GENERALIZED REGULARITY CONDITIONS FOR LEAVITT PATH ALGEBRAS OVER ARBITRARY GRAPHS

G. ARANDA PINO, K. M. RANGASWAMY, AND M. SILES MOLINA

ABSTRACT. Let E be an arbitrary graph and let K be any field. We show that many generalized regularity conditions for the Leavitt path algebra $L_K(E)$ are equivalent and that this happens exactly when the graph E satisfies Condition (K).

1. INTRODUCTION

All the rings that we consider here are assumed to be associative with local units (such as the Leavitt path algebras). A ring R is said to be (von Neumann) regular if each $a \in R$ satisfies $a \in aRa$. The von Neumann regular Leavitt path algebras $L_K(E)$ of arbitrary graphs E over a field K were characterized in [3] in terms of the graphical properties of E, namely, the graphs E must have no cycles. This property of E was also shown to be equivalent to $L_K(E)$ being π -regular, that is, for each $a \in L_K(E)$ there is a positive integer n such that $a^n \in a^n L_K(E)a^n$. Several generalizations of the von Neumann regular rings occur in the literature (see [16], [15], [10], [9]). In this note we consider some of the generalized regularity conditions for Leavitt path algebras over arbitrary graphs.

A ring R is said to be right (left) weakly regular if each $a \in R$ satisfies $a \in aRaR$ $(a \in RaRa)$ (see [16] and [9] for details). Right (left) weakly regular rings are also known as right (left) fully idempotent rings due to the equivalent condition that $I = I^2$ for every right (left) ideal I of R. As a common generalization of both the weak regularity and the π -regularity, a ring R is called a right (left) weakly π -regular ring if for each element $a \in R$ there is a positive integer n such that $a^n \in a^n Ra^n R$ ($a^n \in Ra^n Ra^n$) (see for example [15], [10]). A generalization of the right/left fully idempotent rings are the rings R in which for every right (left) ideal I, there is a positive integer n such that $I^n = I^{n+1}$.

In this paper we show that the right/left weak regularity condition for a Leavitt path algebra $L_K(E)$ coincides with all the generalized regularity conditions mentioned above and that this happens exactly when the graph E satisfies Condition (K) (see the definition below).

It was shown in [9, Proposition 3.8] that the Leavitt path algebra $L_K(E)$ of an arbitrary graph E over a field K is right weakly regular if the graph E satisfies Condition (K). The proof of [9, Proposition 3.8] depends on [9, Proposition 3.7] whose proof is, unfortunately, modelled after the proof of [13, Lemma 1.6], which

²⁰⁰⁰ Mathematics Subject Classification. Primary 16D70.

Key words and phrases. Leavitt path algebra, weakly regular, generalized regularity condition, arbitrary graph.

is incorrect as it uses a flawed argument in showing that a defined map ϕ is an epimorphism. We thank John Clark and his student Iain Dangerfield for noting this flaw in the argument. In fact, Iain Dangerfield constructed an example that shows that the statement of [13, Lemma 1.6] and hence of [9, Proposition 3.7] is not true. E. Ruiz and M. Tomforde have informed us that they have also independently arrived at the same example.

Our alternate direct limit argument in Theorem 3.3 below gives a corrected and simplified proof of [9, Proposition 3.8] and also enables us to generalize [9, Theorem 3.15].

2. Preliminaries

All the graphs E that we consider here are arbitrary in the sense that no restriction is placed either on the number of vertices in E (such as being a countable graph) or on the number of edges emitted by any vertex (such as being row-finite). We shall follow [9] for the general notation, terminology and results. For the sake of completeness, we shall outline some of the concepts and results that we will be using.

A (directed) graph $E = (E^0, E^1, r, s)$ consists of two sets E^0 and E^1 together with maps $r, s : E^1 \to E^0$. The elements of E^0 are called *vertices* and the elements of E^1 edges. If $s^{-1}(v)$ is a finite set for every $v \in E^0$, then the graph is called *row-finite*.

