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Abstract. We characterize the Leavitt path algebras over arbitrary graphs which are
weakly regular rings as well as those which are self-injective. In order to reach our goals we
extend and prove several results on projective, injective and flat modules over Leavitt path
algebras and, more generally, over (not necessarily unital) rings with local units.

1. Introduction and preliminaries

For a graph E and field K, the Leavitt path algebras LK(E) can be regarded as both a
broad generalization of the algebras constructed by W. G. Leavitt in [38] to produce rings that
do not satisfy the IBN property, and as the algebraic siblings of the graph C*-algebras C∗(E),
which in turn are the analytic counterpart and descendant from the algebras investigated by
J. Cuntz in [27].

The first appearance of LK(E) took place in the papers [3] and [17], in the context of
row-finite graphs (countable graphs such that every vertex emits only a finite number of
edges). Although their history is very recent, a flurry of activity has followed since the
beginning of the theory, in several different directions: characterization of algebraic properties
of LK(E) in terms of graph properties of E (see for instance [3, 4, 6, 18, 23]); study of the
modules over LK(E) in [14, 21] among others; computation of various substructures such as
the Jacobson radical, the center, the socle and the singular ideal in [5, 19, 21, 42] respectively;
investigation of the relationship and connections with C∗(E) and general C*-algebras [9, 17,
20, 24]; classification programs [1, 2, 10]; K-Theory [14, 15, 17]; and generalization to arbitrary
graphs, which has been done in two stages, first for countable but not necessarily row-finite
graphs in [5, 22, 43], and then for completely arbitrary graphs in [7, 8, 32].

The present paper tackles several of these approaches altogether. We focus on the charac-
terization of algebraic-theoretic properties of LK(E) in terms of graph-theoretic properties of
E: the main objective is to keep on exploring regularity conditions for LK(E), thus extend-
ing the characterization of von Neumann regular Leavitt path algebras of [7]. Concretely, we
completely determine the weakly regular and self-injective Leavitt path algebras in Theorem
3.15 and Theorem 4.7 respectively.

Further, along the way we also handle the study of modules over LK(E) (needed in order
to get our main theorems) as well as the arbitrary graphs problem, as we actually prove our
results in the most general context, that is, for not necessarily row-finite and not necessarily
countable graphs. Finally, we hope and foresee that the characterizations above, not having
been considered for C∗(E) yet, could in turn be useful tools and inspiration in the theory of
graph C*-algebras.
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The article is organized as follows. We devote the first section to the basics on Leavitt
path algebras and to fix the modules (over non-unital rings) we will consider: those which are
unital and nondegenerate (the definition can be found later). Section 2 addresses to projective,
injective and flat modules over non-unital rings. We use the homological notions, borrowed
from the unital case. Neither all the results for unital rings remain valid for arbitrary rings,
nor the case of Leavitt path algebras is translated word by word from the case of rings with
local units (used as they provide a more general setting than Leavitt path algebras). While
R as a left R-module is not necessarily projective, for R a non-unital ring (see [13]), this is
not the case for Leavitt path algebras. The projective modules over a ring R are precisely
the projective modules over the unitization R1 of R (definition recalled later), as proved in
Proposition 2.4. This does not happen for injective modules (see Example 2.7), contrary to
Faith’s statement in [29, Pg. 11]. We close Section 2 with the characterization of semisimple
Leavitt path algebras in terms of its projective and injective modules (Proposition 2.27).

The description of weakly regular Leavitt path algebras is the main concern of Section 3.
Right (left) weakly regularity, also called right (left) fully idempotency, was introduced by
Ramamurthi in [40] (a ring R is right weakly regular if I2 = I for every right ideal I).

We start the section by characterizing right (left) weakly regular rings in the case of rings
with local units (Theorem 3.1) and follow by showing that right (left) weakly regularity is
a Morita invariant property for rings with local units (Theorem 3.13). The main result of
the section (Theorem 3.15) characterizes weakly regular Leavitt path algebras in terms of
ring properties, of properties of the graph, and of the lattice of its ideals. Concretely, we
show that the weakly regular Leavitt path algebras are precisely the exchange Leavitt path
algebras, equivalently, those whose graphs satisfy Condition (K), and they coincide with the
Leavitt path algebras such that every ideal is graded. We also show that any graded ideal in
a Leavitt path algebra can again be realized as a Leavitt path algebra, and this is useful in
showing that a graph E satisfies Condition (K) if and only if every ideal in the Leavitt path
algebra LK(E) has local units.

In the last section of the paper, we study and characterize self-injective Leavitt path alge-
bras. They are precisely the semisimple ones (see Theorem 4.7), that is, those whose graph
is row-finite, acyclic and every infinite path contains a line point (i.e., a vertex which is not
a bifurcation and such that there are no cycles based at it).

First we collect various notions concerning graphs, after which we define Leavitt path
algebras.

Definitions 1.1. A (directed) graph E = (E0, E1, r, s) consists of two sets E0 and E1 together
with maps r, s : E1 → E0. The elements of E0 are called vertices and the elements of E1

edges. For e ∈ E1, the vertices s(e) and r(e) are called the source and range of e, respectively,
and e is said to be an edge from s(e) to r(e), represented by an arrow s(e) → r(e) when E
is drawn. If s−1(v) is a finite set for every v ∈ E0, then the graph is called row-finite. If E0

is finite and E is row-finite, then E1 must necessarily be finite as well; in this case we say
simply that E is finite.

A vertex which emits no edges is called a sink. A vertex v is called an infinite emitter if
s−1(v) is an infinite set, and a regular vertex otherwise. The set of infinite emitters will be
denoted by E0

inf . A path µ in a graph E is a finite sequence of edges µ = e1 . . . en such that
r(ei) = s(ei+1) for i = 1, . . . , n− 1. In this case, s(µ) = s(e1) and r(µ) = r(en) are the source
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and range of µ, respectively, and n is the length of µ. We also say that µ is a path from s(e1)
to r(en), and we denote by µ0 the set of its vertices, i.e., {s(e1), r(e1), . . . , r(en)}. For any
set Y of paths, denote r(Y ) := {r(α) | α ∈ Y } and s(Y ) := {s(α) | α ∈ Y }. We view the
elements of E0 as paths of length 0

If µ is a path in E, and if v = s(µ) = r(µ), then µ is called a closed path based at v. If
s(µ) = r(µ) and s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle. A graph which contains
no cycles is called acyclic.

An edge e is an exit for a path µ = e1 . . . en if there exists i such that s(e) = s(ei) and
e 6= ei. We say that E satisfies Condition (L) if every cycle in E has an exit. Let M be a
subset of E0. A path in M is a path α in E with α0 ⊆ M . We say that a path α in M has
an exit in M if there exists e ∈ E1 which is an exit for α and such that r(e) ∈M .

Recall that a closed simple path based at a vertex v is a path µ = e1 · · · et such that
s(µ) = r(µ) = v and s(ei) 6= v for all 2 ≤ i ≤ t. We denote the set of closed simple paths
based at v by CSP (v). Further, E is said to satisfy Condition (K) if for each vertex v on a
closed simple path there exist at least two distinct closed simple paths based at v.

We define a relation ≥ on E0 by setting v ≥ w if there exists a path in E from v to w. A
subset H of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H. A hereditary set is
saturated if every regular vertex which feeds into H and only into H is again in H, that is,
if s−1(v) 6= ∅ is finite and r(s−1(v)) ⊆ H imply v ∈ H. Denote by HE the set of hereditary
saturated subsets of E0.

We recall here some graph-theoretic constructions which will be of use. Let E be a row-
finite graph. For a hereditary subset H of E0, the quotient graph E/H is defined as

(E0 \H, {e ∈ E1| r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1),

and the restriction graph is

EH = (H, {e ∈ E1| s(e) ∈ H}, r|(EH)1 , s|(EH)1).

Throughout this section, K will denote an arbitrary base field.
The Leavitt path K-algebra LK(E) is defined to be the K-algebra generated by the set

E0 ∪ E1 ∪ {e∗ | e ∈ E1} with the following relations:

(i) vw = δv,wv for all v, w ∈ E0.

(ii) s(e)e = er(e) = e for all e ∈ E1.

(iii) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.

(iv) e∗f = δe,fr(e) for all e, f ∈ E1.

(v) v =
∑

e∈s−1(v) ee
∗ for every v ∈ E0 that is neither a sink nor an infinite emitter.

The elements of E1 are called real edges, while for e ∈ E1 we call e∗ a ghost edge. The set
{e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e), and we let s(e∗) denote
r(e). If µ = e1 . . . en is a path in E, we write µ∗ for the element e∗n . . . e

∗
1 of LK(E). For any

subset H of E0, we will denote by I(H) the ideal of LK(E) generated by H. Note that if E
is a finite graph, then LK(E) is unital with

∑
v∈E0 v = 1LK(E); otherwise, LK(E) is a ring

with a set of local units consisting of sums of distinct vertices.
For a ring R the assertion that R has local units means that each finite subset of R is

contained in a corner of R, that is, a subring of the form εRε where ε is an idempotent of R.
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Note that since every Leavitt path algebra LK(E) has local units, it is the directed union of
its corners.

