number of edges that ei-
ther have v as its source or as its range, that is, totdeg(v) = card(s−1(v)∪r−1(v)).
The connected graph E pictured above having LK(E) ∼=

⊕t
i=1 Mni(K) (where

each ni ≥ 2) is built by “gluing together” the t different graph-components cor-
responding to each of the t matrix rings appearing in the decomposition of A.
In particular, the vertex v has the property that outdeg(v) = t, while all other
vertices w have outdeg(w) ≤ 1.

Definition. We say that a finite graph E is a line graph if it is connected
and acyclic and totdeg(v) ≤ 2 for every v ∈ E0. (We note in particular that
vertices in line graphs have maximum out-degree at most 2.) A line graph is
oriented in case outdeg(v) ≤ 1 for every v ∈ E0. If we want to emphasize the
number of vertices, we say that E is an n-line graph whenever n = card(E0).

Let Mr and Ms be oriented (finite) line graphs. Then by identifying the
(unique) sources ofMr andMs we produce a new graph, which we denote byMr∨
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Ms. More generally, from any collection Mn1 , . . . ,Mnt of oriented line graphs we
can form the comet-tail graph G =

∨t
i=1Mni by associating the (unique)

sources of the line graphs. Given an ordered sequence of natural numbers 2 ≤
n1 ≤ · · · ≤ nt, we denote the comet-tail

∨t
i=1Mni by C(n1, . . . , nt).

Now we incorporate some isolated vertices into our graphs. Let G = (G0, G1)
be a directed graph. For s ≥ 1 let G∗s denote the graph having vertices G0 ∪
{u1, . . . , us}, and edges G1. So G∗s is produced from G by simply adding s
isolated vertices.

So we get a second minimal realizing set for the finite dimensional Leavitt
path algebras ...

Proposition: Minimal realizing set #2. Let K be a field, and let A be a
finite dimensional Leavitt path algebra with coefficients inK. Then there exists a
comet-tail C(n1, . . . , nr), and an integer s, for which A ∼= LK(C(n1, . . . , nr)∗s).
This representation for A is unique, in the sense that if there exist integers
n′1, . . . , n

′
r′ , s

′ for which A ∼= LK(C(n′1, . . . , n
′
r′)

∗s′), then s = s′, r = r′, and
ni = n′i for all 1 ≤ i ≤ r.

Proof. The isomorphism A ∼= LK(C(n1, . . . , nr)∗s) follows from the previ-
ous observation, while the uniqueness part follows from the Wedderburn-Artin
theorem. (That’s the reason that we assumed that sequence of integers in the
comet tail graph is ordered.)

We have seen that we can realize any full matrix algebra Mn(K) as the
Leavitt path algebra of a connected graph having maximum out-degree equal
to 1, namely, the oriented n-line graph. It turns out that the class of connected
graphs having maximum out-degree equal to 1 is not sufficient to produce all
possible direct sums of full matrix algebras over K (we will show that later).
However, the class of connected graphs having maximum out-degree equal to 2
is sufficient to produce a large class of such algebras. What’s more, by allowing
one vertex to have out-degree larger than 2, and by allowing isolated vertices, we
will be able to write down another minimal realizing set for finite dimensional
Leavitt path K-algebras.

As a first step, one might wonder if a realization of A =
⊕t

i=1 Mni(K)
is possible by means of a line graph. For instance, if we applied the “gluing”
method that we already used to find a connected graph E such that LK(E) ∼=
M2(K)⊕M2(K)⊕M3(K), then we would obtain the graph E:

•

•

??������� //

��@@@@@@@ •

• // •



122 3.4. Various classes of Leavitt path algebras

However, there exist line graphs which produce the same Leavitt path algebra
(up to isomorphism), such as the graph

• •oo // • •oo // •

(as can be easily checked by using the the MTFDLPA). So the question arising
now is whether or not this sort of “alternate” realization of a direct sum of
matrix rings as the Leavitt path algebra of a line graph is always possible.

In contrast to the previous observation about algebras of the form Mn(K),
we have

Lemma. Let A =
⊕t

i=1 Mni(K) (where each ni ≥ 2), and let t ≥ 2. Then A
is not representable as a Leavitt path algebra LK(E) with E a connected graph
having maximum out-degree at most 1.

Proof. Take E a connected graph with maximum out-degree at most 1 such
that A ∼= LK(E). E must be acyclic (because A is finite dimensional), and
must be finite (because A is unital). Now use the MTFDLPA and the Artin-
Wedderburn Theorem to get that E must have exactly t sinks. Take v and w
two different sinks (this is possible because t ≥ 2). Since E is connected, there
exists a (not-necessarily oriented) path joining v and w. In particular, the fact
that v and w are sinks necessarily yields the existence of a vertex x in the path
which is the source of at least two edges. That is, outdeg(x) ≥ 2, contrary to our
assumption.

Among the line graphs, we consider a subset of them which will be the
“bricks” we will use as the basic building blocks from which we will generate the
graphs which appear in our third minimal realizing set.

We say that a graph E is a basic n-line graph if n ≥ 3 and E is of the
form

•v1

!!DDDDDDDD •v3

}}zzzzzzzz
•v4oo •vn−1 •vnoo

•v2

Such a graph will be denoted by Bn. The vertex v1 will be called the top
source and the vertex vn the root source. We will sometimes refer to these
graphs simply as basic line graphs if the number of vertices is clear. Less
formally, a basic n-line graph is a line graph in which there are n vertices, and
in which the edges are oriented so that the edge coming from the top source
is oriented in one direction, and all other edges are oriented in the opposite
direction. In particular, there is exactly one sink in a basic n-line graph, namely,
the vertex v2.

Again using the MTFDLPA we get that, for each n ≥ 3, LK(Bn) ∼= Mn(K).
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If E and F are line graphs, then by identifying the root source of E with
the top source of F we produce a new graph, which we denote by E ∧ F . More
generally, from any collection Bn1 , ..., Bnt of basic line graphs we can form the
line graph E =

∧t
i=1Bni in an analogous way. In doing so we easily get:

Lemma. Let {Bn1 , ..., Bnt} be any finite set of basic line graphs, and let
E =

∧t
i=1Bni . Then LK(E) ∼=

⊕t
i=1 Mni(K). In other words, LK(

∧t
i=1Bni) ∼=⊕t

i=1 LK(Bni).
The proof of the lemma is easy, because the sinks of the directed graph E

are precisely the sinks arising from each of the basic line graphs Bni , and the
MTFDLPA applies yet again.

It turns out that this process of “wedging” two graphs together at specified
vertices does NOT in general work well with direct sums. For instance, take two
copies of the “one vertex one loop” graph. If you wedge them together then the
resulting Leavitt path algebra is LK(1, 2), which is definitely not isomorphic to
the direct sum of two copies of K[x, x−1].

Define the left edge graph and right edge graph (denoted Le and Re)
respectively by

• •oo and • // •

We now have all the ingredients in hand to prove the following result.

Proposition on Line Graphs. Given A =
⊕t

i=1 Mni(K), there exists a
line graph E such that A ∼= LK(E) if and only if the following two conditions
are satisfied:

(1) ni 6= 1 for every i, and
(2) card{i : ni = 2} ≤ 2.
Here’s the proof. As usual the MTFDLPA applies. We start with A =⊕t
i=1 Mni(K). By previous observations we have that A′ =

⊕t
i=1{Mni(K) |

n ≥ 3} has A′ ∼= LK(E′) for an appropriate line graph E′. The (two at most)
summands of A of size 2 × 2 can be realized by adding an appropriate number
(two at most) of vertices to E′, as follows.

Case 1: {i : ni = 2} = ∅. Then E =
∧t
i=1Bni has LK(E) ∼= A.

Case 2: {i : ni = 2} = {i1}. Then E = Le ∧
∧
i 6=i1 Bni has LK(E) ∼= A.

Case 3: {i : ni = 2} = {i1, i2}. Then E = Le∧
∧
i 6=i1,i2 Bni ∧Re has LK(E) ∼=

A.
Now use the MTFDLPA.
Conversely, suppose that there exists an n-line graph E such that A ∼=

LK(E). Since E is clearly connected, LK(E) cannot contain an ideal isomorphic
to K, and therefore ni 6= 1 for every i. On the other hand, by the MTFDLPA,
each ni corresponds to a sink vi in the graph E. We will see that if ni0 = 2, then
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vi0 must be either the first or the last vertex of the line. If not, then vi0 would be a
sink in between other vertices, so that necessarily card{e ∈ E1 : r(e) = vi0} = 2.

• // •vi0 •oo

Therefore we obtain ni0 = n(vi0) ≥ 3, a contradiction.

Let G = (G0, G1) be a directed graph, and let v ∈ G0. For ` ≥ 1 let P (G, v, `)
denote the graph having vertices G0∪{w1, . . . , w`}, and edges G1∪{f1, . . . , f`},
where for each 1 ≤ i ≤ `, s(fi) = v and r(fi) = wi. (We sometimes refer to the
edges {f1, . . . , f`} as the leaves growing from v.)

We call the directed graph G a trunk if G can be realized as arising from
the ∧-construction of a finite number of basic line graphs. For natural numbers
3 ≤ n1 ≤ · · · ≤ nr, we denote the trunk Bn1 ∧ · · · ∧ Bnr by T (n1, . . . , nr). We
define the top of the trunk as the top source of Bn1 and the root of the trunk
as the root source of Bnr .

Now we are ready to identify a third minimal realizing set of graphs for the
finite dimensional Leavitt path algebras.

Proposition: Minimal realizing set #3. Let K be a field, and let A be a
finite dimensional Leavitt path algebra with coefficients inK. Then there exists a
trunk T (n1, . . . , nr), and integers `, s for which A ∼= LK(P (T (n1, . . . , nr), v, `)∗s)
(where v denotes the top of the trunk). This representation for A is unique,
in the sense that if there exist integers n′1, . . . , n

′
r′ , `

′, s′ for which A ∼=
LK(P (T (n′1, . . . , n

′
r′), v, `

′)∗s
′
), then ` = `′, s = s′, r = r′, and ni = n′i for all

1 ≤ i ≤ r.
Proof. As usual, an application of the MTFDLPA (along with Artin-

Wedderburn) gives the result.

Let’s compare the two minimal realizing sets of graphs which arose in the
two previous propositions. The graphs of the form C(n1, . . . , nr)∗s each contain
at most one vertex having out-degree at least 2. The out-degree of this vertex
represents the number of summands t in the decomposition A =

⊕t
i=1 Mni(K).

Similarly, the graphs of the form P (T (n1, . . . , nr), v, `)∗s also each contain at
most one vertex having out-degree at least 2. However, for these graphs, the
out-degree of this vertex represents the number of summands in the decompo-
sition A =

⊕t
i=1 Mni(K) having ni = 2. So in some sense the graphs of the

“trunk, leaves, and stars” variety (the ¿“palm trees at night”?) provide a min-
imal realizing set of graphs for finite dimensional Leavitt path algebras that is
“closer” to the line graphs than are the graphs which arise as comet-tails.
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3.4.2 Locally finite and locally finite just infinite Leavitt
path algebras

(The results in this section of the lecture represent joint work with Aranda Pino
and Siles Molina, and has been submitted for publication [6].)

Now that we have a good understanding of the structure of the finite dimen-
sional Leavitt path algebras, we turn our attention to a wider class of LPAs, a
class which includes the finite dimensional LPAs. For any Z-graded K-algebra,
we can ask about the K-dimension of each of the graded components. An im-
portant role is played in general by Z-graded algebras in which all of these
components are finite dimensional.

Definition. If A =
⊕

g∈GAg is a K-algebra graded by a group G, then A
is called locally finite in case each component Ag is finite dimensional as a
K-vector space.

Obviously all finite dimensional algebras are locally finite. But here is a good
example of a locally finite, infinite dimensional K-algebra, one which will play
an important role for us.

Main Example. In the usual Z-grading, the Laurent polynomial algebra
A = K[x, x−1] = LK(C1) is locally finite.

Proof. Of course it is, in fact every graded component has dimension 1, since
An = {kxn | k ∈ K} for every n ∈ Z.

We need to be somewhat careful, because being locally finite is heavily depen-
dent on the specific grading. For instance, we could have graded A = K[x, x−1]
trivially (i.e., make the 0-component equal to A, and all other components equal
{0}), in which case the same algebra in this different grading is NOT locally
finite.

What we do in this part of the lecture is give a characterization of the locally
finite Leavitt path algebras. Here we always interpret the grading on LK(E) as
being the usual one given in the first lecture, namely, that LK(E)n is spanned
by elements of the form {pq∗ | length(p)− length(q) = n}.

Following here the same pattern that we used in our analysis of finite dimen-
sional LPAs, we will identify first the graphs which yield locally finite LPAs, and
then we will identify the isomorphism classes of algebras which arise in this way.
But before we do that, we discuss a related idea. Recently there has been inter-
est in algebras known as just infinite dimensional algebras (or usually called just
infinite algebras). As the name suggests, these are algebras which are infinite
dimensional, but only barely. Here’s the formal definition ...
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Definition. The K-algebra A is called just infinite in case A is infinite
dimensional, but A/I is finite dimensional for every nonzero two-sided ideal I of
A.

In addition to identifying all of the locally finite LPAs, we will also identify
all of the locally finite Leavitt path algebras which are just infinite. Along the
way, we prove a general result which says that in order to check whether a Z-
graded, locally finite K-algebra is just infinite, you only need to check that every
nonzero graded ideal has finite codimension in the algebra.

Just as with finite dimensional LPAs, we can restrict our attention to finite
graphs when analyzing locally finite LPAs. This is because if there are infinitely
many vertices in the graph, then the set of vertices would form an infinite set of
linearly independent elements in the 0-component of LK(E).

As a reminder, the set T (v) = {w ∈ E0 | there exists a path µ with s(µ) = v
and r(µ) = w} is the tree of v, and it is the smallest hereditary subset of
E0 containing v. We extend this definition for an arbitrary set X ⊆ E0 by
defining T (X) =

⋃
x∈X T (x). The hereditary saturated closure of a set X is

defined as the smallest hereditary and saturated subset of E0 containing X.
It is shown in [23] that the hereditary saturated closure of a set X is X =⋃∞
n=0 Λn(X), where Λ0(X) = T (X), Λn(X) = {y ∈ E0 | s−1(y) 6= ∅ and

r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X), for n ≥ 1.

Here will be the key graph idea in the context of locally finite Leavitt path
algebras.

Definition. We say that a graph E satisfies Condition (NE) if no cycle in
E has an exit.

Here is why the Condition (NE) graphs play a role here.

Lemma NE. If a finite graph E satisfies Condition (NE) then every path
in E of length at least card(E0) ends in a cycle.

Proof. Clearly a path µ of length greater than card(E0) contains a closed
path ν = e1 . . . er. Since E satisfies Condition (NE), then ν must be in fact a
cycle; moreover µ necessarily ends in es . . . er . . . es−1 for some s ∈ {1, . . . , r}
because this cycle has no exits.

Definition. Let n ∈ Z. For m ∈ N with n ≤ m, we let Cnm denote the
following subset of the graded component LK(E)n of LK(E):

Cnm = {pq∗ : p ∈ Em, q ∈ Em−n}.

For n > m, define Cnm = ∅.
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In words, Cnm is the collection of monomials in LK(E)n whose real part has
length m. The next result says that in certain situations we only need consider
finitely many such subsets for a fixed n in order to generate all of LK(E)n as a
K-vector space.

Lemma. Let n ∈ Z. If there exists t ∈ N, t ≥ n, such that Cnt+1 ⊆
⋃t
i=1 C

n
i ,

then
⋃∞
i=1 C

n
i ⊆

⋃t
i=1 C

n
i .

Proof. Suppose Cnt+1 ⊆
⋃t
i=1 C

n
i . We are going to see that for every

r ∈ N, Cnt+r ⊆
⋃t
i=1 C

n
i . We prove the result by induction on r.

For r = 1 it is our hypothesis. Suppose Cnt+r−1 ⊆
⋃t
i=1 C

n
i . Consider

µ = et+ret+r−1 . . . e1f
∗
1 . . . f

∗
t−n+r−1f

∗
t−n+r ∈ Cnt+r. Then, if we define

ν = et+r−1 . . . e1f
∗
1 . . . f

∗
t−n+r−1 ∈ Cnt+r−1, we get µ = et+rνf

∗
t−n+r−1 ∈

et+rC
n
t+r−1f

∗
t−n+r−1 ⊆ et+r(

⋃t
i=1 C

n
i )f∗t−n+r−1 ⊆

⋃t+1
i=2 C

n
i ⊆

⋃t
i=1 C

n
i .

The preceding technical lemma allows us to get the ...

Infinite Dimensional Components Proposition. For a finite graph E
the following conditions are equivalent.

(i) LK(E)n has infinite dimension for some n ∈ Z.
(ii) LK(E)n has infinite dimension for every n ∈ Z.
(iii) E contains a cycle with an exit.
Proof. (ii) =⇒ (i) is obvious.
(i) =⇒ (iii). Suppose on the contrary that E has Condition (NE). Let n ∈ Z

be such that LK(E)n has infinite dimension. Let t = max(n, card(E0)). We show
that Cn2t+1 ⊆

⋃2t
i=1 C

n
i .

Let ν be a nonzero element in Cn2t+1, say ν = e1 . . . e2t+1f
∗
1 . . . f

∗
2t−n+1. Then,

by Lemma NE, r(e2t+1) is in a cycle c. By noting that 2t−n+1 = t+ t−n+1 ≥
t + 1 ≥ card(E0), the lemma can be applied to f2t−n+1 . . . f1, so that f1 must
belong to a cycle d. Moreover, since ν 6= 0 and E satisfies Condition (NE), c = d
and therefore e2t+1 = f1 (by Condition (NE) again). This yields that ν ∈ Cn2t,
as Condition (NE) implies that e2t+1f

∗
1 = s(e2t+1). Now, since

⋃∞
i=1 C

n
i is a

generating set for LK(E)n, the technical lemma and the fact that each Cni is
finite dimensional by the finiteness of E apply to obtain a contradiction and
finish the proof.

(iii) =⇒ (ii). Let f be an exit for a cycle c and suppose that v := s(f) =
s(c). Let k = deg(c), and write c = ek . . . e1. Consider n ≥ 0 and decompose
n = bk + s, with 0 ≤ s < k. We claim that {es . . . e1cbcr(c∗)r | r ∈ N} is a
linearly independent set in LK(E)n. Indeed, suppose

∑n
r=i kres . . . e1c

bcr(c∗)r =
0 such that kr ∈ K with ki 6= 0. Multiply on the left by (c∗)i(c∗)be∗1 . . . e

∗
s, and

on the right by ci, to get kiv +
∑n
r=i+1 krc

r−i(c∗)r−i = 0 (apply [3, Lemma
2.2]). Since f is an exit for c, we obtain 0 = kif

∗v +
∑n
r=i+1 krf

∗cr−i(c∗)r−i =
kif

∗, a contradiction. The case n < 0 can be obtained by using the involution:
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Since LK(E)n = (LK(E)−n)∗, then dimK(LK(E)n) = dimK((LK(E)−n)∗) =
dimK(LK(E)−n) =∞.

The finiteness hypothesis on E in the preceding result cannot be dropped.
For instance, if E is an acyclic graph with infinitely many vertices and only a
finite number of edges, then dimK(LK(E)0) =∞, while dimK(LK(E)n) = 0 for
any sufficiently large n. In general this happens for any infinite graph such that
En = ∅ for some n ∈ N.

If E is infinite then LK(E) cannot be locally finite, since the set of vertices
would give an infinite linearly independent set in LK(E)0. Thus the Infinite
Dimensional Components Proposition yields immediately

Main Theorem classifying the graphs which give Locally Finite
Leavitt Path Algebras. For a graph E, these are equivalent:

1) The Leavitt path algebra LK(E) is locally finite.
2) E is finite and satisfies Condition (NE).

As a consequence of the previous results, for a finite graph E, if one homoge-
nous component of the Leavitt path algebra LK(E) has infinite dimension then
all the homogenous components have that same (necessarily countably infinite)
dimension. However, in case the homogeneous components have finite dimen-
sion, the dimension of the components can differ. Of course any nontrivial finite
dimensional Leavitt path algebra will have this property. For an infinite dimen-
sional but locally finite example of this phenomenon, consider the Leavitt path
algebra of the graph E

•u
f // •v e

ww

Then a straightforward computation yields that dimK(LK(E)0) = 8;
dimK(LK(E)1) = dimK(LK(E)−1) = 9; and dimK(LK(E)n) = 3 for all n
having |n| ≥ 2.

So the MTLFLPA gives us complete information about the graphs E which
produce locally finite LPAs. Of course these include the graphs which produce
finite dimensional algebras. But the “one vertex, one loop” graph is also in this
set, as is any “n-vertex, one cycle” graph. And we can append tails to these
cycles, and we can form finite disjoint unions, and ... So the set of graphs which
produce locally finite LPAs is large.

We now turn our attention to those locally finite Leavitt path algebras which
are just infinite. We start by considering the (non-unital) Leavitt path algebra
LK(E) of the following graph E:

•v2
f2 // •v1

f1 // •v e
ww
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Then it turns out LK(E) is a graded-simple (and therefore graded just in-
finite) K-algebra, but is not just infinite. Here’s why. It is straightforward to
show that the only hereditary and saturated subsets of E0 are ∅ and E0. Thus a
result which you will see tomorrow (which relates the graded ideals of the LPA
to the hereditary saturated subsets of vertices) applies to yield that there are no
nontrivial graded ideals in LK(E). In particular, LK(E) is graded just infinite.

But we can show that there are ideals in LK(E) of infinite codimension,
specifically, the ideal I =< v + e > is such. It takes some work (we omit the
details), but it is not too difficult to show that the infinite set of vertices {vi}i∈N
yields the linearly independent set {vi}i∈N in LK(E)/I.

The point to be made by the previous example is that there are graded just
infinite Leavitt path algebras which are not just infinite. So in general, these two
concepts are not identical. However, we will show that for locally finite LPAs,
the two concepts are in fact identical. Then we will identify exactly which LPAs
have this property.

Here is some additional useful information about graphs. As a reminder, for
a graph E, we let V0 denote the set of vertices which do not lie on any cycle (see
[4]), i.e.

V0 = {v ∈ E0 : CSP (v) = ∅}.

For H hereditary and saturated, the quotient graph of E by H is given by

E/H = (E0 −H, {e ∈ E1 : r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1).

We denote the set of all hereditary and saturated subsets of a graph by H.

Lemma. (1) If LK(E) is a graded just infinite Leavitt path algebra and
∅ 6= H ∈ H then E0 −H is a finite set and E0 − V0 ⊆ H.

(2) Let LK(E) be a graded just infinite Leavitt path algebra. If H,H ′ ∈ H
are nonempty, then the intersection H ∩H ′ is nonempty.

Proof of (1): If E0−H were infinite then E/H would contain infinitely many
vertices and LK(E/H) would be infinite dimensional but, by [28, Lemma 2.3 (1)],
LK(E/H) ∼= LK(E)/I(H) with I(H) a nonzero graded ideal of LK(E), which is
impossible by the hypothesis. Suppose now that there exists v ∈ (E0− V0)−H,
that is, there exists a cycle µ based at v 6∈ H. AsH is hereditary, µ0∩H = ∅. If we
write µ = µ1 . . . µn, then µi ∈ E/H as r(µi) 6∈ H. Thus E/H completely contains
the cycle µ, and therefore again LK(E/H) is infinite dimensional, contrary to
the hypothesis.

Proof of (2): Since LK(E) is infinite dimensional, by [5, Corollary 3.6], either
E0 is infinite or E is not acyclic. In the first case, apply (1) to obtain that both
E0 − H and E0 − H ′ are finite. Now if H ∩ H ′ = ∅ then H ⊆ E0 − H ′, and
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therefore both H and E0 −H are finite sets, which cannot happen when E0 is
infinite. Now, if E is not acyclic, then pick any cycle in E, and let v denote the
vertex at which the cycle is based. But then v 6∈ V0, and again (1) applies to get
v ∈ H ∩H ′.

We denote by E∞ the set of infinite paths γ = (γn)∞n=1 of the graph E and
by E≤∞ the set E∞ together with the set of finite paths in E whose end vertex
is a sink. We say that a vertex v in a graph E is cofinal if for every γ ∈ E≤∞

there is a vertex w in the path γ such that v connects to w. We say that a graph
E is cofinal if so are all the vertices of E.

We now have the tools to give a graph-theoretic characterization of all of the
graded just infinite Leavitt path algebras.

Main Theorem on Graded Just Infinite LPAs. Let LK(E) be an infinite
dimensional Leavitt path K-algebra. The following conditions are equivalent:

(i) LK(E) is graded just infinite.
(ii) E is cofinal.
(iii) LK(E) is gr-simple.

Proof. (ii) =⇒ (iii). By [28, Lemma 2.8] E being cofinal is equivalent to saying
that the only hereditary and saturated subsets of E0 are ∅ and E0. By [23,
Theorem 6.2] there is an order-isomorphism between the lattice of hereditary
and saturated subsets of E0 and the lattice of graded ideals of LK(E). Now the
result follows.

(iii) =⇒ (i) is evident.
(i) =⇒ (ii). If we suppose that E is not cofinal, then by again using [28,

Lemma 2.8] there exists a nontrivial hereditary and saturated subset H of E0.
Let y1 denote a vertex which is not inH, and considerH ′ = {y1}. By the previous
lemma, H ∩ H ′ 6= ∅. In this case the hereditary saturated closure described in
[28, pg. 3] gives us some minimal n ∈ N with H ∩ Λn({y1}) 6= ∅.

If n > 0 then, as H ∩ Λn−1({y1}) = ∅, we have that H ∩ {y ∈ E0 : ∅ 6=
r(s−1(y)) ⊆ Λn−1({y1})} 6= ∅. Take z ∈ H with ∅ 6= r(s−1(z)) ⊆ Λn−1({y1}). In
particular r(s−1(z)) ∩H = ∅, which contradicts that H is hereditary.