If a vertex v emits no edges, that is, if $s^{-1}(v)$ is empty, then v is called a *sink*. A vertex v is called an *infinite emitter* if $s^{-1}(v)$ is an infinite set, and v is called a *regular vertex* if $s^{-1}(v)$ is a finite non-empty set. A path μ in a graph E is a finite sequence of edges $\mu = e_1 \dots e_n$ such that $r(e_i) = s(e_{i+1})$ for $i = 1, \dots, n-1$. In this case, n is the length of μ ; we view the elements of E^0 as paths of length 0. We denote by μ^0 the set of the vertices of the path μ , i.e., the set $\{s(e_1), r(e_1), \dots, r(e_n)\}$.

A path $\mu = e_1 \dots e_n$ is closed if $r(e_n) = s(e_1)$, in which case μ is said to be based at the vertex $s(e_1)$. A closed path μ as above is called simple provided it does not pass through its base more than once, i.e., $s(e_i) \neq s(e_1)$ for all $i = 2, \dots, n$. The closed path μ is called a cycle if it does not pass through any of its vertices twice, that is, if $s(e_i) \neq s(e_j)$ for every $i \neq j$. An exit for a path $\mu = e_1 \dots e_n$ is an edge e such that $s(e) = s(e_i)$ for some i and $e \neq e_i$. We say that E satisfies Condition (L) if every simple closed path in E has an exit, or, equivalently, every cycle in E has an exit. A graph E is said to satisfy Condition (K) provided no vertex $v \in E^0$ is the base of precisely one simple closed path, i.e., either no simple closed path is based at v, or at least two are based at v.

We define a relation \geq on E^0 by setting $v \geq w$ if there exists a path μ in Efrom v to w, that is, $v = s(\mu)$ and $w = r(\mu)$. A subset H of E^0 is called *hereditary* if $v \geq w$ and $v \in H$ imply $w \in H$. A set $H \subseteq E^0$ is *saturated* if for any regular vertex $v, r(s^{-1}(v)) \subseteq H$ implies $v \in H$.

For each $e \in E^1$, we call e^* a *ghost edge*. We let $r(e^*)$ denote s(e), and we let $s(e^*)$ denote r(e).

Given an arbitrary graph E and a field K, the Leavitt path K-algebra $L_K(E)$ is defined to be the K-algebra generated by a set $\{v : v \in E^0\}$ of pairwise orthogonal idempotents together with a set of variables $\{e, e^* : e \in E^1\}$ which satisfy the following conditions:

- (1) s(e)e = e = er(e) for all $e \in E^1$.
- (2) $r(e)e^* = e^* = e^*s(e)$ for all $e \in E^1$.
- (3) (The "CK-1 relations") For all $e, f \in E^1$, $e^*e = r(e)$ and $e^*f = 0$ if $e \neq f$.
- (4) (The "CK-2 relations") For every regular vertex $v \in E^0$,

$$v = \sum_{\{e \in E^1, s(e) = v\}} ee^*.$$

If $\mu = e_1 \dots e_n$ is a path in E, we denote by μ^* the element $e_n^* \dots e_1^*$ of $L_K(E)$.

A useful observation is that every element a of $L_K(E)$ can be written in the form $a = \sum_{i=1}^{n} k_i \alpha_i \beta_i^*$, where $k_i \in K$, α_i, β_i are paths in E and n is a suitable integer (see [1]).