The Leavitt path algebra LK(E) is a Z-graded K-algebra, spanned as a K-vector space by
{pq∗ | p, q are paths inE}. (Recall that the elements of E0 are viewed as paths of length 0, so
that this set includes elements of the form v with v ∈ E0.) In particular, for each n ∈ Z, the
degree n component LK(E)n is spanned by elements of the form {pq∗ | length(p)−length(q) =
n}.

For any ring R without identity, instead of dealing with the category of all left modules
R-mod, we will work with the usual category R-Mod, which is the full subcategory of R-mod
of the unital and nondegenerate left R-modules. Recall that an R-module M is unital if
RM = M and it is nondegenerate if Rm = 0, with m ∈ M , implies m = 0. We will also
deal with the category Mod-R of all unital and nondegenerate right modules over R.

Proposition 1.2. Let R be a ring with local units and let M be a unital left R-module. Then:

(i) M is nondegenerate.
(ii) For every m ∈M there is a local unit ε ∈ R such that εm = m.

Proof. �

(i). Assume Rm = 0 for some m ∈ M . Since M is unital, we may write m =
∑n

i=1 rimi

for some ri ∈ R and mi ∈ M . Find ε ∈ R, a local unit for all the ri’s. Then we have
m =

∑n
i=1 rimi =

∑n
i=1 εrimi = ε (

∑n
i=1 rimi) = εm ∈ Rm = 0, that is, m = 0 as needed.

(ii). Since M is unital, given m in M there are elements r1, . . . , rn in R and m1, . . . ,mn ∈M
such that m = r1m1 + · · · + rnmn. Now r1, . . . , rn ∈ εRε for some local unit ε in R. Then
εm = m.

2. Projective, injective, free and flat modules

In this section we outline some of the standard results on projective, injective and flat
modules over rings which have local units. Many of these results have not been recorded, to
the authors’ knowledge, in any published literature and are needed in the subsequent sections
when we deal with Leavitt path algebras.

As noted by Ánh and Márki in [13], a ring R without identity may not be a projective
R-module. In contrast, an easy argument (indicated below) shows that a Leavitt path algebra
over an arbitrary graph is always projective as a module over itself. Other useful results on
injective and flat modules over a ring with local units are also outlined.

Definition 2.1. A module P in R-Mod is projective if for any epimorphism B
η→ C → 0,

with B and C in R-Mod, and every homomorphism f : P → C there exists a homomorphism
g : P → B such that the following diagram is commutative.

P
g

��~~
~~

~~
~

f
��

B η
// C // 0

The following is a first example of projective R-module.
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Proposition 2.2. Let R be any ring. Then for any idempotent ε ∈ R, the left ideal Rε is a
projective module in the category R-Mod.

Proof. Consider the following diagram with exact row in the category R-Mod.

Rε

f

��
B

η // C // 0

Observe that ε = ε2 ∈ Rε. Let f(ε) = c and let b′ ∈ B such that η(b′) = c. Now
εc = εf(ε) = f(ε2) = f(ε) = c and so η(εb′) = εη(b′) = εc = c. Thus εb′−b′ = k ∈ ker η. From
εb′ = b′ + k we get (i) εb′ = εb′ + εk which implies that εk = 0 and (ii) ε(b′ + k) = ε(εb′) =
εb′ = b′ + k. Then b = b′ + k satisfies εb = b and η(b) = c. Since xε = 0 implies xb = xεb = 0,
the map g : LK(E)ε→ B given by g(xε) = xb is a well-defined homomorphism that satisfies
ηg = f . Hence LK(E)ε is projective. �

Corollary 2.3. For an arbitrary graph E and field K the Leavitt path algebra LK(E) is a
projective module in the category LK(E)-Mod.

Proof. Note that LK(E) = ⊕v∈E0LK(E)v. Since LK(E)v is projective (by Proposition 2.2)
and the direct sum of projective modules in LK(E)-Mod is again projective, we conclude that
LK(E) is a projective module in LK(E)-Mod. �

Although, as it has been said before, a ring R without identity need not be a projective R-
module, one way to consider finitely generated projective modules over such a ring is indicated
in [17, pg. 163] as follows: a finitely generated left R-module P is defined as projective if, as
a left module over the unitization R1, P is projective (recall that for a ring R the unitization
of R is defined as R1 := R ⊕ Z with addition componentwise and multiplication defined by
(x, n)(y,m) = (xy + ny +mx, nm) for all x, y ∈ R and n,m ∈ Z; note that R can be seen as
an ideal of R1 by identifying it to {(x, 0) with x ∈ R}).

The following Proposition shows that for a ring R with local units this new definition
coincides with the usual definition of projective modules over R (Definition 2.1).

Proposition 2.4. Let R be a ring with local units and let P ∈ R-Mod. Then:

(i) For any left R1-module B, HomR(P,B) = HomR1(P,B).
(ii) P is projective as an R-module if and only P is projective as an R1-module ( with the

definition of projectivity given in Definition 2.1).

Proof. (i). Let g : P → B be an R-homomorphism. Consider x ∈ P . By Proposition
1.2 (ii), there is a local unit v ∈ R such that vx = x. Then, for any s ∈ R1 we have
g(sx) = g(svx) = svg(x), as sv ∈ R and g is an R-morphism. But svg(x) = sg(vx) = sg(x).
Thus, g is an R1-homomorphism.

(ii). We need only to prove the “only if” part. Suppose P is a projective R-module.
Consider the following diagram of R1-modules and R1-morphisms with an exact row:

P

f

��
B

η // C // 0
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By projectivity, there is an R-morphism g : P → B such that ηg = f . By Part (i) above, g
is an R1-morphism, hence P is a projective R1-module. �

We next consider the injective modules in R-Mod. As we shall see, the statement cor-
responding to Proposition 2.4 (ii) is false for injective modules. We first recall the Baer
Criterion for injectivity in R-Mod. We don’t include its proof because it is almost identical
to the corresponding one for modules over unital rings (see [41, Theorem 3.30]).

Proposition 2.5. (Baer Criterion). Let R be a ring with local units. A module M ∈ R-Mod
is injective if and only if for any left ideal I of R and any R- homomorphism f : I → M
there is an R-homomorphism g : R→M such that g|I = f .

Remark 2.6. Let R be a unital ring and R1 its unitization. Every left R-module M can
be made a unital R1-module under the operation (r,m)x = rx + mx . Moreover every
homomorphism of left R-modules f : M → N is an R1-homomorphism, since for any
(r,m) ∈ R1 and x ∈ M , we have f((r,m)x) = f(rx + mx) = rf(x) + mf(x) = (a,m)f(x).
Thus HomR(M,N) = HomR1(M,N) for any left R-module N . On Page 11 of his book [29],
Carl Faith deduces that this implies that a left R-module M is injective if and only if M is
injective as a left R1-module. This is false, as the following example shows.

Example 2.7. Let Q be the field of rational numbers and let R be the ring consisting on
the direct sum of countably infinite copies of Q, say, R = ⊕∞i=1Ri, with Ri

∼= Q. Clearly, R is
a non-unital ring. Since R is a direct sum of simple R-modules, every R-module M satisfying
RM = M and, in particular R, is injective as a left R-module. Let R1 be the unitization of
R. Then R is not injective as an R1-module. This is because R is an essential right ideal
in R1: if (r, n) ∈ R1 is non-zero, then we can find a suitable element (s, 0) ∈ R such that
(r, n) · (s, 0) = (rs + ns, 0) 6= (0, 0). So, if R were injective, then R = R1 would be a
ring with identity ( as an injective R1-module has no proper essential extensions). This is a
contradiction, since, by construction, R is a non-unital ring.

We next consider some preliminary results on flat modules over rings with local units.

Definition 2.8. Let R be an arbitrary ring. We will say that a module M ∈ R-Mod is
flat if the functor − ⊗R M is exact on the category R-Mod. In other words, if whenever
0→ A→ B → C → 0 is a short exact sequence in R-Mod then

0 // A⊗RM // B ⊗RM // C ⊗RM // 0

is a short exact sequence. Since − ⊗R M is exact on the right hand side, the module M is
flat if any monomorphism A → B gives rise to a monomorphism A⊗R M → B ⊗R M . The
notion of flat right R-module can be obtained from this one in the obvious way.

Lemma 2.9. Let R be a ring with local units. For any M ∈ Mod-R the map µM : M⊗R→M
given by

∑n
i=1mi ⊗ ri 7→

∑n
i=1 miri is an isomorphism of right R-modules.

Proof. Since MR = M, this map is clearly an epimorphism. Suppose
∑n

i=1 miri = 0. Let
ε be a local unit in R satisfying εri = riε = ri for i = 1, . . . , n. Then

∑n
i=1mi ⊗ ri =∑n

i=1mi ⊗ riε =
∑n

i=1 miri ⊗ ε = (
∑n

i=1miri)⊗ ε = 0⊗ ε = 0. �

Corollary 2.10. A ring R with local units is flat as a left R-module.
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Proof. In view of the above Lemma 2.9, the original proof for unital rings holds here (see

[41, Proposition 3.46 (i)]). Indeed, let 0→ A
f→ B be an exact sequence of right R-modules.

Tensoring with the left R-module R, we get a commutative diagram

0 // A
f // B

0 // A⊗R

µA

OO

f⊗idR// B ⊗R

µB

OO

where idR is the identity map on R and µA, µB are the isomorphisms defined in Lemma 2.9.
Since µA, f and µB are all monomorphisms, so is f ⊗ idR. Hence R is flat in R-Mod.