So n = 0, and therefore H ∩ T ({y1}) 6= ∅. Since y1 6∈ H, we can then find a
path ν = ν1 . . . νn with n ≥ 1 such that s(ν) = y1, r(ν) ∈ H but r(νi) 6∈ H for
i < n. If we focus on s(νn), since H is saturated and s(νn) 6∈ H, there must exist
e ∈ E1 with r(e) 6∈ H and s(e) = s(νn). We claim that r(e) 6= s(νi) for every
i = 1, . . . , n: Otherwise, if r(e) = s(νi) for some i, then s(νi) 6∈ V0 as the path
given by νiνi+1 . . . νn−1e is a cycle based at this vertex, but this contradicts, by
the lemma, the fact that s(νi) 6∈ H.

Rename this new vertex r(e) as y2. In particular y1 6= y2. Repeat the process
with y2, thus yielding a path δ = δ1 . . . δm with m ≥ 1 such that s(δ) = y2, r(δ) ∈
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H and r(δi) 6∈ H for i < m. Once more, there exists, by the saturation of H, an
edge f ∈ E1 with r(f) 6∈ H and s(f) = s(δm). Not only do we have r(f) 6= s(δi)
for all i = 1, . . . ,m as before, but also r(f) 6= s(νi) for i = 1, . . . , n. (Otherwise,
if for instance r(f) = s(ν1) = y1, then ν1 . . . νn−1eδ1 . . . δm−1f is a cycle based
at r(f) 6∈ H, a contradiction to the lemma.)

Continuing in this way, we rename r(f) as y3, so that in particular we have
y3 6= y1, y2. In this way we obtain an infinite sequence {yi}∞i=1 ⊆ E0 −H, which
cannot happen (again by the lemma). This finishes the proof.

Now that we have identified the graded just infinite LPAs, we turn our at-
tention to identifying the just infinite LPAs. As of June 2006 we donÝt know
how to do that. BUT, we can identify all of the locally finite just infinite LPAs.
(It turns out that such a restriction of just infinite algebras to the locally finite
ones is a natural thing to do, as is discussed in [113].)

In [113, Lemma 1.3(d)] the authors indicate that if A is a locally finite pos-
itively Z-graded algebra (i.e. An = {0} for all n < 0), then A is just infinite if
and only if it is graded just infinite. We can extend this (general) result to all
Z-graded algebras. Our approach is largely based on an idea presented by D.
Rogalski in a private communication. We will then apply this generalization to
the context of Leavitt path algebras.

Z Graded Just Infinite is Just Infinite Theorem. Let A be any locally
finite Z-graded algebra. Then A is graded just infinite if and only if A is just
infinite.

Proof. Suppose that the algebra A is graded just infinite, and let L be a
nonzero ideal of A. Pick any nonzero element x ∈ L, and write x =

∑n
i=m xi,

with xi ∈ Ai, and each xi 6= 0. In particular, x ∈
⊕n

i=mAi. We note that
the quotient algebra A/L is generated by homogeneous elements as a K-vector
space.

Since AxnA is a nonzero graded ideal of A, by hypothesis AxnA has finite
codimension in A, so that there exists r ∈ N such that Ai ⊆ AxnA for every
i ∈ Z having |i| > r. Analogously, there exists s ∈ N such that Ai ⊆ AxmA for
every i ∈ Z having |i| > s. Define p = max{r, s, n−m}. We show that A/L is in
fact generated by elements of the form {yi|yi ∈ Ai,−p ≤ i ≤ p}. As A is locally
finite, this will yield the desired result.

For any j > p consider yj ∈ Aj . Then yj ∈ AxmA, so we can write yj =∑
t aσtxnbτt with aσt ∈ Aσt and bτt ∈ Aτt . Note that σt + n+ τt = j. For each i

with m ≤ i ≤ n define cj−n+i =
∑
t aσtxibτt , and then define z =

∑n
i=m cj−n+i.

But then z =
∑
t aσtxbτt , so z ∈ L. Therefore in A/L we have yj = −(z − yj).

But z − yj has homogenous components of degree j − (n −m) through j − 1.
Therefore, since j > n −m, all these degrees are positive. Thus, modulo L, we
have written yj as the sum

∑j1
i=q1

ci, where ci ∈ Ai, each i is positive, and j1 < j.
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If j1 < p we stop. If not, repeat the above process on cj1 . Specifically, we are
able to express cj1 as a sum of homogeneous components of degree less than j1,
but all of them positive.

In this way, after at most j − p steps, we will have written yj (modulo
L) as a sum of homogeneous elements of positive degree less than p. That is,
Aj + L/L ⊆

⊕p
i=1Ai + L/L for all j > p.

A completely analogous argument yields that for any j < −p we have Aj +
L/L ⊆

⊕−1
i=−pAi + L/L. This then yields that A/L ⊆

⊕p
i=−pAi + L/L. Since

each Ai is finite dimensional, we are done.

It turns out that the local finiteness condition in the previous result cannot
be dropped. We have seen that situation in a previous (non-unital) example. In
general, there are examples which show that the local finiteness condition cannot
be dropped even for unital algebras.

We now have the desired result about locally finite just infinite LPAs.

Theorem on Just Infinite Leavitt Path Algebras. Let E be a graph
such that LK(E) is infinite dimensional and locally finite. Then the following
conditions are equivalent:

(i) LK(E) is graded just infinite.
(ii) E is cofinal.
(iii) LK(E) is gr-simple.
(iv) LK(E) is just infinite.

So from the MTLFLPA we have a graph theoretic condition which classifies
the locally finite LPAs (finite and condition (NE)), and among those which are
infinite dimensional (i.e. among those with contain at least one cycle), a graph
theoretic condition which classifies the just infinite LPAs (E is cofinal). We will
now have a closer look at the graphs which arise in these ways. Then, analogous
to what we did for finite dimensional LPAs, we will complete the discussion of lo-
cally finite LPAs and of locally finite just infinite LPAs by describing completely
the isomorphism classes of Leavitt path algebras which arise in this way.

There is a general result, which we will state later, which includes the next
result as a special case. Since the proof of the general result is somewhat messy,
we will focus on the special case (in which the ideas are somewhat more transpar-
ent), prove the special case here, and then give a rough idea of how the general
case proceeds.

We say that a graph E is a Cn-comet if it is finite, has exactly one cycle
Cn (this unique cycle contains n vertices), and T (v) ∩ (Cn)0 6= ∅ for every
vertex v ∈ E0. In other words, a Cn-comet is a graph having exactly one cycle
(which contains n vertices), having the property that every vertex in the graph
connects to the cycle. Here now are all of the graphs which produce locally finite
just infinite Leavitt path algebras.
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Theorem describing the graphs which give locally finite just infinite
LPAs. The Leavitt path algebra LK(E) is locally finite and just infinite if and
only if E is a Cn-comet.

Proof. Suppose that E is a Cn-comet. By hypothesis, E is finite and contains
a cycle. So LK(E) is infinite dimensional. Locally finiteness follows from the fact
that the cycle Cn has no exits and an application of the MTLFLPA.

Now let v ∈ E0, and consider the hereditary and saturated closure {v}.
By hypothesis we have Cn ∩ {v} 6= ∅, and also by hereditariness Cn ⊆ {v}.
Just suppose that {v} 6= E0. Then take y1 6∈ {v}. As E is a Cn-comet we get
{v} ∩ T ({y1}) 6= ∅. Since y1 6∈ {v}, we can then find a path ν = ν1 . . . νn with
n ≥ 1 such that s(ν) = y1, r(ν) ∈ {v} but r(νi) 6∈ {v} for i < n. If we focus
on s(νn), since {v} is saturated and s(νn) 6∈ {v}, there must exist e ∈ E1 with
r(e) 6∈ {v} and s(e) = s(νn). We claim that r(e) 6= s(νi) for every i = 1, . . . , n.
Otherwise, if r(e) = s(νi) for some i, then s(νi) 6∈ V0 as the path given by
νiνi+1 . . . νn−1e is a cycle based at this vertex, but then that would imply the
existence of a cycle contained in E0 − {v}, contradicting the fact that Cn is the
only cycle in E.

Rename this newly obtained vertex r(e) by y2. In particular y1 6= y2. Repeat
the process with y2 so that we can find a path δ = δ1 . . . δm with m ≥ 1 such
that s(δ) = y2, r(δ) ∈ {v} and r(δi) 6∈ {v} for i < m. Once more, there exists, by
the saturation of {v}, an edge f ∈ E1 with r(f) 6∈ {v} and s(f) = s(δm).
Not only do we have r(f) 6= s(δi) for all i = 1, . . . ,m as before, but also
r(f) 6= s(νi) for i = 1, . . . , n. (If, for instance, we have r(f) = s(ν1) = y1,
then ν1 . . . νn−1eδ1 . . . δm−1f is a cycle based at r(f) 6∈ {v}, a contradiction
again).

Write then y3 = r(f), so that in particular we have y3 6= y1, y2. In this way
we obtain an infinite sequence {yi}∞i=1 ⊆ E0−{v}, which cannot happen as E is
finite. Now [28, Lemma 2.8] applies and finishes the proof of the first implication.

Conversely, since LK(E) is locally finite, we have in particular that E is
finite. But since LK(E) is just infinite we have in particular that LK(E) is
infinite dimensional, so that by [5, Corollary 3.6] E contains a cycle Cn. Consider
v /∈ (Cn)0. Use the MTLFLPA to get that E is cofinal, and by [28, Lemma
2.8], {v} = E0. Let t denote the smallest non-negative integer having Λt({v}) ∩
(Cn)0 6= ∅. Pick w in this intersection. If t = 0 then we have finished. If t > 0 then
Λt−1({v}) ∩ (Cn)0 = ∅, and therefore ∅ 6= r(s−1(w)) ⊆ Λt−1({v}). In particular
Λt−1({v}) ∩ (Cn)0 6= ∅, a contradiction. Finally, this also shows that Cn is the
only cycle, because the existence of any other cycle in E would necessarily have
an exit.

So now we know what the non-acyclic cofinal graphs having Condition (NE)
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look like: they are the Cn-comets. What are the Leavitt path algebras which
arise from the Cn comets? There is, in the end, an infinite number of them, but
all of them have an easily described structure.

Theorem describing isomorphism classes of all locally finite just
infinite LPAs. Let E be a Cm-comet graph. Then LK(E) is isomorphic to
Mn(K[x, x−1]), where n is the number of paths in E ending in an arbitrary vertex
of Cm which do not contain the cycle Cm. In particular, LK(E) ∼= LK(Cn) ∼=
Mn(K[x, x−1]).

Proof. Let e1, . . . , em and v1, . . . , vm be respectively the edges and the ver-
tices of the cycle Cm. That is: r(ei) = vi for all i, s(ei) = ei−1 for i > 1, and
s(e1) = vm.

We now play a game that is standard in graph theory ... we remove an edge
from our graph, analyze the resulting smaller graph, and then make a conclusion
about our original graph based on this analysis. Specifically, we eliminate the
edge em in the graph E to obtain a new graph F .

Let P = {pi|1 ≤ i ≤ n} denote the set of all paths which end in vm, and
which do not contain the cycle Cm. That is, pi are the paths in F ending in vm.
Since E is a Cm-comet graph, the graph F is finite and acyclic, so that |P | = n
is indeed finite.

Consider the set B = {pickp∗j}i,j∈{1,...,n},k∈Z, where c = e1 . . . em is the cycle
Cm. (We use the notation ck = (c∗)−k for negative k, and that c0 = vm. Note that
these conventions are possible due to the fact that the usual rules for exponents
are valid here, because the cycle Cm has no exits.)

We claim that B is a basis for of LK(E) as a K-vector space. To this end,
we analyze the inclusion map i from F to E. This map is a complete graph ho-
momorphism (see [28, p. 9]), and therefore induces a K-algebra homomorphism
ϕ : LK(F )→ LK(E) by [23, Lemma 2.2] because the Leavitt path algebra rela-
tions (1) through (4) in LK(F ) are preserved by ϕ. Moreover, F has vm as its
only sink, as every other vertex connects to the cycle Cm and therefore to vm.

Thus, [5, Proposition 3.5] applies to yield that LK(F ) is simple and therefore
that ϕ is a monomorphism. If fact, it was shown in [5, Proof of Lemma 3.4] that
{pip∗j}i,j∈{1,...,n} is a set of matrix units such that p∗i pj = δijvm. Translate this
information via the monomorphism ϕ to get the analogous relations in LK(E).

Suppose now that x =
∑
i,j,k αijkpic

kp∗j = 0 for αijk ∈ K. Then for arbitrary
i0, j0 we have that 0 = p∗i xpj =

∑
i0,j0,k

αi0j0kc
k, which clearly gives αi0j0k = 0

for all k ∈ Z, as powers of the cycle are linearly independent. This shows that
B is a linearly independent set.

On the other hand, we realize that the set Y = {pip∗j} ∪ {e1, e∗1} generates
LK(E) as a K-algebra (to show this it is enough to consider that LK(F ) is
generated as an K-algebra by {pip∗j} and apply the monomorphism ϕ). Clearly
Y ⊆ B (for instance, e1 = c(e2 . . . em)∗ ∈ B). Moreover, B is closed under
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products with the general formula (pickp∗j )(prc
tp∗s) = δjrpic

k+tp∗s. Putting all
this together we have proved that B is a generator set of LK(E) as a K-vector
space, and therefore, a basis.

Finally, define the map φ : LK(E) → Mn(K[x, x−1]) on the basis as
φ(pickp∗j ) = xkeij , where eij denotes the standard (i, j)-matrix unit, and ex-
tend linearly to all LK(E). This map is a K-algebra homomorphism, as

φ((pickp∗j )(prc
tp∗s)) = φ(δjrpick+tp∗s) = δjrx

k+teis

= (xkeij)(xters) = φ(pickp∗j )φ(prctp∗s).

It is bijective as it maps a basis of LK(E) to a basis of Mn(K[x, x−1]). Therefore
it is desired isomorphism.

Since K[x, x−1] is a commutative ring, we may apply [89, Exercise 14, pg.
480] together with the previous theorem to get the following result.

Corollary. Up to isomorphism, the only locally finite just infinite Leavitt
path algebras are

{Mn(K[x, x−1]) | n ∈ N}.

So in fact the just infinite algebras given previously in our Main Example
represent up to isomorphism ALL of the locally finite just infinite Leavitt path
algebras.

It turns out that two nonisomorphic Cm-comets can give rise to isomorphic
Leavitt path algebras, although this isomorphism need not be graded. For ex-
ample, for the C1-comet graph E and C2-comet graph F given by

E ≡ •u
f // •v e

ww
F ≡ •a

x

DD•b

y

��

the previous theorem yields that each is isomorphic to M2(K[x, x−1]). However,
these two Leavitt path algebras cannot be isomorphic as graded algebras, as one
can check that LK(E)0 is generated as a K-vector space by the linearly indepen-
dent set {u, v, ef∗, fe∗}, while LK(F )0 is generated by the linearly independent
set {a, b}, so that dimKLK(E)0 6= dimKLK(F )0.

As promised previously, there is in fact a more general result about locally
finite Leavitt path algebras, from which the previous theorem follows as a special
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case. To avoid some cumbersome notation we will simply give the idea of the
result.

Theorem which describes up to isomorphism all locally finite Lea-
vitt path algebras. All of the locally finite Leavitt path algebras look like
finite direct sums of K-algebras where each summand is either a finite dimen-
sional matrix ring over K, or a finite dimensional matrix ring over K[x, x−1].
In other words, the locally finite Leavitt path algebras are precisely the direct
sums of finite dimensional LPAs with the just infinite LPAs.

We finish this section on the locally finite LPAs by showing that these give
precisely the class of Leavitt path algebras which satisfy a chain condition.

Theorem. Locally finite iff noetherian. For a graph E and field K the
following conditions are equivalent:

(i) LK(E) is locally finite.
(ii) LK(E) is left (or right) noetherian.
(iii) E is finite and has Condition (NE).

Proof. (i) =⇒ (ii). It is well known that A = K[x, x−1] is a noetherian ring,
and hence so is any finite matrix ring over A. Now the result follows from directly
from the Theorem Which Describes up to isomorphism all Locally Finite LPAs.

(ii) =⇒ (iii). Suppose to the contrary there exists a cycle in E with an exit
e. Denote s(e) by v, and let µ denote the cycle based at v. We claim that

{0} ⊂ LK(E)(v − µµ∗) ⊂ LK(E)(v − µ2µ∗2) ⊂ . . .

is a properly increasing sequence of left ideals of LK(E). The containment

LK(E)(v − µi(µ∗)i) ⊂ LK(E)(v − µi+1(µ∗)i+1)

for each i ≥ 1 follows from the easily checked equation

v − µi(µ∗)i = (v − µi(µ∗)i)(v − µi+1(µ∗)i+1).

To show that the containments are proper, we show that v − µi+1(µ∗)i+1 6∈
LK(E)(v − µi(µ∗)i). On the contrary, if v − µi+1(µ∗)i+1 = α(v − µi(µ∗)i) for
some α ∈ LK(E), then multiplying on the right by µi would give µi − µi+1µ∗ =
α(µi − µi) = 0, so that µi = µi+1µ∗, which gives µie = µi+1µ∗e. But this is
impossible, as follows. Since s(e) = r(µ) = v we have µie 6= 0 in LK(E). But
since e is an exit for µ we have µ∗e = 0, so that µi+1µ∗e = 0, a contradiction.

(iii) =⇒ (i) follows from the MTLFLPA.
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3.4.3 The simple Leavitt path algebras of type (1, n)

We finish our series of lectures by returning to the algebraic source of Leavitt
path algebras, namely, to the Leavitt algebras LK(1, n). These were shown by
Leavitt to be simple rings of type (1, n). Now that we have broadened the class
of Leavitt algebras to the Leavitt path algebras, can we identify among the wider
class which of the LPAs are simple of type (1, n)? The answer is, as of today, not
yet. But we have two tools which should be of great help in this matter. First, the
Simplicity Theorem allows us to identify those graphs which yield simple LPAs.
Second, we will see in tomorrow’s lectures some sufficient conditions regarding
how to determine whether or not a graph E has the property that LK(E) has
type (1, n). This will allow us to conclude that there are indeed Leavitt path
algebras other than just the Leavitt algebras which are simple and have module
type (1, n).

We know (and maybe Leavitt had some idea too, but he didn’t have the
terminology in the 1960’s ...) that in addition to being simple and having module
type (1, n), the Leavitt algebras LK(1, n) are also purely infinite. What we will
show is that the simple LPAs of type (1, n) are all necessarily purely infinite.

For the remainder of this lecture we assume that E is a finite graph, so that
LK(E) is unital.

Here are three statements about a unital ring R:

(1) R is purely infinite simple.
(2) Every nonzero finitely generated projective right R-module is directly infi-

nite. (In other words, for every such PR there exists a nontrivial direct summand
of PR which is isomorphic to PR.)

(3) R has module type (1, n) for some integer n > 1.

Recall that the idempotent e in a ring R is called infinite in case the right
R-module eR is directly infinite. This is equivalent to saying that e = f + g
where f and g are nonzero orthogonal idempotents for which eR ∼= fR.

Proposition. For every unital R, (1) implies (2).

Proof: This is [22, Proposition 1.5].

Lemma. Let e be an idempotent in the ring T . Then e is an infinite idem-
potent in T if and only if e is an infinite idempotent in eTe.

Proof. Suppose e is infinite in T . So by definition there exist f, g ∈ T nonzero
orthogonal idempotents with e = f + g and for which eT ∼= fT . But efe =
(f + g)f(f + g) = f by orthogonality, so f ∈ eTe; similarly ege = g, so g ∈ eTe.
Thus we have e = f + g in eTe. But eT ∼= fT as right T -modules implies
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eTe ∼= fTe as right eTe modules. So e is infinite in eTe. The converse is even
easier.

Proposition. Suppose R = L(E) for some finite graph E. Suppose further
that R is simple. Then (2) implies (1).

Proof: Since we are assuming R is simple, we have that E satisfies conditions
(i) and (ii) of [3, Theorem 3.11]. By [4, Theorem 11] we need only show that
every vertex in E connects to a cycle. But by [28, Lemma 2.8] (or a remark
made at the end of Lecture 3) we have that for simple LPAs, either the algebra
is purely infinite, or is the direct limit of finite dimensional subalgebras. The
existence of an infinite idempotent precludes the latter case from happening.

We now show that (3) implies (2) for certain Leavitt path algebras. We will
be able to do this somewhat easily, again utilizing the remark made at the end
of Lecture 3. But we will do this in another way as well, in order to introduce an
important property of the projective modules over a Leavitt path algebra. Most
of the information about this property is contained in [23].

The goal is to describe the finitely generated projective (left, or right) mod-
ules over a Leavitt path algebra A = L(E). Of course if v is a vertex in E then
vA is one of these. And if we look at finite direct sums of these, we get more
of these. Technically, this collection p(A) of finitely generated projective right
A-modules forms a semigroup under the operation ⊕.

What makes this analysis somewhat difficult in general is that there might be
some overlap (up to isomorphism) among these projective modules. For example,
in the Leavitt algebra R = L(1, 2), if we look at vR we just have R, and if we
look at the direct sum R⊕R we get R again!

The other thing which makes this analysis difficult in general is that we are
not necessarily guaranteed that all of the finitely generated projective modules
over a ring R look like eR for some idempotent e.

But for Leavitt path algebras we have the really nice result [23, Theorem
2.5]. Basically, it says that you can get ALL of the finitely generated projective
right L(E)-modules up to isomorphism as direct sums of modules of the form
vL(E) where v is a vertex in E. It also says that you have some way to determine
which of these direct sums are isomorphic to other direct sums, and that to do
this you only need to look at the edges in E. You will see these ideas in
much more detail during tomorrow’s lectures.

There is another piece to the puzzle. The semigroup p(L(E)) has some proper-
ties which make cancellation, in general, not possible. For instance, if C = L(1, 2)
then we have {0} ⊕ C ∼= C ⊕ C, but we CANNOT cancel to get {0} ∼= C.

But the second nice result in [23] says that in some situations, we CAN
cancel.
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Theorem: ‘Separative Cancellation in p(L(E)) [23, Theorem 5.3] Sup-
pose A,B,C are in p(L(E)), and A⊕C ∼= B⊕C. Suppose also that both A and
B generate C. Then A ∼= B.

Now we can get the result we want.
Proposition. Suppose R = LK(E) for some finite graph E. Suppose R is

simple. Then (3) implies (2).

Proof. So we are assuming that there exists an integer n > 1 for which R ∼=
Rn as right R-modules. We need to show, for every nonzero finitely generated
projective right R-module P , that there exists a nonzero right R-module P ′ for
which P ∼= P ⊕ P ′. Since RR is a generator and R ∼= Rn there exists QR for
which R ∼= P ⊕ Q. We have P ⊕ Q ∼= (P ⊕ Q)n ∼= Pn ⊕ Qn. In particular we
have P ⊕ Q ∼= [Pn ⊕ Qn−1] ⊕ Q. We are now in a position to use Separative
Cancellation in p(L(E)). We let A = P , B = Pn ⊕ Qn−1, and C = Q. Then
the previous isomorphism says that A ⊕ C ∼= B ⊕ C. Since R is assumed to be
simple, we have that every finitely generated projective is a generator for every
R-module. So P is a generator, so that there exists an integer t for which C
is a direct summand of tA, in other words, that A generates C. But since B
has P as a summand, the same is true of B, so that B generates C. So now
we can use Separative Cancellation to get that A ∼= B, in other words that
P ∼= Pn ⊕ Qn−1. Now let P ′ = Pn−1 ⊕ Qn−1. Then P ′ 6= {0}, and so we have
shown that P ∼= P ⊕ P ′ and we are done.

We note that the condition that R = L(E) has type (1, n) for some n > 1 is
equivalent to saying that L(E) is not IBN. This is because if we have Rm ∼= Rn

for some n > m, then Separative Cancellation (since R is a generator) would
give R1 ∼= Rn−m+1.

In summary, we have shown

Theorem on simple non-IBN Leavitt path algebras. Suppose R =
LK(E) for some finite graph E. Suppose R is simple. If R is not IBN (that is, if
R has module type (1, n) for some n >1), then R is purely infinite.

Proof #1. Combine the above two propositions.
Proof #2. Using the comment made at the end of Lecture 3, if LK(E) is

simple, then either it is purely infinite, or the direct limit of finite dimensional
matrix rings. But a non-IBN ring cannot be of the latter type.

Example. Here is an example of a graph E for which LK(E) is simple, is
not IBN (in fact, has type (1, 2)), but is not isomorphic to L(1, n) for any n. It
is the same graph which was presented in the previous lecture. The Simplicity
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Theorem gives that LK(E) is simple. It will be shown in tomorrow’s lecture
WHY this graph has the other two indicated properties.
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In particular, there are Leavitt path algebras which possess the two key
properties of the Leavitt algebras (simple and purely infinite), which are not
isomorphic to Leavitt algebras. In addition, there are examples of Leavitt path
algebras which are simple and purely infinite which are IBN. We currently do not
know whether or not there are graph-theoretic conditions on a graph E which
are equivalent to L(E) being simple non-IBN.



Chapter 4

Graded ideal structure, the
exchange property and
stable rank for Leavitt path
algebras, by Enrique Pardo

4.1 Nonstable K-Theory for Leavitt path alge-
bras and graph C*-algebras

Abstract. We recall the essential concepts on (non)stable K-Theory for a ring R
(that is, V (R) and K0(R)), as well as some properties of abelian monoids related
to K-theoretical properties of rings. Then, we compute the V -monoid for both
L(E) and C∗(E), where E is a countable row-finite graph, and we state some
extra properties of these monoids. The contents of this lecture can be found in
[23].

Introduction

This talk connects with Tomforde’s third talk, where it is computed the ordered
K0-group of the graph C∗-algebra associated with any row-finite graph E. In this
situation, C∗-algebraists benefit of a strong supply of K-theoretical tools –Bott
duality, K-Theory for C∗-crossed products, Pimsner-Voiculescu six-terms exact
sequence and its dual [108]– which are not available in the context of K-Theory
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for general rings. So, we need to consider a different strategy to get analogous
results.

