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Abstract: In this paper we construct the maximal left quotient system of every pair of modules in

some generalized matrix rings. These rings can be seen as 3-graded algebras or as superalgebras.

We show the relation among the three different notions of left quotients.

Introduction

Over the years, various notions of quotient structures, such as the field of frac-
tions of an integral domain, or the classical ring of quotients of a ring satisfying the
Ore condition, have played an important role in Modern Algebra.

The notion of left quotient ring, introduced by Utumi in 1956 (see [18]), is more
general than the ones above, as well as those of maximal symmetric ring of quo-
tients (introduced by Lanning in [10]), and Martindale’s symmetric ring of quotients
(see [13]). The existence of a maximal left quotient ring for every not necessarily
unital ring without total right zero divisors (proved by Utumi) provides a common
framework where to settle the different types of rings of quotients.

In the associative context, not only rings (or algebras) can be considered. The
study of systems of quotients in structures such as associative pairs or associative
triple systems could be crucial in order to shed some light on the structure theory
of Jordan systems (algebras, pairs or triples) and of Lie algebras, via the theory of
quotients. This approach is having a great development. See the works [14, 17, 6, 2,
16] on the theory of quotients of Jordan systems and Lie algebras.
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Associative pairs play a fundamental role in the new approach (see [5]) to Zel-
manov’s classification of strongly prime Jordan pairs, and have been already used by
O. Loos in the classification of the nondegenerate Jordan pairs of finite capacity [11].

In our work we will give a pair and triple system version of the maximal left
quotient ring. A first attempt was made in [7], where the authors found the maximal
left quotient pair of a right faithful associative pair in the left faithful or left non
singular cases.

If A = A0⊕A1 is a superalgebra then A1 can be seen as a triple system, while if
B = B−1⊕B0⊕B1 is a 3-graded algebra, then (B−1,B1) has a structure of associative
pair. And conversely, every associative pair A = (A+, A−) (or triple system T ) can
be embedded in an algebra E with an idempotent e such that (A+, A−) ((T, T ) in the
triple system case) can be identified with (eE(1− e), (1− e)Ee). This algebra E has a
supergrading E = E0⊕E1, where E0 = eEe⊕(1−e)E(1−e), E1 = eE(1−e)⊕(1−e)Ee,
and a 3-grading E = E−1⊕E0⊕E1, for E−1 = (1−e)Ee, E0 = eEe⊕(1−e)E(1−e) and
E1 = eE(1− e). So that it seems to be quite natural to relate the study of graded left
quotient algebras of a graded algebra (see [4] for a construction of the gr-maximal
left quotient algebra of a not necessarily unital gr-algebra) to that of left quotient
systems of an associative triple system or pair.

On the other hand, in some cases (for example, when E is simple) every standard
envelope gives rise to a surjective Morita context for not necessarily unital rings, and
conversely, every pair of bimodules of a Morita context has a natural structure of
associative pair. Hence, in particular, our work can be considered as an approach to
the study of maximal rings of quotients of Morita contexts for not necessarily unital
rings.

The paper is divided into five sections. After a preparatory section where right
faithfulness is studied, we introduce in Section 1 the notion of subpair of a 3-graded
algebra. Proposition (1.5) provides a useful tool to compute the standard envelope
of any right faithful associative pair (Corollary (1.6)). In Section 2 we study the
supersingular ideal of a not necessarily unital superalgebra A = A0 ⊕A1 and relate
it to the singular ideals of A0 (as an algebra) and of A1 (as an associative triple
system). In the following section we introduce the notion of weak right faithful
superalgebra in an oversuperalgebra and relate left quotient algebras, left quotient
triple systems and left quotient superalgebras: Suppose that A = A0 ⊕ A1, with
A0 = A1A1, is a weak right faithful superalgebra in an oversuperalgebra B. Then
B is a gr-left quotient algebra of A if and only if B1 is a left quotient triple system
of A1 and B0 is a left quotient algebra of A0. Weak right faithfulness is just the
condition needed to have a result allowing to go back and forth between left quotient
algebras and left quotient systems to left quotient superalgebras. Examples of right
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faithful subsuperalgebras in overalgebras are every left quotient algebra of a faithful,
or left nonsingular superalgebra. As a consequence of the previous results, in Section
4 we construct the maximal left quotient pair of a right faithful associative pair. This
maximal left quotient pair is given in terms of the maximal left quotient algebra of
its envelope, which coincides with the graded maximal left quotient algebra of this
envelope, considered as a 3-graded algebra, or as a superalgebra. We show that this
construction, which was made in [7] for some particular cases, cannot be improved.
In Section 5 we proceed analogously in the triple system case.