�

More examples of projective and flat modules over rings with local units are given by the
free modules we define in what follows.

Definition 2.11. Let R be a ring with local units, and F a left module in R-Mod. Suppose
that there exist and index set B = {bi}i∈Λ ⊆ F and a set of idempotents U := {ui}i∈Λ ⊆ R
with bi = uibi for every i ∈ Λ satisfying: for every x ∈ F there exists a unique family
{ri}i∈Λ ⊆ R with ri = riui for every i ∈ Λ, almost all ri = 0, such that x =

∑
i∈Λ ribi.

Then we say that F is a U-free left R-module, and B is called a U-basis of F . Note that, in
particular, F =

⊕
i∈ΛRbi.

If R is a ring with a unit element 1 then taking ui = 1 in Definition 2.11 we have the
definition of free left R-module. On the other hand, Definition 2.11 can be considered as an
extension of the notion of projective basis (see [41, Definition in pg. 106]).

Example 2.12. Every Leavitt path algebra LK(E) is an E0-free left LK(E)-module with
basis E0.

Remark 2.13. If F is a U -free left R-module, for R a ring with local units, then (by the
definition) F is unital, and by Proposition 1.2 (i) F ∈ R-Mod, hence whenever we consider a
free module, there is no need of specifying that it is a unital nondegenerate left R-module.

The first property a U -basis has is that every homomorphism of a U -free module is deter-
mined by the image of the elements of the U -basis.

Lemma 2.14. Let R be a ring with local units and F a U-free left R-module with basis
B = {bi}i∈Λ. Consider a family {ai}i∈Λ of elements in a left R-module A. Then there exists
a unique homomorphism of left R-modules f : F → A such that f(bi) = uiai for every i ∈ Λ
(where U = {ui}i∈Λ).

Proof. For any x ∈ F , let {ri}i∈Λ ⊆ R be the unique family such that ri = riui for every
i ∈ Λ, almost all ri = 0, and x =

∑
i∈Λ ribi. Define f : F → A by f(x) :=

∑
i∈Λ ribi. The

uniqueness of the ri’s implies that this map is well defined, and it is immediate to see that it
is a homomorphism of left R-modules such that f(bi) = uiai for every i ∈ Λ. It is also easy
to check that f is unique, as every element of F is in the R-span of B. �

Lemma 2.15. Let R be a ring with local units and F a U-free left R-module with basis
B = {bi}i∈Λ. Then F is projective as a left R-module.
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Proof. Denote U = {ui}i∈Λ, with the ui’s as in Definition 2.11. Consider the following diagram
with exact row in the category R-Mod.

E

f
��

A
η // C // 0

Surjectivity of η implies that there exists a family {ai}i∈Λ ⊆ A satisfying η(ai) = f(bi) for
every i ∈ Λ. By Lemma 2.14 there is a unique homomorphism g : E → A with g(bi) = uiai for
every i ∈ Λ. We claim that ηg = f . Indeed, consider x ∈ E and write x =

∑
i∈Λ ribi, with the

ri’s as in Definition 2.11. Then ηg(x) = ηg(
∑

i∈Λ ribi) = η(
∑

i∈Λ rig(bi)) = η(
∑

i∈Λ riuiai) =
η(
∑

i∈Λ riai) =
∑

i∈Λ riη(ai) =
∑

i∈Λ rif(bi) = f(
∑

i∈Λ ribi) = f(x). This concludes the
proof. �

Remark 2.16. Example 2.12 and Lemma 2.15 imply that every Leavitt path algebra is
projective as a left module over itself, result that we have obtained in Corollary 2.3.

As in the case of unital rings, arbitrary modules over a ring with local units can be described
in terms of free U -modules.

Proposition 2.17. Every module over a ring R with local units is the epimorphic image of
a U-free module.

Proof. Let M be in R-Mod. Consider m ∈M ; by Proposition 1.2 (ii) there exists a local unit
εm ∈ R such that εmm = m. This implies M =

∑
m∈M Rm =

∑
m∈M Rεmm and therefore the

map ⊕m∈MRεm → M given by (rmεm) 7→
∑

m rmεmm =
∑

m rmm yields an epimorphism
between ⊕m∈MRεm and M . Moreover, ⊕m∈MRεm is a U -free left module for U := {εm}m∈M .

�

Proposition 2.18. Let R be a ring with local units and P ∈ R-Mod. Then P is projective if

and only if every short exact sequence 0 −→ A
f−→ B

g−→ P −→ 0 splits.

Proof. Follow the proof of the unital case ([41, Proposition 3.3]) and use Lemma 2.15 and
Proposition 2.17. �

The next result provides with a characterization of projective modules over rings with local
units.

Theorem 2.19. Let R a be a ring with local units and let P be in R-Mod. Then P is
projective if and only if it is a direct summand of a U-free let R-module.

Proof. Again, follow the unital case ([41, Theorem 3.5 (i)]) and use Propositions 2.17 and
2.18 and Lemma 2.15. �

Lemma 2.20. Let R be a ring with local units. Then every U-free left R-module is flat.

Proof. Consider a U -free left R-module F . Let U := {ui}i∈Λ and B = {bi}i∈Λ ⊆ F be as in
Definition 2.11. Plainly, Rui is isomorphic, as a left R-module, to Rbi = Ruibi. Now, use the
following facts: R is flat (Corollary 2.10), Rε is a direct summand of R for every idempotent
ε ∈ R, and flatness is inherited by direct summands, to get that every Rbi is flat. Apply
again that flatness behaves well with direct sums to obtain F = ⊕i∈ΛRbi is flat. �
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Corollary 2.21. Let R be a ring with local units. Then every projective left R-module is flat.

Proof. Let P be a projective left R-module. By Theorem 2.19 P is a direct summand of a
U -free module F . Now, apply Lemma 2.20 and that every direct summand of a flat module
is flat to get the result. �

Corollary 2.22. Let E be an arbitrary graph and K any field. Then every projective module
P ∈ LK(E)-Mod is flat.

Many of the known characterizations of flat modules carry over to flat modules in R-Mod,
for R a ring with local units. We single out one proved by O. Villamayor for rings with
identity (see [41, Theorem 3.62]).

First we need the following result, which can be proved going along the proof of [41,
Proposition 3.60]. As a corollary we will obtain more examples of flat modules.

Proposition 2.23. Let R be a ring with local units, F a flat left R-module and K a submodule
of F . Then F/K is a flat left R-module if and only if K∩IF = IK for every finitely generated
right ideal I of R.

Recall that for a semiprime ring R the socle of R, denoted by Soc(R) is defined as the
sum of all minimal left (or right) ideals of R. If there are no minimal one-sided ideals then
Soc(R) := 0. A complete study of the socle of a Leavitt path algebra has been reached with
[?, 22, 8].

Corollary 2.24. Let R be a semiprime ring with local units. Then R/Soc(R) is flat.

Proof. It is known that the socle of a semiprime ring, which is an ideal of the ring, is von
Neumann regular: for unital rings, see [41, Corollary 4.10]; for non-unital rings, apply Litoff’s
Theorem (see, for example [26, Theorem 4.3.11]) and the unital case. Hence, if we denote
Soc(R) by S we have S ∩ IR = IS for every finitely generated right ideal of R. This implies
that R/Soc(R) is flat as a left R-module, by Proposition 2.23.

A similar argument shows that R/Soc(R) is flat as a right R-module.
�

Theorem 2.25. Let R be a ring with local units and let F be a U-free left R-module. Then,
for any submodule S of F , the following conditions are equivalent:

(i) F/S is a flat R-module.
(ii) For each element x in S, there is a homomorphism f : F → S such that f(x) = x.

(iii) For each finite set of elements {x1, . . . , xn} of S, there is a homomorphism f : F → S
such that f(xi) = xi for all i = 1, . . . , n.

Proof. All we need is to repeat the original proof of Villamayor’s Theorem for rings with
identity (see [41, Theorem 3.62]) after replacing [41, Proposition 3.60] by Proposition 2.23
and [41, Lemma 3.61] by its counterpart for rings with local units, which remains valid. �

We close the section by characterizing semisimple Leavitt path algebras in terms of its
projective and injective modules. First, we need to prove that every Leavitt path algebra
contains maximal one sided ideals.
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In general, a ring without identity need not have a maximal one sided ideal. This happens
if R is a ring whose additive part R+ is a torsion divisible abelian group. For example, let
R+ = Q/Z, the additive group of rational numbers modulo the integers. First notice that
the ring multiplication in R is trivial, that is, a · b = 0 for any two elements a, b ∈ R. To see
this, suppose b is an element of additive order n. Since R+ is divisible, we can write a = nc
for some element c of R+. Then a · b = nc · b = c · (nb) = c · 0 = 0. Thus every subgroup
of R+ is indeed an ideal of the (commutative) ring R. Being divisible, R+ has no maximal
subgroups (see [30, Exercise 1, pg. 99]) and so the ring R has no maximal one-sided ideals.

However, the ring LK(E) has maximal one-sided ideals as indicated below.

Lemma 2.26. For any graph E, the ring LK(E) has maximal left and right ideals.