Here, we consider the problem of computing the abelian monoid V (LK(E))
(an essential ingredient in the so-called nonstable K-theory) of the Leavitt path
algebra associated with any row-finite graph E and any field K. The reason
is that, since Leavitt path algebras are rings with local units, the K0-group is
the universal enveloping group of the monoid, and the order is induced by the
natural image of this monoid into the K0-group. An additional advantage is
that, for any ring R, the monoid V (R) reflects decomposition and cancellation
properties of finitely generated projective modules (equivalently, idempotents in
matrix rings over R) more faithfully than K0(R), so that nice decomposition and
cancellation properties of idempotents over R can be detected with this tool.

Since the actual structure of the monoid V (C∗(E)) of Murray-von Neumann
equivalence classes of projections in matrix algebras over C∗(E) seems to remain
unnoticed, one of our goals is to fill this gap.

4.1.1 Basic concepts

Our references for K-theory for C∗-algebras are [35] and [119]. For algebraic
K-theory, we refer the reader to [120].

The picture

For a unital ring R, let M∞(R) be the directed union of Mn(R) (n ∈ N), where
the transition maps Mn(R)→Mn+1(R) are given by x 7→ ( x 0

0 0 ). For any idem-
potents e, f ∈ M∞(R), consider the equivalence relation e ∼ f if and only if
there exist x, y ∈M∞(R) such that e = xy and f = yx. Then , we define V (R)
to be the set of equivalence classes V (e) of idempotents e in M∞(R) with the
operation

V (e) + V (f) := V
((

e 0
0 f

))
for idempotents e, f ∈ M∞(R) [35, Chapter 3]. The assignment R 7→ V (R)
gives a functor from the category of unital rings to the category of abelian
monoids, that commutes with direct limits. The group K0(R) of a unital ring
R is the universal group of V (R). Recall that, as any universal group of an
abelian monoid, the group K0(R) has a standard structure of partially pre-
ordered abelian group. The set of positive elements in K0(R) is the image of
V (R) under the natural monoid homomorphism V (R)→ K0(R). Whenever A is
a C∗-algebra, the monoid V (A) agrees with the monoid of Murray-von Neumann
equivalence classes of projections in M∞(A); see [35, 4.6.2 and 4.6.4] or [119,
Exercise 3.11]. It follows that the algebraic version of K0(A) coincides with the
operator-theoretic one.
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The definition and functorial properties extends to the case of any non-
unital ring I. The only difference is that, in general, K0(I) is not the envelop-
ing universal group of V (I). Nevertheless, if I is a non-unital ring with local
units (i.e., there exists an ascending sequence of idempotents {en}n≥1 such that
I =

⋃
n≥1 enIen), then it is well-known that K0(I), the K0-group of the non-

unital ring I, is just the enveloping group of V (I); see [93, Proposition 0.1].
For a unital ring R, we can equivalently see V (R) as the set of isomor-

phism classes (denoted [P ]) of finitely generated projective left R-modules, and
we endow V (R) with the structure of a commutative monoid by imposing the
operation

[P ] + [Q] := [P ⊕Q]

for any isomorphism classes [P ] and [Q] [120]. In the case of a non-unital ring I,
we can give a definition of V (I) associated with the finitely generated projective
left modules over I, extending that of unital rings. Let I be a non-unital ring,
and consider any unital ring R containing I as a two-sided ideal. We consider
the class FP (I,R) of finitely generated projective left R-modules P such that
P = IP . Then V (I) is defined as the monoid of isomorphism classes of objects
in FP (I,R).

V -monoid versus K0-group

Notice that, if the monoid V (R) is cancellative (i.e. a+ c = b+ c implies a = b
in V (R)) then V (R) = K+

0 (R), so that the structure of FP (R) is faithfully
reflected in K0(R). This occurs e.g. when R has stable rank one (we will talk
about this property in a subsequent talk), but in general it fails. For example,
for α ∈ C such that αn 6= 1 fro all n ≥ 1, consider the McConnell-Petit complex
algebra

Tα = C〈x, x−1, y, y−1 | xy = αyx〉.

This algebra is a simple Dedekind domain (so stable rank equals 2) –in particu-
lar, it fails to be an exchange ring– with K0(Tα) ∼= Z, and according to Stafford’s
result [126, Theorem 1.2], it contains a principal right ideal PT which is projec-
tive, stably free but not free (i.e. 2TT ∼= TT ⊕ PT , but PT 6∼= TT ); hence, V (Tα)
is not cancellative, and K0(Tα) does miss essential information to understand
FP (Tα). So, using V (R) instead of K0(R) provide us of additional information
about the structure of R.

An interesting phenomenon enjoyed by the previous example is the following:
if we consider Θ ∈ R \ Q, we define α = ei2πΘ, and we define an involution on
Tα extending the complex conjugation by the rule x∗ = x−1, y∗ = y−1, then
the completion of Tα in a suitable norm is the irrational rotation C∗-algebra
AΘ, whose stable rank is 1, whose real rank is zero, and with the property that
K0(R) ∼= Z + ΘZ (which is dense in R). This usual situation means that, in
general, we cannot expect to obtain good information of a C∗-algebra looking
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to a ∗-dense subalgebra, and conversely. So, as we will see along this talks, even
if the results exhibited in graph C∗-algebras and in Leavitt path algebras turns
out to be analog in most contexts, the proofs are essentially different, and the
same results use to be essentially independent in both contexts.

Nice properties of V (R)

We now review some important decomposition and cancellation properties con-
cerning idempotents (equivalently, finitely generated projective modules). In the
context of C∗-algebras, these are equivalent to corresponding statements for
projections, as in [20, Section 7].

Refinement property

Recall that an abelian monoid M is a refinement monoid if whenever a+b = c+d
in M , there exist x, y, z, t ∈M such that a = x+ y and b = z+ t while c = x+ z
and d = y + t. An easy way to represent this decomposition property is the
so-called refinement matrix

c d
a x y
b z t

.

Then, we say that a ring R satisfies the refinement property provided that V (R)
is a refinement monoid.

Exchange rings are examples of rings satisfying the refinement property. Re-
call that a (not necessarily unital) ring R is called an exchange ring (see [10]) if for
every element x ∈ R there exist r, s ∈ R, e2 = e ∈ R such that e = rx = s+x−sx.
Observe that R being an exchange ring does not depend on the particular unital
ring where R is embedded as an ideal. In particular, a unital ring R is said to
be exchange if for every x ∈ R there exists an idempotent e ∈ xR such that
(1 − e) ∈ (1 − x)R. Von Neumann regular rings, semiperfect rings, strongly π-
regular rings, or multiplier rings of M∞(R) for any unital von Neumann regular
ring, are examples of exchange rings. It was proved in [20, Proposition 1.2] that
every exchange ring satisfies the refinement property. Among C∗-algebras, it is
worth to mention that every C∗-algebra with real rank zero ([38]) satisfies the
refinement property. This is a theorem of Zhang [142, Theorem 3.2]. It can also
be seen as a consequence of the above mentioned result on exchange rings, since
every C∗-algebra of real rank zero is an exchange ring [20, Theorem 7.2]. In
this class of rings, in fact, structure information of the ring is tightly related to
decomposition and cancellation properties of the monoid [20]. Also, notice that,
as seen in the above example, exchange property is not correctly preserved in
general by completions of dense ∗-subalgebras of a C∗-algebra.

We will show that R = LK(E) or R = C∗(E) satisfy the refinement property,
even if in general they are not exchange rings.
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Separative cancellation property

Now we discuss the concept of separative cancellation. In the monoid framework,
we consider the canonical pre-order on any abelian monoid M , which is some-
times called the algebraic pre-order of M . This pre-order is defined by setting
x ≤ y if and only if there is z ∈ M such that y = x + z. An abelian monoid
M is said to be separative [20] in case M satisfies the following condition: If
a, b, c ∈ M satisfy a + c = b + c and c ≤ na and c ≤ nb for some n ∈ N, then
a = b. Then, we say that a ring R is separative if the monoid V (R) is separative.

Many rings are separative. Indeed it is an outstanding open question (the
so-called Separativity Problem) to determine whether all exchange rings are
separative. An affirmative answer to this question will provide affirmative answer
to a number of open problems for both von Neumann regular rings and C∗-
algebras of real rank zero (as Pere Ara will explain in his first talk). In the case of
C∗-algebras, this concept is closely related to the concept of weak cancellation,
introduced by L.G. Brown in [37]. Following [37] and [39], we say that a C∗-
algebra A has weak cancellation if any pair of projections p, q in A that generate
the same closed ideal I in A and have the same image in K0(I) must be Murray-
von Neumann equivalent in A (hence in I). If Mn(A) has weak cancellation for
every n, then we say that A has stable weak cancellation.

Proposition 4.1.1. Let A be a C∗-algebra. Then A has stable weak cancellation
if and only if A is separative.

We will show that all Leavitt path algebras LK(E), and all graph C∗-algebras
C∗(E), are separative.

4.1.2 Graph algebras and graph monoids

Basic definitions

Recall the following definitions, extensively explained in Abrams’ talks. A di-
rected graph E consists of a vertex set E0, an edge set E1, and maps r, s :
E1 −→ E0 describing the range and source of edges. We say that E is a row-
finite graph if each vertex in E emits only a finite number of edges.

Let E = (E0, E1) be a row-finite graph, and let K be a field. Recall that
the Leavitt path K-algebra LK(E) associated with E as the K-algebra generated
by a set {pv | v ∈ E0} together with a set {xe, ye | e ∈ E1}, which satisfy the
following relations:

(1) pvpv′ = δv,v′pv for all v, v′ ∈ E0.
(2) ps(e)xe = xepr(e) = xe for all e ∈ E1.
(3) pr(e)ye = yeps(e) = ye for all e ∈ E1.
(4) yexe′ = δe,e′pr(e) for all e, e′ ∈ E1.
(5) pv =

∑
{e∈E1|s(e)=v} xeye for every v ∈ E0 that emits edges.
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Observe that relation (1) says that {pv | v ∈ E0} is a set of pairwise orthog-
onal idempotents. Note also that the above relations imply that {xeye | e ∈ E1}
is a set of pairwise orthogonal idempotents in LK(E).

Let E = (E0, E1) be a row-finite graph. Let ME be the abelian monoid given
by the generators {av | v ∈ E0}, with the relations:

av =
∑

{e∈E1|s(e)=v}

ar(e) for every v ∈ E0 that emits edges. (M)

Notice that in V (L(E)), for any v ∈ E0,

[pv] =
∑

{e∈E1|s(e)=v}

[xeye] =
∑

{e∈E1|s(e)=v}

[yexe] =
∑

{e∈E1|s(e)=v}

[pr(e)]

because of relations (4 − 5) above. So, there is a natural map γE : ME →
V (L(E)). We will show that γE is an isomorphism for every row-finite graph E.

Reduction to finite graphs

The idea is to reduce the computation of V (L(E)) to the case of a finite graph
E, because then

∑
v∈E0 pv = 1 is the unit of L(E). The advantage is that, in

the unital case, there is a developed theory that allows us to explicitly compute
this monoid. But in order to extend the result to the general case, we need to
guarantee the functoriality of this reduction.

In general the algebra LK(E) is not unital, but it can be written as a direct
limit of unital graph algebras (with non-unital transition maps), so that it is an
algebra with local units. To show this, we first observe the functoriality property
of the construction, as follows. Recall that a graph homomorphism f : E =
(E0, E1)→ F = (F 0, F 1) is given by two maps f0 : E0 → F 0 and f1 : E1 → F 1

such that rF (f1(e)) = f0(rE(e)) and sF (f1(e)) = f0(sE(e)) for every e ∈ E1.

Definition 4.1.2. We say that a graph homomorphism f is complete in case f0

is injective and f1 restricts to a bijection from s−1
E (v) onto s−1

F (f0(v)) for every
v ∈ E0 such that v emits edges.

Note that under the above assumptions, the map f1 must also be injective.
Let us consider the category G whose objects are all the row-finite graphs and
whose morphisms are the complete graph homomorphisms. It is easy to check
that the category G admits direct limits.

Lemma 4.1.3. Every row-finite graph E is a direct limit in the category G of a
directed system of finite graphs.
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Proof. Clearly, E is the union of its finite subgraphs. Let X be a finite subgraph
of E. Define a finite subgraph Y of E as follows:

Y 0 = X0 ∪ {rE(e) | e ∈ E1 and sE(e) ∈ X0}

and
Y 1 = {e ∈ E1 | sE(e) ∈ X0}.

Then the vertices of Y that emit edges are exactly the vertices of X that emit
edges in E, and if v is one of these vertices, then s−1

E (v) = s−1
Y (v). This shows

that the map Y → E is a complete graph homomorphism, and clearly X ⊆ Y .
If Y1 and Y2 are two complete subgraphs of E and Y1 is a subgraph of Y2, then
the inclusion map Y1 → Y2 is clearly a complete graph homomorphism.

Since the union of a finite number of finite complete subgraphs of E is again a
finite complete subgraph of E, it follows that E is the direct limit in the category
G of the directed family of its finite complete subgraphs.

Lemma 4.1.4. The assignment E 7→ LK(E) can be extended to a functor LK
from the category G of row-finite graphs and complete graph homomorphisms to
the category of K-algebras and (not necessarily unital) algebra homomorphisms.
The functor LK is continuous, that is, it commutes with direct limits. It follows
that every graph algebra LK(E) is the direct limit of graph algebras corresponding
to finite graphs.

Proof. If f : E → F is a complete graph homomorphism, then f induces an
algebra homomorphism

L(f) : LK(E) → LK(F )
pv 7→ pf0(v)

xe 7→ xf1(e)

ye 7→ yf1(e)

for v ∈ E0 and e ∈ E1. Since f0 is injective, relation (1) is preserved under L(f).
Relations (2), (3) are clearly preserved, relation (4) is preserved because f1 is
injective, and relation (5) is preserved because f1 restricts to a bijection from
s−1
E (v) onto s−1

F (f0(v)) for every v ∈ E0 such that v emits edges.
The algebra LK(E) is the algebra generated by a universal family of elements

{pv, xe, ye | v ∈ E0, e ∈ E1} satisfying relations (1)–(5). If X = lim−→i∈I Xi in the
category G, then we can think that {Xi}i∈I is a directed family of complete
subgraphs of X, and the union of the graphs Xi is X. For a K-algebra A, a
compatible set of K-algebra homomorphisms LK(Xi) → A, i ∈ I, determines,
and is determined by, a set of elements {p′v, x′e, y′e | v ∈ E0, e ∈ E1} in A
satisfying conditions (1)–(5). It follows that LK(E) = lim−→i∈I LK(Xi), as desired.
The last statement follows now from Lemma 4.1.3.
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By definition of a Cuntz-Krieger E-family in a C∗-algebra A, the same proof
as in Lemma 4.1.4 can be applied to the case of C∗-algebras:

Lemma 4.1.5. The assignment E 7→ C∗(E) can be extended to a continu-
ous functor from the category G of row-finite graphs and complete graph homo-
morphisms to the category of C∗-algebras and ∗-homomorphisms. Every graph
C∗-algebra C∗(E) is the direct limit of graph C∗-algebras associated with finite
graphs.

Also, the result applies to the monoid associated to a graph.

Lemma 4.1.6. The assignment E 7→ME can be extended to a continuous func-
tor from the category G of row-finite graphs and complete graph homomorphisms
to the category of abelian monoids. It follows that every graph monoid ME is the
direct limit of graph monoids corresponding to finite graphs.

Computing V (LK(E))

Now we compute the monoid V (LK(E)) associated with the finitely generated
projective modules over the graph algebra LK(E). An interesting fact is that
this monoid does not depend on the basis field K.

Theorem 4.1.7. Let E be a row-finite graph. Then there is a natural monoid
isomorphism V (LK(E)) ∼= ME. Moreover, if E is finite, then the global dimen-
sion of LK(E) is ≤ 1.

Proof. For each row-finite graph E, there is a unique monoid homomorphism
γE : ME → V (L(E)) such that γE(av) = [pv]. Clearly this defines a natural
transformation from the functor M to the functor V ◦L; that is, if f : E → F is
a complete graph homomorphism, then the following diagram commutes

ME
γE−−−−→ V (L(E))

M(f)

y yV (L(f))

MF
γF−−−−→ V (L(F ))

We need to show that γE is a monoid isomorphism for every row-finite graph E.
By using Lemma 4.1.6 and Lemma 4.1.4, we see that it is enough to show that
γE is an isomorphism for a finite graph E.

Let E be a finite graph and assume that {v1, . . . , vm} ⊆ E0 is the set of
vertices which emit edges. We start with an algebra

A0 =
∏
v∈E0

K.
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In A0 we have a family {pv : v ∈ E0} of orthogonal idempotents such that∑
v∈E0 pv = 1. Let us consider the two finitely generated projective left A0-

modules P = A0pv1 and Q = ⊕{e∈E1|s(e)=v1}A0pr(e). There exists an algebra
A1 := A0〈i, i−1 : P ∼= Q〉 with a universal isomorphism i : P := A1 ⊗A0 P →
Q := A1 ⊗A0 Q, see [32, page 38]. Note that this algebra is precisely the al-
gebra L(X1), where X1 is the graph having X0

1 = E0, and where v1 emits
the same edges as it does in E, but all other vertices do not emit any edge.
Namely the row (xe : s(e) = v1) implements an isomorphism P = A1pv1 → Q =
⊕{e∈E1|s(e)=v1}A1pr(e) with inverse given by the column (ye : s(e) = v1)T , which
is clearly universal. By [32, Theorem 5.2], the monoid V (A1) is obtained from
V (A0) by adjoining the relation [P ] = [Q]. In our case we have that V (A0) is the
free abelian group on generators {av | v ∈ E0}, where av = [pv], and so V (A1)
is given by generators {av | v ∈ E0} and a single relation

av1 =
∑

{e∈E1|s(e)=v1}

ar(e).

Now we proceed inductively. For k ≥ 1, let Ak be the graph algebra Ak =
L(Xk), where Xk is the graph with the same vertices as E, but where only the
first k vertices v1, . . . , vk emit edges, and these vertices emit the same edges as
they do in E. Then we assume by induction that V (Ak) is the abelian group
given by generators {av | v ∈ E0} and relations

avi =
∑

{e∈E1|s(e)=vi}

ar(e),

for i = 1, . . . , k. Let Ak+1 be the similar graph, corresponding to vertices
v1, . . . , vk, vk+1. Then we have Ak+1 = Ak〈i, i−1 : P ∼= Q〉 for P = Akpvk+1

and Q = ⊕{e∈E1|s(e)=vk+1}Akpr(e), and so we can apply again Bergman’s The-
orem [32, Theorem 5.2] to deduce that V (Ak+1) is the monoid with the same
generators as before and the relations corresponding to v1, . . . , vk, vk+1. It also
follows from [32, Theorem 5.2] that the global dimension of L(E) is ≤ 1. This
concludes the proof.

The monoid associated with a graph C∗-algebra

The problem to extend this result to V (C∗(E)) is that, even in the case of finite
graphs, there is not equivalent result to those of Bergman [32]. Thus, we need
to use a different strategy. The proof, in fact, involves some details that will be
discussed later in this talk and the next one.

We will assume that L(E) = LC(E) is the graph algebra of the graph E over
the field C of complex numbers, endowed with its natural structure of complex
∗-algebra, so that x∗e = ye for all e ∈ E1, p∗v = pv for all v ∈ E0, and (ξa)∗ = ξa∗
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for ξ ∈ C and a ∈ L(E). There is a natural inclusion of complex ∗-algebras
ψ : L(E)→ C∗(E), where C∗(E) denotes the graph C∗-algebra associated with
E.

Theorem 4.1.8. Let E be a row-finite graph, and let L(E) = LC(E) be the graph
algebra over the complex numbers. Then the natural inclusion ψ : L(E)→ C∗(E)
induces a monoid isomorphism V (ψ) : V (L(E)) → V (C∗(E)). In particular the
monoid V (C∗(E)) is naturally isomorphic with the monoid ME.

Sketch of the proof.
1. Reduction to finite graphs.

The algebra homomorphism ψ : L(E) → C∗(E) induces the following com-
mutative square:

V (L(E))
V (ψ)−−−−→ V (C∗(E))

ϕ1

y yϕ2

K0(L(E))
K0(ψ)−−−−→ K0(C∗(E))

Though L(E) is not in general a unital algebra, it is a ring with local units, and
henceK0(L(E)), theK0-group of the non-unital ring L(E), is just the enveloping
group of V (L(E)). Then, the map K0(ψ) is an isomorphism by Theorem 4.1.7
and [110, Theorem 3.2]. Using Lemma 4.1.4 and Lemma 4.1.5, we see that it is
enough to show that V (ψ) is an isomorphism for a finite graph E.

WLOG: Assume that E is a finite graph.
2. Injectivity of V (ψ).

Suppose that P and Q are idempotents in M∞(L(E)) such that P ∼ Q in
C∗(E). By Theorem 4.1.7, we can assume that each of P and Q are equivalent
in M∞(L(E)) to direct sums of “basic” projections, that is, projections of the
form pv, with v ∈ E0. Let J be the closed ideal of C∗(E) generated by the
entries of P . Since P ∼ Q, the closed ideal generated by the entries of P agrees
with the closed ideal generated by the entries of Q. Then, using the picture of
ideals related to subsets of E0 [31, Theorem 4.1] and [23, Theorem 4.3] (that
we will explain in the second talk), it follows that P and Q generate the same
ideal I0 in L(E). Then there is a projection e ∈ L(E) such that I0 = L(E)eL(E)
and eL(E)e = L(H) for a suitable subgraph of E. Note that P and Q are full
projections in L(H), and so [1H ] ≤ m[P ] and [1H ] ≤ m[Q] for some m ≥ 1.

So, we can restrict our attention to the map ψH : L(H) → C∗(H).
Since V (ψH)([P ]) = V (ψH)([Q]) in V (C∗(H)) we get K0(ψH)(ϕ1([P ])) =
K0(ψH)(ϕ1([Q])), and since K0(ψH) is an isomorphism we get ϕ1([P ]) =
ϕ1([Q]). This means that there is k ≥ 0 such that [P ]+k[1H ] = [Q]+k[1H ]. But
since V (L(E)) is separative (we will prove that in final section of this talk) and
[1H ] ≤ m[P ] and [1H ] ≤ m[Q], we get [P ] = [Q] in V (L(E)).
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3. Surjectivity of V (ψ).

Since E is finite, by [31, Theorem 4.1], there is a finite chain I0 = {0} ≤
I1 ≤ · · · ≤ In = C∗(E) of closed gauge-invariant ideals such that each quotient
Ii+1/Ii is gauge-simple. We proceed by induction on n. If n = 1 we have the
case in which C∗(E) is gauge-simple, and thus it is either purely infinite simple,
or AF or Morita-equivalent to C(T); see [31]. In either case the result follows,
because in all these cases V (C∗(E)) \ {0} is a cancellative semigroup.

Now assume that the result is true for graph C∗-algebras of (gauge) length
n − 1 and let A = C∗(E) be a graph C∗-algebra of length n. Again by [31,
Theorem 4.1], B = A/I1 ∼= C∗(F ) for a “quotient graph” associated to E and
I1. Let π : A → B denote the canonical projection. By induction hypothesis,
V (B) = V (C∗(F )) is generated as a monoid by [pv], for v ∈ F 0, and so the
map V (A)/V (I1) → V (B) is surjective. Since I1 is the closed ideal generated
by its projections, there is an embedding V (A)/V (I1)→ V (B) [17, Proposition
5.3(c)]. So, V (B) ∼= V (A)/V (I1). In particular, π(P ) ∼ π(Q) for two projections
P,Q ∈ M∞(A), if and only if there are projections P ′, Q′ ∈ M∞(I1) such that
P ⊕ P ′ ∼ Q⊕Q′ in M∞(A).

Now, an intricate argument, distinguishing the cases of I1 being purely infi-
nite simple, or AF or Morita-equivalent to C(T), shows that any P ∈ M∞(A)
is equivalent to a finite orthogonal sum of basic projections.

4.1.3 Refinement and separativity

In this section we begin our formal study of the monoid ME associated with a
row-finite graph E.

Refinement property

We show that ME is a refinement monoid. The main tool is a careful description
of the congruence on the free abelian monoid given by the defining relations of
ME .

Let F be the free abelian monoid on the set E0. The nonzero elements of F
can be written in a unique form up to permutation as

∑n
i=1 xi, where xi ∈ E0.

Now we will give a description of the congruence on F generated by the relations
(M) on F . It will be convenient to introduce the following notation. For x ∈ E0,
write

r(x) :=
∑

{e∈E1|s(e)=x}

r(e) ∈ F.

With this new notation relations (M) become x = r(x) for every x ∈ E0 that
emits edges.
Definition 4.1.9. Define a binary relation →1 on F \ {0} as follows. Let

∑n
i=1 xi

be an element in F as above and let j ∈ {1, . . . , n} be an index such that xj emits



152 4.1. Nonstable K-Theory for Leavitt path algebras and graph C*-algebras

edges. Then
∑n
i=1 xi →1

∑
i 6=j xi + r(xj). Let → be the transitive and reflexive

closure of →1 on F \ {0}, that is, α → β if and only if there is a finite string
α = α0 →1 α1 →1 · · · →1 αt = β. Let ∼ be the congruence on F generated
by the relation →1 (or, equivalently, by the relation →). Namely α ∼ α for all
α ∈ F and, for α, β 6= 0, we have α ∼ β if and only if there is a finite string
α = α0, α1, . . . , αn = β, such that, for each i = 0, . . . , n − 1, either αi →1 αi+1

or αi+1 →1 αi. The number n above will be called the length of the string.

It is clear that ∼ is the congruence on F generated by relations (M), and so
ME = F/∼. The support of an element γ in F , denoted supp(γ) ⊆ E0, is the set
of basis elements appearing in the canonical expression of γ.

Lemma 4.1.10. (Excision Lemma) Let → be the binary relation on F defined
above. Assume that α = α1+α2 and α→ β. Then β can be written as β = β1+β2

with α1 → β1 and α2 → β2.