0. Preliminaries

0.1. We will deal with associative systems (algebras, pairs, and triple systems)
over an arbitrary (unital commutative associative) ring of scalars Φ. Recall that
an associative pair over Φ is a pair of Φ-modules (A+, A−) together with a pair of
trilinear maps

< , , >σ:Aσ ×A−σ ×Aσ −→ Aσ, σ = ±,

satisfying

<< x, y, z >σ, u, v >σ=< x,< y, z, u >−σ, v >σ=< x, y,< z, u, v >σ>σ,

for any x, z, v ∈ Aσ, y, u ∈ A−σ, σ = ±.

Similarly, an associative triple system A over Φ is a Φ-module equipped with
a trilinear map

< , , >:A×A×A −→ A,

satisfying

<< x, y, z >, u, v >=< x,< y, z, u >, v >=< x, y,< z, u, v >>,

for any x, y, z, u, v ∈ A. We can also consider the opposite associative pair Aop =
(A+, A−) obtained by reversing the products of A (< x, y, z >σ

op=< z, y, x >σ).

As for pairs, one can consider the opposite triple system Aop of A.

Due to associativity, there is no risk of ambiguity when deleting the brackets
“ <> ”, thus, the products above will be usually denoted by juxtaposition, just like
in the associative algebra case.

0.2. An associative algebra A gives rise to the associative triple system AT by
simply restricting to odd length products. By doubling any associative triple system
A one obtains the double associative pair V (A) = (A,A) with obvious products.
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From an associative pair A = (A+, A−) one can get a (polarized) associative triple
system T (A) = A+ ⊕ A− by defining (x+ ⊕ x−)(y+ ⊕ y−)(z+ ⊕ z−) = x+y−z+ ⊕
x−y+z−.

0.3. Given an associative pair A = (A+, A−), and elements x, z ∈ Aσ, y ∈ A−σ,
σ = ±, recall that left, middle and right multiplications are defined by:

λ(x, y)z = µ(x, z)y = ρ(y, z)x = xyz. (1)

From (0.1) and (1), for any x, u ∈ Aσ, y, v ∈ A−σ,

λ(x, y)λ(u, v) = λ(xyu, v) = λ(x, yuv), (2)

and similarly
ρ(u, v)ρ(x, y) = ρ(x, yuv) = ρ(xyu, v). (3)

As a consequence of (2) and (3), it is clear that the linear span of all operators
T : Aσ → Aσ of the form T = λ(x, y), for (x, y) ∈ Aσ × A−σ, or T = IdAσ is a
unital associative algebra; it will be denoted by Λ(Aσ, A−σ). Clearly Aσ is a left
Λ(Aσ, A−σ)-module. Similarly, we define Π(A−σ, Aσ) as the linear span of all the
right multiplications and the identity on Aσ, so that Aσ becomes a left Π(A−σ, Aσ)-
module.

0.4. The well-known notions of left and right ideals of an associative algebra
have the following analogues for pairs and triple systems: Given an associative pair
A, we define the left ideals L ⊂ Aσ of A as the Λ(Aσ, A−σ)-submodules of Aσ, and
the right ideals R ⊂ Aσ as the Π(A−σ, Aσ)-submodules. A two-sided ideal B ⊂ Aσ

is both a left and a right ideal. An ideal I = (I+, I−) of A is a pair of two-sided
ideals of A such that AσI−σAσ ⊆ Iσ, σ = ±.

For an associative triple system A, the left and right ideals of A are simply
those of the pair V (A), while an ideal I of A is a left and right ideal also satisfying
AIA ⊆ I, i.e., a Φ-submodule I of A such that V (I) is an ideal of V (A).

Notice that, if I is a left or right ideal of an associative algebra A, then it is
a left or right ideal, respectively, of the associative triple system AT . Similarly, an
ideal of A is always an ideal of AT .

0.5. Recall that given a group G (not necessarily abelian), an algebra A is said
to be G-graded if A =

⊕
σ∈GAσ, where Aσ is a Φ-subspace of A and AσAτ ⊆ Aστ

for every σ, τ ∈ G. We will say that A is strongly graded if AσAτ = Aστ . In the
sequel, we will use “graded” instead of “G-graded” when the group is understood.
As usual, by the prefix “gr-” we mean “graded-”.
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We will say that an algebra is 3-graded if G = Z and A = A−1 ⊕ A0 ⊕ A1.
When Z=Z/2Z we will speak about a superalgebra. We will use [15] as a standard
reference for graded algebras and modules.

In a graded algebra A =
⊕

σ∈GAσ, each element of Aσ is called an homogeneous

element.

The neutral element of G will be denoted by e.

A graded left ideal I of a G-graded algebra A is a left ideal such that if x =∑
σ∈G xσ ∈ I, then xσ ∈ I for every σ ∈ G.

0.6. Let A be an associative algebra. An element a ∈ A is said to be a total

right zero divisor if Aa = 0. Similarly, an element a ∈ Aσ of an associative pair is
called a total right zero divisor if AσA−σa = 0. A pair or an algebra not having
nonzero total right zero divisors will be called right faithful.