Proof. Write LK(E) = ⊕v∈E0LK(E)v. For a fixed vertex u, the set

{I | I a left ideal of LK(E), u 6∈ I ( LK(E)u}

is inductive under the set inclusion and so, by Zorn’s Lemma, there is a maximal member
M . It is clear that, as a left LK(E)-module, M is a maximal submodule of LK(E)u. Then
M ⊕

(
⊕v∈E0\{u}LK(E)v

)
is a maximal left ideal of LK(E). It is possible to find, in a similar

way, maximal right ideals. �

Proposition 2.27. Let E be an arbitrary graph and K any field. The following are equivalent
conditions:

(i) HomLK(E)(S, LK(E)) 6= 0 for any simple module S in LK(E)-Mod.
(ii) Every simple LK(E)-module is projective in LK(E)-Mod.

(iii) LK(E) = Soc(LK(E)).
(iv) Every left LK(E)-module is injective.
(v) Every left LK(E)-module is projective.

Proof. The proof of (iii) ⇔ (iv) and (iii) ⇔ (v) is similar to the analogue results for unital
rings (see [37, Theorem 2.8] and [37, Theorem 2.9], respectively), so we omit it.

(i) ⇒ (ii). Suppose S is a simple left LK(E)-module with HomLK(E)(S, LK(E)) 6= 0, so
that there is a non-zero homomorphism f : S → LK(E). Now f(S) ∼= S is a simple left ideal
of LK(E) and since LK(E) is semiprime, f(S) is generated (as a left ideal) by an idempotent
ε ∈ LK(E), that is, f(S) = LK(E)ε. By Proposition 2.2, f(S), and hence S, is a projective
left LK(E)-module.

(ii) ⇒ (iii). Lemma 2.26 implies that there exists a maximal left ideal M of LK(E), hence
LK(E)/M is a simple left LK(E)-module; by our hypothesis, LK(E)/M is projective, hence
LK(E) = I⊕M , for I a left ideal of LK(E). This implies I ∼= LK(E)/M is a simple left ideal
of LK(E), hence it is contained in S := Soc(LK(E)). We claim that S = LK(E).

Suppose S ( LK(E) = ⊕v∈E0LK(E)v. Since the image of S under the coordinate projection
LK(E) → LK(E)v is a sum of simple left ideals, we conclude S = ⊕v∈E0(S ∩ LK(E)v). If
S 6= LK(E), there exists v for which S ∩ LK(E)v ( LK(E)v. By Zorn’s Lemma there exists
a submodule H of LK(E)v maximal with respect to the property of containing S ∩LK(E)v.
In fact, it is a maximal submodule of LK(E)v, hence LK(E)v/H is a simple LK(E)-module.
By (ii), it is projective, and so LK(E)v = H ⊕ C, for C a left LK(E)-module. Then C ∼=
LK(E)v/H is a simple left LK(E)-module having zero intersection with S (as it is contained
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in LK(E)v and its intersection with H is zero). But this is a contradiction. Hence, LK(E) =
S = Soc(LK(E)).

(iii) ⇒ (i). If LK(E) = Soc(LK(E)), every left ideal of LK(E) is a direct summand. Since
every simple left LK(E)-module S is of the form LK(E)/M for some maximal left ideal M of
LK(E) which is a direct summand, we conclude that S is isomorphic to a direct summand of
LK(E) and hence HomLK(E)(S, LK(E)) 6= 0. �

Remark 2.28. It is well known that conditions (ii) to (v) in Proposition 2.27 are equivalent
for rings with local units. However, condition (i) needs not imply any of the conditions (ii),
(iii), (iv) or (v) for arbitrary rings, not even for rings with identity. For example, let p be
a prime integer and R = Z/p2Z the ring of integers modulo p2. Then multiplication by p is
an R-homomorphism giving rise to the exact sequence 0 → pR → R → pR → 0. Clearly
pR ∼= R/pR is (up to an isomorphism) the only simple R-module and HomR(pR,R) 6= 0.
But pR is neither projective nor injective and R 6= Soc(R).

3. Weakly regular Leavitt path algebras

The notion of right weakly regular ring was introduced by Ramamurthi in [40]. It can be
found in the literature also as right fully idempotent ring (see, for example [11]).

A (not necessarily unital) ring R is said to be right weakly regular if every right ideal I is
idempotent, that is, I2 = I. Left right weakly regular means that every left ideal is idempotent,
while the ring is called weakly regular if it is left and right weakly regular.

In this section we will characterize right weakly regular Leavitt path algebras and will prove
that the notion is left-right symmetric in this context. In general, a right weakly regular ring
need not be left weakly regular: the paper [11] is devoted to find such an example of this fact.

We start first by a characterization of right weakly regular rings. The equivalences (i) ⇔
(ii) and (i) ⇔ (v) were proved, respectively, in [40, Proposition 1 and Remark 3].

Theorem 3.1. Let R be a ring with local units. The following are equivalent conditions:

(i) R is right weakly regular.
(ii) For every element a in R there exists x ∈ RaR such that a = ax.

(iii) For every ideal I of R the left R-module R/I is flat.
(iv) For every element a in R the left R-module R/RaR is flat.
(v) For every ideal I of R and for every right ideal Y of R, Y ∩ I = Y I.

Proof. (i) ⇒ (ii). For a ∈ R, by the hypothesis aR = aRaR; since R has local units, there
exists an idempotent e ∈ R such that a = ae, hence a ∈ aR = aRaR, so a = ax for some
x ∈ RaR.

(ii) ⇒ (iii). Let I be an ideal of R. By Corollary 2.10, R is flat as a left R-module,
hence in order to prove flatness of R/I it is enough to show that if Y is a right ideal of
R then I ∩ Y R = Y I and apply Proposition 2.23. The containment Y I ⊆ I ∩ Y R is
obvious. Now, let y ∈ I ∩ Y R. By (ii), there exists x ∈ RyR such that y = yx, therefore,
y = yx ∈ Y Rx ⊆ Y RRyR ⊆ Y I.

(iii) ⇒ (iv) is a tautology.
(iv) ⇒ (ii). Given a ∈ R, the flatness of the left R-module R/RaR implies (by Corollary

2.10 and Proposition 2.23) RaR∩Y R = Y RaR for every right ideal Y of R. In particular, for
Y = aR we have RaR ∩ aRR = aRRaR. Use that R has local units to get a ∈ RaR ∩ aRR,
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hence a ∈ aRaR, that is, there exists a finite number of elements ri, si ∈ R such that
a =

∑
ariasi = a

∑
riasi = ax for x =

∑
riasi ∈ RaR.

(ii) ⇒ (v). Consider an ideal I of R and a right ideal Y of R. It is clear that Y I ⊆ Y ∩ I.
To show the other containment, consider a ∈ Y ∩ I; by (ii) there exists x ∈ RaR such that
a = ax. Finally, ax ∈ aRaR ⊆ Y RIR ⊆ Y I.

(v) ⇒ (i). Let I be a right ideal of R. By (v) and using that R has local units we have
I = I ∩RI = IRI = I2, so R is right weakly regular.

�

An application of Theorem 3.1 provides with examples of weakly regular rings: the von
Neumann regular rings and the simple rings with local units.

The following are examples of right weakly regular Leavitt path algebras.

Examples 3.2. (i) For every n ≥ 2, the Leavitt algebra L(1, n) is right weakly regular.
(ii) The Leavitt path algebra associated to the following graph is right weakly regular,

although it is neither simple nor von Neumann regular:

E ≡ •
��
YY

// •v

Proof. (i) follows because L(1, n) is simple (see [3, Corollary 3.13 (iii)]).
(ii). As E satisfies Condition (K), all the ideals of the Leavitt path algebra LK(E) are

graded; in particular, they are generated by hereditary and saturated subsets of vertices of
E0 ([23, Theorem 4.5]). Hence, LK(E), 0 and I, the ideal generated by v, which is just
the Socle of LK(E) ([?, Theorem 4.2]) are the only two-sided ideals of LK(E). Obviously,
LK(E)/LK(E) is flat as a left LK(E)-module; by Corollary 2.10 LK(E)/0 is flat and by
Corollary 2.24 LK(E)/I is also flat as a left LK(E)-module. Now, right weakly regularity of
the Leavitt path algebra LK(E) follows from Theorem 3.1. �

However, not every Leavitt path algebra is right weakly regular.

Examples 3.3. Let K be a field. The Leavitt path K-algebras of the following graphs are
not right weakly regular:

E ≡ •%%

F ≡ •%% // •v

Indeed, in the first case, the associated Leavitt path algebra is isomorphic to K[x, x−1],
which is not right weakly regular as not every (right) ideal is idempotent: take, for example,
the ideal I generated by 1 + x; it is not idempotent as otherwise 1 + x ∈ I2 would imply
1 + x = f(1 + x)2 for some f ∈ K[x, x−1], equivalently, 1 = f(1 + x), which is not possible as
1 + x is not invertible in K[x, x−1].

In the second case, denote by T the corresponding Leavitt path algebra (which is the
Toeplitz algebra) and by I the ideal generated by the vertex v. If T were right weakly regular,
then T/I would be right weakly regular (use [40, Proposition 5]), but T/I is isomorphic to
LK(E) (apply [23, Lemma 2.3 (1)]), which is not right weakly regular.
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The following theorem follows from results by K. R. Goodearl [32] and M. Tomforde [43]
and will be of importance to characterize right weakly regular Leavitt path algebras.

Theorem 3.4. Let K be a field and E an arbitrary graph. Then the following are equivalent
conditions:

(i) Every ideal of LK(E) is graded.
(ii) The Leavitt path algebra LK(E) is exchange.