Proof. By induction, it is enough to show the result in the case where α →1 β.
If α →1 β, then there is an element x in the support of α such that β =
(α − x) + r(x). The element x belongs either to the support of α1 or to the
support of α2. Assume, for instance, that the element x belongs to the support
of α1. Then we set β1 = (α1 − x) + r(x) and β2 = α2.

Note that the elements β1 and β2 in Lemma 4.1.10 are not uniquely deter-
mined by α1 and α2 in general, because the element x ∈ E0 considered in the
proof could belong to both the support of α1 and the support of α2.

The following lemma gives the important “confluence” property of the con-
gruence ∼ on the free abelian monoid F .

Lemma 4.1.11. (Confluence Lemma) Let α and β be nonzero elements in F .
Then α ∼ β if and only if there is γ ∈ F such that α→ γ and β → γ.

Proof. Assume that α ∼ β. Then there exists a finite string α = α0, α1, . . . , αn =
β, such that, for each i = 0, . . . , n − 1, either αi →1 αi+1 or αi+1 →1 αi. We
proceed by induction on n. If n = 0, then α = β and there is nothing to prove.
Assume the result is true for strings of length n−1, and let α = α0, α1, . . . , αn =
β be a string of length n. By induction hypothesis, there is λ ∈ F such that
α→ λ and αn−1 → λ. Now there are two cases to consider. If β →1 αn−1, then
β → λ and we are done. Assume that αn−1 →1 β. By definition of →1, there is
a basis element x ∈ E0 in the support of αn−1 such that αn−1 = x+ α′n−1 and
β = r(x) + α′n−1. By Lemma 4.1.10, we have λ = λ(x) + λ′, where x → λ(x)
and α′n−1 → λ′. If the length of the string from x to λ(x) is positive, then we
have r(x) → λ(x) and so β = r(x) + α′n−1 → λ(x) + λ′ = λ. In case that
x = λ(x), then set γ = r(x) + λ′. Then we have λ→1 γ and so α→ γ, and also
β = r(x) + α′n−1 → r(x) + λ′ = γ. This concludes the proof.
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We are now ready to show the refinement property of ME .

Proposition 4.1.12. The monoid ME associated with any row-finite graph E
is a refinement monoid.

Proof. Let α = α1+α2 ∼ β = β1+β2, with α1, α2, β1, β2 ∈ F . By Lemma 4.1.11,
there is γ ∈ F such that α → γ and β → γ. By Lemma 4.1.10, we can write
γ = α′1 + α′2 = β′1 + β′2, with αi → α′i and βi → β′i for i = 1, 2. Since F is a free
abelian monoid, F has the refinement property and so there are decompositions
α′i = γi1 + γi2 for i = 1, 2 such that β′j = γ1j + γ2j for j = 1, 2. The result
follows.

Separativity property

We prove that the monoid ME associated with a row-finite graph E = (E0, E1)
is always a separative monoid. Recall that this means that for elements x, y, z ∈
ME , if x + z = y + z and z ≤ nx and z ≤ ny for some positive integer n, then
x = y.

The separativity of ME follows from results of Brookfield [36] on primely
generated monoids; see also [141, Chapter 6]. Indeed the class of primely gen-
erated refinement monoids satisfies many other nice cancellation properties. We
refer the reader to [36] for further information.

Definition 4.1.13. Let M be a monoid. An element p ∈ M is prime if for all
a1, a2 ∈M , p ≤ a1 +a2 implies p ≤ a1 or p ≤ a2. A monoid is primely generated
if each of its elements is a sum of primes.

Proposition 4.1.14. [36, Corollary 6.8] Any finitely generated refinement
monoid is primely generated.

It follows from Proposition 4.1.14 that, for a finite graph E, the monoid ME

is primely generated.

Theorem 4.1.15. Let E be a row-finite graph. Then the monoid ME is separ-
ative.

Proof. By Lemma 4.1.6, we get that ME is the direct limit of monoids MXi

corresponding to finite graphs Xi. Therefore, in order to check separativity, we
can assume that the graph E is finite.

Assume that E is a finite graph. Then ME is generated by the finite set
E0 of vertices of E, and thus ME is finitely generated. By Proposition 4.1.12,
ME is a refinement monoid, so it follows from Proposition 4.1.14 that ME is a
primely generated refinement monoid. By [36, Theorem 4.5], the monoid ME is
separative.
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Corollary 4.1.16. Let E be a row-finite graph. Then LK(E) satisfies the re-
finement property and is a separative ring.

Proof. By Theorem 4.1.7, we have V (LK(E)) ∼= ME . So the result follows from
Proposition 4.1.12 and Theorem 4.1.15.

Corollary 4.1.17. Let E be a row-finite graph. Then C∗(E) satisfies the refine-
ment property and has stable weak cancellation.

Proof. By Theorem 4.1.8, V (C∗(E)) ∼= ME , and so V (C∗(E)) is a refinement
monoid by Proposition 4.1.12.

It follows from Theorem 4.1.15 that V (C∗(E)) is a separative monoid. By
Proposition 4.1.1, this is equivalent to saying that C∗(E) has stable weak can-
cellation..

4.2 Some properties of L(E) connected with sub-
lattices of P(E0)

Abstract. We study the relationship between the lattices of hereditary satu-
rated subsets of the vertices E0 of a graph E (denoted by HE), and the lattices
of two-sided ideals L(L(E)) and graded two-sided ideals Lgr(L(E)) of L(E). In
particular, we characterize graded simplicity of L(E) in terms of intrinsic proper-
ties of HE . Also, we consider the relation between graded and gauge invariant
ideals. Finally, we study graded ideals and graded quotients through suitable
associated Leavitt path algebras. The contents of this lecture can be found in
[23] and [28].

Introduction

One of the more enjoyable properties of a graph C∗-algebras C∗(E) is the lattice
isomorphism between some subsets of E0 –the hereditary saturated ones– and
the set of two-sided ideals which are invariant under the action of T ⊂ C \ {0}
by multiplication (see [31]), which not only give a manageable representation of
ideals, but also a tool for describing quotients of graph C∗-algebras.

In this talk, we will see that this isomorphism still works, because it fac-
torize through an isomorphism with order ideals of V (L(E)), and thus with
idempotent-generated ideals of L(E); then, we describe these as graded ideals
of L(E). We will look then to graded simplicity –gauge simplicity for graph
C∗-algebras–, which corresponds to simplicity of V (L(E)) and can be described
in term of an intrinsic property of E (the so-called cofinality, see [88]). Also,
we will look to the relation between graded and gauge invariant ideals (for a
suitable action, extending the C∗-action of T), and we will realize that they are
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not equivalent, as the equivalence depends on the cardinality of the basis field.
A final glance will provide us pictures of graded ideals and graded quotients of
L(E) in terms of suitable Leavitt path algebras.

4.2.1 Basic definitions

Graphs

A (directed) graph E = (E0, E1, r, s) consists of two countable sets E0, E1 and
maps r, s : E1 → E0. The elements of E0 are called vertices and the elements of
E1 edges.

A vertex which emits no edges is called a sink. A graph E is finite if E0 is
a finite set. If s−1(v) is a finite set for every v ∈ E0, then the graph is called
row-finite. A path µ in a graph E is a sequence of edges µ = (µ1, . . . , µn) such
that r(µi) = s(µi+1) for i = 1, . . . , n − 1; the length |µ| of µ is defined to be n.
In such a case, s(µ) := s(µ1) is the source of µ and r(µ) := r(µn) is the range
of µ. An edge e is an exit for a path µ if there exists i such that s(e) = s(µi)
and e 6= µi. If s(µ) = r(µ) and s(µi) 6= s(µj) for every i 6= j, then µ is a called
a cycle. If v = s(µ) = r(µ) and s(µi) 6= v for every i > 1, then µ is a called a
closed simple path based at v. We denote by CSPE(v) the set of closed simple
paths in E based at v. For a path µ we denote by µ0 the set of its vertices, i.e.,
{s(µ1), r(µi) | i = 1, . . . , n}. For n ≥ 2 we define En to be the set of paths of
length n, and E∗ =

⋃
n≥0E

n the set of all paths.

Hereditary and saturated sets

We recall here the definitions of [31]. We define a relation ≥ on E0 by setting
v ≥ w if there is a path µ ∈ E∗ with s(µ) = v and r(µ) = w. A subset H of E0 is
called hereditary if v ≥ w and v ∈ H imply w ∈ H. A hereditary set is saturated
if every vertex which feeds into H and only into H is again in H, that is, if
s−1(v) 6= ∅ and r(s−1(v)) ⊆ H imply v ∈ H. The set T (v) = {w ∈ E0 | v ≥ w}
is the tree of v, and it is the smallest hereditary subset of E0 containing v. We
extend this definition for an arbitrary set X ⊆ E0 by T (X) =

⋃
x∈X T (x).

Denote by H (or by HE when it is necessary to emphasize the dependence
on E) the set of hereditary saturated subsets of E0. Since the intersection of
saturated sets is saturated, there is a smallest saturated subset X containing any
given subset X of E0. The hereditary saturated closure of a set X is defined as
the smallest hereditary and saturated subset X of E0 containing X. It is shown
in [23] that the hereditary saturated closure of a set X is X =

⋃∞
n=0 Λn(X),

where

1. Λ0(X) = T (X),
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2. Λn(X) = {y ∈ E0 | s−1(y) 6= ∅ and r(s−1(y)) ⊆ Λn−1(X)} ∪Λn−1(X), for
n ≥ 1.

The setH of saturated hereditary subsets of E0 is a complete lattice (H,⊆,∪,∩).

Order-ideals

An order-ideal of a monoid M is a submonoid I of M such that x+ y = z in M
and z ∈ I imply that both x, y belong to I. An order-ideal can also be described
as a submonoid I of M , which is hereditary with respect to the canonical pre-
order ≤ on M : x ≤ y and y ∈ I imply x ∈ I. Recall that the pre-order ≤ on M
is defined by setting x ≤ y if and only if there exists z ∈M such that y = x+ z.

The set L(M) of order-ideals of M forms a (complete) lattice(
L(M),⊆,

∑
,∩
)
. Here, for a family of order-ideals {Ii}, we denote by

∑
Ii

the set of elements x ∈ M such that x ≤ y, for some y belonging to the alge-
braic sum

∑
Ii of the order-ideals Ii. Note that

∑
Ii =

∑
Ii whenever M is a

refinement monoid.

4.2.2 Lattice isomorphisms

Let FE be the free abelian monoid on E0, and recall that ME = FE/∼. For
γ ∈ FE we will denote by [γ] its class in ME . Note that any order-ideal I of
ME is generated as a monoid by the set {[v] | v ∈ E0} ∩ I. Now, we will use
the “graphic” relations → and ∼ defined on FE , and the derived Confluence
Property, to fix the natural connection between X ∈ HE and a suitable ideal of
ME –a lattice isomorphism, in fact–. Essentially, hereditariness in HE and ME

coincides, while saturation in HE is given by the r-identity in FE/ ∼. Then, the
isomorphism ME

∼= V (L(E)) and the good relation between L(V (R)) and L(R)
in rings with local unit satisfying refinement will fill the gap.

Proposition 4.2.1. Let E be a row-finite graph. Then, there are order-
preserving mutually inverse maps

ϕ : H −→ L(ME); ψ : L(ME) −→ H,

where ϕ(H) is the order-ideal of ME generated by {[v] | v ∈ H}, for H ∈ H, and
ψ(I) is the set of elements v in E0 such that [v] ∈ I, for I ∈ L(ME).

Proof. The maps ϕ and ψ are obviously order-preserving. It will be enough to
show the following facts:

1. For I ∈ L(ME), the set ψ(I) is a hereditary and saturated subset of E0.

2. If H ∈ H then [v] ∈ ϕ(H) if and only if v ∈ H.
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For, if (1) and (2) hold true, then ψ is well-defined by (1), and ψ(ϕ(H)) = H for
H ∈ H, by (2). On the other hand, if I is an order-ideal of ME , then obviously
ϕ(ψ(I)) ⊆ I, and since I is generated as a monoid by {[v] | v ∈ E0}∩I = [ψ(I)],
it follows that I ⊆ ϕ(ψ(I)).

Proof of (1): Let I be an order-ideal of ME , and set H := ψ(I) = {v ∈ E0 |
[v] ∈ I}. To see that H is hereditary, we have to prove that, whenever we have a
path (e1, e2, . . . , en) in E with s(e1) = v and r(en) = w and v ∈ H, then w ∈ H.
If we consider the corresponding path v →1 γ1 →1 γ2 →1 · · · →1 γn in FE , we
see that w belongs to the support of γn, so that w ≤ γn in FE . This implies that
[w] ≤ [γn] = [v], and so [w] ∈ I because I is hereditary.

To show saturation, take v in E0 such that r(e) ∈ H for every e ∈ E1 such
that s(e) = v. We then have supp(r(v)) ⊆ H, so that [r(v)] ∈ I because I is a
submonoid of ME . But [v] = [r(v)], so that [v] ∈ I and v ∈ H.

Proof of (2): Let H be a saturated hereditary subset of E0, and let I :=
ϕ(H) be the order-ideal of ME generated by {[v] | v ∈ H}. Clearly [v] ∈ I if
v ∈ H. Conversely, suppose that [v] ∈ I. Then [v] ≤ [γ], where γ ∈ FE satisfies
supp(γ) ⊆ H. Thus we can write [γ] = [v] + [δ] for some δ ∈ FE . Then, there is
β ∈ FE such that γ → β and v+δ → β. Since H is hereditary and supp(γ) ⊆ H,
we get supp(β) ⊆ H. We have β = β1 + β2, where v → β1 and δ → β2. Observe
that supp(β1) ⊆ supp(β) ⊆ H. Using that H is saturated, it is a simple matter
to check that, if α→1 α

′ and supp(α′) ⊆ H, then supp(α) ⊆ H. Using this and
induction, we obtain that v ∈ H, as desired.

We next consider ideals in the algebra L(E) associated with the graph E.
We first recall a definition. Let R be a unital ring, and let U ∈ V (R) be any
subset. We define the trace of U to be the ideal

TrR(U) =
∑

{AR∈U}

 ∑
{f∈Hom(AR,RR)}

f(AR)

 .

Then, an ideal I of R is a trace ideal if I = TrR(U) for some U ∈ V (R). For a
general unital ring R, the lattice of order-ideals of V (R) is isomorphic with the
lattice of trace ideals of R [17] and [59]. It is straightforward to see that this
lattice isomorphism also holds when R is a ring with local units. In particular,
the lattice of order-ideals of V (L(E)) is isomorphic with the lattice of trace ideals
of L(E). Being V (L(E)) ∼= ME a refinement monoid, we see that the trace ideals
of L(E) are exactly the ideals generated by idempotents of L(E) [17].

In general not all the ideals in L(E) will be generated by idempotents. For
instance, if E is a single loop, then L(E) = K[x, x−1] and the ideal generated
by 1− x only contains the idempotent 0. However, it is possible to describe the
ideals generated by idempotents by using the canonical Z-grading of L(E). For
every e ∈ E1, set the degree of e as 1, the degree of e∗ as -1, and the degree of
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every element in E0 as 0. Then we obtain a well-defined degree on the Leavitt
path K-algebra L(E), thus, L(E) is a Z-graded algebra:

L(E) =
⊕
n∈Z

L(E)n, L(E)nL(E)m ⊆ L(E)n+m, for all n,m ∈ Z.

For a subset X of a Z-graded ring R = ⊕n∈ZRn, set Xn = X ∩ Rn. An ideal I
of R is said to be a graded ideal in case I =

⊕
n∈Z In. Let us denote the lattice

of graded ideals of a Z-graded ring R by Lgr(R).

Theorem 4.2.2. Let E be a row-finite graph. Then there are order-
isomorphisms

H ∼= L(ME) ∼= Lgr(L(E)),

where H is the lattice of hereditary and saturated subsets of E0, L(ME) is the
lattice of order-ideals of the monoid ME, and Lgr(L(E)) is the lattice of graded
ideals of the graph algebra L(E).

Proof. We have obtained an order-isomorphism H ∼= L(ME) in Proposi-
tion 4.2.1. As we observed earlier there is an order-isomorphism L(ME) =
L(V (L(E))) ∼= Lidem(L(E)), where Lidem(L(E)) is the lattice of ideals in L(E)
generated by idempotents. The isomorphism is given by the rule I 7→ Ĩ, for
every order-ideal I of ME , where Ĩ is the ideal generated by all the idem-
potents e ∈ L(E) such that V (e) ∈ I. (Here V (e) denotes the class of e in
V (L(E)) = ME .) Given any order-ideal I of ME , it is generated as monoid by
the elements V (pv)(= [v] = av) such that V (pv) ∈ I, so that Ĩ is generated as
an ideal by the idempotents pv such that pv ∈ Ĩ. In particular we see that every
ideal of L(E) generated by idempotents is a graded ideal.

It only remains to check that every graded ideal of L(E) is generated by
idempotents. For this, recall that elements in L(E) can be described as linear
combinations of elements of the form γν∗, where γ and ν are paths on E with
r(γ) = r(ν). It is clear that, for n > 0, we have L(E)n = ⊕|γ|=nγL(E)0, and
similarly, L(E)−n = ⊕|γ|=nL(E)0γ∗.

Given a graded ideal J of L(E), take any element a ∈ Jn, where n > 0.
Then a =

∑
|γ|=n γaγ , for some aγ ∈ L(E)0. For a fixed path ν of length n, we

have ν∗a = aν , so that aν ∈ J0. We conclude that Jn = L(E)nJ0, and similarly
J−n = J0L(E)−n. Since J is a graded ideal, we infer that J is generated as ideal
by J0, which is an ideal of L(E)0.

To conclude the proof, we only have to check that every ideal of L(E)0 is
generated by idempotents. Indeed we will prove that L(E)0 is a von Neumann
regular ring, more precisely L(E)0 is a locally matricial K-algebra, i.e. a direct
limit of matricial algebras over K [68], though not all the connecting homomor-
phisms are unital. (A matricial K-algebra is a finite direct product of full matrix
algebras over K.)
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We have L(E) = lim−→i∈I L(Xi) for a directed family {Xi | i ∈ I} of finite
graphs. Then L(E)0 = lim−→i∈I L(Xi)0, and so we can assume that E is a finite
graph.

Now for a finite graph E, all the transition maps are unital. They can be
built in the following fashion. For each v in E0, and each n ∈ Z+, let us denote
by P (n, v) the set of paths γ = xe1 · · ·xen ∈ P (E) such that |γ| = n and
r(γ) = v. The set of sinks will be denoted by S(E). Now the algebra L(E)0
admits a natural filtration by algebras L0,n, for n ∈ Z+. Namely L0,n is the set
of linear combinations of elements of the form γν∗, where γ and ν are paths with
r(γ) = r(ν) and |γ| = |ν| ≤ n. The algebra L0,0 is isomorphic to

∏
v∈E0 K. In

general the algebra L0,n is isomorphic to

[ n−1∏
i=0

( ∏
v∈S(E)

M|P (i,v)|(K)
)]
×
[ ∏
v∈E0

M|P (n,v)|(K)
]
.

The transition homomorphism L0,n → L0,n+1 is the identity on the fac-
tors

∏
v∈S(E)M|P (i,v)|(K), for 0 ≤ i ≤ n − 1, and also on the factor∏

v∈S(E)M|P (n,v)|(K) of the last term of the displayed formula. The transition
homomorphism ∏

v∈E0\S(E)

M|P (n,v)|(K)→
∏
v∈E0

M|P (n+1,v)|(K)

is a block diagonal map induced by the following identification in L(E)0: A
matrix unit in a factor M|P (n,v)|(K), where v ∈ E0 \S(E), is a monomial of the
form γν∗, where γ and ν are paths of length n with r(γ) = r(ν) = v. Since v
is not a sink, we can enlarge the paths γ and ν using the edges that v emits,
obtaining paths of length n+ 1, and relation (5) in the definition of L(E) gives
γν∗ =

∑
{e∈E1|s(e)=v}(γxe)(yeν

∗).
It follows that L(E)0 is an ultramatricial K-algebra, and the proof is com-

plete.

4.2.3 Graded ideals

We will apply Theorem 4.2.2 to deal with two questions about ideals and sim-
plicity, that appeared in previous talks of Abrams and Tomforde.

Graded simplicity

We can characterize graded simple Leavitt path algebras. We denote by E∞

the set of infinite paths γ = (γn)∞n=1 of the graph E and by E≤∞ the set E∞

together with the set of finite paths in E whose end vertex is a sink. We say
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that a vertex v in a graph E is cofinal if for every γ ∈ E≤∞ there is a vertex w
in the path γ such that v ≥ w (see [88]). We say that a graph E is cofinal if so
are all the vertices of E.

Observe that if a graph E has cycles, then E cofinal implies that every vertex
connects to a cycle (in fact to any cycle).

Lemma 4.2.3. If E is cofinal, and v ∈ E0 is a sink, then:

1. The only sink of E is v.

2. For every w ∈ E0, v ∈ T (w).

3. E contains no infinite paths. In particular, E is acyclic.

Proof.

1. It is obvious from the definition.

2. Since T (v) = {v}, the result follows from the definition of T (v) by consid-
ering the path γ = v ∈ E≤∞.

3. If α ∈ E∞, then there exists w ∈ α0 such that v ≥ w, which is impossible.
Thus, in particular, E contains no closed simple paths, and therefore no
cycles.

The next result is known in the case of graphs without sinks. Since we have
no knowledge of the existence of a (published) version of the result in the general
case, we give a proof for the sake of completeness.

Lemma 4.2.4. A graph E is cofinal if and only if H = {∅, E0}.

Proof. Suppose E to be cofinal. Let H ∈ H with ∅ 6= H 6= E0. Fix v ∈ E0 \H
and build a path γ ∈ E≤∞ such that γ0 ∩H = ∅: If v is a sink, take γ = v. If
not, then s−1(v) 6= ∅ and r(s−1(v)) * H; otherwise, H saturated implies v ∈ H,
which is impossible. Hence, there exists e1 ∈ s−1(v) such that r(e1) /∈ H. Let
γ1 = e1 and repeat this process with r(e1) 6∈ H. By recurrence either we reach a
sink or we have an infinite path γ whose vertices are not in H, as desired. Now
consider w ∈ H. By the hypothesis, there exists z ∈ γ such that w ≥ z, and by
hereditariness of H we get z ∈ H, contradicting the definition of γ.

Conversely, suppose that H = {∅, E0}. Take v ∈ E0 and γ ∈ E≤∞, with
v 6∈ γ0 (the case v ∈ γ0 is obvious). By hypothesis the hereditary saturated
subset generated by v is E0, i.e., E0 =

⋃
n≥0 Λn(v). Consider m, the minimum

n such that Λn(v) ∩ γ0 6= ∅, and let w ∈ Λm(v) ∩ γ0. If m > 0, then by
minimality of m it must be s−1(w) 6= ∅ and r(s−1(w)) ⊆ Λm−1(v). The first
condition implies that w is not a sink and since γ = (γn) ∈ E≤∞, there exists



4. Enrique Pardo 161

i ≥ 1 such that s(γi) = w and r(γi) = w′ ∈ γ0, the latter meaning that
w′ ∈ r(s−1(w)) ⊆ Λm−1(v), contradicting the minimality of m. Therefore m = 0
and then w ∈ Λ0(v) = T (v), as we needed.

Thus, first condition fixed in Abrams’ talk to characterize simplicity is equiva-
lent to the graph being cofinal, or equivalently, to the algebra L(E) being graded
simple. In terms of Proposition 4.2.1, Abrams’ first condition fix that the monoid
V (L(E)) is simple (i.e. it has no nontrivial order ideals), so that second condi-
tion fixed in Abrams’ talk (known as Condition (L)) is the essential ingredient
to guarantee simplicity. The classical example of the Leavitt path algebra L(C1),
where C1 is the graph with only one edge and one vertex, shows that graded
simplicity does not imply simplicity, and second condition fixed in Abrams’ talk
is then essential.

Gauge-invariant versus graded ideals

As seen in Tomforde’s talk, hereditary and saturated subsets of E0 are lattice
isomorphic to gauge-invariant ideals of C∗(E). Even if the lattice theoretic char-
acterization is analog, there is an essential difference between graded ideal and
gauge-invariant ideal. Here, the key point turns out to be the cardinality of basis
field K. For, we will look at the unpublished notes of Abrams and the speaker
[7].
Definition 4.2.5. Let K be a field, and let A be a Z-graded algebra over K.
For t ∈ K and a any homogeneous element of A of degree d, set τt(a) = tda,
and extend τt to all of A by linearity. It is easy to show that τt is an algebra
automorphism of A. Then τ : K∗ → AutK(A) is an action of K on A, which we
call the standard action of K on A.

If I is an ideal of A, we say that I is τ -invariant in case τt(I) = I for each
t ∈ K∗. (This is equivalent to requiring that τt(I) ⊆ I for every t ∈ K∗, since
τt−1(I) ⊆ I gives I ⊆ τt(I).)

Notice that we cannot look at norm 1 elements in the basis field (since it
need not have norm). And conversely, to define the action on C∗-algebras, we
need to fix the restriction of the action to norm 1 elements in C, as otherwise the
norm-completeness of the algebra will produce unbounded operator on the left
regular representation (which is impossible). Next result states the relationship
between graded and “gauge-invariant” ideals of L(E).

Proposition 4.2.6. Let K be a field, let A be a Z-graded K-algebra, and let I
be an ideal of A. Let τ : K∗ → AutK(A) be the standard action of K on A.

1. If I is generated as an ideal of A by elements of degree 0, then I is τ -
invariant.

2. If K is infinite, and if I is τ -invariant, then I is graded.
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In fact, in case of K = C, the argument used to prove part (2) in the above
Proposition works correctly when restricted to T ⊂ C, so that, for any complex
Z-graded dense ∗-subalgebra A of a C∗-algebra A, and for the standard gauge
action of T by multiplication, graded and gauge-invariant for two-sided ideals of
A is the same property. It is natural to hope we will get the same result with A.

