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Abstract. Let E be an arbitrary graph and let K be any field. We show that
many generalized regularity conditions for the Leavitt path algebra LK(E) are
equivalent and that this happens exactly when the graph E satisfies Condi-
tion (K).

1. Introduction

All the rings that we consider here are assumed to be associative with local
units (such as the Leavitt path algebras). A ring R is said to be (von Neumann)
regular if each a ∈ R satisfies a ∈ aRa. The von Neumann regular Leavitt path
algebras LK(E) of arbitrary graphs E over a field K were characterized in [3] in
terms of the graphical properties of E, namely, the graphs E must have no cycles.
This property of E was also shown to be equivalent to LK(E) being π-regular, that
is, for each a ∈ LK(E) there is a positive integer n such that an ∈ anLK(E)an.
Several generalizations of the von Neumann regular rings occur in the literature
(see [16], [15], [10], [9]). In this note we consider some of the generalized regularity
conditions for Leavitt path algebras over arbitrary graphs.

A ring R is said to be right (left) weakly regular if each a ∈ R satisfies a ∈ aRaR
(a ∈ RaRa) (see [16] and [9] for details). Right (left) weakly regular rings are also
known as right (left) fully idempotent rings due to the equivalent condition that
I = I2 for every right (left) ideal I of R. As a common generalization of both
the weak regularity and the π-regularity, a ring R is called a right (left) weakly
π-regular ring if for each element a ∈ R there is a positive integer n such that
an ∈ anRanR (an ∈ RanRan) (see for example [15], [10]). A generalization of
the right/left fully idempotent rings are the rings R in which for every right (left)
ideal I, there is a positive integer n such that In = In+1.

In this paper we show that the right/left weak regularity condition for a Leav-
itt path algebra LK(E) coincides with all the generalized regularity conditions
mentioned above and that this happens exactly when the graph E satisfies Con-
dition (K) (see the definition below).

It was shown in [9, Proposition 3.8] that the Leavitt path algebra LK(E) of an
arbitrary graph E over a field K is right weakly regular if the graph E satisfies
Condition (K). The proof of [9, Proposition 3.8] depends on [9, Proposition 3.7]
whose proof is, unfortunately, modelled after the proof of [13, Lemma 1.6], which
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is incorrect as it uses a flawed argument in showing that a defined map φ is an
epimorphism. We thank John Clark and his student Iain Dangerfield for noting
this flaw in the argument. In fact, Iain Dangerfield constructed an example that
shows that the statement of [13, Lemma 1.6] and hence of [9, Proposition 3.7]
is not true. E. Ruiz and M. Tomforde have informed us that they have also
independently arrived at the same example.

Our alternate direct limit argument in Theorem 3.3 below gives a corrected
and simplified proof of [9, Proposition 3.8] and also enables us to generalize [9,
Theorem 3.15].

2. Preliminaries

All the graphs E that we consider here are arbitrary in the sense that no re-
striction is placed either on the number of vertices in E (such as being a countable
graph) or on the number of edges emitted by any vertex (such as being row-finite).
We shall follow [9] for the general notation, terminology and results. For the sake
of completeness, we shall outline some of the concepts and results that we will be
using.

A (directed) graph E = (E0, E1, r, s) consists of two sets E0 and E1 together
with maps r, s : E1 → E0. The elements of E0 are called vertices and the elements
of E1 edges. If s−1(v) is a finite set for every v ∈ E0, then the graph is called
row-finite.

If a vertex v emits no edges, that is, if s−1(v) is empty, then v is called a
sink. A vertex v is called an infinite emitter if s−1(v) is an infinite set, and
v is called a regular vertex if s−1(v) is a finite non-empty set. A path µ in a
graph E is a finite sequence of edges µ = e1 . . . en such that r(ei) = s(ei+1) for
i = 1, . . . , n− 1. In this case, n is the length of µ; we view the elements of E0 as
paths of length 0. We denote by µ0 the set of the vertices of the path µ, i.e., the
set {s(e1), r(e1), . . . , r(en)}.