0.7. An homogeneous element xσ of a gr-algebra A =
⊕

σ∈GAσ is called an
homogeneous total right zero divisor if it is nonzero and a total right zero divisor,
that is, Axσ = 0. By [4, (1.10)], a gr-algebra is right faithful if and only if it has no
homogeneous total right zero divisors.

0.8. Definitions. A total right zero divisor in an associative triple system
S is a nonzero element s ∈ S such that SSs = 0, equivalently, s is a total right zero
divisor in the associative pair V (S). An associative triple system without total right
zero divisors will be called right faithful.

Given a superalgebra A = A0 ⊕ A1, the odd part has a structure of associative
triple system, while the even part is an algebra. Now, we show the relation of
faithfulness among the three structures.

0.9. Lemma. Let A = A0 ⊕ A1 be a superalgebra. If A0 and A1 are right
faithful, then A is right faithful too. The converse is true if A0 = A1A1.

Proof: Suppose A0 = A1A1 and that A has no total right zero divisors. By
[4, (3.1)], A0 has no total right zero divisors. If a1 ∈ A1 satisfies A1A1a1 = 0, then
AAa1 = (A1A1 +A1)(A1A1 +A1)a1 ⊆ (A1A1A1A1 +A1A1A1 +A1A1)a1 = 0. Apply
twice that A is right faithful to have a1 = 0.

The converse is straightforward.

0.10. Remark: The condition A0 = A1A1 in the previous Lemma cannot be
removed. If a superalgebra A = A0 ⊕ A1 is right faithful, then A0 is a right faithful
algebra [4, (3.1)], but A1 is not necessarily a right faithful associative triple system:
Let F be an arbitrary field and consider the F -algebra A = F [x]/ < x3 >, where
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< x3 > denotes the ideal generated by x3 inside F [x]. For an element u ∈ F [x], let
u stand for the class of u in A. Then the superalgebra A = A0 ⊕ A1, with A0 the
subalgebra of A generated by {1, x2} and A1 the vector subspace of A generated by
{x}, is a right faithful algebra but A1 is not a right faithful associative triple system
because A1A1x = 0 while x 6= 0. Notice that A1A1 6= A0 because 1 /∈ (F{x})2.

0.11. Remark: Although we always work with systems of left quotients, the
results in this paper have their right-side analogues, with obvious changes in the
definitions, just reversing products in the proofs or applying the left-side results to
the opposite systems.

1. Algebra Envelopes of Associative Pairs

In this section we give a method to determine the standard envelope of an
associative pair without total right zero divisors by means of any graded algebra
containing the pair in a suitable way and generated by it.

1.1. Associative pairs are really “abstract off-diagonal Peirce spaces” of as-
sociative algebras: Let E be a unital associative algebra. Consider the Peirce de-
composition E = E11 ⊕ E12 ⊕ E21 ⊕ E22 of E with respect to an idempotent e ∈ E ,
i.e.,

E11 = eEe, E12 = eE(1− e), E21 = (1− e)Ee and E22 = (1− e)E(1− e).

From the Peirce multiplication rules, (E12, E21) is a subpair of V (E). Conversely,
every associative pair A = (A+, A−) can be obtained in this way (see [12, (2.3)]):
Let C be the Φ-submodule of B = EndΦ(A+) × EndΦ(A−)op spanned by e1 =
(IdA+ , IdA−) and all (λ(x, y), ρ(x, y)), and similarly, let D be the submodule of Bop

spanned by e2 = (IdA+ , IdA−) and all (ρ(y, x), λ(y, x)) where (x, y) ∈ A+ ×A−. By
(0.3), these Φ-linear spans are really subalgebras. Clearly, A+ is an (C,D)-bimodule
if we set

cx = c+(x), xd = d+(x)

for x ∈ A+ and c = (c+, c−) ∈ C, d = (d+, d−) ∈ D. Similarly, A− is a (D, C)-
bimodule. Now we define bilinear maps on A± × A∓ with values in C, respectively,
D, by

xy = (λ(x, y), ρ(x, y)), yx = (ρ(y, x), λ(y, x)).

Then it is easy to check that (C, A+, A−,D) is a Morita context which gives rise to
a unital associative algebra E (cf. [12, (2.3)]). If we set e = e1, then the pair A =
(A+, A−) is isomorphic to the associative pair (E12, E21). Moreover E11 (respectively,
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E22) is spanned by e and all products x12y21 (resp., 1 − e and all products y21x12)
for x12 ∈ E12, y21 ∈ E21, and has the property that

x11E12 = E21x11 = 0 =⇒ x11 = 0, x22E21 = E12x22 = 0 =⇒ x22 = 0. (1)

1.2. Let A be the subalgebra of E generated by E12 ∪ E21, i.e., A = E12 ⊕
E12E21 ⊕ E21E12 ⊕ E21. It is immediate that A is an ideal of E . We will call A the
standard envelope of the associative pair A, and will write τ = (τ+, τ−) for the
natural inclusion τσ : Aσ −→ A of A into A. When it is necessary to emphazise the
existence of the idempotent e (see (1.1)) we will write (A, e) instead of merely A.
The pair (E , e) is called the standard imbedding of A.