We now apply Proposition 4.2.6 in the context of Leavitt path algebras. For
clarity, we note here the definition of the standard action of K∗ on the Leavitt
path algebra L(E) of the row-finite graph E.
Definition 4.2.7. Let E be a row-finite graph, and let K be a field. Then the
standard action τ of K on the Leavitt path algebra L(E) (denoted sometimes
by τE for clarity) is given by

τE : K∗ → AutK(L(E))
t 7→ τEt

as follows: for every t ∈ K∗, for every v ∈ E0, and for every e ∈ E1

τEt : L(E) → L(E)
v 7→ v
e 7→ t · e
e∗ 7→ t−1 · e∗

Proposition 4.2.8. Let E be a row-finite graph, let K be an infinite field, and
let I � L(E) be an ideal. Then, I ∈ Lgr(L(E)) if and only if I is τE-invariant.

Proof. If I ∈ Lgr(L(E)), then I = I(H) for some H ∈ HE by Theorem 4.2.2. Thus
I is generated by elements of degree zero, and so Proposition 4.2.6(1) applies.
The converse follows immediately from Proposition 4.2.6(2).

Notice that, to deduce the graph C∗-algebra result from Proposition 4.2.8,
using the standard gauge action on C∗(E), we need to guarantee somehow that
any gauge-invariant ideal of C∗(E) is the norm completion of a τE-invariant ideal
of LC(E) without using the C∗-algebra G.I.U.T., and then apply Theorem
4.2.2. So, they are essentially independent results. Also, as we will see in the
next result, this characterization strongly depends on the non-finiteness of K,
so that τE-invariance is not a good substitute of gauge invariance.

Proposition 4.2.9. For any finite field K there exists a graph E such that the
Leavitt path algebra A = L(E) contains a non-graded ideal which is τE-invariant.

Proof. If card(K) = m+ 1, then tm = 1 for all t ∈ K∗. Let E = C1 = ({v}, {e})
with s(e) = r(e) = v. In particular we have τt(1 + xm) = 1 + xm for all t ∈ K∗.
This then yields that the ideal I =< 1 + xm > of L(E) is τ -invariant. But it is
well known that I is not graded.
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4.2.4 Isomorphisms and Morita equivalence in graded con-
structions

We will end this talk by fixing that graded quotients of Leavitt path algebras
are isomorphic to Leavitt path algebras, and that graded ideals of Leavitt path
algebras are Morita equivalent to Leavitt path algebras.

Let E be a graph. For any subset H of E0, we will denote by I(H) the ideal
of L(E) generated by H.

Lemma 4.2.10. If H is a subset of E0, then I(H) = I(H), and H = I(H)∩E0.

Proof. Take G = I(H) ∩ E0. By [3, Lemma 3.9], G ∈ H. Thus, by minimality,
we get H ⊆ H ⊆ G, whence I(H) ⊆ I(H) ⊆ I(G). Since G ⊆ I(H), we have
I(G) ⊆ I(H), so we get the desired equality. The second statement holds by
Proposition 4.2.1 and Theorem 4.2.2, as desired.

Remark 4.2.11. An ideal J of L(E) is graded if and only if it is generated by
idempotents; in fact, J = I(H), where H = J ∩ E0 ∈ HE . (See the proofs of
Proposition 4.2.1 and Theorem 4.2.2.)

For a graph E and a hereditary subset H of E0, we denote by E/H the
quotient graph

(E0 \H, {e ∈ E1 | r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1),

and by EH the restriction graph

(H, {e ∈ E1 | s(e) ∈ H}, r|(EH)1 , s|(EH)1).

Thus both E/H and EH are simply the full subgraphs of E0 generated by E0\H
and H respectively. Observe that while L(EH) can be seen as a subalgebra of
L(E), the same cannot be said about L(E/H).

Lemma 4.2.12. Let E be a graph and consider a proper H ∈ HE. Define
Ψ : L(E) → L(E/H) by setting Ψ(v) = χ(E/H)0(v)v, Ψ(e) = χ(E/H)1(e)e and
Ψ(e∗) = χ((E/H)1)∗(e∗)e∗ for every vertex v and every edge e, where χ(E/H)0 :
E0 → K and χ(E/H)1 : E1 → K denote the characteristic functions. Then:

1. The map Ψ extends to a K-algebra epimorphism of Z-graded algebras with
Ker(Ψ) = I(H) and therefore L(E)/I(H) ∼= L(E/H).

2. If X is hereditary in E, then Ψ(X) ∩ (E/H)0 is hereditary in E/H.

3. For X ⊇ H, X ∈ HE if and only if Ψ(X) ∩ (E/H)0 ∈ H(E/H).

4. For every X ⊇ H, Ψ(X) ∩ (E/H)0 = Ψ(X) ∩ (E/H)0.
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Proof. (1) It was shown in [3, Proof of Theorem 3.11] that Ψ extends to a K-
algebra morphism. By definition, Ψ is Z-graded and onto. Moreover, I(H) ⊆
Ker(Ψ).

Since Ψ is a graded morphism, Ker(Ψ) ∈ Lgr(L(E)). By Theorem 4.2.2, there
exists X ∈ HE such that Ker(Ψ) = I(X). By Lemma 4.2.10, H = I(H) ∩ E0 ⊆
I(X) ∩ E0 = X. Hence, I(H) 6= Ker(Ψ) if and only if there exists v ∈ X \ H.
But then Ψ(v) = v 6= 0 and v ∈ Ker(Ψ), which is impossible.

(2) It is clear by the definition of Ψ.
(3) Since Ψ is a graded epimorphism, there is a bijection between graded

ideals of L(E/H) and graded ideals of L(E) containing I(H). Thus, the result
holds by Theorem 4.2.2.

(4) It is immediate by part (3).

This result is truly interesting, because proving Ker(Ψ) = I(H) is an ele-
mentary consequence of the fact that Ψ is a Z-graded morphism, and no
Gauge-Invariant Uniqueness Theorem is needed (as it is the case for graph C∗-
algebra case). Singularly, each time we needed use the algebraic G.I.U.T. (pre-
sented above) to guarantee injectivity of an algebra map, we found different,
direct ways of avoid G.I.U.T. and the restriction about cardinality of K.

Now, we turn our attention to L(EH). Recall that a ring R is said to be an
idempotent ring if R = R2. For an idempotent ring R we denote by R−Mod
the full subcategory of the category of all left R-modules whose objects are the
“unital” nondegenerate modules. Here a left R-module M is said to be unital if
M = RM, and M is said to be nondegenerate if, for m ∈ M , Rm = 0 implies
m = 0. Note that if R has an identity then R−Mod is the usual category of left
R−modules.

We will use the well-known definition of a Morita context in the case where
the rings R and S do not necessarily have an identity. Let R and S be idem-
potent rings. We say that (R,S,M,N,ϕ, ψ) is a (surjective) Morita context if
RMS and SNR are unital bimodules and ϕ : N⊗RM → S, ψ : M⊗SN → R are
surjective S-bimodule and R-bimodule maps, respectively, satisfying the com-
patibility relations: ϕ(n ⊗m)n′ = nψ(m ⊗ n′), m′ϕ(n ⊗m) = ψ(m′ ⊗ n)m for
every m,m′ ∈M, n, n′ ∈ N.

In [66] (see Proposition 2.5 and Theorem 2.7) it is proved that if R and S
are two idempotent rings, then R−Mod and S−Mod are equivalent categories if
and only if there exists a (surjective) Morita context (R,S,M,N,ϕ, ψ). In this
case, we will say that the rings R and S are Morita equivalent and we will refer
to as the (surjective) Morita context (R,S,M,N).

Lemma 4.2.13. Let E be a graph and H ⊆ E0 a proper hereditary subset. Then
L(EH) is Morita equivalent to I(H).

Proof. Define Λ as N if H is an infinite set or as {1, . . . , ]H} otherwise. Let H =
{vi | i ∈ Λ}, and consider the ascending family of idempotents en =

∑n
i=1 vi,
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(n ∈ Λ). By [3, Lemma 1.6], {en | n ∈ Λ} is a set of local units for L(EH),
so that L(EH) =

⋃
i∈Λ eiL(E)ei. Since I(H) is generated by the idempotents

vi ∈ H, it is an idempotent ring. Moreover, I(H) =
⋃
i∈Λ L(E)eiL(E). It is not

difficult to see that

(
∑
i∈Λ

eiL(E)ei,
∑
i∈Λ

L(E)eiL(E),
∑
i∈Λ

L(E)ei,
∑
i∈Λ

eiL(E))

is a (surjective) Morita context for the idempotent rings L(EH) =∑
i∈Λ eiL(E)ei and I(H) =

∑
i∈Λ L(E)eiL(E), hence I(H) is Morita equiva-

lent to L(EH).

Under certain conditions we will see in the last talk that I(H) is not only
Morita equivalent to a Leavitt path algebra, but in fact it is isomorphic to a
Leavitt path algebra.

4.3 Characterization of exchange Leavitt path
algebras

Abstract. We recall the notion of exchange ring, and its relationship with rank
properties in the case of C*-algebras. We look at two properties linked to the
existence of exits for loops of E (the so-called conditions (L) and (K)), and
characterize the second one in terms of the relationship between L(L(E)) and
Lgr(L(E)). A characterization of when a Leavitt path algebra is an exchange
ring is given in terms of Condition (K). We analyze similarities and differences
with the case of graph C*-algebras. The contents of this lecture can be found in
[28].

Introduction

Exchange rings constitutes a wide class of rings, containing von Neumann reg-
ular rings and C∗-algebras of real rank zero [20] among others. This class is
characterized not only for having a large supply of idempotents, but also be-
cause behavior of idempotents strongly fix the properties enjoyed by the ring.
This class has been then largely studied using K-theoretical tools.

In the case of graph C∗-algebras, Jeong and Park [74] showed that
RR(C∗(E)) = 0 if and only if E satisfies a certain condition on loops (the
so-called Condition (K)). As a consequence, all simple graph C∗-algebras have
real rank zero, and thus they can only be AF or purely infinite simple.

In this talk, we will explain how this result extends to Leavitt path algebras.
We will fix the differences with the C∗-algebra case, and we will notice that the
characterization can not only fixed in terms of properties of the graph, but also in
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terms of how far are two-sided ideal to be graded; an analog result for graph C∗-
algebras –in terms of gauge-invariant ideals– is known (as noticed in Tomforde’s
talks). Finally, we will notice that both results are essentially independent, even
if they are analogous.

4.3.1 Conditions (L) and (K)

We begin this section by recalling two well-known notions which will play a
central role in this talk. The name of Condition (L) was given in [87], while
Condition (K) was formulated in [88]. Notice that Condition (L) was the key
point to guarantee simplicity from graded simplicity, as noticed in Abrams’ talk.

1. A graph E satisfies Condition (L) if every closed simple path has an exit,
equivalently [3, Lemma 2.5], if every cycle has an exit.

2. A graph E satisfies Condition (K) if for each vertex v on a closed simple
path there exists at least two distinct closed simple paths α, β based at v.

Remark 4.3.1.

1. Notice that if E satisfies Condition (K) then it satisfies Condition (L).

2. According to [4, Lemma 7], if L(E) is simple then it satisfies Condition
(K).

A clear situation where a graph enjoys Condition (K) is acyclicity. Recall
that a matricial algebra is a finite direct product of full matrix algebras over
K, while a locally matricial algebra is a direct limit of matricial algebras (when
the connecting maps are unital, then the algebra is called ultramatricial). The
following result can be obtained by slightly modifying that of [87, Corollary 2.3].

Lemma 4.3.2. If E is a finite acyclic graph, then L(E) is a K-matricial algebra.

Corollary 4.3.3. If E is an acyclic graph, then L(E) is a locally matricial
K-algebra.

Proof. By [23, Lemma 2.2], L(E) ∼= lim−→L(Xn), where Xn is a finite subgraph of
E for all n ≥ 1. Hence, Xn is a finite acyclic graph for every n ≥ 1, whence the
result holds by Lemma 4.3.2.

It is not difficult to see that if E satisfies Condition (L) then so does EH ,
whereas E/H need not. Condition (K) has a better behavior as is shown in the
following result, which will play a key role to show Theorem 4.3.8.

Lemma 4.3.4. Let E be a graph and H a hereditary subset of E0. If E satisfies
Condition (K), so do EH and E/H.
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Proof. We will see CSPE(v) = CSPEH (v) and CSPE(w) = CSPE/H(w) for
every v ∈ H and w ∈ E0 \ H. Clearly, CSPEH (v) ⊆ CSPE(v); conversely,
let α ∈ CSPE(v), and suppose α = (α1, . . . , αn). Since H is hereditary and
s(α1) = v ∈ H, we get r(α1) = s(α2) ∈ H. Thus, by recurrence, α ∈ CSPEH (v)
and the result holds.

Now, let v ∈ E0 \ H and consider α = (α1, . . . , αn) ∈ CSPE(v). Since
r(αn) = v 6∈ H we get αn ∈ (E/H)1. If αn−1 /∈ (E/H)1 then r(αn−1) = s(αn) ∈
H and H hereditary implies v = r(αn) ∈ H, a contradiction. By recurrence,
α ∈ CSPE/H(v); since the converse is immediate, the result follows.

For a graded algebra A, denote by L(A) and Lgr(A) the lattices of ideals and
graded ideals, respectively, of A. The following result provides a description of
the ideals of L(E) for E a graph satisfying Condition (K).

Proposition 4.3.5. If a graph E satisfies Condition (K) then, for every ideal
J of L(E), J = I(H), where H = J ∩E0 is a hereditary saturated subset of E0.
In particular, Lgr(L(E)) = L(L(E)).

Proof. Let J be a nonzero ideal of L(E). By [3, Lemma 3.9] (which can be applied
because E satisfies Condition (L) by Remark 4.3.1 (1)) and [4, Proposition 6],
H = J ∩ E0 6= ∅ is a hereditary saturated subset of E0. Therefore, I(H) is a
graded ideal of L(E) contained in J.

Suppose I(H) 6= J . Then, as seen in second talk,

0 6= J/I(H) � L(E)/I(H) ∼= L(E/H).

Thus, E/H satisfies Condition (L) by Lemma 4.3.4 and Remark 4.3.1 (1). Now,
consider the isomorphism (of K-algebras) Ψ : L(E)/I(H) → L(E/H) given by
Ψ(x+ I(H)) = Ψ(x) (for Ψ the natural epimorphism defined in second talk). By
[4, Proposition 6], ∅ 6= Ψ(J/I(H))∩ (E0 \H) = Ψ(J)∩ (E0 \H), so there exists
v ∈ J ∩ (E0 \ H) with Ψ(v) ∈ Ψ(J). But v ∈ E0 ∩ J = H and, on the other
hand, v = Ψ(v) ∈ E0 \H, which is impossible.

We will see later that the converse also holds, so that exchange Leavitt path
algebras will also be characterized in terms of how far are ideals to be graded.

Next result is interesting because says that Condition (K) is locally finite,
and thus reduces to finite graphs in the category G. will play a major role in
our subsequent arguments, as it allows us to reduce characterization of exchange
property to Leavitt path algebras over finite graphs.

Lemma 4.3.6. If E is a graph satisfying Condition (K) then there exists an
ascending family {Xn}n≥0 of finite subgraphs such that:

1. For every n ≥ 0, Xn satisfies Condition (K).
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2. For every n ≥ 0, the inclusion map Xn ⊆ E is a complete graph homo-
morphism.

3. E =
⋃
n≥0Xn.

Proof. We will construct Xn by recurrence on n. First, we enumerate E0 = {vn |
n ≥ 0}. Then, we define X0 = {v0}. Clearly, X0 satisfies Condition (K) and also
X0 ⊆ E is a complete graph homomorphism.

Now, suppose we have constructed X0, X1, . . . , Xn satisfying (1) and (2).
Consider the graph X̃n+1 with: (a) X̃1

n+1 = X1
n ∪ {e ∈ E1 | s(e) ∈ X0

n}; (b)
X̃0
n+1 = X0

n ∪ {vn+1} ∪ {r(e) | e ∈ X̃1
n+1}. Clearly, X̃n+1 is finite and satisfies

(2). If it also satisfies (1), we define Xn+1 = X̃n+1.
Suppose that X̃n+1 does not satisfy Condition (K). Consider the set of all

cycles based at vertices in X̃n+1, µ1
1, . . . , µ

k
1 ⊆ X̃n+1 such that: (i) µi1 * Xn for

any 1 ≤ i ≤ k; (ii) for every 1 ≤ i ≤ k and some v ∈ µi1, card(CSP eXn+1
(v)) = 1.

Since X̃n+1 ⊆ E and E satisfies Condition (K), there exist closed simple paths
µ1

2, . . . , µ
k
2 ⊆ E such that, for each 1 ≤ i ≤ k, µi1 6= µi2 and µi1 ∩µi2 6= ∅. For each

1 ≤ i ≤ k, let µi2 = (ei1, . . . , e
i
ji

).
We consider the finite subgraph Ỹn+1 of E such that: (a) Ỹ 1

n+1 = X̃1
n+1∪{eil |

1 ≤ i ≤ k, 1 ≤ l ≤ ji}; (b) Ỹ 0
n+1 = X̃0

n+1 ∪ {s(eil), r(eil) | 1 ≤ i ≤ k, 1 ≤ l ≤ ji}.
Clearly, Ỹn+1 satisfies (1).

Now, let Xn+1 be the finite subgraph of E such that: (a) X1
n+1 = Ỹ 1

n+1∪{f ∈
E1 | s(f) ∈ (µi2)

0 for some 1 ≤ i ≤ k}; (b) X0
n+1 = Ỹ 0

n+1 ∪ {r(e) | e ∈ X1
n+1}.

If µ ⊆ Xn+1 is a closed simple path such that µ * Ỹn+1, then either it appears
because one of the e ∈ X1

n+1 \ Ỹ 1
n+1 is a single loop (i.e., a cycle with an edge

only) based at some vertex in one µi2, or s(e) ∈ (µi2)
0 and r(e) connects to a

path that comes back to s(e). In any case, the (potential) new closed simple
paths are based at vertices of µi2 for some i, whence Xn+1 satisfies (1). Also,
since the step from Ỹn+1 to Xn+1 adds all the exits of all the vertices in the
cycles µi2, we conclude that for any vertex v ∈ X0

n+1, v is either a sink, or every
e ∈ E1 with s(e) ∈ X0

n+1 belongs to X1
n+1. Hence, Xn+1 ⊆ E is a complete

graph homomorphism. This completes the recurrence argument.
Finally, since vn ∈ Xn for every n ≥ 0, we conclude that E0 =

⋃
n≥0X

0
n and

by the construction, E1 =
⋃
n≥0X

1
n.

4.3.2 Exchange Leavitt path algebras

A (not necessarily unital) ring R is called an exchange ring (see [10]) if for every
element x ∈ R there exist r, s ∈ R, e2 = e ∈ R such that e = rx = s + x − sx.
If R is unital, this is equivalent to the fact that for any x ∈ R there exists an
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idempotent e ∈ xR such that (1− e) ∈ (1− x)R. Other characterizations of the
exchange property for not necessarily unital rings can be found in [10]. As noticed
in the first talk, C∗-algebras of real rank zero are exactly the C∗-algebras that are
exchange rings [20]. So, our characterization of exchange Leavitt path algebras
must to agree with that of graph C∗-algebras of real rank zero, given in [74].
We will follow a similar strategy to get our result, but we will remark the points
where the path we follows is different from Jeong and Park’s one, essentially
because real rank property uses topological arguments, but also because some
of the properties known for graph are shown the picture of a graph C∗-algebra
as a groupoid algebra (see [88]).

Remark 4.3.7. Since any K-matricial algebra is an exchange ring, then so is any
K-locally matricial algebra (apply [18, Theorem 3.2].)

Now, we will show that if L(E) is an exchange ring, then E satisfies Condition
(K). To prove the first part of this result, we use Lemma 4.3.4, but we cannot
guarantee that I(H) is Morita equivalent to K[x, x−1] –as it is done in case of
C∗-algebras, grace to groupoid picture of C∗(E)–. So, we need to mimic a purely
algebraic, constructive argument of [3] to show that a corner of L(EH) (which
is Morita equivalent to I(H)) is isomorphic to K[x, x−1]. Then, our argument
can follow the lines of [75, Theorem 4.3].

Theorem 4.3.8. Let E be a graph. If L(E) is an exchange ring, then E satisfies
Condition (K).

Proof. We claim that E satisfies Condition (L). Suppose that there exist a vertex
v and a cycle α with s(α) = v such that α has no exits. Denote by H the
hereditary saturated subset of E0 generated by α0. As seen in the second talk,
I(H) is Morita equivalent to L(EH). If M is the graph having only a vertex w
and an edge e such that r(e) = s(e) = w, then L(M) ∼= K[x, x−1] by [3, Example
1.4 (ii)]. Consider the map f : L(M) → L(EH) given by f(w) = v, f(e) = α,
f(e∗) = α∗. It is well defined because the relations in M are consistent with
those in L(EH) (the only nontrivial one being αα∗ = v, which holds due to the
absence of exits for α, as in [3, p. 12]). It is a (nonunital) monomorphism of
K-algebras; clearly, Imf ⊆ vL(EH)v. Now, we prove vL(EH)v ⊆ Imf . To this
end, it is enough to see vpq∗v ∈ Imf for every p = e′1 . . . e

′
r, q = e1 . . . es, with

e′1, . . . , e
′
r, e1, . . . , es ∈ E1

H . Reasoning as in [3, Proof of Theorem 3.11] we get
that vpq∗v has the form: v, vαnv or v(α∗)mv, with m,n ∈ N. Hence our claim
follows.

By [10, Theorem 2.3], the ring I(H) is an exchange ring; moreover, L(EH) is
an exchange ring by Morita equivalence of I(H) and L(EH)) and [18, Theorem
2.3], and the same can be said about the corner vL(EH)v by [18, Corollary 1.5].
But vL(EH)v ∼= L(H) ∼= K[x, x−1] is not an exchange ring, which leads to a
contradiction.
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Now, we will prove that E satisfies Condition (K). Suppose on the con-
trary that there exists a vertex v and α = (α1, . . . , αn) ∈ CSP (v), with
card(CSP (v)) = 1 (in fact, α must be a cycle). Consider A = {e ∈ E1 |
e exit of α}, B = {r(e) | e ∈ A}, and let H be the hereditary saturated
closure of B. With a similar argument to that used in [4, p. 6] we get that
H ∩ α0 = ∅, so that, H is a proper subset of E0. Then, α0 ⊆ (E/H)0 and
{α1, . . . , αn} ⊆ (E/H)1, whence α is a cycle in E/H with no exits.

Since L(E/H) ∼= L(E)/I(H), L(E/H) is an exchange ring [10, Theorem 2.2]
and, by the previous step, E/H satisfies Condition (L), a contradiction.

Recall that an idempotent e in a ring R is called infinite if eR is isomorphic as
a right R-module to a proper direct summand of itself. The ring R is called purely
infinite in case every nonzero right ideal of R contains an infinite idempotent.
In order to prove Proposition 4.3.10 – the converse of Theorem 4.3.8 in the case
of L(L(E)) being finite–, we need two facts. The first one is that purely infinite
simple rings are exchange rings. This result is well-known for C∗-algebras, but
it remained unknown for general rings till Ara’s result [13] in 2004, since C∗-
proofs does not apply to the general ring context –the converse is true–. The
second, also due to Ara [10], is that exchange property is preserved by extensions,
whenever idempotents lift module an exchange ideal (an analog result apply for
C∗-algebras, and is used in [75]). This lifting property is guaranteed by the
following result.

Lemma 4.3.9. If E satisfies Condition (K), then for every ideal I of L(E), the
canonical map

K0(L(E))→ K0(L(E)/I)

is an epimorphism.

Proof. By Condition (K), I = I(H) for the hereditary saturated subset H =
I ∩ E0 of E0. If H = E0 or H = ∅, the result follows trivially. Now, suppose
H is a proper subset of E0. By the structure of graded quotients, we have
L(E)/I(H) ∼= L(E/H). By [23, Lemma 5.6],

V (L(E))/V (I(H)) ∼= V (L(E/H)) ∼= V (L(E)/I(H)).

Since L(E) and L(E/H) have a countable unit, we have that K0(L(E)) =
Grot(V (L(E))) and K0(L(E/H)) = Grot(V (L(E/H))). Hence, the canonical
map K0(L(E))→ K0(L(E)/I(H)) is clearly an epimorphism, as desired.

Using Lemma 4.3.6, we can restrict ourselves to finite graphs satisfying Con-
dition (K) to prove the characterization of exchange property. This reduction is
different from that used in [74] and [75], where they focalize the argument in
(probably infinite) graphs whose lattice of gauge-invariant ideals is finite. No-
tice that our hypotheses imply finiteness of Lgr(L(E)), so that we will prove an
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analog result to [75, Theorem 4.6] –even if it is more general than needed– to
fill the gap.

Here, we follow essentially the argument in [75, Theorem 4.6]. But we simplify
somehow Jeong, Park and Shin’s result, using induction on the length of the chain
of ideals having “gauge-simple” quotients, and having control over how these
chain moves to a chain with analog properties in L(EHn−1). This is guaranteed
by points (2−3) of Lemma 4.2.12 of second talk ([28, Lemma 2.3]), and essentially
should work in the same way when translated to graph C∗-algebras.

Proposition 4.3.10. If E is a graph satisfying Condition (K) and L(L(E)) is
finite, then L(E) is an exchange ring.

Proof. Since L(L(E)) is finite, we can construct an ascending chain of ideals

0 = I0 ⊆ I1 ⊆ · · · ⊆ In = L(E)

such that, for every 0 ≤ i ≤ n − 1, Ii is maximal among the ideals of L(E)
contained in Ii+1. Now, let us prove the result by induction on n.

If n = 1, then L(E) is a simple ring and then E is cofinal by second talk and
[3, Theorem 3.11]. Since E satisfies Condition (K), exactly two possibilities can
occur:

1. E has no closed simple paths, whence it is acyclic and thus, by Corollary
4.3.3, L(E) is a locally matricial algebra, and so an exchange ring by
Remark 4.3.7.