A path µ = e1 . . . en is closed if r(en) = s(e1), in which case µ is said to be based
at the vertex s(e1). A closed path µ as above is called simple provided it does
not pass through its base more than once, i.e., s(ei) 6= s(e1) for all i = 2, ..., n.
The closed path µ is called a cycle if it does not pass through any of its vertices
twice, that is, if s(ei) 6= s(ej) for every i 6= j. An exit for a path µ = e1 . . . en is
an edge e such that s(e) = s(ei) for some i and e 6= ei. We say that E satisfies
Condition (L) if every simple closed path in E has an exit, or, equivalently, every
cycle in E has an exit. A graph E is said to satisfy Condition (K) provided no
vertex v ∈ E0 is the base of precisely one simple closed path, i.e., either no simple
closed path is based at v, or at least two are based at v.

We define a relation ≥ on E0 by setting v ≥ w if there exists a path µ in E
from v to w, that is, v = s(µ) and w = r(µ). A subset H of E0 is called hereditary
if v ≥ w and v ∈ H imply w ∈ H. A set H ⊆ E0 is saturated if for any regular
vertex v, r(s−1(v)) ⊆ H implies v ∈ H.

For each e ∈ E1, we call e∗ a ghost edge. We let r(e∗) denote s(e), and we let
s(e∗) denote r(e).
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Given an arbitrary graph E and a field K, the Leavitt path K-algebra LK(E) is
defined to be the K-algebra generated by a set {v : v ∈ E0} of pairwise orthogonal
idempotents together with a set of variables {e, e∗ : e ∈ E1} which satisfy the
following conditions:

(1) s(e)e = e = er(e) for all e ∈ E1.
(2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.
(3) (The “CK-1 relations”) For all e, f ∈ E1, e∗e = r(e) and e∗f = 0 if e 6= f .
(4) (The “CK-2 relations”) For every regular vertex v ∈ E0,

v =
∑

{e∈E1, s(e)=v}

ee∗.

If µ = e1 . . . en is a path in E, we denote by µ∗ the element e∗n . . . e
∗
1 of LK(E).

A useful observation is that every element a of LK(E) can be written in the
form a =

∑
n
i=1kiαiβ

∗
i , where ki ∈ K, αi, βi are paths in E and n is a suitable

integer (see [1]).
The following concepts and results from [17] will be used in the sequel. A vertex

w is called a breaking vertex of a hereditary saturated subset H if w ∈ E0\H is
an infinite emitter with the property that 0 < |s−1(v) ∩ r−1(E0\H)| < ∞. The
set of all breaking vertices of H is denoted by BH . For any v ∈ BH , vH denotes
the element

vH = v −
∑

s(e)=v, r(e)/∈H

ee∗.

Given a hereditary saturated subset H and a subset S ⊆ BH , (H,S) is called an
admissible pair and I(H,S) denotes the ideal generated in LK(E) by H ∪ {vH : v ∈
S}. It was shown in [17] that the graded ideals of LK(E) are precisely the ideals
of the form I(H,S) for some admissible pair (H,S). Moreover, it was shown that
I(H,S) ∩ E0 = H and {v ∈ BH : vH ∈ I(H,S)} = S.

Given an admissible pair (H,S), the corresponding quotient graph E\(H,S) is
defined as follows:

(E\(H,S))0 = (E0\H) ∪ {v′ : v ∈ BH\S};
(E\(H,S))1 = {e ∈ E1 : r(e) /∈ H} ∪ {e′ : e ∈ E1, r(e) ∈ BH\S}.

Further, r and s are extended to (E\(H,S))0 by setting s(e′) = s(e) and r(e′) =
r(e)′. Note that, in the graph E\(H,S), the vertices v′ are all sinks.

The result [17, Theorem 5.7] states that there is an epimorphism φ : LK(E)→
LK(E\(H,S)) with kerφ = I(H,S) and that φ(vH) = v′ for v ∈ BH\S. Thus
LK(E)/I(H,S) ∼= LK(E\(H,S)). This theorem has been established in [17] under
the hypothesis that E is a graph with at most countably many vertices and edges;
however, an examination of the proof reveals that the countability condition on E
is not utilized. So [17, Theorem 5.7] holds for arbitrary graphs E.

The following examples show that the various generalized regularity conditions
for a ring R are not, in general, equivalent to each other.

Examples 2.1. (i) Weak regularity of a ring R trivially implies weak π-
regularity of R but, in general, weak π-regularity of R need not imply
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weak regularity. For example, consider the ring Z(pn) of all integers mod-
ulo pn, where p is a fixed prime and n is an integer > 1. It is clear that
Z(pn) is π-regular and hence weakly π-regular, but it is not weakly regular
as follows by considering the ideal I = pZ(pn) 6= I2.