1.3. Definition. Let A be an associative pair, A = A−1 ⊕ A0 ⊕ A1 be a
3-graded associative algebra, and ϕ = (ϕ+, ϕ−), where ϕσ : Aσ −→ A is an injective
Φ-linear map, σ = ±. We will say that A is a subpair of (A, ϕ) if

(i) ϕ+(A+) ⊆ A1 and ϕ−(A−) ⊆ A−1 and

(ii) ϕ : A −→ V (A) is a pair homomorphism (hence monomorphism).

When A is a subpair of (A, ϕ) then ϕ+(A+) + ϕ+(A+)ϕ−(A−) + ϕ−(A−)ϕ+(A+) +
ϕ−(A−) is a subalgebra of A. If it coincides with A (i.e. ϕ+(A+)∪ϕ−(A−) generates
A as an algebra), the pair (A, ϕ) is called a graded envelope of A (gr-envelope for
short).

In this case, and equivalently,

(iii) A1 = ϕ+(A+), A−1 = ϕ−(A−), A0 = ϕ+(A+)ϕ−(A−) + ϕ−(A−)ϕ+(A+).

1.4. Remarks: Notice that for an associative pair A the standard envelope
(A, τ) of A, which can be seen as a 3-graded algebra by considering A1 = E12,A0 =
E12E21 ⊕ E21E12 and A−1 = E21, is a gr-envelope of A in the sense above.

If an associative pair A is a subpair of a (A, ϕ), with A a 3-graded algebra, in
the sense of (1.3), then A is a subpair of (A, ϕ) in the sense of [1, (1.3)] because
ϕ+(A+) ∩ ϕ−(A−) ⊆ A1 ∩ A−1 = 0.

An envelope (A, ϕ) of A will be called tight if every nonzero ideal of A hits A
(I ∩ (ϕ+(A+)∪ϕ−(A−)) 6= 0 for every nonzero ideal I of A). We will say that (A, ϕ)
and (Ã, ϕ̃) are isomorphic envelopes of A if there exists an algebra isomorphism
ψ : A −→ Ã such that ψ ◦ ϕσ = ϕ̃σ, σ = ±.

The proof of the following result follows partially [1, (1.5)]. Notice that it is more
general in the sense that we have replaced left and right faithfulness in [1, (1.5)] with
right faithfulness by considering gr-envelopes instead of envelopes.
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1.5. Proposition. Let A = A−1 ⊕A0 ⊕A1 be a 3-graded algebra which is a
gr-envelope of a right faithful associative pair A. Then:

(i) Every one-sided gr-ideal of A not hitting ϕ(A) is contained in A0.

Define, as in [1, (1.5)],

I = {x ∈ ϕ+(A+)ϕ−(A−) + ϕ−(A−)ϕ+(A+) | xϕσ(Aσ) = 0 = ϕσ(Aσ)x, σ = ±}
= {x ∈ ϕ+(A+)ϕ−(A−) | xϕ+(A+) = 0 = ϕ−(A−)x}+

+ {x ∈ ϕ−(A−)ϕ+(A+) | xϕ−(A−) = 0 = ϕ+(A+)x}.
(ii) I ⊆ A0, it is the biggest gr-ideal of A not hitting ϕ(A) and it satisfies

IAi = AiI = 0 for i = 0,±1.
(iii) Define φσ : Aσ −→ A/I

xσ 7→ ϕσ(xσ)

where a denotes the class of the element a of A inside A/I, σ = ±. Then (A/I, φ)
is a gr-envelope of A gr-isomorphic to the standard envelope of A.

Proof: (i) Let J = J−1⊕J0⊕J1 be a one-sided gr-ideal of A not hitting ϕ(A).
Since J±1 ⊆ J ∩A±1 ⊆ J ∩ ϕ(A) = 0, J ⊆ A0.

(ii) From (1.3), it is clear that I is an ideal of A and that both definitions of
I agree. Moreover, by (i) and the definition, I ⊆ A0 and Aix = xAi = 0, for any
x ∈ I and every i = 0,±1.

Now, let J be a gr-ideal of A not hitting ϕ(A). By (i), J ⊆ A0. Take 0 6= y0 ∈ J
and write y0 =

∑m
i=1 ϕ

+(u+
i )ϕ−(u−i ) +

∑n
j=1 ϕ

−(v−j )ϕ+(v+
j ), with uσ

i , v
σ
j ∈ Aσ,

σ = ±. Suppose (
∑m

i=1 λ(u+
i , u

−
i ),

∑m
i=1 ρ(u

+
i , u

−
i )) 6= 0. Then, by the proof of [7,

(2.6)], there exists a− ∈ A− such that 0 6=
∑m

i=1 a
−u+

i u
−
i . Since ϕ is an injective

Φ-linear map, and by (1.3) (ii), 0 6=
∑m

i=1 ϕ
−(a−)ϕ+(u+

i )ϕ−(u−i ) = ϕ−(a−)y0 ∈
I ∩ ϕ−(A−) = 0, a contradiction. Hence

(
∑m

i=1 λ(u+
i , u

−
i ),

∑m
i=1 ρ(u

+
i , u

−
i )) = 0.