The following concepts and results from [17] will be used in the sequel. A vertex w is called a *breaking vertex* of a hereditary saturated subset H if $w \in E^0 \setminus H$ is an infinite emitter with the property that $0 < |s^{-1}(v) \cap r^{-1}(E^0 \setminus H)| < \infty$. The set of all breaking vertices of H is denoted by B_H . For any $v \in B_H$, v^H denotes the element

$$v^H = v - \sum_{s(e)=v, \ r(e)\notin H} ee^*.$$

Given a hereditary saturated subset H and a subset $S \subseteq B_H$, (H, S) is called an *admissible pair* and $I_{(H,S)}$ denotes the ideal generated in $L_K(E)$ by $H \cup \{v^H : v \in S\}$. It was shown in [17] that the graded ideals of $L_K(E)$ are precisely the ideals of the form $I_{(H,S)}$ for some admissible pair (H,S). Moreover, it was shown that $I_{(H,S)} \cap E^0 = H$ and $\{v \in B_H : v^H \in I_{(H,S)}\} = S$.

Given an admissible pair (H, S), the corresponding quotient graph $E \setminus (H, S)$ is defined as follows:

$$(E \setminus (H, S))^0 = (E^0 \setminus H) \cup \{v' : v \in B_H \setminus S\};$$

$$(E \setminus (H, S))^1 = \{e \in E^1 : r(e) \notin H\} \cup \{e' : e \in E^1, r(e) \in B_H \setminus S\}$$

Further, r and s are extended to $(E \setminus (H, S))^0$ by setting s(e') = s(e) and r(e') = r(e)'. Note that, in the graph $E \setminus (H, S)$, the vertices v' are all sinks.

The result [17, Theorem 5.7] states that there is an epimorphism $\phi : L_K(E) \to L_K(E \setminus (H, S))$ with ker $\phi = I_{(H,S)}$ and that $\phi(v^H) = v'$ for $v \in B_H \setminus S$. Thus $L_K(E)/I_{(H,S)} \cong L_K(E \setminus (H,S))$. This theorem has been established in [17] under the hypothesis that E is a graph with at most countably many vertices and edges; however, an examination of the proof reveals that the countability condition on E is not utilized. So [17, Theorem 5.7] holds for arbitrary graphs E.

The following examples show that the various generalized regularity conditions for a ring R are not, in general, equivalent to each other.

Examples 2.1. (i) Weak regularity of a ring R trivially implies weak π -regularity of R but, in general, weak π -regularity of R need not imply

weak regularity. For example, consider the ring $\mathbb{Z}(p^n)$ of all integers modulo p^n , where p is a fixed prime and n is an integer > 1. It is clear that $\mathbb{Z}(p^n)$ is π -regular and hence weakly π -regular, but it is not weakly regular as follows by considering the ideal $I = p\mathbb{Z}(p^n) \neq I^2$.

- (ii) Let T be a simple integral domain which is not a division ring (consider, for instance, the example by J.H. Cozzens [12] of a simple ring T with identity which is a left/right principal ideal domain but not a division ring). This ring T, being simple, is clearly both right and left weakly regular, but T is not π -regular as it is an integral domain which is not a division ring. Then the direct sum ring $T \oplus \mathbb{Z}(p^n)$, with n > 1, is a weakly π -regular ring , but it is neither weakly regular nor π -regular.
- (iii) The ring $T \oplus \mathbb{Z}(p^n)$ with n > 1, mentioned above, has the property that $I^n = I^{n+1}$ for all right (left) ideals I, but, as already noted, it is neither weakly regular nor π -regular. On the other hand, if R is π -regular, then every right (left) ideal I of R need not satisfy $I^n = I^{n+1}$, for some integer n. For example, consider the direct sum ring $S = \bigoplus_{n=1}^{\infty} \mathbb{Z}(p^n)$, where p is a fixed prime. This ring S (which is commutative) is easily seen to be π -regular as each element a in S lies inside a finite ring direct sum $\sum_{n=1}^{k} \mathbb{Z}(p^n)$ for some k, (and, in particular, satisfies $(aR)^k = (aR)^{k+1}$ (and $(Ra)^k = (Ra)^{k+1}$), but if $I = pS = \bigoplus_{n=1}^{\infty} p\mathbb{Z}(p^n)$, then $I^k \neq I^{k+1}$ for all positive integers k.
- (iv) It was shown in [5] that a right weakly regular ring need not be left weakly regular.