(ii) Let T be a simple integral domain which is not a division ring (consider, for
instance, the example by J.H. Cozzens [12] of a simple ring T with identity
which is a left/right principal ideal domain but not a division ring). This
ring T , being simple, is clearly both right and left weakly regular, but T is
not π-regular as it is an integral domain which is not a division ring. Then
the direct sum ring T ⊕Z(pn), with n > 1, is a weakly π-regular ring , but
it is neither weakly regular nor π-regular.

(iii) The ring T ⊕ Z(pn) with n > 1, mentioned above, has the property that
In = In+1 for all right (left) ideals I, but, as already noted, it is neither
weakly regular nor π-regular. On the other hand, if R is π-regular, then
every right (left) ideal I of R need not satisfy In = In+1, for some integer n.
For example, consider the direct sum ringS = ⊕∞n=1Z(pn), where p is a fixed
prime. This ring S (which is commutative) is easily seen to be π-regular as

each element a in S lies inside a finite ring direct sum
∑k

n=1 Z(pn) for some
k, (and, in particular, satisfies (aR)k = (aR)k+1 (and (Ra)k = (Ra)k+1),
but if I = pS = ⊕∞n=1pZ(pn), then Ik 6= Ik+1 for all positive integers k.

(iv) It was shown in [5] that a right weakly regular ring need not be left weakly
regular.

As we shall see in the sequel, all these various generalized regularity conditions
and their right/left versions coincide for Leavitt path algebras.

3. The Main Theorem

In this section we will show that if the Leavitt path algebra LK(E) of an arbi-
trary graph E satisfies one generalized regularity condition, say if LK(E) is right
(equivalently, left) weakly π-regular, then it satisfies all the above generalized
regularity conditions and that this happens exactly when the graph E satisfies
Condition (K). Our proof involves the direct limit construction indicated in [14]
and the desingularization process (see [2]).

First, we consider the row-finite case, which was stated for an arbitrary graph
in [9, Proposition 3.8]. The proof given here is not based on [9, Proposition 3.7].

Proposition 3.1. Let E be a row-finite graph and K be any field. If E satisfies
Condition (K), then LK(E) is both right and left weakly regular.

Proof. Suppose E satisfies Condition (K). Then, every ideal I of LK(E) is a graded
ideal (see [7], [14], [17]). Moreover, since E is row-finite, it was shown in [6,
Lemma 1.2] that the ideal I is isomorphic to a Leavitt path algebra LK(F ) where
the graph F is the so-called “hedgehog” graph obtained by using certain types
of paths µ in E with r(µ) ∈ I (see [6] for the definition and more details). To
prove the right/left weak regularity, let a be any element of LK(E). Since the
ideal LK(E)aLK(E) contains a and is isomorphic to a Leavitt path algebra, there
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is a local unit x ∈ LK(E)aLK(E) such that a = ax = xa. Hence LK(E) is both
right and left weakly regular. �

In order to extend the proposition above for arbitrary graphs, we use the desin-
gularization process. The desingularization of a graph E involves replacing each
singular vertex (that is, a sink or an infinite emitter) by means of suitably many
regular vertices and edges to obtain a new graph F which, by construction, is
row-finite. The graph F is called the desingularization of E. (See [2] for details.)

It was shown in [4] that the desingularization of a graph E exists if and only if
E is row-countable, that is, when every vertex of E emits at most countably many
edges. In particular, any countable graph admits a desingularization.

The following properties of the desingularization process were established in [2]
and [4].

If F is a desingularization of a graph E, then

(i) LK(F ) and LK(E) are Morita equivalent.
(ii) F satisfies Condition (K) if and only if E satisfies Condition (K).

In [18] it was shown that if two rings R and S are Morita equivalent and if R is
right/left weakly regular, then so is S.

We state the following useful lemma which was proved in [1] and [11].

Lemma 3.2. Suppose H is the hereditary saturated closure of a set A of vertices
in a graph E. If v ∈ H is the base of a closed path, then w ≥ v for some w ∈ A.

We are now ready to prove our main theorem.

Theorem 3.3. Let E be an arbitrary graph and K be any field. Then the following
properties are equivalent for the Leavitt path algebra R = LK(E):

(i) R is right (left) weakly π-regular.
(ii) The graph E satisfies Condition (K).
(iii) R is right and left weakly regular.
(iv) For every right (left) ideal I of LK(E), there is a positive integer n such that

In = In+1.
(v) For each element a ∈ R, there is a positive integer n such that (aR)n =

(aR)n+1 ((Ra)n = (Ra)n+1).