Similarly,

(
∑n

j=1 λ(v−j , v
+
j ),

∑n
j=1 ρ(v

−
j , v

+
j )) = 0.

This means that for every (x+, x−) ∈ A,∑m
i=1 u

+
i u

−
i x

+ = 0,
∑m

i=1 x
−u+

i u
−
i = 0,

∑n
j=1 x

+v−j v
+
j = 0 and

∑n
j=1 v

−
j v

+
j x

− = 0.

Apply ϕ and (1.3) (ii) to these identities to obtain:

0 =
∑m

i=1 ϕ
+(u+

i )ϕ−(u−i )ϕ+(x+) = (
∑m

i=1 ϕ
+(u+

i )ϕ−(u−i ))ϕ+(x+) = y0ϕ
+(x+),

0 =
∑m

i=1 ϕ
−(x−)ϕ+(u+

i )ϕ−(u−i ) = ϕ−(x−)
∑m

i=1 ϕ
+(u+

i )ϕ−(u−i ) = ϕ−(x−)y0,

0 =
∑n

j=1 ϕ
+(x+)ϕ−(v−j )ϕ+(v+

j ) = ϕ+(x+)
∑n

j=1 ϕ
−(v−j )ϕ+(v+

j ) = ϕ+(x+)y0,
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0 =
∑n

j=1 ϕ
−(v−j )ϕ+(v+

j )ϕ−(x−) = (
∑n

j=1 ϕ
−(v−j )ϕ+(v+

j ))ϕ−(x−) = y0ϕ
−(x−).

This shows y0 ∈ I.

(iii) To see the injectivity of the Φ-linear map φσ, for σ = ±, consider xσ ∈ Aσ

such that ϕσ(xσ) = 0. This means ϕσ(xσ) ∈ ϕσ(Aσ) ∩ I = 0.

It is straightforward that (A/I, φ) satisfies (1.3)(i)–(iii). This means that it is a
gr-envelope of A.

Let (Ã, τ) be the standard envelope of A. We can define a linear map ψ : A −→ Ã
given by

ψ
(
ϕ+(x+)⊕ (

∑
i

ϕ+(y+
i )ϕ−(y−i ) +

∑
j

ϕ−(z−j )ϕ+(z+
j ))⊕ ϕ−(u−)

)
=

τ+(x+)⊕
∑

i

τ+(y+
i )τ−(y−i )⊕

∑
j

τ−(z−j )τ+(z+
j )⊕ τ−(u−),

for any x+, y+
i , z

+
j ∈ A+, y−i , z

−
j , u

− ∈ A−. Indeed, if

a = ϕ+(x+)⊕ (
∑

i

ϕ+(y+
i )ϕ−(y−i ) +

∑
j

ϕ−(z−j )ϕ+(z+
j ))⊕ ϕ−(u−) = 0,

then 0 = ϕ+(x+) = ϕ−(u−) and by the injectivity of ϕ, x+ = 0 and u− = 0. Hence
τ+(x+) = 0 and τ−(u−) = 0.

Moreover,
∑

i ϕ
+(y+

i )ϕ−(y−i ) +
∑

j ϕ
−(z−j )ϕ+(z+

j ) = 0 implies, if we multiply
by ϕ−(a−) ∈ ϕ−(A−),

0 = ϕ−(a−)
∑

i ϕ
+(y+

i )ϕ−(y−i ) =
∑

i ϕ
−(a−)ϕ+(y+

i )ϕ−(y−i ) = ϕ−(
∑

i a
−y+

i y
−
i ).

By the injectivity of ϕ, 0 =
∑

i a
−y+

i y
−
i and thus

0 = τ−(
∑

i a
−y+

i y
−
i ) =

∑
i τ
−(a−)τ+(y+

i )τ−(y−i ) = τ−(a−)
∑

i τ
+(y+

i )τ−(y−i ); sim-
ilarly, for any ϕ+(a+) ∈ ϕ+(A+), (

∑
i τ

+(y+
i )τ−(y−i ))τ+(a+) = 0, which implies∑

i τ
+(y+

i )τ−(y−i ) = 0 by (1.2) and (1.1) (1); in a similar way,
∑

j τ
−(z−j )τ+(z+

j ) = 0,
and we get that ψ is well defined.