As we shall see in the sequel, all these various generalized regularity conditions and their right/left versions coincide for Leavitt path algebras.

3. The Main Theorem

In this section we will show that if the Leavitt path algebra $L_K(E)$ of an arbitrary graph E satisfies one generalized regularity condition, say if $L_K(E)$ is right (equivalently, left) weakly π -regular, then it satisfies all the above generalized regularity conditions and that this happens exactly when the graph E satisfies Condition (K). Our proof involves the direct limit construction indicated in [14] and the desingularization process (see [2]).

First, we consider the row-finite case, which was stated for an arbitrary graph in [9, Proposition 3.8]. The proof given here is not based on [9, Proposition 3.7].

Proposition 3.1. Let E be a row-finite graph and K be any field. If E satisfies Condition (K), then $L_K(E)$ is both right and left weakly regular.

Proof. Suppose E satisfies Condition (K). Then, every ideal I of $L_K(E)$ is a graded ideal (see [7], [14], [17]). Moreover, since E is row-finite, it was shown in [6, Lemma 1.2] that the ideal I is isomorphic to a Leavitt path algebra $L_K(F)$ where the graph F is the so-called "hedgehog" graph obtained by using certain types of paths μ in E with $r(\mu) \in I$ (see [6] for the definition and more details). To prove the right/left weak regularity, let a be any element of $L_K(E)$. Since the ideal $L_K(E)aL_K(E)$ contains a and is isomorphic to a Leavitt path algebra, there is a local unit $x \in L_K(E)aL_K(E)$ such that a = ax = xa. Hence $L_K(E)$ is both right and left weakly regular.

In order to extend the proposition above for arbitrary graphs, we use the desingularization process. The desingularization of a graph E involves replacing each singular vertex (that is, a sink or an infinite emitter) by means of suitably many regular vertices and edges to obtain a new graph F which, by construction, is row-finite. The graph F is called the *desingularization of* E. (See [2] for details.)

It was shown in [4] that the desingularization of a graph E exists if and only if E is *row-countable*, that is, when every vertex of E emits at most countably many edges. In particular, any countable graph admits a desingularization.

The following properties of the desingularization process were established in [2] and [4].

If F is a desingularization of a graph E, then

- (i) $L_K(F)$ and $L_K(E)$ are Morita equivalent.
- (ii) F satisfies Condition (K) if and only if E satisfies Condition (K).

In [18] it was shown that if two rings R and S are Morita equivalent and if R is right/left weakly regular, then so is S.

We state the following useful lemma which was proved in [1] and [11].

Lemma 3.2. Suppose H is the hereditary saturated closure of a set A of vertices in a graph E. If $v \in H$ is the base of a closed path, then $w \ge v$ for some $w \in A$.

We are now ready to prove our main theorem.

Theorem 3.3. Let E be an arbitrary graph and K be any field. Then the following properties are equivalent for the Leavitt path algebra $R = L_K(E)$:

- (i) R is right (left) weakly π -regular.
- (ii) The graph E satisfies Condition (K).
- (iii) R is right and left weakly regular.
- (iv) For every right (left) ideal I of $L_K(E)$, there is a positive integer n such that $I^n = I^{n+1}$.
- (v) For each element $a \in R$, there is a positive integer n such that $(aR)^n = (aR)^{n+1}$ $((Ra)^n = (Ra)^{n+1})$.

Proof. Assume (i). Specifically, let R be right weakly π -regular. We first show that E satisfies Condition (L). Assume, by way of contradiction, that there is a cycle c without exits and based at a vertex v in E. Since c has no exits, it was shown in [8, Lemma 1.5] that a typical element $v (\sum k_i \alpha_i \beta_i^*) v$ of vRv simplifies to a term of the form $\sum k_i c^{t_i}$ with $t_i \in \mathbb{Z}$ and that an isomorphism $\varphi : vRv \to K[x, x^{-1}]$ can be defined under which v maps to 1, c to x and c^* to x^{-1} . Consider the element v - c. By hypothesis, there is a positive integer n such that $(v-c)^n \in (v-c)^n R(v-c)^n R$.