(iii) The graph E satisfies Condition (K).

Proof. (ii) ⇔ (iii) is [32, Theorem 4.2], while (i) ⇔ (iii) is [43, Theorem 6.16]. �

Other crucial step in the characterization of right weakly regular Leavitt path algebras
will be Proposition 3.7, which states that every graded ideal in a Leavitt path algebra is
itself (isomorphic to) a Leavitt path algebra. This is the algebraic analog of [28, Lemma 1.6]
and a generalization of [18, Lemma 1.2] to arbitrary graphs. To prove it, we need first some
definitions and notation. We will follow [43] and [28].

Definitions 3.5. Let E be an arbitrary graph and H a hereditary subset of E0; we say that
a vertex is a breaking vertex of H if it belongs to the set

BH := {v ∈ E0 \H | v ∈ E0
inf and 0 < |s−1(v) ∩ r−1(E0 \H)| <∞}.

For v ∈ BH , define and denote by I(H,S) the ideal of LK(E) generated by H ∪ {vH | v ∈ S}.
According to [43, Theorem 5.7], all the graded ideals of a Leavitt path algebra LK(E) are

of the form I(H,S) for a suitable pair (H,S), being H a hereditary and saturated subset of
vertices of E0.

Let E be a graph, and let ∅ 6= H be a hereditary and saturated subset of E0 and let

S ⊆ BH . Denote by F̃E(H,S) the collection of all finite paths α = e1, . . . , en of positive
length such that ei ∈ E1, s(α) ∈ E0 \H, r(α) ∈ H ∪ S and r(αi) ∈ E0 \ (H ∪ S) for i < n.

We define

FE(H,S) = F̃E(H,S) \ {e ∈ E1 | s(e) ∈ S and r(e) ∈ H}.
We denote by FE(H,S) another copy of FE(H,S). For α ∈ FE(H,S), we write α to denote

a copy of α in FE(H,S). Then, we define the graph HES = (HE
0
S,HE

1
S, s
′, r′) as follows:

HE
0
S = (HES)0 := H ∪ S ∪ FE(H,S).

HE
1
S = (HES)1 := {e ∈ E1 | s(e) ∈ H}∪{e ∈ E1 | s(e) ∈ S and r(e) ∈ H}∪FE(H,S).

For every α ∈ FE(H,S), s′(α) = α and r′(α) = r(α).

For the other edges of HE
1
S, s′(e) = s(e) and r′(e) = r(e).

Remark 3.6. The graph HES we have just described has the following properties:

(i) It contains the restriction graph EH = (H, {e ∈ E1| s(e) ∈ H}, r|(EH)1 , s|(EH)1).
(ii) Every vertex in S ⊆ HE

0
S emits infinitely many edges into H and does not emit other

edges.
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(iii) Every vertex in FE(H,S) emits exactly one edge, which ends in H ∪S, thus every cycle
in the new graph HES comes from a cycle in the restriction graph EH and therefore the
cycle structure of HES is the same as that of EH . Concretely:
– If EH satisfies Condition (L), then so does HES.
– If EH satisfies Condition (K), then so does HES.

We are now ready to show that every graded ideal in a Leavitt path algebra over an
arbitrary graph can also be realized as a Leavitt path algebra for some graph.

Proposition 3.7. Let E be an arbitrary graph and K any field. Then, for any graded
ideal I = I(H,S) of the Leavitt path algebra LK(E), there exists a graded isomorphism ϕ :
LK(HES)→ I(H,S).

Proof. Define ϕ as the map that acts as follows:

ϕ(u) = u for every u ∈ H,

ϕ(v) = vH for every v ∈ S,

ϕ(α) =

{
αα∗ if r(α) ∈ H (α ∈ FE(H,S))

αr(α)Hα∗ if r(α) ∈ S (α ∈ FE(H,S)),

ϕ(e) = e for every e ∈ E1 with s(e) ∈ H,

ϕ(f) = f for every f ∈ E1 with r(f) ∈ H and s(f) ∈ S,

ϕ(α) =

{
α if r(α) ∈ H (α ∈ FE(H,S))

αr(α)H if r(α) ∈ S (α ∈ FE(H,S)),

It is not difficult to show that there exists an ∗-homomorphism of K-algebras (in fact, by the
definition, it is a graded homomorphism) that extends ϕ.

To show the injectivity we will apply [22, Theorem 3.7], which remains valid for any graph
and any field. Hence, we have to prove that ϕ sends every vertex of HE

0
S to a non-zero element

of the ideal I(H,S) and every cycle without exits c in HES to a non-nilpotent homogeneous
element of non-zero degree in I(H,S).

Indeed, the condition on the vertices of HE
0
S is fulfilled, and to show the condition on the

cycles without exits, take into account Remark 3.6 (iii) and the definition of ϕ (both say that
the image of a cycle without exits in HES is the cycle itself but seen inside the ideal I(H,S)).

Now we show that ϕ is surjective. It was proved in [43, Lemma 5.6] that I(H,S) is generated
(as a K-vector space) by elements αβ∗, with r(α) = r(β) ∈ H and αvHβ∗, with r(α) =
r(β) = v ∈ S (being α, β paths in LK(E)), therefore to check the surjectivity it is enough
to find inverse images of the elements of the form α or βr(β)H , for α, β paths in E with
r(α) ∈ H and r(β) ∈ S.

To start with, choose a path α in E such that r(α) ∈ H, say α = f1 . . . fm, with fi ∈ E1.
If r(α) ∈ H, then α is a path in the restriction graph and by the definition of ϕ we have
α = ϕ(α) ∈ Im(ϕ). Suppose (rα) /∈ H.
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Now r(fm) ∈ H. If r(f1) ∈ H then ϕ(fi) = fi for all i = 2, . . . , n and f1 = ϕ(f1) or ϕ(f1)
according as s(f1) ∈ S or s(f1) /∈ S (hence f1 ∈ FE(H,S)). In either case, it is clear that
α ∈ Im(ϕ). Suppose r(f1) /∈ H.

Let n be the smallest integer such that 1 < n ≤ m and r(fn) ∈ H (and so r(fn−1) /∈ H).
We distinguish two cases. Suppose s(fn) ∈ S. Since any edge from a vertex in S must
end in a vertex in H (see Remark 3.6 (ii)), s(fi) /∈ S (and /∈ H) for i = 1, . . . , n − 1. Thus
γ = f1 · · · fn−1 ∈ FE(H,S) and we get α = γ · fn · · · fm = ϕ(γ)ϕ(fn) . . . ϕ(fm) ∈ Im(ϕ).
On the other hand if s(fn) /∈ S and hence /∈ H ∪ S, then again by Remark 3.6 (ii), r(fi) /∈
H ∪ S for i = 1, . . . , n − 1. Thus δ = f1 · · · fn ∈ FE(H,S) and α = δ · fn+1 · · · fm =
ϕ(δ)ϕ(fn+1) . . . ϕ(fm) ∈ Im(ϕ).

To finish the proof, consider a path β = e1 . . . en of length n with r(β) ∈ S. Since H is
hereditary and H ∩ S = ∅, s(ei) /∈ H for i = 1, . . . , n. Since r(en) ∈ S, we also conclude, by
Remark 3.6 (ii), that s(ei) /∈ S for all i = 1, . . . , n. This means that β ∈ FE(H,S) and so,
by definition, βr(β)H = ϕ(β̄). This proves that ϕ is surjective. �

Proposition 3.8. Let E be an arbitrary graph and K be any field. If E satisfies Condition
(K), then the Leavitt path algebra LK(E) is right weakly regular.

Proof. Let I be an ideal of LK(E). By Theorem 3.4 the ideal I is graded and by Proposition
3.7 it is isomorphic, as a K-algebra, to a Leavitt path algebra. Since every Leavitt path
algebra has local units, I itself has local units.

Now we prove that I is pure, i.e., that it satisfies Condition (ii) in Theorem 2.25; observe
that it can be applied by virtue of Example 2.12. To this end, consider an element a ∈ I; use
that I has local units to find an idempotent u ∈ I such that a = au. Then

ρu : LK(E) → I
r 7→ ru

is a homomorphism of left LK(E)-modules such that ρu(a) = au = a, hence LK(E)/I is flat
as a left LK(E)-module and by Theorem 3.1, LK(E) is right weakly regular. �

Proposition 3.9. Let E be a row-finite graph and K be an arbitrary field. If the Leavitt path
algebra LK(E) is right weakly regular, then the graph E satisfies Condition (K).

Proof. We show first that if the Leavitt path algebra associated to a graph E is right weakly
regular, then the graph satisfies Condition (L).

Suppose that c is a cycle without exits in E, and let H be the saturated closure of c0.
Follow [6, Proposition 3.5 (iii)] to obtain that I(H) is isomorphic to Mn(K[x, x−1]) for some
n ∈ N∪{∞}. By [40, Proposition 5], since LK(E) is right weakly regular I(H) is right weakly
regular, that is, Mn(K[x, x−1]) is right weakly regular. On the other hand, by Proposition
3.11 (i) every corner of Mn(K[x, x−1]) is right weakly regular. But for e the matrix unit
in Mn(K[x, x−1]) having all the entries equal to zero except in the entry (1, 1), the corner
eMn(K[x, x−1])e is isomorphic to K[x, x−1], which is not right weakly regular, as we explained
before. This contradiction shows that E has no cycles without exits.