2. E has at least one closed simple path, whence L(E) is a purely infinite
simple ring by cofinality, [3, Theorem 3.11] and [4, Theorem 11]. Thus,
L(E) is an exchange ring by [13, Corollary 1.2].

In any case, L(E) turns out to be an exchange ring.
Now, suppose that the result holds for k < n. By Proposition 4.3.5 and [23,

Theorem 4.3], there exist hereditary saturated sets Hi (1 ≤ i ≤ n) such that:

(i) Ii = I(Hi) for every 0 ≤ i ≤ n; in particular, Hi  Hi+1 for every
0 ≤ i ≤ n− 1.

(ii) For any 0 ≤ i ≤ n− 1, there does not exist an hereditary saturated set T
such that Hi  T  Hi+1.

Consider the restriction graph EHn−1 . By Lemma 4.3.4, EHn−1 satisfies Condi-
tion (K), so that Lgr(L(EHn−1)) = L(L(EHn−1)) by Proposition 4.3.5. If for each
0 ≤ i ≤ n − 1, Ji � L(EHn−1) is the ideal generated by Hi, then the previous
remarks imply that

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jn−1 = L(EHn−1)
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where, for every 0 ≤ i ≤ n−2, Ji is maximal among the ideals of L(E) contained
in Ji+1; otherwise, since Lgr(L(EHn−1)) = L(L(EHn−1)), we would contradict
property (ii) satisfied by the set Hi. Thus, by induction hypothesis, L(EHn−1) is
an exchange ring. Since I(Hn−1) is Morita equivalent to L(EHn−1), I(Hn−1) is an
exchange ideal by [18, Theorem 2.3]. Now, L(E)/I(Hn−1) ∼= L(E/Hn−1). Hence,
E/Hn−1 is a graph satisfying Condition (K) by Lemma 4.3.4, and L(E/Hn−1)
is simple by construction. Following the same dichotomy for E/Hn−1 as in (1)
and (2) above, we get that L(E/Hn−1) is an exchange ring. Then, by using
Lemma 4.3.9 and [10, Theorem 3.5], we conclude that L(E) is an exchange ring,
as desired.

Theorem 4.3.11. For a graph E, the following conditions are equivalent:

1. L(E) is an exchange ring.

2. E/H satisfies Condition (L) for every hereditary saturated subset H of E0.

3. E satisfies Condition (K).

4. Lgr(L(E)) = L(L(E)).

5. EH and E/H satisfy Condition (K) for every hereditary saturated subset
H of E0.

6. EH and E/H satisfy Condition (K) for some hereditary saturated subset
H of E0.

Proof.
(1) ⇒ (2). We have that L(E)/I(H) ∼= L(E/H). Then, by [10, Theorem

2.2], L(E/H) is an exchange ring. Apply Theorem 4.3.8 and Remark 4.3.1 (1)
to obtain (2).

(2)⇒ (3) is just the first paragraph in the proof of Theorem 4.3.8.
(3)⇒ (4) is Proposition 4.3.5.
(4) ⇒ (3). Suppose on the contrary that E does not satisfy Condition (K).

Apply (2) ⇒ (3) to find a hereditary saturated subset H of E0 such that E/H
does not satisfy Condition (L), that is, there exists a cycle p in E/H based at v
without an exit. Now [3, Theorem 3.11, pp. 12, 13] shows that in this situation
we have v 6∈ J := I(v+ p), meaning in particular that the ideal J is not graded.
Now if H 6= ∅, there exists a graded isomorphism Φ : L(E)/I(H) → L(E/H)
so that we can lift Φ−1(J) to an ideal J of L(E), which cannot be graded (a
quotient of graded ideals is again graded). If H = ∅ then clearly J is an ideal of
L(E/H) = L(E) which is not graded. In any case we get a contradiction.

(3)⇒ (1). By Lemma 4.3.6, there exists a family {Xn}n≥0 of finite subgraphs
such that, for every n ≥ 0, Xn satisfies Condition (K), E =

⋃
n≥0Xn and

the natural inclusion maps fn : Xn ↪→ E are complete graph homomorphisms
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(therefore so are the inclusions fn,n+1 : Xn ↪→ Xn+1). By [23, Lemma 2.2], we
have induced maps L(fn,n+1) : L(Xn) → L(Xn+1) and L(fn) : L(Xn) → L(E)
such that L(E) ∼= lim−→(L(Xn), L(fn,n+1)).

Fix n ≥ 0. Since Xn satisfies Condition (K), by Proposition 4.3.5 and [23,
Theorem 4.3], L(L(Xn)) is isomorphic to the lattice of hereditary saturated
subsets of X0

n. Hence, L(L(Xn)) is finite. Thus, L(Xn) is an exchange ring by
Proposition 4.3.10. Since L(E) is a direct limit of exchange rings, it is itself an
exchange ring, as desired.

(3)⇒ (5) is Lemma 4.3.4.
(5)⇒ (6) is a tautology.
(6) ⇒ (1). By (3) ⇒ (1), L(EH) and L(E/H) are exchange rings. Since

L(EH) is Morita equivalent to I(H), then I(H) is an exchange ring because
both are idempotent rings and we may apply [18, Theorem 2.3]. Also, L(E/H) ∼=
L(E)/I(H). Now, L(E)/I(H) and I(H) exchange rings, Lemma 4.3.9 and [10,
Theorem 3.5] imply that L(E) is an exchange ring.

Theorem 4.3.11 corresponds to [74, Theorem 4.1]. Notice that, because of the
argument of first part of Theorem 4.3.8 and the remark before it, condition (3) of
[74, Theorem 4.1] (“No quotients containing corners isomorphic to Mn(C(T))”)
corresponds to condition (2) in our result. The interesting part is that, because
of condition (3), exchange property on Leavitt path algebras is equivalent to
a rigidity property in the lattice of two sided ideals of the algebra. Also, it is
interesting to remark that, as seen in the pathological example of first lecture
(which is a non-exchange ring whose C∗-completion is exchange), we cannot
deduce [74, Theorem 4.1] from our Theorem, and conversely. They are, then,
analog but essentially independent results.

4.4 Stable rank for exchange Leavitt path alge-
bras

Abstract. We recall the notion of stable rank for a ring, and we relate it to that
of topological stable rank for C*-algebras. Then, we look at the procedure used
in [47] to characterize sr(C∗(E)) in terms of intrinsic properties of the graph.
This serves the purpose of pointing out the main differences with the purely
algebraic case. We then fill the gaps for the case of rings, and we obtain an
analogous result that characterizes sr(L(E)) via conditions on the graph E. We
end by analyzing which are the essential differences which force us to work with
exchange rings. The contents of this lecture can be found in [28].
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Introduction

Stable rank for rings is an interesting property, related to computing general
linear groups on unital rings. Also it is related to interesting cancellation pro-
perties of finitely generated projective modules over rings. This is specially true
in case of exchange rings [20], and it is a witness for an affirmative answer to the
Separativity Problem: the values of stable rank for a separative exchange ring
must be 1, 2 or ∞.

In case of graph C∗-algebras, the amazing result is that not only the values of
stable rank are 1, 2 or∞, but also that the occurrence of this values is determined
in terms of intrinsic properties of the graph, so that a Trichotomy is obtained
[47, Theorem 3.4].

In this talk, we will show that the analog result is obtained in the case of
exchange Leavitt path algebras. We will explain here the procedure used in [47]
to characterize sr(C∗(E)) in terms of intrinsic properties of the graph, pointing
out the differences with the purely algebraic case. As we will see, the differ-
ences related with stability condition for rings relies in the fact that structure of
such rings is not completely known. But those related to characterizing Leavitt
path algebras with stable rank 1 are essential and unavoidable; in fact, they fix
the obstruction to easily extend the result to arbitrary Leavitt path algebras
(potentially, stable rank of Leavitt path algebras could attain arbitrary finite
values for stable rank!). So, to avoid them, we are forced to restrict ourselves
to the case of graph satisfying Condition (K). We then fill the gaps for the
case of exchange Leavitt path algebras, and we obtain an analogous result that
characterizes sr(L(E)) via conditions on the graph E.

4.4.1 Basic definitions

Definitions for graphs

Let E be a row-finite graph. We recall the following definitions from [134].
Let E be a graph:

1. For every v ∈ E0, let L(v) = {w ∈ E0 | w ≥ v}. We say that v ∈ E0 is left
infinite if card(L(v)) =∞.

2. A graph trace on E is a function g : E0 → R+ such that, for every v ∈ E0

with s−1(v) 6= ∅, g(v) =
∑

s(e)=v

g(r(e)). Let us denote by T (E) the set

of graph traces on E. The, the norm of g is the (possibly infinite) value
‖g‖ =

∑
v∈E0

g(v). We say that g is bounded if ‖g‖ <∞.

Also, we recall the following definition from [47]. We say that E is a graph with
isolated loops if whenever (a1, . . . , ak) and (b1, . . . , bn) are loops in E such that
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s(ai) = s(bj) for some i, j, then ai = bj (thus, both loops coincide). Essentially,
a graph with isolated loops lives in the antipodes of a graph enjoying Condition
(K) and containing at least one loop. Of course, both properties coincide on
acyclic graphs.

Stable rank for rings

Let S be any unital ring containing an associative ring R as a two-sided ideal.
The following definitions can be found in [136]. A column vector b = (bi)ni=1 is
called R-unimodular if b1 − 1, bi ∈ R for i > 1 and there exist a1 − 1, ai ∈ R
(i > 1) such that

∑n
i=1 aibi = 1. The stable rank of R (denoted by sr(R)) is

the least natural number m for which for any R-unimodular vector b = (bi)m+1
i=1

there exist vi ∈ R such that the vector (bi + vibm+1)mi=1 is R-unimodular. If
such a natural m does not exist we say that the stable rank of R is infinite.
The definition does not depend on the choice of S. Stable rank of R enjoys the
following properties:

1. If R =
∏
λ∈ΛRλ, then sr(R) = maxλ{sr(Rλ)} [136, Lemma 2].

2. For every n ∈ N, sr(Mn(R)) = 1−
⌊
−sr(R)− 1

n

⌋
, where bac denotes the

integral part of a [136, Theorem 3].

3. For any two-sided ideal I of R,

max{sr(I), sr(R/I)} ≤ sr(R) ≤ max{sr(I), sr(R/I) + 1}

[136, Theorem 4].

It is easy to see from [136] that if R = lim−→Rn, then sr(R) ≤ lim inf
n→∞

sr(Rn).

Thus, from this and [136, Corollary to Theorem 3], we get that sr(R) = 1 for
any locally matricial algebra. Also it is well-known (see e.g. [22, Proposition 2.1],
or [93]) that if R is a unital purely infinite simple ring, then sr(R) =∞.

Two facts that are interesting with respect to stable rank of rings are:

1. Stable rank is not a Morita invariant property: for any ring R such that
sr(R) = n > 2, sr(Mn(R)) = 2, but both rings are trivially Morita equiva-
lent.

2. Because of Evans’ Theorem [55], sr(R) = 1 implies that V (R) is a can-
cellative monoid. The converse is not true in general (e.g.: sr(Z) = 2, but
V (Z) = Z+).
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Topological stable rank

We recall the following definition from [114]. Let A be a C∗-algebra, and let
A∼ be its minimal unitization. Then, the topological stable rank of A, denoted
by tsr(A), is the least integer n such that the set of n-tuples in (A∼)n that
generate A as a left ideal is dense in (A∼)n. If such an integer does not exist,
then tsr(A) =∞. Because of [71, Theorem], for any unital C∗-algebra A we have
tsr(A) = sr(A), so that the properties enjoyed by tsr(A) [114] are consequence
of these enjoyed by general rings [136].

It has an special interest the case of stable C∗-algebras. A C∗-algebra A is
stable if and only if A ∼= A⊗K, where K is the C∗-algebra of compact operators
over a separable Hilbert space. Notice that this is equivalent to the fact that
A is isomorphic to the completion of the pre-C∗-algebra M∞(A). Thus, for any
C∗-algebra A, sr(A ⊗ K) = 2 unless sr(A) = 1, in which case sr(A ⊗ K) = 1
[114, Theorem 6.4].

Exchange rings

In the case of exchange rings, stable rank is a cancellative property on equiv-
alence classes of idempotents (equivalently finitely generated projective mod-
ules). Recall (see [20]) that if M is an abelian monoid, and a ∈M , we say that
srM (a) ≤ n if, whenever x, y ∈M with na+ x = a+ y, there exists b ∈M such
that na = a + b and y = x + b. If R is a unital exchange ring, then sr(R) ≤ n
if and only if srV (R)([1]) ≤ n [20, Theorem 3.2]. This means, in particular, that
in the case of exchange rings, sr(R) = 1 if and only if V (R) is a cancellative
monoid.

4.4.2 The Strategy

In this section we will roughly explain the strategy used in [47] to fix the Tri-
chotomy of sr(C∗(E)). Then, we will fix which are the differences we find when
we try to move this schema to L(E). Finally, we will explain why is reasonable
to restrict to the context of exchange Leavitt path algebras.

Graph C∗-algebra case

In the case of graph C∗-algebras, two clear situations rise with respect to the
values of stable rank:

(A) sr(C∗(E)) = 1 if and only if no loop has exits [110, Proposition 5.5].

(B) If there exists a closed ideal J �C∗(E) such that C∗(E)/J is unital purely
infinite simple, then sr(C∗(E)) =∞ [114, 136].



4. Enrique Pardo 177

Then, in order to obtain the desired Trichotomy, we need to show that when
(A) and (B) fails, then sr(C∗(E)) = 2. For, the way used is to reduce the problem
by looking C∗(E) as an extension of an ideal and a quotient lying somehow in
cases (A−B).

Let E be a graph, let

X0 = {v ∈ E0 | ∃e 6= f ∈ E1 with s(e) = s(f) = v, r(e) ≥ v, r(f) ≥ v},

and let X be the hereditary saturated closure of X0. Now, the steps followed
are:

1. If C∗(E) has no unital purely infinite simple quotients, then neither does
I(X).

2. For X as above, E/X is a graph with isolated loops.

3. Given H ∈ HE , there exists a graph HE such that I(H) ∼= C∗(HE)
(as non-unital algebras); then, we can compute sr(I(X)) by looking
sr(C∗(XE)), and then using all the tools about graph C∗-algebras. No-
tice that we cannot use C∗(EX) to compute sr(I(X)), because stable rank
is not a Morita invariant.

4. If C∗(E) has no unital purely infinite simple quotients, and X is as above,
then:

(a) Every vertex lying in a loop of XE is left infinite.
(b) XE has no nonzero bounded graph traces.

Then, by [134, Theorem 3.2], I(X) is stable, and so sr(I(X)) = 2.

5. Through a careful inductive argument, using extension property of stable
rank and case (A), we get sr(C∗(E)) = 2.

Differences in Leavitt path algebra case

Now, let us see item by item what happens in the case of L(E):

(A) The statement “sr(L(E)) = 1 if and only if no loop has exits” is FALSE.
Consider E = C1. Then, L(C1) ∼= K[x, x−1] is an Euclidean Domain, but
not a field, so that sr(L(C1)) = 2. We only can guarantee that sr(L(E)) =
1 when E is an acyclic graph.

(B) If there exists an ideal J �L(E) such that L(E)/J is unital purely infinite
simple, then sr(L(E)) = ∞. But we cannot guarantee (as in C∗-algebra
case) that then J is graded ideal, so that, even if (B) holds, we cannot
characterize this situation in terms of intrinsic properties of the graph, as
done in [47, Proposition 3.1].
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Things can be worst. Assume, as above that E is a graph, let

X0 = {v ∈ E0 | ∃e 6= f ∈ E1 with s(e) = s(f) = v, r(e) ≥ v, r(f) ≥ v},

and let X be the hereditary saturated closure of X0. Then, we are able to proof
the statements

1. If L(E) has no unital purely infinite simple quotients, then neither does
I(X).

(3) Given H ∈ HE , there exists a graph HE such that I(H) ∼= L(HE) (as
non-unital algebras).

only when E satisfies Condition (K). With respect to the next one:

(4) If L(E) has no unital purely infinite simple quotients, and X is as above,
then:

(a) Every vertex lying in a loop of XE is left infinite.

(b) XE has no nonzero bounded graph traces.

it is true, but the consequence “I(X) is stable” is not clear, because stability
for general rings is a not so well-behaved property. It is possible to show, via a
careful argument, that anyway the conclusion “and so sr(I(X)) = 2” remains
true.

Finally

(5) “Through a careful inductive argument, using extension property of stable
rank and case (A), we get that sr(L(E)) = 2”.

fails because of the failure of (A), that block the inductive argument used in
C∗-algebra case. In fact is not clear that, in this case, sr(L(E/X)) could not
attain any finite value.

Why exchange Leavitt path algebras?

In our search of a characterization of stable rank for Leavitt path algebras we
then restrict our attention to the case of exchange Leavitt path algebras, because
its characterization in terms of properties of the graph –Condition (K)– give
us the possibility of restrict algebras of graphs with isolated loops to locally
matricial algebras (with stable rank 1), so that then the extension result needed
to get the general result derives directly from the extension property of stable
rank. Also, its characterization in terms of ideals –L(L(E)) = Lgr(L(E))– allows
us to describe the algebras of infinite stable rank in terms of intrinsic properties
of the graph.
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Moreover, the interest of this class, and the good connection of stable rank
with cancellative properties of idempotents give a real interest to computing
stable rank in this case.

The question about stable rank of I(X), that is the key for linking the whole
schema, will be considered in an separated way (i.e. besides of exchange pro-
perty), because exchange property do not play any role.

4.4.3 Using exchange property

Along this section, we will assume that E is a countable, row-finite graph sat-
isfying Condition (K). The following definitions are particular cases of those
appearing in [47, Definition 1.3]. Let E be a graph, and let ∅ 6= H ∈ HE . Define

FE(H) = {α = (α1, . . . , αn) | αi ∈ E1, s(α1) ∈ E0 \H, r(αi) ∈ E0 \H

for i < n, r(αn) ∈ H}.

Denote by FE(H) another copy of FE(H). For α ∈ FE(H), we write α to denote
a copy of α in FE(H). Then, we define the graph HE = (HE0,HE

1, s′, r′) as
follows:

1. HE
0 = (HE)0 = H ∪ FE(H).

2. HE
1 = (HE)1 = {e ∈ E1 | s(e) ∈ H} ∪ FE(H).

3. For every e ∈ E1 with s(e) ∈ H, s′(e) = s(e) and r′(e) = r(e).

4. For every α ∈ FE(H), s′(α) = α and r′(α) = r(α).

The following consequence is obvious

Lemma 4.4.1. Let E be a graph, and let ∅ 6= H ∈ HE. Then:

1. If EH satisfies Condition (L), then so does HE.

2. If EH satisfies Condition (K), then so does HE.

The class of Leavitt path algebras is closed under quotients. A direct conse-
quence of the next result is that under Condition (L), this class is also closed for
ideals.

Lemma 4.4.2. (c.f. [47, Lemma 1.5]) Let E be a graph, and let ∅ 6= H ∈ HE.
If EH satisfies Condition (L), then I(H) and L(HE) are isomorphic nonunital
rings.
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Proof. As in [47, Lemma 1.5], we define a map

f : L(HE) → I(H)
v 7→ v
α 7→ αα∗

e 7→ e
α 7→ α

for every v ∈ H, for every α ∈ FE(H), for every e ∈ E1 with s(e) ∈ H and for
every α ∈ FE(H). It is tedious but straightforward to check that the images
of the relations in L(HE) satisfy the relations defining L(E). Thus, φ is a well-
defined K-algebra morphism.

Since for any v ∈ H, φ(v) = v, to see that φ is surjective, by [3, Lemma 1.5],
it is enough to show that every finite path α of E with r(α) or s(α) in H is in
the image of φ. The prove is essentially the same as in [47, Lemma 1.5].

Finally, if 0 6= Ker(φ), then Ker(φ) ∩ (HE)0 6= ∅ by [4, Proposition 6] and
Lemma 4.4.1(2), contradicting the definition of φ.

Note that the isomorphism above is not Z-graded because while α has degree
1 in HE for every α ∈ FE(H), φ(α) = α does not necessarily have degree 1. Also
notice that this result imply that sr(I(H)) = sr(L(HE)), so that we can use it
to compute sr(I(H)) into the framework of Leavitt path algebras.

Proposition 4.4.3. Let E be a graph satisfying Condition (K), let

X0 = {v ∈ E0 | ∃e 6= f ∈ E1 with s(e) = s(f) = v, r(e) ≥ v, r(f) ≥ v},

and let X be the hereditary saturated closure of X0. If L(E) has no unital purely
infinite simple quotients, then neither does I(X).

Proof. We will suppose that X0 6= ∅, because otherwise there is nothing to prove.
Case 1. We will begin by proving that if L(E) has no unital purely infinite

simple quotients, then I(X) cannot be a unital purely infinite simple ring. Sup-
pose that this statement is false. By Lemma 4.4.2, I(X) ∼= L(XE), thus, since
I(X) is unital, XE is a finite graph; in particular, both X and FE(X) are finite,
and so are

X1 = {v ∈ E0 | v = s(αi) for some α = (α1, . . . , αn) ∈ FE(X)}

and Y = X ∪X1.
Then, we prove that K = E0 \ Y belongs to HE by an tedious, elementary

argument. Now, take L(E/K), which is isomorphic to L(E)/I(K), and note that
(E/K)0 = Y is finite and therefore L(E/K) is a unital ring.

Now, since X is finite, L(EX) is unital. As L(EX) is Morita equivalent to the
unital purely infinite simple ring I(X), L(EX) is purely infinite simple. By [4,
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Proposition 10], EX is cofinal, satisfies Condition (L), and every vertex in E0
X

connects to a cycle. Then, so does E/K by construction. By [4, Theorem 11],
L(E/K) is a unital purely infinite simple ring, a contradiction.

Case 2. I(X) has no unital purely infinite simple quotients. Suppose that
I(X)/J is a unital purely infinite simple ring for some ideal J of I(X). Since
XE satisfies Condition (K), there exists H ∈ HE such that H ⊆ X and J =
I(H). Thus, L(E)/I(H) ∼= L(E/H), whence E/H satisfies Condition (K). This
isomorphism shows that L(E/H) has no unital purely infinite simple quotients
because neither does L(E). If Ψ is the isomorphism, and Z0 = Ψ(X0), then
Z = Z0 = Ψ(X), and in particular I(Z) = Ψ(I(X)). Thus, by case 1, applied to
E/H,Z0 and Z, we get a contradiction.

4.4.4 Stable rank for quasi stable rings

Recall that a ring R is said to be stable if R ∼= M∞(R). In this section, we will
compare stability for C∗-algebras and rings, and we will compute the stable rank
of some rings with local units whose behavior is similar to that of stable rings
with local units. It is not known whether the property we consider is equivalent
to stability of the ring.

Stable C∗-algebras

Stable C∗-algebras play a central role in the structure theory of C∗-algebras.
Recall that a C∗-algebra A is stable if and only if A ∼= A ⊗ K, where K is the
C∗-algebra of compact operators over a separable Hilbert space. Our source of
information is [117].

In the particular case of a C∗-algebra A having an increasing countable ap-
proximate unit {pn}n≥1 consisting of projections, the following are equivalent
(see [134, Lemma 3.6], or [117, Theorem 2.2]):

1. A is stable.

2. For every projection p ∈ A, there exists a projection q ∈ A such that p ∼ q
and pq = qp = 0.

3. For all n ≥ 1, there exists m > n such that pn . pm − pn.

Here, p . q means that there exists an idempotent (projection) r such that
[p] + [r] = [q] ∈ V (R). Using this characterization, Tomforde proves that the
following are equivalent for a graph C∗-algebra C∗(E) [134, Theorem 3.2]:

1. C∗(E) is stable.

2. Every vertex in E that is in a loop is left infinite and E has no nonzero
bounded traces.
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Tomforde’s equivalence is the milestone of the schema of computing
sr(C∗(E)), because it is easy to show that, for the above defined hereditary
saturated set X, XE satisfies condition (2) in Tomforde’s result, so that I(X) is
stable, and thus sr(I(X)) = 2.

To show [134, Theorem 3.2], the key points are (3)⇒ (1) in first result, and
Blackadar’s [34, Theorem 4.10] showing that (simple) AF algebras are stable if
and only if it admits no-bounded nonzero traces.

General stable rings

Even in the case of rings with local units, for example, Leavitt path algebras,
it is not clear that equivalent characterization of stability for C∗-algebras given
above hold; the only nontrivial case we know where the equivalence holds is
that of purely infinite simple rings with local units [67]. Also Blackadar’s result
remains unknown for locally matricial algebras. So, Tomforde’s argument need
to be arranged to apply for computing stable rank of Leavitt path algebras.

It is easy show that for an stable ring R being semiprime with local unit,
(1)⇒ (3) holds, so that the following property is satisfied:

(∗) There exists an ascending local unit {pn}n≥1 consisting on
idempotents such that, for every n ≥ 1 there exists m > n such that
pn . pm − pn.

But it is not clear that (3) ⇒ (1) holds. Also, it is not clear that the stable
rank of any stable ring R is bounded above by 2. Nevertheless, (∗) property
suffices to guarantee sr(R) ≤ 2 in general rings, and to cover the essential
direction of Tomforde’s result [134, Theorem 3.2] to compute stable rank of
the ideal I(X). So, we will concentrate in showing these two facts under the
occurrence of (∗).

We will say that a non-unital ring R is quasi stable if it satisfies (∗) above.

Lemma 4.4.4. If R is a quasi stable ring, then sr(R) ≤ 2.

Proof. Fix S a unital ring containing R as two-sided ideal. Let
a1, a2, a3, b1, b2, b3 ∈ S such that a1−1, a2, a3, b1−1, b2, b3 ∈ R, while a1b1+a2b2+
a3b3 = 1. By hypothesis, there exists n ∈ N such that a1−1, a2, a3, b1−1, b2, b3 ∈
pnRpn. Let m > n such that pn . pm − pn. Then, there exists qn ∼ pn,
qn ≤ pm − pn. In particular, qnpn = pnqn = 0. Now, there exist u ∈ pnRqn,
v ∈ qnRpn such that uv = pn, vu = qn, u = pnu = uqn and v = qnv = vpn.