It is clear that ψ is a surjective algebra homomorphism of graded algebras
satisfying ψ ◦ ϕσ = τσ, σ = ±. By the very definition of ψ, an element a as
above lies in Kerψ if and only if a =

∑
i ϕ

+(y+
i )ϕ−(y−i ) +

∑
j ϕ

−(z−j )ϕ+(z+
j ) with∑

i τ
+(y+

i )τ−(y−i ) ⊕
∑

j τ
−(z−j )τ+(z+

j ) = 0, which is shown to be equivalent to
aϕσ(Aσ) = ϕσ(Aσ)a = 0, σ = ±, using (1.1)(1). Thus Kerψ = I, and we can
define ψ̃ : A/I −→ Ã by ψ̃(a) = ψ(a), which turns out to be an algebra isomorphism
satisfying ψ̃ ◦ φσ = τσ, σ = ±.
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1.6. Corollary. Let A be a right faithful associative pair, and (A, ϕ) be a
gr-envelope of A. Then the following are equivalent:

(i) (A, ϕ) is tight on A,

(ii) A is right faithful,

(iii) (A, ϕ) is isomorphic to the standard envelope of A.

Proof: Apply (1.5) together with the obvious fact that the set of total right
zero divisors of an algebra is an ideal.

1.7. Notation: To simplify notation, from now on, when dealing with a subpair
A of (A, ϕ) we will assume that Aσ ⊆ A, the maps ϕσ will be simply the inclusion
maps, and will write A instead of (A, ϕ). This will also be applied to the particular
case of (A, ϕ) being an envelope of A.

2. The supersingular left ideal of a superalgebra

The notion of singularity appears naturally in many questions in the theory
of modules and rings. In [8], the singular functor of a Grothendieck category is
introduced. In particular, for an M in the category R-gr of graded modules over a
unital ring R, the graded singular submodule of M is the largest graded submodule
contained in Z(M) (the singular submodule of M). Here we study the supersingular
ideal of a (not necessarily unital) superalgebra A = A0 ⊕ A1 and relate it to the
singular ideals of A0 (as an algebra) and of A1 (as an associative triple system).

We will denote by Igr−l(A) and Ie
gr−l(A) the sets of left superideals of A and

essential left superideals of A respectively, while I(A), Il(A) and Ie
l (A) will stand

for the sets of two-sided ideals, left ideals and essential left ideals of A. Throughout
this section we will assume that σ, τ, α, ρ ∈ {0, 1}. First, some preliminary results.

2.1. Lemma. Let A be a superalgebra. Let I ∈ Igr−l(A) and K ∈ Il(A). The
following assertions hold:

(i) If x ∈ A0 ∪A1 then lan(x) := {y ∈ A : yx = 0} ∈ Igr−l(A).

Moreover, if A is right faithful then:

(ii) I ∈ Ie
gr−l(A) if and only if for every 0 6= xσ ∈ Aσ there exists aτ ∈ Aτ such that

0 6= aτxσ ∈ Iτ+σ.

(iii) K ∈ Ie
l (A) if and only if for every 0 6= x ∈ A there exists a ∈ A such that

0 6= ax ∈ K.

(iv) I ∈ Ie
gr−l(A) if and only if I ∈ Ie

l (A).

Proof: (i) Is immediate.
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(ii) Suppose first I ∈ Ie
gr−l(A) and take 0 6= xσ ∈ Aσ. Since A has no ho-

mogeneous total right zero divisors, Axσ (being a left superideal) is nonzero. Our
hypothesis applies now so we can choose a ∈ A with 0 6= axσ ∈ I. If we decompose
the latter into its homogeneous components axσ = a0xσ + a1xσ, then at least one
is nonzero, and as I is graded we find aτ ∈ Aτ with 0 6= aτxσ ∈ Iτ+σ. To prove
the converse take 0 6= J ∈ Igr−l(A), then we are able to find 0 6= yσ ∈ Jσ ⊆ Aσ

and by applying the hypothesis there exists aτ ∈ Aτ such that 0 6= aτyσ ∈ I. But
aτyσ ∈ AJ ⊆ J , that is, I ∩ J 6= 0. Forgetting about the grading, one may prove in
an similar way (iii).

To prove (iv) use the characterizations given in (ii) and (iii) and follow [15,
Lemma I.2.8].

2.2. Proposition. Let A be a superalgebra; define:

Zgr−l(A)σ := {x ∈ Aσ : lan(x) ∈ Ie
gr−l(A)}, σ = 0, 1

and
Zgr−l(A) := Zgr−l(A)0 ⊕ Zgr−l(A)1.

Then:

(i) Zgr−l(A) is a (two-sided) superideal of A.

(ii) Zgr−l(A) = {x ∈ A : Ix = 0 for some I ∈ Ie
gr−l(A)}.

(iii) If A is right faithful, then Zgr−l(A) is the biggest superideal of A contained in
Zl(A) and they may not coincide.