Now we prove that right weakly regularity for a Leavitt path algebra implies Condition
(K).

Suppose on the contrary that there exists a vertex v and a cycle c = e1 . . . en based at v,
with card(CSP (v)) = 1 and consider the sets A = {e ∈ E1 | e exit of c}, B = {r(e) | e ∈ A},
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and let H be the hereditary saturated closure of B. With a similar argument to that used in
[4, pp. 557 and 558 (proof of Lemma 7)] we obtain that H ∩ α0 = ∅; this means that H is a
proper subset of E0. Moreover, c0 ⊆ (E/H)0 and {e1, . . . , en} ⊆ (E/H)1, whence c is a cycle
in E/H with no exits.

Since LK(E/H) ∼= LK(E)/I(H) ([23, Lemma 2.3(1)]), LK(E/H) is a right weakly regular
ring [40, Proposition 5] and, by the previous step, E/H satisfies Condition (L), a contradic-
tion. �

The authors are thankful to Gene Abrams for the following remark.

Remark 3.10. Proposition 3.9 can be generalized in the following way: if P is a ring-
theoretic property of LK(E) that implies Condition (L) on the graph E, and is closed under
homomorphic images, then P implies Condition (K) on the graph E too.

The property of being right weakly regular is preserved by corners and by matrices. This
fact is the first step to show that right weakly regularity is a Morita invariant property for
rings with local units.

Proposition 3.11. Let R be a ring.

(i) If R is right weakly regular then, for every idempotent e ∈ R, the corner eRe is a right
weakly regular ring.

(ii) If R has local units then R is right weakly regular if and only if for every idempotent
e ∈ R, the corner eRe is a right weakly regular ring.

(iii) R is right weakly regular if and only if for every natural n the matrix ring Mn(R) is a
right weakly regular ring.

Proof. To show that if R is a right weakly regular ring then every corner and every matrix
ring over R is right weakly regular, follow the proof of the analogue results for unital rings
in [44, Proposition 20.4] and apply Theorem 3.1.

It is a tautology that if every matrix ring over R is a right weakly regular ring then R is
right weakly regular (take n = 1).

Finally, to finish the proof of (ii) suppose that every corner in R is right weakly regular,
and consider an element a ∈ R. Apply that R has local units to find an idempotent e ∈ R
such that a ∈ eRe. By the hypothesis, eRe is a right weakly regular ring so (Theorem 3.1)
there exists x ∈ eReaeRe ⊆ RaR such that a = ax. By Theorem 3.1 this means that R is a
right weakly regular ring. �

We next recall the notion of Morita equivalence for idempotent rings (a ring R is said to
be idempotent if R2 = R).

Let R and S be two rings, RNS and SMR two bimodules and (−,−) : N × M → R,
[−,−] : M ×N → S two maps. Then the following conditions are equivalent:

(i)

(
R N
M S

)
is a ring with componentwise sum and product given by:(
r1 n1

m1 s1

)(
r2 n2

m2 s2

)
=

(
r1r2 + (n1,m2) r1n2 + n1s2

m1r2 + s1m2 [m1, n2] + s1s2

)
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(ii) [−,−] is S-bilinear and R-balanced, (−,−) is R-bilinear and S-balanced and the follow-
ing associativity conditions hold:

(n,m)n′ = n[m,n′] and [m,n]m′ = m(n,m′) ,

for all m, m′ ∈M and n, ′ ∈ N .
That [−,−] is S-bilinear and R-balanced and that (−,−) is R-bilinear and S-balanced

is equivalent to having bimodule maps ϕ : N ⊗SM → R and ψ : M ⊗RN → S, given by

ϕ(n⊗m) = (n,m) and ψ(m⊗ n) = [m,n]

so that the associativity conditions above read

ϕ(n⊗m)n′ = nψ(m⊗ n′) and ψ(m⊗ n)m′ = mϕ(n⊗m′) .
A Morita context is a sextuple (R, S,N,M,ϕ, ψ) satisfying one of the (equivalent) conditions
given above. The associated ring (in condition (i)) is called the Morita ring of the context.
By abuse of notation we will write (R, S,N,M) instead of (R, S,N,M,ϕ, ψ) and will identify
R, S, N and M with their natural images in the Morita ring associated to the context. The
Morita context is said to be surjective if the maps ϕ and ψ are both surjective.

In classical Morita theory, it is shown that two rings with identity R and S are Morita
equivalent (i.e., R-Mod and S-Mod are equivalent categories) if and only if there exists a
surjective Morita context (R, S,N,M,ϕ, ψ). The approach to Morita theory for rings without
identity by means of Morita contexts appears in a number of papers (see [31] and the references
therein) in which many consequences are obtained from the existence of a surjective Morita
context for two rings R and S.

For an idempotent ring R we denote by R-Mod the full subcategory of the category of all
left R-modules whose objects are the “unital” nondegenerate modules. Here, a left R-module
M is said to be unital if M = RM , and M is said to be nondegenerate if, for m ∈ M ,
Rm = 0 implies m = 0. Note that, if R has an identity, then R-Mod is the usual category of
left R-modules.

It is shown in [36, Theorem] that, if R and S are arbitrary rings having a surjective Morita
context, then the categories R-Mod and S-Mod are equivalent. The converse direction is
proved in [31, Proposition 2.3] for idempotent rings, yielding the following theorem.

Theorem 3.12. Let R and S be two idempotent rings. Then the categories R-Mod and
S-Mod are equivalent if and only if there exists a surjective Morita context (R, S,N,M).

Given two idempotent rings R and S, we will say that they are Morita equivalent if the
categories R-Mod and S-Mod are equivalent.

Theorem 3.13. Let R and S be rings with local units that are Morita equivalent. Then R is
right weakly regular if and only if S is right weakly regular.

Proof. Let (R, S,N,M) be a surjective Morita context and assume that R is a right weakly
regular ring. We are going to show that for every idempotent e in S the corner eSe is a right
weakly regular ring. The result then will follow by Proposition 3.11 (ii).

Since e ∈ S = MN , we can find x1, . . . , xn ∈ M , y1, . . . , yn ∈ N satisfying e =
∑n

i=1 xiyi.
Put x = (x1, . . . , xn), y = (y1, . . . , ym). Then e = xyt, and we may assume xi = exi and
yi = yie, for every i ∈ {1, . . . , n}. Note that the element ytxytx is an idempotent in Mn(R):
ytxytxytxytx = yt(xyt)(xyt)(xyt)x = yte3x = ytex = ytxytx.
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Consider the map

ϕ : Mn(R)ytxytx → eSe
(ytxytx)a(ytxytx) 7→ xytxaytxyt ,

which is easily seen to be a ring isomorphism. Since matrix rings over right weakly regular
rings are again right weakly regular (Proposition 3.11 (iii)) we obtain (via Proposition 3.11
(i)) that eSe is a right weakly regular ring.

�

Proposition 3.14. Let E be a countable but not necessarily row-finite graph, and let K be
any field. Then E satisfies Condition (K) if and only if the Leavitt path algebra LK(E) is
right weakly regular.

Proof. If E satisfies Condition (K) then LK(E) is right weakly regular by Proposition 3.8.
For the converse, suppose that LK(E) is a right weakly regular ring. Given the countable

graph E, denote by F the desingularization of E (see the construction, for example, in [5]).
By [5, Theorem 5.2], the Leavitt path algebras LK(E) and LK(F ) are Morita equivalent
idempotent rings. Since right weakly regularity is a Morita invariant property for rings with
local units (Theorem 3.13), the Leavitt path algebra LK(F ) is right weakly regular, therefore
(any desingularization is a row-finite graph so Proposition 3.9 can be applied) F satisfies
Condition (K) and (equivalently) LK(F ) is an exchange ring (Theorem 3.4). Use now that the
exchange property is Morita invariant for rings with local units [16, Theorem 2.1] to obtain
that the Leavitt path algebra LK(E) is an exchange ring, hence (Theorem 3.4) the graph E
satisfies Condition (K). �

Theorem 3.15. Let K be any field and E an arbitrary graph. Then, the following are
equivalent conditions:

(i) The Leavitt path algebra LK(E) is a right weakly regular ring.
(ii) The graph E satisfies Condition (K).

(iii) The Leavitt path algebra LK(E) is a left weakly regular ring.
(iv) The Leavitt path algebra LK(E) is an exchange ring.
(v) Every ideal of LK(E) is graded.

(vi) Every ideal of LK(E) is isomorphic to a Leavitt path algebra.
(vii) Every ideal of LK(E) has local units.

Proof. The equivalences (ii) ⇔ (iv) ⇔ (v) have been stated in Theorem 3.4.
(i) ⇔ (iii) follows because if I is any left/right ideal then I∗ is a right/left ideal and I∗ is

idempotent if and only if I is idempotent.
(i)⇒ (ii). For countable graphs it has been settled in Proposition 3.9. Now we will prove

the result for arbitrary graphs following the same sketch as Goodearl in the proof of (⇒) in
[32, Theorem 4.2].