Proof. Assume (i). Specifically, let R be right weakly π-regular. We first show that
E satisfies Condition (L). Assume, by way of contradiction, that there is a cycle c
without exits and based at a vertex v in E. Since c has no exits, it was shown in
[8, Lemma 1.5] that a typical element v (

∑
kiαiβ

∗
i ) v of vRv simplifies to a term of

the form
∑
kic

ti with ti ∈ Z and that an isomorphism ϕ : vRv → K[x, x−1] can be
defined under which v maps to 1, c to x and c∗ to x−1. Consider the element v−c.
By hypothesis, there is a positive integer n such that (v−c)n ∈ (v−c)nR(v−c)nR.

Clearly (v − c)n = v(v − c)nv is an element of (v − c)nvRv(v − c)nvRv ⊆ vRv.
Since vRv ∼= K[x, x−1] is a commutative ring, we get (v−c)n = (v−c)2na for some
a ∈ vRv. Applying the isomorphism ϕ, we get the equation (1−x)n = (1−x)2nf(x)
in K[x, x−1] where f(x) is a Laurent polynomial. Since K[x, x−1] is an integral
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domain, canceling (1− x)n on both sides, we get the equation 1 = (1− x)nf(x) =
(1− x)g(x) which is impossible by comparing the degrees of terms on both sides.
Hence E must satisfy Condition (L). A similar argument works if we assume that
LK(E) is left weakly π-regular. Thus we have shown that, for any graph E, the
right/left weakly π -regularity of LK(E) implies Condition (L) for E.

We now claim that right/left weak π-regularity also implies the Condition (K)
on E. Suppose, on the contrary, that E contains a vertex v which is the base of
exactly one simple closed path µ. Since E satisfies Condition (L), µ has exits in
E. Let A = {r(e) : e an exit for µ} and let H be the hereditary saturated closure
of A. We claim that no vertex on µ belongs to H. Indeed if u ∈ H for some
vertex u on µ, then by Lemma 3.2, w ≥ u for some w ∈ A. This would then
imply that v is the base of a different closed path, a contradiction. Thus in the
graph E\(H, ∅), µ is a closed path with no exits and so E\(H, ∅) does not satisfy
Condition (L). But LK(E\(H, ∅))) ∼= LK(E)/I(H,∅) is right/left weakly π-regular,
being a homomorphic image of LK(E) and consequently, as shown in the preceding
paragraph, E\(H, ∅) does satisfy Condition (L), a contradiction. Hence E must
satisfy Condition (K), proving (ii).

Assume (ii). As noted by Goodearl in [14], if E satisfies Condition (K) then
we can write E as a direct limit E = lim−→ Eα, where each Eα is a countable com-

plete subgraph satisfying Condition (K) and in that case, LK(E) = lim−→ LK(Eα).

For each α, let Fα be the desingularization of Eα (which exists by [4], as Eα is
countable). Since the desingularization process preserves Condition (K), Fα is a
row-finite graph with Condition (K) and so, by Proposition 3.1, LK(Fα) is both
right and left weakly regular. Then LK(Eα), being Morita equivalent to LK(Fα),
is also right and left weakly regular. Since weak regularity is preserved under
direct limits, we conclude that LK(E) is both right and left weakly regular, thus
proving (iii).

It is clear that (iii) ⇒ (iv) and (iv) ⇒ (v) and also (iii) ⇒ (i).
To complete the proof, we show that (v) ⇒ (ii). But this is almost identical

to the proof of (i) ⇒ (ii) where (in order to prove that Condition (L) holds) we
replace the equation (v−c)n ∈ (v−c)nR(v−c)nR by (v−c)n ∈ ((v−c)R)n+1 (since
by supposition ((v − c)R)n = ((v − c)R)n+1) and observe that since again vRv ∼=
K[x, x−1] is commutative, we have (v − c)n ∈ ((v − c)vRv)n+1 = (v − c)n+1vRv.

Proceeding as before, we are lead to a contradiction and to the conclusion
that Condition (L) holds. Then follow the arguments in (i) ⇒ (ii) to show that
Condition (K) holds. Thus (v) ⇒ (ii).

This completes the proof. �
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