Fix v1 = 0, v2 = u, c1 = b1, and c2 = b2+vb3. Notice that (a1+a3v1)−1, c1−
1, (a2 + a3v2), c2 ∈ R. Also, a3uvb3 = a3pnb3 = a3b3, a3ub2 = a3uqnpnb2 = 0,
and a2vb3 = a2pnqnvb3 = 0. Hence,

(a1 + a3v1)c1 + (a2 + a3v2)c2 = a1b1 + a2b2 + a3b3 = 1.
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Thus, any unimodular 3-row is reducible, whence the result holds.

Now, we will show that, if every vertex of E lying on a closed simple path
is left infinite and E has no nonzero bounded graph traces, then sr(L(E)) ≤ 2,
which is the core to prove the Trichotomy result. Since we have not stability as
a tool, we need to use a different approach. This looks like quite similar to that
of [117, Proposition 3.4], but trying to adapt this argument to our context turns
out to be quite long and complicated, so that we use a more direct way. Recall
that a monoid M is cancellative if whenever x+ z = y+ z, for x, y, z ∈M , then
x = y. And M is said to be unperforated in case for all elements x, y ∈ M and
all positive integers n, we have nx ≤ ny implies x ≤ y. A monoid M is conical
if for every x, y ∈M such that x+ y = 0, we have x = 0 = y.

Given an abelian monoid M , and an element x ∈M , we define

S(M,x) = {f : M → [0,∞] | f is a monoid morphism such that f(x) = 1}.

Standard arguments show that, when M is a cancellative monoid, then S(M,x)
is nonempty for every nonzero element x ∈M .

Lemma 4.4.5. Let R be a nonunital ring with ascending local unit {pn}n≥1

such that V (R) is cancellative and unperforated, and let SR = {s : V (R)→ R+ |
s is a morphism of monoids}. If for every s ∈ SR, supn≥1{s([pn])} = ∞, then
R is quasi stable.

Proof. Fix n ∈ N, and consider Sn = S(V (R), 2[pn]). For every t ∈ Sn,
supm≥1 t([pm]) =∞. Otherwise, there exists t ∈ Sn such that supm≥1 t([pm]) =
α ∈ R+. Since {pn}n≥1 is a local unit, we conclude that t(x) < ∞ for every
x ∈ V (R), so that t ∈ SR, contradicting the hypothesis. Thus, the maps
p̂k : Sn → [0,∞], defined by evaluation, satisfy that the (pointwise) supremum
supk≥1 p̂k = ∞. Since Sn is compact, there exists m > n such that 1 < p̂m, i.e.
for every s ∈ Sn, s(2[pn]) < s([pm]).

Now, take t ∈ S(V (R), [pm]). Since pn < pm, 0 ≤ t(2[pn]) = a ≤ 2. If a = 0,
then clearly 0 = t(2[pn]) < t([pm]) = 1. If a 6= 0, then t′(−) := a−1 · t(−) belongs
to Sn, whence 1 = t′(2[pn]) < t′([pm]) by the argument above. So, t(2[pn]) <
t([pm]) = 1. Thus, for every t ∈ S(V (R), [pm]), we have t(2[pn]) < t([pm]) = 1.
By [118, Proposition 3.2], 2pn . pm = pn + (pm − pn). Then, since V (R) is
cancellative, we get pn . pm − pn, as desired.

Thus, quasi stability is linked to the non-existence of bounded morphisms in
SR. In the case of Leavitt path algebras, there is a beautiful link of that situation
with graph traces.

Remark 4.4.6. Let E be a graph, let E0 = {vi | i ≥ 1}, let pn =
n∑
i=1

vi, and let

SE = {s : V (L(E))→ R+ | morphisms of monoids}.
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By [23, Theorem 2.5], any element s ∈ SE induces a graph trace by the rule
gs(v) = s([v]). Moreover, gs is bounded if and only if supn∈N{s([pn])} <∞.

Conversely, by [23, Theorem 2.5] and [23, Lemma 3.3], if g is a graph trace
on E, and v, w ∈ E0 with [v] = [w] ∈ V (L(E)), then g(v) = g(w). So, the rule
sg([v]) = g(v) is well-defined and extends by additivity to an element sg ∈ SE .
Certainly, g is bounded if and only if supn∈N{sg([pn])} < ∞. So, there is an
affine homeomorphism between SE and T (E), which preserves boundness.

Proposition 4.4.7. (c.f. [134, Theorem 3.2]) Let E be a graph. If every vertex
of E lying on a closed simple path is left infinite and E has no nonzero bounded
graph traces, then for every finite set V ⊆ E0 there exists a finite set W ⊆ E0

with V ∩W = ∅ and
∑
v∈V v .

∑
w∈W w.

Proof. The proof of this result corresponds to (d)⇒ (e)⇒ (f) of [134, Theorem
3.2], with suitable adaptation of the arguments except for the Case II in (d)⇒
(e), in which the way to prove the following statement is different: If F ⊆ E0

is a finite set, and n = max{i ∈ N | wi ∈ F}, there exists m > n such that
pn . pm − pn.

Suppose then v 6∈ H. List the vertices of E/H = {wi | i ≥ 1}, in such a
way that w1 = v. Let π : L(E) → L(E)/I(H) be the natural projection map.
For every n ≥ 1, set pn =

∑n
i=1 π(wi). Clearly, {pn}n≥1 is an ascending local

unit for L(E/H). Since every vertex on a closed simple path is left infinite,
no vertex on E/H lies on a closed simple path. Thus, E/H is acyclic, whence
L(E/H) is locally matricial. In particular, V (L(E/H)) is cancellative and un-
perforated. Moreover, since E has no nonzero bounded graph traces, neither
does E/H. Otherwise, by Remark 4.4.6, there exists a monoid morphism s :
V (L(E/H))→ R+ with supn∈N{s([pn])} <∞. Hence, s induces a monoid mor-
phism s◦π : V (L(E))→ R+ such that

∑
v∈E0(s◦π)([v]) =

∑
v∈E0\H s([v]) <∞,

consequently there exists a bounded graph trace on E, contradicting the assump-
tion. By Remark 4.4.6 and Lemma 4.4.5, L(E/H) is quasi stable. Now, the rest
of the argument in [134, Theorem 3.2] apply.

Corollary 4.4.8. Let E be a graph. If every vertex of E lying on a closed
simple path is left infinite and E has no nonzero bounded graph traces, then
sr(L(E)) ≤ 2.

Proof. Let E0 = {vi | i ≥ 1}, and for each n ∈ N consider pn =
n∑
i=1

vi. Then,

{pn}n≥1 is an ascending local unit for L(E). Fix n ≥ 1 and set V = {v1, . . . , vn}.
By Proposition 4.4.7, there exists a finite subset W ⊆ E0 such that V ∩W = ∅
and pn =

∑
v∈V v .

∑
w∈W w. If m is the largest subindex of w ∈ W , notice

that m > n and that
∑
w∈W w ≤ pm − pn. Hence, the result holds because is

quasi stable.



4. Enrique Pardo 185

4.4.5 Stable rank for exchange Leavitt path algebras

In this section, we characterize the stable rank of exchange Leavitt path algebras
in terms of intrinsic properties of the graph. The first result is folklore.

Lemma 4.4.9. Let E be an acyclic graph. Then the stable rank of L(E) is 1.

Proof. If E is finite, then L(E) is a K-matricial algebra, whence sr(L(E)) = 1.
Now suppose that E is infinite. Then, there exists a family {Xn}n≥0 of finite
subgraphs of E such that L(E) ∼= lim−→L(Xn). By the definitions of direct limit
and stable rank,

(∗) sr(L(E)) ≤ lim inf
n→∞

sr(L(Xn)).

If E is acyclic, then so are the Xn’s, whence sr(L(E)) = 1 by the result above
and (∗).

The proof of the following result closely follows that of [47, Lemma 3.2].

Lemma 4.4.10. Let E be a nonacyclic graph satisfying Condition (K). If L(E)
does not have any unital purely infinite simple quotient, then there exists a graded
ideal J�L(E) with sr(J) = 2 such that L(E)/J is a locally matricial K-algebra.

Proof. Let

X0 = {v ∈ E0 | ∃e 6= f ∈ E1 with s(e) = s(f) = v, r(e) ≥ v, r(f) ≥ v},

and let X be the hereditary saturated closure of X0. Consider J = I(X), and
notice that L(E)/J ∼= L(E/X). Moreover, since E satisfies Condition (K), then
so does E/X. If there is a closed simple path α in E/X, then every v ∈ α0

satisfies card(CSPE/X(v)) ≥ 2, therefore, there exists a vertex v0 ∈ α0∩X0 ⊆ X,
contradicting the assumption. So, E/X contains no closed simple paths, whence
it is an acyclic graph, and thus L(E)/J is locally matricial.

Now, J ∼= L(XE). Then, an argument analog to that of [47, Lemma 3.2]
show that every vertex lying in a closed simple path of XE is left infinite, and
that XE has no nonzero bounded graph traces.

Thus, sr(J) = sr(L(XE)) ≤ 2 by Corollary 4.4.8. Since every vertex in X0 is
properly infinite as an idempotent of L(XE), sr(L(XE)) 6= 1, so that sr(J) = 2,
as desired.

Corollary 4.4.11. Let E be a nonacyclic graph satisfying Condition (K). If
L(E) does not have any unital purely infinite simple quotient, then sr(L(E)) = 2.

Proof. Consider J the graded ideal obtained in the previous Lemma. By [136,
Theorem 4],

2 = max{sr(J), sr(L(E)/J)} ≤ sr(L(E)) ≤ max{sr(J), sr(L(E)/J) + 1} = 2.

Then, sr(L(E)) = 2, as desired.
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Under Condition (K) it is possible to show that L(E) has a unital purely
infinite simple quotient if and only if there exists H ∈ HE such that the quotient
graph E/H is nonempty, finite, cofinal and contains no sinks, through arguments
essentially contained in [30]. So, we get the Trichotomy result.

Theorem 4.4.12. Let E be a graph satisfying Condition (K). Then the values
of the stable rank of L(E) are:

1. sr(L(E)) = 1 if E is acyclic.

2. sr(L(E)) = ∞ if there exists H ∈ HE such that the quotient graph E/H
is nonempty, finite, cofinal and contains no sinks.

3. sr(L(E)) = 2 otherwise.

Proof. Statement (1) holds by Lemma 4.4.9, and statement (2) by Vaserstein
arguments [136]. If E is nonacyclic and L(E) has no unital purely infinite simple
quotients, then statement (3) holds by Corollary 4.4.11.

4.4.6 In the meantime...

During the last year, after finished [28], P. Ara and myself worked on the ex-
tension of Theorem 4.4.12 to arbitrary Leavitt path algebras. Finally, in middle
June ’06, we reached in solving the critical point, by showing that, for every
row-finite graph E:

1. Given any H ∈ HE , I(H) ∼= L(HE) as non-unital rings.

2. For X ∈ HE as in Section 4.4.2, if L(E) has no unital purely infinite simple
quotients, then neither does I(X).

3. If L(E)/J is a unital purely infinite simple ring, then J ∈ Lgr(L(E)).

4. If E is a graph with isolated loops, then it has stable rank closed by
extensions, i.e. for any extension

0 −−−−→ I −−−−→ L(E) −−−−→ L(E)/I −−−−→ 0,

if sr(I) ≤ sr(L(E)/I) = n, then sr(L(E)) = n.

Thus, we conclude that Theorem 4.4.12 holds for arbitrary row-finite graphs, i.e.

Theorem 4.4.13. Let E be a row-finite graph. Then the values of the stable
rank of L(E) are:

1. sr(L(E)) = 1 if E is acyclic.
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2. sr(L(E)) = ∞ if there exists H ∈ HE such that the quotient graph E/H
is nonempty, finite, cofinal and contains no sinks.

3. sr(L(E)) = 2 otherwise.

Notice that this result essentially differs from that of graph C∗-algebras, as a
graph E whose loops have no exist give us sr(L(E)) = 2, while sr(C∗(E)) = 1.





Chapter 5

The realization problem for
graph algebras and
algebraic K-theory, by Pere
Ara

5.1 Introduction

The separativity problem for exchange rings, von Neumann
regular rings and C∗-algebras of real rank zero. The realiza-
tion problem for von Neumann regular rings

We start by recalling the exchange properties for modules over unital associative
rings. These properties were introduced by Crawley and Jónsson [43] for more
general algebraic structures.

Definition An R-module M has the exchange property if for every R-module
A and any decompositions

A = M ′ ⊕N =
⊕
i∈I

Ai

with M ′ ∼= M , there exist submodules A′i ⊆ Ai such that

A = M ′ ⊕ (
⊕
i∈I

A′i).

189
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It follows from the modular law that A′i must be a direct summand of Ai for
each i. If the above condition is satisfied whenever the index set I is finite, M
is said to satisfy the finite exchange property. Obviously any finitely generated
module with the finite exchange property satisfies the exchange property.

We refer the reader to [58, Chapter 2] for the basic theory of modules with
the exchange property, and its relation with the Krull-Schmidt-Remak-Azumaya
Theorem. We highlight the following important fact:

Theorem 5.1.1. (Crawley and Jónsson, Warfield; see [58, Theorem 2.8].) The
following conditions are equivalent for an indecomposable module MR:

(a) The endomorphism ring of MR is local.
(b) MR has the finite exchange property.
(c) MR has the exchange property.

Following Warfield [137], we say that a ring R is an exchange ring if RR
satisfies the (finite) exchange property. By [137, Corollary 2], this definition is
left-right symmetric.

The following characterization of exchange rings is very useful. It was ob-
tained independently by Goodearl and Nicholson.

Theorem 5.1.2. ([70, p. 67], [97, Theorem 2.1] ) Let R be a unital ring. Then
R is an exchange ring if and only if for every element a ∈ R there exists an
idempotent e ∈ R such that e ∈ aR and 1− e ∈ (1− a)R.

Examples
(1) (Stock) Every π-regular ring is an exchange ring. Recall that a ring R is

said to be π-regular in case for each x ∈ R there is y ∈ R and a positive integer n
such that xn = xnyxn. In particular all von Neumann regular rings are exchange
rings.

(2) Every C∗-algebra of real rank zero. These were introduced by Brown and
Pedersen in 1991 [38]. In fact it was proved in [20, Theorem 7.2] that the C∗-
algebras with real rank zero are exactly the C∗-algebras which are exchange
rings. This important connection opened the way for a transfer of technology
between Ring Theory and Operator Algebras, which has been exploited already
in both directions [21], [104], [103]. For more examples where the characterization
in 1.3 has been successfully applied, see [29] and [98], [24].

Let us denote by FP (R) the class of all finitely generated projective right
modules over a unital ring R, and by V (R) the monoid of isomorphism classes of
modules from FP (R). In general the monoid V (R) is a conical abelian monoid,
where conical means that x+y = 0 implies x = y = 0. It was proved by Bergman
[32] and Bergman and Dicks [33] that every conical monoid can be realized as
V (R) for some ring R, even more one can take R to be a hereditary ring.
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Now if R is an exchange ring there is an additional condition that V (R) must
satisfy. It follows easily from the module theoretic characterization that V (R)
must be a refinement monoid.

Definition Let M be an abelian monoid. Then M is a refinement monoid in
case whenever a+ b = c+ d in M there exist x, y, z, t ∈M such that a = x+ y,
b = z + t, c = x+ z and d = y + t.

Now a natural question in view of Bergman and Dicks results is:

R1. Realization Problem for Exchange Rings Is every refinement con-
ical abelian monoid realizable by an exchange ring?

We can ask also the same question for particular classes of exchange rings.
Most important for us is the following:

R2. Realization Problem for von Neumann Regular Rings Is every
refinement conical abelian monoid realizable by a von Neumann regular ring?

A related problem was posed by K.R. Goodearl in [69]:

FUNDAMENTAL OPEN PROBLEM Which abelian monoids arise as
V (R)’s for a von Neumann regular ring R?

The striking result here is that Question R2 has a negative answer! Fred
Wehrung [140] proved that there are (even cancellative) refinement cones of size
ℵ2 such that cannot be realized as V (R) for any von Neumann regular ring R.

So a reformulation of R2 is in order. The following is still an open problem:

R3. Realization Problem for small von Neumann Regular Rings Is
every countable refinement conical abelian monoid realizable by a von Neumann
regular ring?

It turns out that very few is known about R3. A dimension monoid is a
cancellative, refinement, unperforated cone. These are the positive cones of the
dimension groups [68, Chapter 15]. If M is a countable dimension monoid and
F is any field, then there exists an ultramatricial F -algebra R (=direct limit
of a sequence of finite direct products of matrix algebras over F ) such that
V (R) ∼= M , see [68, Theorem 15.24(b)].

Apart from this there seems to be no systematic constructions realizing large
classes of countable refinement cones, except for:

Theorem 5.1.3. [22, Theorem 8.4]. Let G be a countable abelian group and K
any field. Then there is a purely infinite simple regular K-algebra R such that
K0(R) ∼= G.

Since V (R) = K0(R) t {0} for a purely infinite simple regular ring [22,
Corollary 2.2], we get that all cones of the form Gt{0}, where G is a countable
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abelian group can be realized. Observe that the main point to get that result is
to realize every cyclic group as K0 of a purely infinite simple ring in a sort of
functorial way.

Problems R1, R2 and R3 are related to the separativity problem.
A class C of modules is called separative if for all A,B ∈ C we have

A⊕A ∼= A⊕B ∼= B ⊕B =⇒ A ∼= B.

A ring R is separative if FP (R) is a separative class. Separativity is an old
concept in semigroup theory, see [41]. A semigroup S is called separative if for
all a, b ∈ S we have a + a = a + b = b + b =⇒ a = b. Clearly a ring R is
separative if and only if V (R) is a separative semigroup. Separativity provides
a key to a number of outstanding cancellation problems for finitely generated
projective modules over exchange rings, see [20].

Separativity can be tested in various different ways:

Theorem [20, Section 2] For a ring R the following conditions are equiva-
lent:

(i) R is separative.
(ii) For A,B ∈ FP (R), if 2A ∼= 2B and 3A ∼= 3B, then A ∼= B.
(iii) For A,B ∈ FP (R), if there exists n ∈ N such that nA ∼= nB and

(n+ 1)A ∼= (n+ 1)B, then A ∼= B.
(iv) For A,B,C ∈ FP (R), if A⊕ C ∼= B ⊕ C and C is isomorphic to direct

summands of both mA and nB for some m,n ∈ N, then A ∼= B.
In case R is an exchange ring, separativity is also equivalent to the condition
(v) For A,B,C ∈ FP (R), if A⊕ 2C ∼= B ⊕ 2C, then A⊕ C ∼= B ⊕ C.

Outside the class of exchange rings, separativity can easily fail. In fact it
is easy to see that a commutative ring R is separative if and only if V (R) is
cancellative. Among exchange rings, however, separativity seems to be the rule.
It is not known whether there are non-separative exchange rings. This is one of
the major open problems in this area. See [11] for some classes of exchange rings
which are known to be separative. We single out the problem for von Neumann
regular rings.

SP Is every von Neumann regular ring separative?

We have (R3 has positive answer ) =⇒ (SP has a negative answer ). To
explain why we have to recall results of Bergman and Wehrung concerning ex-
istence of countable non-separative refinement cones.

Proposition ( cf. [139]) Let M be a countable cone. Then there is an order-
embedding of M into a countable refinement cone.

So let us apply the above Proposition to the cone M generated by a with the
only relation 2a = 3a. Then

a+ a = a+ (2a) = (2a) + (2a)
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but a 6= 2a in M . By the above Proposition there exists an order-embedding
M →M ′, where M ′ is a countable refinement cone and M ′ cannot be separative.

Thus if R3 is true we can represent M ′ as V (R) for some von Neumann
regular ring and R will be non-separative.

In these talks we will describe how to realize a large class of refinement cones
by von Neumann regular rings. However all these monoids will be separative.
It is instructive to first look at a particular class of refinement cones which is
especially well-behaved.

Definition 5.1.4. Let M be a monoid. An element p ∈ M is prime if for all
a1, a2 ∈M , p ≤ a1 +a2 implies p ≤ a1 or p ≤ a2. A monoid is primely generated
if each of its elements is a sum of primes.

Proposition 5.1.5. [36, Corollary 6.8] Any finitely generated refinement
monoid is primely generated.

Let E = (E0, E1, r, s) be a column-finite quiver (r(e) and s(e) are the range
vertex and the source vertex of an arrow e ∈ E1, respectively). Then the graph
monoid ME of E is defined as the quotient monoid of F = FE , the free abelian
monoid with basis E0 modulo the congruence generated by the relations

v =
∑

{e∈E1|r(e)=v}

s(e)

for every vertex v ∈ E0 which receives arrows (that is r−1(v) 6= ∅).
It follows from Proposition 5.1.5 that, for a finite quiver E, the monoid ME

is primely generated. Note that this is not always the case for a general column-
finite graph E. An example is provided by the graph:

· · · // p3 // p2 // p1

a

jjVVVVVVVVVVVVVVVVVVVVVV

hhQQQQQQQQQQQQQQQ

aaBBBBBBBB

OO

The corresponding monoid M has generators a, p0, p1, . . . and relations given
by pi = pi+1 + a for all i ≥ 0. One can easily see that the only prime element in
M is a, so that M is not primely generated.

Now we have the following results of Brookfield:

Theorem 5.1.6. [36, Theorem 4.5 and Corollary 5.11(5)] Let M be a primely
generated refinement monoid. Then M is separative and unperforated ((na ≤
nb) =⇒ (a ≤ b) for a, b ∈M).

In fact, primely generated refinement monoids enjoy many other nice pro-
perties, see [36] and also [141].
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It follows from Proposition 5.1.5 and Theorem 5.1.6 that a finitely generated
refinement monoid is separative. In particular all the monoids associated to a
finite quiver are separative. For a column-finite quiver E the result follows by
using that the monoid ME is the direct limit of monoids associated to certain
finite subgraphs of E, see [23, Lemma 2.4].

5.2 Algebras associated to a quiver

The Leavitt path algebra and the von Neumann regular
envelope

The results in this chapter come from a joint paper with Miquel Brustenga [15].
In the following, K will denote a fixed field and E = (E0, E1, r, s) a quiver (finite
oriented graph) with E0 = {1, . . . , d}. Here s(e) is the source vertex of the arrow
e, and r(e) is the range vertex of e. A path in E is either an ordered sequence
of arrows α = e1 · · · en with r(et) = s(et+1) for 1 6 t < n, or a path of length
0 corresponding to a vertex i ∈ E0, which will be denoted by pi. The paths
pi are called trivial paths, and we have r(pi) = s(pi) = i. A non-trivial path
α = e1 · · · en has length n and we define s(α) = s(e1) and r(α) = r(en). We will
denote the length of a path α by |α|, the set of all paths of length n by En, for
n > 1, and the set of all paths by E∗.

Let P (E) be the K-vector space with basis E∗. It is easy to see that P (E)
has an structure of K-algebra, which is called the path algebra. Indeed, P (E) is
the K-algebra given by free generators {pi | i ∈ E0} ∪ E1 and relations:

(i) pipj = δijpi for all i, j ∈ E0.

(ii) ps(e)e = epr(e) = e for all e ∈ E1.

Observe that A = ⊕i∈E0Kpi ⊆ P (E) is a subring isomorphic to Kd. In
general we will identify A ⊆ P(E) with Kd. An element in P (E) can be written
in a unique way as a finite sum

∑
γ∈E∗ λγγ with λγ ∈ K. We will denote by ε

the augmentation homomorphism, which is the ring homomorphism ε : P(E)→
Kd ⊆ P (E) defined by ε(

∑
γ∈E∗ λγγ) =

∑
γ∈E0 λγγ.

Definition 5.2.1. Let I = ker(ε) be the augmentation ideal of P (E). Then the
K-algebra of formal power series over the graph E, denoted by P ((E)), is the
I-adic completion of P(E), that is P ((E)) ∼= lim←−P(E)/In.

The elements of P ((E)) can be written in a unique way as a possibly infi-
nite sum

∑
γ∈E∗ λγγ with λγ ∈ K. We will also denote by ε the augmentation

homomorphism on P ((E)).
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Set R = P(E) or P ((E)). Define, for e ∈ E1, the following additive mappings:

δe : R −→ R∑
α∈E∗

λαα 7−→
∑
α∈E∗

r(α)=s(e)

λαeα

We will write δe on the right of its argument. We will sometimes refer to the
maps δe as the (left) transductions.

For e ∈ E1 we define the following K-algebra endomorphism,

τe : R −→ R
ps(e) 7−→ pr(e)
pr(e) 7−→ ps(e)
pi 7−→ pi i 6= s(e), r(e)
f 7−→ 0 ∀f ∈ E1 .

It is clear that they are K-algebra endomorphisms, since they are defined by the
composition of the augmentation with an automorphism of ε(R) and the inclu-
sion of ε(R) in R. We will write τe on the right of its argument (and compositions
will act accordingly).
Definition 5.2.2. Let R be a ring and τ : R → R a ring endomorphism. A left
τ -derivation is an additive mapping δ : R→ R satisfying

(rs)δ = (rδ) · (sτ) + r · (sδ)
for all r, s ∈ R.

Lemma 5.2.3. For every e ∈ E1, δe is a left τe-derivation.

Proof. Set r =
∑
α∈E∗ λαα and s =

∑
β∈E∗ µββ. Its product is rs =∑

γ∈E∗ νγγ where νγ =
∑
γ=αβ λαµβ . On one hand we have that, if s(e) 6= r(e),

(rδe) · (sτe) =

 ∑
α∈E∗

r(α)=s(e)

λαeα


µr(e)ps(e) + µs(e)pr(e) +

∑
i∈E0

i 6=r(e),s(e)

µipi


=

∑
α∈E∗

r(α)=s(e)

(
λαeµr(e)

)
α

and note that, in case s(e) = r(e), we get indeed the same expression. Also,

r · (sδe) =

(∑
α∈E∗

λαα

) ∑
β∈E∗

r(β)=s(e)

µβeβ

 =
∑
γ∈E∗

r(γ)=s(e)

∑
γ=αβ

λαµβe

 γ.
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On the other hand, we see that

(rs) δe =

∑
γ∈E∗

νγγ

 δe =
∑
γ∈E∗

r(γ)=s(e)

νγeγ =
∑
γ∈E∗

r(γ)=s(e)

 ∑
γe=αβ

λαµβ

 γ

=
∑
γ∈E∗

r(γ)=s(e)

∑
γ=αβ

λαµβe

 γ +
∑
γ∈E∗

r(γ)=s(e)

(λγeµr(e))γ.