Write (K,E) = lim−→ (Kα, Eα) and LK(E) = lim−→ LKα(Eα) as in [32, (3.5)], with Eα a

countable graph for every α ∈ A. Given α ∈ A and a ∈ LKα(Eα), since LK(E) is a right
weakly regular ring, by Theorem 3.1 there exist a finite number of elements x, xi, yi ∈ LK(E)
such that L(ηα)(x) =

∑
xiayi and a = aL(ηα)(x) (here we are following the same notation as

in [32]). And there exist γ ≥ α in A and x′i, y
′
i ∈ LKγ (Eγ) such that L(φαγ)(x) =

∑
x′iay

′
i and

a = aL(φαγ)(x). By the (so called in [32]) Modus Operandi, it follows that for each α ∈ A
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there exists some β ≥ α in A such that LKβ(Eβ) is a right weakly regular ring. For each such
β the graph Eβ satisfies Condition (K) by Proposition 3.9, hence E satisfies Condition (K).

(ii)⇒ (vi). If E satisfies Condition (K), by [32, Theorem 3.8] any ideal I is graded, hence,
by Proposition 3.7, I is isomorphic to a Leavitt path algebra.

(vi) ⇒ (vii) because every Leavitt path algebra has local units.
(vii) ⇒ (i). Suppose that every ideal of the Leavitt path algebra LK(E) has local units.

Consider a ∈ LK(E). By the hypothesis the ideal LK(E)aLK(E) has local units, so there
exists u2 = u ∈ LK(E)aLK(E) such that a = au. By Theorem 3.1 the Leavitt path algebra
is right weakly regular. �

Although Theorem 3.15 shows that the notions of exchange ring and right weakly regular
ring are equivalent for Leavitt path algebras, this is not true for a general ring. We finish
this section by displaying examples of such situations.

Examples 3.16. (i) A right weakly regular ring need not be an exchange ring. Consider
R = W1[K], the first Weyl algebra over a field K of characteristic zero (R can be seen as
K[x, y], where x and y satisfy the conditions xy− yx = 1). Then R is a simple domain
(not a division ring) which is not an exchange ring (see [33, Remark to Proposition 1.8]).

(ii) An exchange ring is not necessarily weakly regular. Indeed, let N be a nilpotent ring
and K a field. Then R = N ⊕M2(K) is an exchange ring (because both N and M2(K)
are exchange rings) while it is not right weakly regular, as not every right ideal of R is
idempotent.

4. Self-injective Leavitt path algebras

In this section we will show that a Leavitt path algebra LK(E) is left (right) self-injective
if and only if E is a row-finite acyclic graph in which every infinite path contains a line point
and so, if and only if LK(E) is a semisimple ring, that is, a direct sum of simple one-sided
ideals.

Our first result shows that a self-injective LK(E) must be von Neumann regular.

Proposition 4.1. Let E be an arbitrary graph and K any field. If LK(E) is left (right)
self-injective then LK(E) is von Neumann regular and E acyclic.

Proof. If ε is any idempotent in LK(E), then LK(E)ε, being a summand, is an injective
module. Now εLK(E)ε ∼= EndLK(E)(LK(E)ε) satisfies εLK(E)ε/J(εLK(E)ε) is von Neumann
regular, where J(εLK(E)ε) is the Jacobson radical of εLK(E)ε (apply that εRε is left (right)
self-injective and [37, Corollary 13.2 (2)]). Now, by [34, Proposition 1, Page 48] (which is true
for non-unital rings), J(εLK(E)ε) = εLK(E)ε∩ J(LK(E)) = εJ(LK(E))ε. By [5, Proposition
6.3] and [8, Proposition 1.8], J(LK(E)) = 0 and therefore J(εLK(E)ε) = 0. We thus conclude
that for any idempotent ε in LK(E), εLK(E)ε is a von Neumann regular ring. Since LK(E) is
a ring with local units, for every a ∈ LK(E), there is an idempotent ε such that εa = a = aε.
Since a ∈ εLK(E)ε, there is a b ∈ εLK(E)ε such that aba = a. Hence LK(E) is von Neumann
regular. By [7, Theorem 1] this is equivalent to the graph E being acyclic. �

We shall show that the left self-injectivity of LK(E) implies that E is a row-finite graph.
Even though a great amount of algebraic properties of LK(E) have been characterized in terms
of properties of the graph (and, depending on the type of graphs considered, an overview of
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these works are: [3, 4, 6, 17, 18, ?, 23] for the row-finite case, [5, 22, 42] for the countable but
not necessarily row-finite setting, and [8, 43, 32] for arbitrary graphs), this is the first instance
where, starting from an arbitrary graph E, an algebraic property of LK(E) automatically
implies row-finiteness of the graph E.

We begin with some preparatory lemmas. Lemma 4.3 states a useful, perhaps known, fact.
We give its proof for the sake of completeness.

Following T. Jech [35], a family F of subsets in a set X with cardinality σ is called an
independent family if given any finitely many distinct subsets X1, . . . , Xm, Y1, . . . , Yn in F ,
the cardinality of X1 ∩ · · · ∩Xm ∩ (X\Y1) ∩ · · · ∩ (X\Yn) is σ.

Lemma 4.2. [35, Lemma 7.7]. A set X of infinite cardinal σ contains a family of 2σ inde-
pendent subsets.

Lemma 4.3. Let σ be an infinite cardinal and let K be any field. Then the K-dimension of
the direct product P of σ copies of K is 2σ.

Proof. We view P as the set of all functions from a set X of cardinality σ to K. By Lemma
4.2, there is an independent family F of 2σ subsets of X. It is then clear that the set
{χA | A ∈ F}, where χA is the characteristic function on A, is a K-independent subset of P
and hence P has K-dimension 2σ. �

Proposition 4.4. If a Leavitt path algebra LK(E) is left (right) self-injective then the graph
E must be row-finite.

Proof. Suppose, by way of contradiction, the graph E contains a vertex v which emits infin-
itely many edges. For each positive integer n, let αn be the cardinality of the set Yn of all
paths of length n that begin with v. Then the set Y of all finite paths that begin with v has
infinite cardinality σ = sup{αn | n = 1, 2, 3, . . . }. Now every element of vLK(E)v is a finite
sum of the form

∑n
i=1 kipiq

∗
i where pi and qi are finite paths beginning with the vertex v and

ki ∈ K. Since the cardinality of the set of all finite subsets Y is again σ, we conclude that
the K-dimension of vLK(E)v is ≤ σ.

Next we wish to choose a subset X of Y of cardinality σ such that the following left
ideals {LK(E)pp∗ | p ∈ X} are LK(E)-independent, that is, for all p ∈ X, LK(E)pp∗ ∩∑

q∈X,q 6=p LK(E)qq∗ = 0.

First observe that, for each n, the set {LK(E)pp∗ | p ∈ Yn} is LK(E)-independent: if
p1, . . . , pk ∈ Yn and ripip

∗
i =

∑
j 6=i rjpjp

∗
j then ripip

∗
i pi =

∑
j 6=i rjpjp

∗
jpi = 0, since pi 6= pj and

pi, pj all have the same length. Thus rpi = ripip
∗
i pi = 0 and hence ripip

∗
i = 0 proving the

LK(E)-independence.
So if αn = |Yn| = σ for some n, then we choose X = Yn.
Suppose αn < σ for all n. Observe that αn need not always be < αn+1 since not every path

in Yn need be a subpath of a path in Yn+1. So we choose a subsequence {αin | n < ω} as
follows. Let αi1 = α1. If αin has been chosen for some n ≥ 1, then choose αin+1 so that in+1

is the smallest integer such that αin+1 > αin . Using the sequence {αin}, we begin constructing
a sequence of sets Tn. Let T1 = s−1(v) = Y1. To construct the set T2, we first note that, by
the minimality of i2, the number of paths of length less than i2 is < αi2 and that, for each
m < i2, the number of vertices in r(Ym) is < αi2 . Since |Yα2−1| < αi2 , there must exist a
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vertex v2 ∈ Yi2−1 which emits αi2 edges, say, s−1(v2) = {e(2)
β | β < αi2}. Let µ2 = f

(2)
1 . . . f

(2)
i2−1

be a path of length i2 − 1 connecting v to v2. Then define

T2 = {µ2e
(2)
β | β < αi2} ∪ (T1\{µ | µ is a subpath of µ2}).

In the definition of T2, we are removing {µ | µ is a subpath of µ2}, because we want to show
(later) that the set {pp∗ | p ∈ T2} is LK(E)-independent. Suppose Tn has been defined for all
n ≥ 2. By the arguments similar to those used in the construction of T2, we conclude that

there is a vertex vn+1 ∈ r(Yin) such that vn+1 emits αin+1 edges. Let s−1(vn+1) = {e(n+1)
β | β <

αin+1} and let µn+1 = f
(n+1)
1 . . . f

(n+1)
in+1−1 be a path of length in+1 − 1 from v to vn+1. Define

Tn+1 = {µn+1e
(n+1)
β | β < αin+1} ∪ (Tn\{µ | µ is a subpath of µn+1}).

Thus Tn is defined for all n.
We wish to show that, for a given n, the set {LK(E)pp∗ | p ∈ Tn} is an independent set

of left ideals of LK(E). First observe that, for all p 6= q in Tn, we have that p∗q = 0. This
is because p∗q 6= 0 would imply p = qτ or q = pτ for some path τ and this is not possible
by our construction. So if for some p1, . . . , pk ∈ Tn and r1, . . . , rk ∈ LK(E), we have ripip

∗
i =∑

j 6=i rjpjp
∗
j , then multiplying on the right by pi, we get ripi = ripip

∗
i pi =

∑
j 6=i rjpjp

∗
jpi = 0.