Clearly $(v-c)^n = v(v-c)^n v$ is an element of $(v-c)^n v Rv(v-c)^n v Rv \subseteq v Rv$. Since $vRv \cong K[x, x^{-1}]$ is a commutative ring, we get $(v-c)^n = (v-c)^{2n}a$ for some $a \in vRv$. Applying the isomorphism φ , we get the equation $(1-x)^n = (1-x)^{2n}f(x)$ in $K[x, x^{-1}]$ where f(x) is a Laurent polynomial. Since $K[x, x^{-1}]$ is an integral

5

domain, canceling $(1-x)^n$ on both sides, we get the equation $1 = (1-x)^n f(x) = (1-x)g(x)$ which is impossible by comparing the degrees of terms on both sides. Hence E must satisfy Condition (L). A similar argument works if we assume that $L_K(E)$ is left weakly π -regular. Thus we have shown that, for any graph E, the right/left weakly π -regularity of $L_K(E)$ implies Condition (L) for E.

We now claim that right/left weak π -regularity also implies the Condition (K) on E. Suppose, on the contrary, that E contains a vertex v which is the base of exactly one simple closed path μ . Since E satisfies Condition (L), μ has exits in E. Let $A = \{r(e) : e \text{ an exit for } \mu\}$ and let H be the hereditary saturated closure of A. We claim that no vertex on μ belongs to H. Indeed if $u \in H$ for some vertex u on μ , then by Lemma 3.2, $w \geq u$ for some $w \in A$. This would then imply that v is the base of a different closed path, a contradiction. Thus in the graph $E \setminus (H, \emptyset)$, μ is a closed path with no exits and so $E \setminus (H, \emptyset)$ does not satisfy Condition (L). But $L_K(E \setminus (H, \emptyset))) \cong L_K(E)/I_{(H, \emptyset)}$ is right/left weakly π -regular, being a homomorphic image of $L_K(E)$ and consequently, as shown in the preceding paragraph, $E \setminus (H, \emptyset)$ does satisfy Condition (L), a contradiction. Hence E must satisfy Condition (K), proving (ii).

Assume (ii). As noted by Goodearl in [14], if E satisfies Condition (K) then we can write E as a direct limit $E = \varinjlim E_{\alpha}$, where each E_{α} is a countable complete subgraph satisfying Condition (K) and in that case, $L_K(E) = \varinjlim L_K(E_{\alpha})$. For each α , let F_{α} be the desingularization of E_{α} (which exists by [4], as E_{α} is countable). Since the desingularization process preserves Condition (K), F_{α} is a row-finite graph with Condition (K) and so, by Proposition 3.1, $L_K(F_{\alpha})$ is both right and left weakly regular. Then $L_K(E_{\alpha})$, being Morita equivalent to $L_K(F_{\alpha})$, is also right and left weakly regular. Since weak regularity is preserved under direct limits, we conclude that $L_K(E)$ is both right and left weakly regular, thus proving (iii).

It is clear that (iii) \Rightarrow (iv) and (iv) \Rightarrow (v) and also (iii) \Rightarrow (i).

To complete the proof, we show that $(v) \Rightarrow (ii)$. But this is almost identical to the proof of $(i) \Rightarrow (ii)$ where (in order to prove that Condition (L) holds) we replace the equation $(v-c)^n \in (v-c)^n R(v-c)^n R$ by $(v-c)^n \in ((v-c)R)^{n+1}$ (since by supposition $((v-c)R)^n = ((v-c)R)^{n+1}$) and observe that since again $vRv \cong$ $K[x, x^{-1}]$ is commutative, we have $(v-c)^n \in ((v-c)vRv)^{n+1} = (v-c)^{n+1}vRv$.