Therefore, (rs) δe = (rδe) · (sτe) + r · (sδe).
There is an important subalgebra of P ((E)), namely the algebra of rational

series Prat(E). It is defined as the division closure of P (E) in P ((E)), that is
the smallest subalgebra of P ((E)) containing P(E) and closed under inversion,
that is, for any element a in Prat(E) which is invertible over P ((E)) we have
a−1 ∈ Prat(E). Observe that for any square matrix A over P ((E)), we have

A is invertible over P ((E)) ⇐⇒ ε(A) is invertible over Kd.

By using this, one can see that indeed Prat(E) is rationally closed in P ((E)), that
is, every square matrix over Prat(E) which is invertible over P ((E)) is already
invertible over Prat(E). Indeed, assume that A is invertible over P ((E)). Then
ε(A) is invertible over Kd, and so replacing A with ε(A)−1A we can assume
that ε(A) = 1n. Now this implies that all the diagonal entries of A are invertible
over P ((E)) and so they are invertible over Prat(E), so by performing elementary
transformations to the rows (say) of A we get a diagonal invertible matrix over
Prat(E). It follows that A is invertible over Prat(E).

Let us recall some basic facts about (Cohn) universal localization. Let R be
a ring and let Σ be a set (or even a class) of maps between finitely generated
projective R-modules. A ring homomorphism ϕ : R→ S is Σ-inverting in case

f ⊗ 1: P ⊗R S → Q⊗R S

is invertible for every f : P → Q in Σ. Cohn proved that there exists a universal
Σ-inverting ring homomorphism ιΣ : R → Σ−1R, that is , every Σ-inverting
homomorphism ϕ : R → S factors as R → Σ−1R → S. Bergman and Dicks [33]
proved that if R is a hereditary ring then Σ−1R is also hereditary.

Cohn and Dicks proved that the division closure Krat〈X〉 of K〈X〉 in K〈〈X〉〉
coincides with the universal localization of K〈X〉 with respect to the set Σ of all
square matrices A over K〈X〉 such that ε(A) is invertible over K (or equivalently
A is invertible over K〈〈X〉〉). This can be generalized to path algebras

Theorem 5.2.4. [15] Let Σ be the set of matrices over P(E) which are invertible
over P ((E)). Then Prat(E) coincides with the universal localization of P(E) with
respect to Σ.
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One can see that Prat(E) is closed under all the transductions δe and δ̃e.

Definition 5.2.5. Given a quiver E = (E0, E1, r, s), consider the sets E
0

= E0,
E

1
= {e∗ | e ∈ E1} and the maps r, s : E

1 → E
0

defined via r(e∗) = s(e) and
s(e∗) = r(e). Define the inverse quiver of E as the quiver E = (E

0
, E

1
, r, s).

Notation 5.2.6. Given a path α = e1 · · · en ∈ E∗ denote by α∗ = e∗n · · · e∗1 the
corresponding path in the inverse quiver. Of course, if α ∈ E0, then α∗ = α.

Proposition 5.2.7. Given a (finite) quiver E and a K-subalgebra R of P ((E)),
containing P(E) and closed under all the left transductions δe, there exists a ring
S such that:

(i) There are embeddings

R→ S and P (E)→ S

such that
r · e∗ = e∗ · (rτe) + (rδe)

for all e ∈ E1 and all r ∈ R.

(ii) S is projective as a right R-module. Indeed, S = ⊕γ∈E∗Sγ with Sγ ∼= pr(γ)R
as R-modules.

Every element in S can be uniquely written as
∑
γ∈E∗ γrγ with rγ ∈ pr(γ)R.

Notation 5.2.8. We will denote the ring S of Proposition 5.2.7 by R
〈
E; τ, δ

〉
where τ and δ stand for (τe)e∈E1 and (δe)e∈E1 , respectively.

Let E be a finite quiver. In the following R will denote a K-subalgebra of
P ((E)) containing P(E), closed under all the left transductions δe. Examples
include the path algebra P(E), the power series algebra P ((E)) and the algebra
Prat(E) of rational series.

Let X ⊆ E0 be the set of vertices which are not sources. Given a vertex
i ∈ X, consider the following element:

qi = pi −
∑

e∈r−1(i)

e∗e ∈ R
〈
E; τ, δ

〉
.

Lemma 5.2.9. The elements qi defined above are pairwise orthogonal, nonzero
idempotents and qi 6 pi for all i ∈ X.

Proof. Using the relations ef∗ = δe,fps(e) and the relations in P(E) and P(E)
we have that

q2i = p2
i −

∑
e∈r−1(i)

e∗epi −
∑

e∈r−1(i)

pie
∗e+

 ∑
e∈r−1(i)

e∗e

2

= qi,
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moreover, qipi = piqi = qi so that qi are idempotent elements and qi 6 pi. Since
the pi’s are pairwise orthogonal, it is clear that the qi’s are too orthogonal. It
follows from Proposition 5.2.7(ii) that qi 6= 0 for all i ∈ X.

Notation 5.2.10. We write q =
∑
i∈X qi =

∑
i∈X pi −

∑
e∈E1 e∗e which is, by

the above lemma, an idempotent.

Proposition 5.2.11. Let R be a K-subalgebra of P ((E)) containing P(E),
closed under all the left transductions δe. The ring S = R

〈
E; τ, δ

〉
is a semiprime

ring and SqS is a direct summand of SocS. Moreover, SqS and SocS are both
von Neumann regular ideals of S.

Recall that X stands for the set of vertices of E which are not a source in E.
Every element in SqS can be uniquely written as∑

i∈X

∑
{γ∈E∗|s(γ)=i}

γ∗ · qi · aγ ,

where aγ ∈ piR.
This implies that R ∩ SqS = 0 and P (E) ∩ SqS = 0 so that R and P (E)

embed in S/(SqS). On the other hand if R1 ⊆ R2 are two rings satisfying the
basic hypothesis above for R, then we get that S1 ∩ I2 = I1 using the above
canonical form of the elements in Ii := SiqSi, where Si = Ri〈E; τ, δ〉 and so
there is an inclusion of K-algebras R1/I1 −→ R2/I2.

Let E be a finite quiver. Let R be a K-subalgebra of P ((E)) containing P(E).
Put r−1(i) = {ei1, . . . , eini} and consider the right R-module homomorphisms

µi : piR −→
ni⊕
j=1

ps(eij)R

r 7−→
(
ei1r, . . . , e

i
nir
)
.

Write Σ1 = {µi | i ∈ E0}. Observe that the elements of Σ1 are homomorphisms
between finitely generated projective right R-modules, so that we can consider
the universal localization Σ−1

1 R.

Proposition 5.2.12. Let R be a K-subalgebra of P ((E)) containing P(E) and
closed under the left transductions δe. Set S = R

〈
E; τ, δ

〉
, let I be the ideal of

S generated by q and let Σ1 be as above. Then Σ−1
1 R ∼= S/I.

Theorem 5.2.13. Let E be a finite quiver and let R be a K-subalgebra of P ((E))
containing P(E) and closed under inversion and under all the transductions δe
and δ̃e. Set S = R

〈
E; τ, δ

〉
, I = SocS and T = S/I. Then T and S are von

Neumann regular.
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Examples. We consider the following three basic examples of our construc-
tion:

1. If R = P (E) the usual path algebra, then the ring Σ−1
1 R is the Leavitt path

algebra LK(E) associated with the quiver E (see [3], [4], [23]). The algebra
LK(E) has generators pv, e, e∗ and relations given by the relations in the
path algebras P (E) (for pv, e) and in the path algebra P (E) (for pv, e∗),
and

(1) ef∗ = δe,fps(e).

(2) pv =
∑
e∈r−1(v) e

∗e for every vertex v ∈ X.

2. Take now R = P ((E)), the power series algebra on E. Then we get a von
Neumann regular ring U = Σ−1

1 R, which is a kind of completion of the
Leavitt K-algebra LK(E).

3. Finally consider R = Prat(E) = Σ−1P (E). Then Q = Q(E) = Σ−1
1 R is a

universal localization of P (E) and also of L(E):

Q = (Σ ∪ Σ1)−1P (E) = Σ−1L(E).

Since P (E) is hereditary it follows from a result of Bergman and Dicks
that Q is a hereditary ring.

We have a commutative diagram of K-algebra inclusions:

Kd −−−−→ P(E) −−−−→ Prat(E) −−−−→ P ((E))y ιΣ1

y ιΣ1

y ιΣ1

y
P(E) −−−−→ LK(E) −−−−→ Q(E) −−−−→ U(E)

We are able to solve the realization problem for graph monoids:

Theorem 5.2.14. There is an isomorphism ME
∼= V(Q(E)) ∼= V(U(E)).

We call the algebra Q(E) the regular ring of the quiver E.
Now let us consider the functoriality of the construction. Let f =

(f0, f1) : E → F be a graph homomorphism. Then f is said to be complete if f0

and f1 are injective and f1 restricts to a bijection between r−1
E (v) and r−1

F (f0(v))
for every vertex v ∈ E0 that receives arrows (i.e. for every v ∈ X(E)).

If f : E → F is a complete graph homomorphism between finite quivers E and
F , then f induces a non-unital algebra homomorphism P (E) → P (F ) between
the corresponding path algebras and a non-unital homomorphism L(E)→ L(F )
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between the corresponding Leavitt path algebras. Note that the image of the
identity under these homomorphisms is the idempotent

pE :=
∑
v∈E0

pf0(v) ∈ P (F ).

We get a morphism P (E)→ P (F )→ L(F )→ Q(F ) such that every map in Σ1

becomes invertible over Q(F ).
Observe that we have a commutative diagram

P (E) −−−−→ P (F )

εE

y εF

y
KdE −−−−→ KdF

so a matrix A ∈ Mn(P (E)) such that εE(A) is invertible is sent to a ma-
trix f(A) ∈ Mn(pEP (F )pE) such that εF (f(A)) is invertible over pEKdF pE .
It follows that f can be extended uniquely to an algebra homomorphism
Q(E)→ pEQ(F )pE .

This gives the functoriality property of the regular ring of a quiver. Since
the functor V commutes with direct limits and every column-finite quiver is
a direct limit of finite quivers in the category of quivers with complete graph
homomorphisms (see [23]) we get:

Theorem 5.2.15. Let E be any column-finite quiver. Then there is a (possibly
non-unital) von Neumann regular ring Q(E) such that

V(Q(E)) ∼= ME .

which solves the realization problem for the monoids associated to column-
finite quivers.

5.3 Modules over the Leavitt algebra. Algebraic
K-theory

In this final section I give an introduction to the computation of the algebraic
K-theory of Leavitt path algebras and related rings. There are recent computa-
tions by Ranicki and Sheiham [112] of the algebraic K-theory of the group rings
A[Fµ] and of the universal localization Σ−1A[Fµ] of A[Fµ] with respect to the
class Σ of all the maps between f.g. projective modules that become invertible
under the augmentation, where A is any ring and Fµ is the free group of rank
µ. Curiously enough the modules appearing in these computations are closely
related to certain modules over the Leavitt path algebra, although there is no
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explicit mention to Leavitt algebras in [112]. The aim of this talk is to provide a
brief and non-technical introduction to the subject stressing the relations with
Leavitt algebra.

We will only look at the case where A is a field, denoted by k. We will relate
the theory of Ranicki and Sheiham, that has a strong geometric motivation,
with the theory of Leavitt path algebras associated to the quiver with only one
vertex and µ arrows (the classical Leavitt algebras of type (1, µ − 1)). It seems
reasonable to think that a similar theory can be build over any Leavitt path
algebra associated to a finite quiver.

Let us fix some notation, which differs from the one used in the above chap-
ters, but is more according with the one used in [112]. The basic relations in a
Leavitt algebra will be written

yixj = δi,j ,

µ∑
i=1

xiyi = 1.

Let A be a ring and Fµ be a free group with µ generators z1, . . . , zµ. The
Magnus-Fox embedding is the map A[Fµ] −→ A〈〈X〉〉, defined by sending zi
to 1 + xi. Magnus [92] proved that the map Fµ → Z〈〈X〉〉 is injective. Fox [65]
proved that the map Z[Fµ] −→ Z〈〈X〉〉 is also injective. The known fact that the
embedding holds for a general (non-necessarily commutative) coefficient ring A
has been recently reviewed in [16].

Let k be a field. By using the Magnus-Fox embedding we can see the group
algebra k[Fµ] as a subalgebra of k〈〈X〉〉 containing k〈X〉 and closed under all
the right transductions δi. It is worth to note that these transductions induce
the Fox differential calculus [65] of k[Fµ]:

∂

∂zi
(zj) = δi,j ,

∂

∂zi
(z−1
j ) = −δi,jz−1

i .

It follows from our general constructions that we can build a Leavitt algebra
L(k, µ) associated with the algebra k[Fµ].

We follow the paper by Ranicki and Sheiham [112] defining Blanchfield and
Fµ-link modules.
Definition 5.3.1. 1. A Blanchfield k[Fµ]-module M is a k[Fµ]-module such

that
Tork[Fµ]

∗ (k,M) = 0.

2. Let Bla∞(k) be the category of Blanchfield k[Fµ]-modules, and let Bla(k)
be the full subcategory consisting of the Blanchfield k[Fµ]-modules admit-
ting a resolution of length ≤ 1 by f.g. projective k[Fµ]-modules. Let F lk(k)
be the full subcategory of Λ := k[Fµ]-modules M admitting a presentation

0 −−−−→ Λn A−−−−→ Λn −−−−→ M −−−−→ 0
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where ε(A) is invertible.

Proposition 5.3.2. The following properties are equivalent for a k[Fµ]-module
M :

(1) M is a Blanchfield k[Fµ]-module.
(2) The map

γM : ⊕µM →M, (m1, . . . ,mµ)→
µ∑
i=1

ximi

is an isomorphism, where xi = zi − 1.
(3) M is a L(k, µ)-module.
Moreover there is an identification Bla(k) = F lk(k) = fp(L(k, µ)), where

fp(L(k, µ)) is the category of finitely presented L(k, µ)-modules of finite length.

Proof. (1) ⇐⇒ (2) [112, Proposition 3.7(i)]: Consider the 1-dimensional f.g.
free resolution of kk[Fµ]:

0 −−−−→ ⊕µi=1k[Fµ]
(xi)−−−−→ k[Fµ] −−−−→ k −−−−→ 0

so that for any (left) k[Fµ]-moduleM , Tork[Fµ]
0 (k,M) = k⊗k[Fµ]M = coker(γM ),

Tork[Fµ]
1 (k,M) = ker(γM ) and Tork[Fµ]

n (k,M) = 0 for n ≥ 2.
(2) =⇒ (3): If the map γM is an isomorphism then define an action of k〈Y 〉

on M by
(y1m, . . . , yµm) = γ−1

M (m),

for m ∈M . It is easy to check that this defines a structure of L(k, µ)-module on
M .

(3) =⇒ (2): If M is a L(k, µ)-module, then the inverse of γM is multiplication
on the left by (y1, . . . , yµ)t.

For the rest of the proof see [12, Section 6].
Now we are going to introduce a fundamental construction of Fµ-link mod-

ules, through the notion of the covering construction, similar to the one used by
Ranicki and Sheiham.

Let us denote by S(k) the full subcategory of k〈Y 〉-Mod consisting of left
k〈Y 〉-modules M such that kM is finite-dimensional. (These are the finite-
dimensional representations of k〈Y 〉.)

Observe that a k〈Y 〉-module is nothing else that an k-vector space P together
with µ linear endomorphisms f1, . . . , fµ of P . We will use the notation (P, f)
for such a k〈Y 〉-module. The covering of the k〈Y 〉-module (P, f) is the cokernel
B(P ) of the map

P [Fµ] = k[Fµ]⊗k P
1−xf−−−−→ P [Fµ] = k[Fµ]⊗k P
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defined by

(1− xf)(ξ ⊗ p) = ξ ⊗ p−
µ∑
i=1

ξxi ⊗ fi(p),

for ξ ∈ k[Fµ] and p ∈ P . Since ε(1 − xf) = 1: P → P is invertible, the map
1 − xf : P [Fµ] → P [Fµ] is injective ([123, Lemma 2.8]). It follows that B(P ) is
an Fµ-link module, that is a finitely presented L(k, µ)-module of finite length by
Proposition 5.3.2.

Proposition 5.3.3. There is a natural equivalence of functors

B ∼= L⊗k〈Y 〉 − ,

where L := L(k, µ). The ring L is flat as a right k〈Y 〉-module and so the functor

B : k〈Y 〉 −Mod −→ L−Mod = Bla∞(k)

is an exact functor.

Clearly the functor B defines an exact functor from the abelian category S(k)
to the abelian category F lk(k). A very similar theory works for A〈X〉 instead of
A[Fµ], giving rise to the notion of a Blanchfield k〈X〉-module, etc.

Let Prim(k) be the full subcategory of S(k) consisting of the modules M in
S(k) such that B(M) = 0. Then Prim(k) is a Serre subcategory of S(k), and
we have:

Theorem 5.3.4. F lk(k) ∼= S(k)/Prim(k).

With this we can state the results on algebraic K-theory.

Theorem 5.3.5. [112] Let k be a field. Then

1. K∗(k[Fµ]) = K∗(k)⊕ (
⊕

µK∗−1(k)).

2. Let Σ2 be the set of all matrices over k[Fµ] that are sent to invertible
matrices by ε. Observe that Σ−1

2 k[Fµ] = Σ−1k〈X〉 cf. [16, Corollary 3.7].
We have

K∗(Σ−1
2 k[Fµ]) = K∗(Σ−1k〈X〉) = K∗(k)⊕ S̃∗−1(k),

where S∗(k) := K∗(S(k)) is the K-theory of the abelian category S(k) and
there is an excision S∗(k) = S̃∗(k)⊕K∗(k).
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So for example one gets

K1(k[Fµ]) = k× ⊕ Zµ

and
K1(Σ−1

2 k[Fµ]) = K1(Σ−1k〈X〉) = k× ⊕ S̃0(k).

Since S(k) is a category of objects of finite length, we get that S0(k) is a free
abelian group (of infinite rank). The generators are the isomorphism classes of
simple finite-dimensional representations of k〈Y 〉.

Let Eµ be the graph with just one vertex and µ arrows and Lµ be the cor-
responding Leavitt path algebra (of type (1, µ− 1)). Recall that L(k, µ) denotes
the “Leavitt type” algebra associated with k[Fµ].

Theorem 5.3.6. [14], [12]

1. K1(Lµ) = k×/(k×)µ−1.

2. K1(L(k, µ)) = k×/(k×)µ−1 ⊕ Zµ.

3. K1(Q(Eµ)) = k×/(k×)µ−1 ⊕ S̃0(k).

Now we will provide a nice interpretation of the isomorphism

K1(Σ−1k〈X〉) ∼= k× ⊕ S̃0(k) = K1(k)⊕ S̃0(k)

when S(k) is the abelian category of k〈Y 〉-modules which are finite-dimensional
over k. Recall that S0(k) = K0(S(k)) is a free abelian group with one generator
for each isomorphsim class of simple modules in S(k).

The case µ = 1 is quite familiar. In this case we deal with k[y]-modules (V, f),
where V is a finite-dimensional k-vector space and f is a linear endomorphism.
For such (V, f), consider the canonical resolution of k[y]-modules

0 −−−−→ V [y]
y1V −f−−−−→ V [y] −−−−→ V −−−−→ 0

where the map V [y]→ V is of course defined by sending v0 + v1y + · · ·+ vmy
m

to v0 + f(v1) + · · · + fm(vm). The covering construction is obtained readily by
multiplying the map y1V − f by x = y−1:

0 −−−−→ V [x]
1V −xf−−−−−→ V [x] −−−−→ B(V ) −−−−→ 0

Here we have B(V ) = ∪∞m=0y
−mV = k[y, y−1] ⊗k[y] V . Since V is finite-

dimensional over k, there is a decomposition of V in invariant subspaces
V = V1 ⊕ V2 such that f is nilpotent on V1 and an automorphism on V2. It
follows that B(V ) ∼= V2, and that we have no loss of information exactly when 0
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is not an eigenvalue of f , that is, when f is an invertible endomorphism. Observe
that we have Σ−1k[x] = k[x](x), and since k[x](x) is commutative and local we
have

K1(k[x](x)) ∼= (k[x](x))× = k[x](x) \ (x)k[x](x) = k× ⊕ ε−1(1),

where the isomorphism is given by the determinant. Note also that S̃0(k) consists
of theK0 classes of the pairs (V, f) as above with f invertible, so the isomorphism

K1(Σ−1k〈X〉) ∼= k× ⊕ S̃0(k)

is essentially given by the map S̃0(k) −→ ε−1(1) given by

[P, f ]− [Q, g] 7→ det(1− xf)
det(1− xg)

.

Note that we recover the familiar fact that the characteristic polynomial deter-
mines the structure of the k[y]-module (V, f) up to extensions. A similar result
was proved by Almkvist for commutative rings and by Sheiham for noncommuta-
tive rings. Namely for an associative ring A, define Ẽnd0(A) as the abelian group
with one generated for each isomorphism class of pairs [An, α] and relations:
• [An, α] + [An

′′
, α′′] = [An

′
, α′] if there is an exact sequence

0→ (An, α)→ (An
′
, α′)→ (An

′′
, α′′)→ 0.

• [A, 0] = 0.
Almkvist proved in [8] that if A is commutative then the characteristic poly-

nomial induces an isomorphism Ẽnd0(A) ∼= ε−1
P (1), [An, α] 7→ det(1−xα), where

P is the set of polynomials p such that ε(p) is invertible, and εP : P−1A[x]→ A
is the natural factorization of the augmentation map ε : A[x] → A through
P−1A[x]. This was generalized by Sheiham [122] to the non-commutative sit-
uation as follows. Let Σ be the set of all square matrices σ over A[x] such that
ε(σ) is invertible. Then there is an isomorphism

Ẽnd0(A) ∼= ε−1
Σ (1)/C,

where C is the subgroup generated by commutators:

{(1 + ab)(1 + ba)−1 | a, b ∈ Σ−1A[x], εΣ(ab) = εΣ(ba) = 0}.

Now we consider the general case where µ ≥ 1. Let (V, f1, . . . , fµ) be a left
k〈Y 〉-module, with V a finite-dimensional k-vector space. Consider the canonical
resolution of V as k〈Y 〉-module:

0 −−−−→ V 〈Y 〉µ y−f−−−−→ V 〈Y 〉 ρ−−−−→ V −−−−→ 0
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where y − f = (y1, . . . , yµ)t − (f1, . . . , fµ)t acts by

(y − f)(ξ1v1, . . . , ξµvµ) =
µ∑
i=1

ξiyivi −
µ∑
i=1

ξifi(vi)

for ξi ∈ k〈Y 〉 and vi ∈ V . The map ρ is defined by substitution of yi by fi:

ρ(yi1 · · · yirv) = fi1(fi2(...fir (v)))

for v ∈ V . As above by multiplying (y1, . . . , yµ)t − (f1, . . . , fµ)t on the left by
the row (x1, . . . , xµ) and using the relations of the Leavitt algebra we get

(x1, . . . , xµ)((y1, . . . , yµ)t − (f1, . . . , fµ)t) = 1−
µ∑
i

xifi

so that tensoring with Lµ we get essentially the second row of the following
commutative diagram with exact rows:

0 −−−−→ V 〈X〉 1−xf−−−−→ V 〈X〉 −−−−→ B(V ) −−−−→ 0y y =

y
0 −−−−→ Lµ

1−xf−−−−→ Lµ −−−−→ B(V ) −−−−→ 0

·x
y∼= =

y =

y
0 −−−−→ (Lµ)µ

y−f−−−−→ Lµ −−−−→ B(V ) −−−−→ 0

where here B(V ) = Lµ ⊗k〈Y 〉 V gives the covering construction with respect to
the algebra k〈X〉.

The map
S̃0(k) −→ K1(Σ−1k〈X〉)

is given by [(V, f)] 7→ [1 − xf ] ∈ K1(Σ−1k〈X〉). By [122, Theorem B] we have
that

D : K1(Σ−1k〈X〉) ∼= k× ⊕ ε−1
Σ (1)/C

where εΣ : Σ−1k〈X〉 → k is the canonical augmentation homomorphism and
C is the subgroup generated by (1 + ab)(1 + ba)−1, where a, b ∈ Σ−1k〈X〉 with
εΣ(ab) = εΣ(ba) = 0. The mapD is a kind of ’Dieudonné determinant’. Therefore
we get an isomorphism

S̃0(k) −→ ε−1
Σ (1)/C

given by [(V, f)] 7→ D(1− xf), generalizing the classical case µ = 1.
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We close with an example. Consider the two automorphisms of Q2 given by
the matrices

A =
(

1 0
0 2

)
, B =

(
3 2
−12 −7

)
.

The matrix B is similar to
(
−1 0
0 −3

)
. Let V = (Q2, f) be the Q〈y1, y2〉-module

determined by these two automorphisms. We have

1− xf =
(

1− x1 − 3x2 −2x2

12x2 1− 2x1 + 7x2

)
.

For a 2× 2 matrix α =
(
α11 α12

α21 α22

)
∈ GL2(Σ−1k〈x1, x2〉) with α11 invertible in

Σ−1k〈x1, x2〉 we have D(α) = α11(α22−α21α
−1
11 α12) = α11α22−α11α21α

−1
11 α12,

so we get in our example:

D(1−xf) = (1−x1−3x2)(1−2x1 +7x2)+24(1−x1−3x2)x2(1−x1−3x2)−1x2

in ε−1
Σ (1)/C.
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