Proof:

(i) The only nontrivial part is showing that Zgr−l(A) is a left superideal of A.
Take xσ ∈ Zgr−l(A)σ and aτ ∈ Aτ , σ, τ = 0, 1. We will show lan(aτxσ) ∈ Ie

gr−l(A).
We already know that it is a left superideal, and to prove the essentiality we consider
0 6= J ∈ Ie

gr−l(A). Pick 0 6= yρ ∈ Jρ. If yρaτxσ = 0 then 0 6= yρ ∈ lan(aτxσ) ∩ Jρ.
In case yρaτxσ 6= 0, then aτ being an homogeneous element easily implies that
Jaτ 6= 0 is a left superideal, and lan(xσ) being essential as a left superideal implies
Jaτ ∩ lan(xσ) 6= 0. We may therefore take z ∈ J with 0 6= zaτ ∈ lan(xσ), thus
0 6= z ∈ J ∩ lan(aτxσ) again.

(ii) Consider first x = x0 +x1 such that lan(xσ) ∈ Ie
gr−l(A). Now I := lan(x0)∩

lan(x1) ∈ Ie
gr−l(A). A straightforward calculation shows that Ix = 0. On the other

hand, suppose we have x ∈ A and I ∈ Ie
gr−l(A) with Ix = 0. Let us see that indeed

Ixσ = 0, for every σ = 0, 1. If that is not the case, we have y ∈ I with yxσ 6= 0.
But xσ being homogeneous and I being graded imply that there exists yτ ∈ I with
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yτxσ 6= 0, and consequently 0 6= yτx ∈ Ix = 0, which is absurd. Thus, we have
proved I ⊆ lan(xσ); the former being essential and the latter being left graded imply
lan(xσ) ∈ Ie

gr−l(A), as needed.

(iii) By reasoning as in (ii) we obtain that Zl(A) = {x ∈ A : Ix = 0 for some I ∈
Ie

l (A)} = {x ∈ A : lan(x) ∈ Ie
l (A)} (see [9, pg. 30] for the unital case). Take this into

account jointly with (ii) and (2.1)(iv) to prove that Zgr−l(A) is the biggest superideal
of A contained in Zl(A).

To see that Zgr−l(A) and Zl(A) do not coincide in general, let F be a field of
characteristic 2 and consider the algebra of dual numbers over F :

A = F (ε) = F · 1⊕ F · ε, with ε2 = 0.

It is an easy calculation (note that (1 + ε)2 = 1 + 2ε + ε2 = 1, since F has
characteristic 2) to show that A is a commutative unital superalgebra with a (non-
standard) grading given by

A0 = F · 1 , A1 = {a · 1 + a · ε : a ∈ F} .

The only nontrivial ideal of A is
I = F · ε;

for if J ∈ I(A), J 6= A, then for every 0 6= a ∈ F and b ∈ F we have a · 1 + b · ε /∈ J .
Otherwise

(a−1 · 1− ba−2 · ε)(a · 1 + b · ε) = 1 · 1 ∈ J

would lead to J = A. So J ⊆ I. It is obvious that although I is an ideal, it is not
graded: If we consider the element ε, then its homogeneous components (ε0 = −1
and ε1 = 1 + ε) no longer belong to I. Therefore, A is supersimple. Now, since A is
unital, then 1 /∈ Zl(A) ∪ Zgr−l(A). On the other hand we have

lan(ε) = F · ε ∈ Ie
l (A) implies 0 6= ε ∈ Zl(A).

Then it easily follows Zgr−l(A) = 0 6= I = Zl(A).

2.3. Definitions. The ideal Zgr−l(A) in the proposition above is called the
left supersingular ideal of A. In a similar way we could talk about the right super-

singular ideal of A (denoted by Zgr−r(A)). The supersingular two-sided ideal of
A is defined as Zgr(A) = Zgr−l(A) ∩ Zgr−r(A).

This graded definition of singular ideal is consistent with the nongraded one in
the sense that whenever we consider a superalgebra A with trivial grading, we obtain
Zgr−l(A) = Zl(A).
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2.4. Definitions. Let A be a superalgebra. We say that A is left supersingular

if Zgr−l(A) = A, and we say that A is left supernonsingular if Zgr−l(A) = 0.

To recall the notion of weak left quotient superalgebra, which appears in the
statement of the following result, see section 3.

2.5. Lemma. Let A be a nonzero left supernonsingular superalgebra and let I
be a left superideal of A. Then:

(i) A is right faithful.

(ii) I ∈ Ie
gr−l(A) if and only if A is a weak left quotient superalgebra of I.

Proof: (i) If xσ ∈ Aσ is a total (homogeneous) right zero divisor, then lan(xσ) =
A implies xσ ∈ Zgr−l(A)σ = 0.

(ii) Suppose I ∈ Ie
gr−l(A). If 0 6= xσ ∈ Aσ then Ixσ 6= 0 (otherwise I ⊆ lan(xσ)

would imply xσ ∈ Zgr−l(A) = 0, a contradiction). Take yτ ∈ I such that yτxσ 6= 0.
By (i), Ayτxσ is a nonzero left superideal of A and by the essentiality of I, 0 6=
aαyτxσ ∈ Iα+τ+σ for some aα ∈ Aα (notice that aαyτ ∈ I). For the converse, apply
(i) and (2.1) (ii).