Proceeding as before, we are lead to a contradiction and to the conclusion that Condition (L) holds. Then follow the arguments in (i) \Rightarrow (ii) to show that Condition (K) holds. Thus (v) \Rightarrow (ii).

This completes the proof.

Acknowledgments

The first and third authors were partially supported by the Spanish MEC and Fondos FEDER through project MTM2010-15223, and by the Junta de Andalucía and Fondos FEDER, jointly, through projects FQM-336, FQM-2467 and FQM-7156.

References

- G. ABRAMS AND G. ARANDA PINO, The Leavitt path algebra of a graph, J. Algebra 293 (2005), 319–334.
- G. ABRAMS AND G. ARANDA PINO, The Leavitt path algebras of arbitrary graphs, Houston J. Math. 34 (2008), 423–442.
- [3] G. ABRAMS AND K.M. RANGASWAMY, Regularity conditions for arbitrary Leavitt path algebras, Algeb. Represent. Theory 13 (2010), 319–334.
- [4] G. ABRAMS AND K.M. RANGASWAMY, Row-finite equivalents exist only for row-countable graphs, Contemporary Math., Amer. Math. Soc., Providence, R.I., 562 (2012), 1–10.
- [5] R.R. ANDRUSZKIEWICZ AND E.R. PUCZYLOWSKI, Right fully idempotent rings need not be left fully idempotent, Glasgow Math. J. 37 (1995), 155–157.
- [6] P. ARA AND E. PARDO, Stable rank of Leavitt path algebras. Proc. Amer. Math. Soc. 136 (2008), 2375–2386.
- [7] G. ARANDA PINO, E. PARDO AND M. SILES MOLINA, Exchange Leavitt path algebras and stable rank, J. Algebra 305 (2006), 912–936.
- [8] G. ARANDA PINO, D. MARTÍN BARQUERO, C. MARTÍN GONZÁLEZ AND M. SILES MOLINA, Socle theory for Leavitt path algebras of arbitrary graphs, Rev. Mat. Iberoamericana, 26 (2) (2010), 611–638.
- [9] G. ARANDA PINO, K.M. RANGASWAMY, AND M. SILES MOLINA, Weakly regular and Self-injective Leavitt path algebras over arbitrary graphs, Algeb. Represent. Theory, 14 (2011), 751–777.
- [10] G. F. BIRKENMEIER, J. Y. KIM AND J. K. PARK, A connection between weak regularity and the simplicity of prime factor rings, Proc. Amer. Math. Soc. 122 (1994), 53–58.
- [11] P. COLAK, Two-sided ideals in Leavitt path algebras, J. Algebra Appl. 10 (5) (2011), 801–809.
- [12] J. H. COZZENS, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Society, 76 (1970), 75–79.
- [13] K. DEICKE, J.H. HONG AND W. SZYMAŃSKI, Stable rank of graph algebras. Type I graph algebras and their limits. Indiana Univ. Math. J. 52 (2003), 963–979.
- [14] K. GOODEARL, Leavitt path algebras and direct limits. Rings, modules and representations, Contemporary Math., Amer. Math. Soc., Providence, RI, 480 (2009), 165–187.
- [15] V. GUPTA, Weakly π -regular rings and group rings, Math. J. Okayama University 19 (1977), 123–127.
- [16] V. S. RAMAMURTHI, Weakly regular rings. Canad. Math. Bull. 16 (1973), 317–321.
- [17] M. TOMFORDE, Uniqueness theorems and ideal structure for Leavitt path algebras, J. Algebra 318 (2007), 270–299.
- [18] A. TUGANBAEV, Rings close to regular, Series: Mathematics and its Applications, vol. 545, Kluwer Academic Publishers, Dordrecht (2002).

Aranda and Siles: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain

E-mail address: g.aranda@uma.es, msilesm@uma.es

RANGASWAMY: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, COLORADO SPRINGS CO 80933 U.S.A.

E-mail address: ranga@uccs.edu