Hence ripip
∗
i = 0, showing that LK(E)pip

∗
i ∩
∑

j 6=i LK(E)pjp
∗
j = 0.

But for m 6= n and for pi ∈ Tm and qj ∈ Tn, the set {LK(E)pip
∗
i , LK(E)qjq

∗
j} may not be

LK(E)-independent. So we modify the sets Tn to obtain sets Wn where the paths in different
Wn’s give rise to LK(E)-independent left ideals. Accordingly, we define

W1 = T1\{f (m)
1 | m = 2, 3, . . . }

and for any n ≥ 1, define

Wn = Tn\{f (m)
1 . . . f

(m)
ik−1 | m = 2, 3, . . . , where k = min{m,n}}.

We now show that paths belonging to different Wn’s are LK(E)-independent. Suppose
pi ∈ Wi for i = 1, . . . , k such that ripip

∗
i =

∑
j 6=i rjpjp

∗
j . Then, as before ripi = ripip

∗
i pi =∑

j 6=i rjpjp
∗
jpi. We claim p∗jpi = 0. First note that p∗jpi 6= 0 implies that either pi = pjτ or

pj = piτ for some finite path τ . Let m and n be the smallest integers such that pi ∈ Tm and
pj ∈ Tn with m < n. By the minimality of the choice of m and n, and the fact that pj /∈ Tm,

pj must be of the form µne
(n)
β for some β < αin . So if pj = piτ , then pi will be a subpath of

µn, which is not possible by construction. On the other hand pi = pjτ implies that pj ∈ Wm,
a contradiction to the minimal choice of n. Hence p∗jpi = 0 and this shows, as before, that
LK(E)pip

∗
i ∩
∑

j 6=i LK(E)pjp
∗
j = 0.

If we set X = ∪n<ωWn, then X has cardinality σ and {LK(E)pp∗ | p ∈ X} is an LK(E)-
independent family of left ideals contained in LK(E)v.

Define S =
∑

p∈X LK(E)pp∗ =
⊕

p∈X LK(E)pp∗ ⊆ LK(E)v. By hypothesis, the direct

summand LK(E)v of LK(E) is injective and hence the exact sequence 0 → S
φ→ LK(E)v ,

where φ is the inclusion map, gives rise to an exact sequence

HomLK(E)(LK(E)v, LK(E)v)
φ∗→ HomLK(E)(S, LK(E))→ 0
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To see that this leads to a contradiction, first observe that

HomLK(E)(S, LK(E)) ⊇ HomLK(E)(S, S) ∼= HomLK(E)

(⊕
p∈X

LK(E)pp∗,
⊕
p∈X

LK(E)pp∗

)

∼=
∏

p∈X
HomLK(E)

(
LK(E)pp∗,

⊕
p∈Y

LK(E)pp∗

)
⊇
∏

p∈X
Fp,

where Fp ∼= K. By Lemma 4.3,
∏

p∈X Fp has K-dimension 2σ and hence HomLK(E)(S, S)

has K-dimension ≥ 2σ. On the other hand, HomLK(E)(LK(E)v, LK(E)v) ∼= vLK(E)v has,
as noted earlier, K-dimension ≤ σ and this contradicts the fact that φ∗ is an epimorphism.
Hence the graph E must be row-finite. �

Proposition 4.5. If a Leavitt path algebra LK(E) is left (right) self-injective and a ∈ LK(E),
then LK(E)a (aLK(E)) cannot have an infinite set of LK(E)-independent left (right) ideals
of LK(E).

Proof. Now by Proposition 4.4, the graph E is row-finite. Let a ∈ LK(E) and, since LK(E)
has local units, LK(E)a ⊆ LK(E)ε for some idempotent ε. The proof that LK(E)ε (and hence
LK(E)a) has finite uniform dimension is similar to that of Proposition 4.4. Suppose LK(E)ε
has an infinite family of independent submodules {Ak | k ∈ I} and let S =

⊕
k∈I Ak where I is

an infinite set. Write ε =
∑
ljajb

∗
j where aj and bj are finite paths and lj ∈ K. Let v1, . . . , vm

be the vertices that appear as s(aj) or s(bj) of the finitely many paths aj and bj. Then every
element of εLK(E)ε is of the form

∑n
i=1 kipiq

∗
i where s(pi) = s(qi) ∈ {v1, . . . , vm}. Since E

is row-finite, the cardinality of paths of a fixed length n beginning with any of the vertices
v1, . . . , vm is finite and hence the cardinality of the set of all paths of finite length beginning
with any of these vertices v1, . . . , vm is at most countable. As in the proof of Proposition 4.4,
we then conclude that the K-dimension of εLK(E)ε is at most countable.

On the other hand, HomLK(E)(S, S) = HomLK(E)(
⊕

k∈I Ak,
⊕

k∈I Ak) ⊇
∏∞

n=1 Fn where
Fn ∼= K and so HomLK(E)(S, S) has K-dimension ≥ 2ℵ0 . Since the direct summand LK(E)ε
of LK(E) is an injective LK(E)-module, the inclusion map j : S → LK(E)ε will induce an
epimorphism j∗ : HomLK(E)(LK(E)ε, LK(E)ε) → HomLK(E)(S, S) and this is not possible,
since HomLK(E)(LK(E)ε, LK(E)ε) ∼= εLK(E)ε has countable K-dimension. Hence LK(E)ε
and so LK(E)a must have finite uniform dimension. Similar arguments apply when LK(E)
is right self-injective. �

The following graph definitions will be useful in the characterization of self-injective Leavitt
path algebras in Theorem 4.7.

Recall that a vertex v in E0 is a bifurcation (or that there is a bifurcation at v) if s−1(v)
has at least two elements, and we say that there exists a cycle at v if v is a vertex of some
cycle. A vertex u in E0 will be called a line point if there are neither bifurcations nor cycles
at any vertex w ∈ T (u). We will denote by Pl(E) the set of all line points in E0. Clearly
Pl(E) is always a hereditary set.

We say that an infinite path γ = (en)∞n=1 ends in a sink if there exists m ≥ 1 such
that the infinite subpath µ = (en)∞n=m has neither bifurcations nor cycles, or equivalently, if
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µ0 ⊆ Pl(E), i.e, the path µ contains a line point. In this situation the infinite path µ is
called an infinite sink.

Proposition 4.6. For any graph E and every field K, if the Leavitt path algebra LK(E) is
left (right) self-injective, then every infinite path in E must end in a sink.

Proof. Suppose, on the contrary, E contains an infinite path γ which does not end in a
sink. We follow the ideas in the proof of [6, Theorem 2.4] to reach a contradiction. Now
E is acyclic by Proposition 4.1 and so γ will contain infinitely many bifurcation vertices
{vi | i = 1, 2, 3, . . . } and we can write γ as a concatenation of countably many paths,
γ = γ1γ2 . . . γn . . . where r(γn) = vn for all n. Let s(γ) = v. For each positive integer n, let
en = γ1γ2 . . . γnγ

∗
n . . . γ

∗
2γ
∗
1v. Observe that en+1 = en+1en for all n. But en 6= ren+1 for any

r ∈ LK(E). Indeed, suppose en = ren+1 for some r ∈ LK(E). Since vn is a bifurcation vertex,
there is an edge fn which is not the initial edge of γn+1 with s(fn) = s(γn+1) = vn. Clearly
γ∗n+1fn = 0. Then multiplying en = ren+1 on the right side by γ1γ2 . . . γnfn, we obtain,

0 6= γ1γ2 . . . γnfn = enγ1γ2 . . . γnfn = ren+1γ1γ2 . . . γnfn = rγ1γ2 . . . γn+1γ
∗
n+1fn = 0,

a contradiction. In particular, we conclude that en − en+1 6= 0 for all n ≥ 1.
It is easy to check that the set {en − en+1 | n = 1, 2, 3, . . . } is an infinite set of non-

zero mutually orthogonal idempotent elements in LK(E)v and so {LK(E)(en − en+1) | n =
1, 2, 3, . . . } is a countably infinite independent family of left ideals in LK(E)v. By Proposition
4.5, this is a contradiction. �

We are now ready to prove the main theorem of this section.

Theorem 4.7. Let E be an arbitrary graph and K be any field. Then the following conditions
are equivalent:

(i) LK(E) is left self-injective.
(ii) E is row-finite, acyclic and every infinite path contains a line point.

(iii) LK(E) is right self-injective.
(iv) LK(E) is semisimple.

Proof. (i)⇒ (ii) follows from Propositions 4.1, 4.4 and 4.6.
(ii) ⇒ (iv). This is proved in [6, Theorem 2.4].
(iv) ⇒ (i). Since LK(E) is a direct sum of simple left ideals, then every unital left LK(E)-

module M is also a direct sum of simple LK(E)-submodules. Since every submodule of a
semisimple module is a direct summand, every LK(E)-module and, in particular LK(E), is
injective as a left LK(E)-module.

(iii) ⇔ (iv) is proved in a similar fashion to that of (i) ⇔ (iv) because the condition for
being semisimple is left-right symmetric for semiprime rings, so in particular for LK(E) by
[22, Proposition 3.4]. �
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[15] P. Ara, M. Brustenga, G. Cortiñas, K-theory for Leavitt path algebras, Münster J. of Math (To

appear.) arXiv:0903.0056.
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