2.6. Remark: The previous lemma still holds if we consider algebras, left ideals
and the notions of left singular, right faithful and weak left quotient algebras instead
of the analogous graded ones.

2.7. Remark: Note that if A is right faithful, then left nonsingularity implies
left supernonsingularity while the converse is not true: see the example in (2.2) (iii).
Moreover, such an A is an example of an algebra which is neither nonsingular nor
singular, and by considering trivial supergradings we deduce as well that the notions
of being supernonsingular and supersingular are not negations of each other.

We are interested in relating the different types of singular ideals we can consider
in the different structures we are dealing with, namely: superalgebras, associative
pairs and associative triple systems.

2.8. Let A be an associative pair and let X ⊆ Aσ, σ = ±. The left annihilator

of X in A is defined to be the set:

lan(X) = lanA(X) := {b ∈ A−σ : bXA−σ = 0, AσbX = 0}.

It can be shown [7, (1.2)] that if A is a right faithful associative pair then

lanA(X) = {b ∈ A−σ : AσbX = 0}.
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2.9. For an associative triple system T and a subsetX ⊂ T , the left annihilator

of X in T is defined as:
lanT (X) := lanV (T )(X),

the latter being equal to lanV (T )(Xσ), σ = ±.

2.10. For a right faithful associative pair A, if we define

Zl(A)σ = {z ∈ Aσ : lanA(z) ∈ Ie
l (A)}, σ = ±,

then it turns out that
Zl(A) := (Zl(A)+, Zl(A)−)

is an ideal of A [7,(1.6)], called the left singular ideal of the associative pair A.

2.11. Definition. For an associative triple system T we can define the left

(triple) singular ideal as

Zl(T ) := Zl(V (T ))σ, σ = ±.

If A = A0 ⊕ A1 is a superalgebra, then the supernonsingularity of A is in fact
related with that of A0 and A1. In this regard, we have the following results.

2.12. Proposition. Let A be a right faithful superalgebra such that A0 = A1A1.
Then:

(i) If I ∈ Igr−l(A) then I0 = 0 if and only if I1 = 0.

(ii) Zgr−l(A)σ = Zl(Aσ), σ = 0, 1.

Proof: (i) If I0 = 0 and we take 0 6= y1 ∈ I1, then by (0.9), 0 6= A1A1y1 ⊆
A1I0 = 0, a contradiction. Conversely, if I1 = 0 and we consider 0 6= y0 ∈ I0, then
(0.9) implies 0 6= A0y0 = A1A1y0 ⊆ A1I1 = 0 a contradiction again.

(ii) Consider first σ = 1 and 0 6= a1 ∈ Zl(A1). Take 0 6= L = L0⊕L1 ∈ Igr−l(A).
By (i) L1 6= 0 6= L0. Since L1 is a left ideal of A1, our hypothesis gives us some
0 6= l1 ∈ L1 ∩ lanA1(a1), that is, A1l1a1 = 0. On the other hand, by (0.9) A1 is
right faithful, so we find b1 ∈ A1 such that 0 6= b1l1 ∈ L ∩ lanA(a1). To see the
other containment, consider 0 6= a1 ∈ A1 such that lanA(a1) ∈ Ie

gr−l(A). If we
take 0 6= J ∈ Il(A1), applying that A is right faithful we can find 0 6= y1 ∈ J with
0 6= Ay1 ∈ Igr−l(A). So Ay1∩ lanA(a1) 6= 0 and by (i) there exists b1 ∈ A1 satisfying
0 6= b1y1 ∈ lanA(a1). Since A0 = A1A1 is right faithful by (0.9), we find d1 ∈ A1

such that 0 6= d1b1y1 ∈ J ∩ lanA1(a1).

For the σ = 0 case we start by taking 0 6= a0 ∈ A0 such that lanA0(a0) ∈ Ie
l (A0).

If we consider 0 6= K = K0 ⊕ K1 ∈ Igr−l(A), by (i) K0 6= 0, and since it is a left
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ideal of A0 we can find 0 6= k0 ∈ K0 such that k0 ∈ lanA0(a0) ⊆ lanA(a0). To prove
the other containment we consider 0 6= a0 ∈ A0 with lanA(a0) ∈ Ie

gr−l(A). Take 0 6=
J0 ∈ Il(A0), and again 0 6= Ay0 ∈ Il(A) for some y0 ∈ J0. Since Ay0 ∩ lanA(a0) 6= 0,
applying (i) we can find b0 ∈ A0 such that 0 6= b0y0 ∈ J0 ∩ lanA0(a0).

2.13. Corollary. For a right faithful superalgebra A with A0 = A1A1 the
following conditions are equivalent:

(i) A is left supernonsingular (as a superalgebra).

(ii) A0 is left nonsingular (as an algebra).

(iii) A1 is left nonsingular (as a triple).

2.14. Remark: A0 left nonsingular does not imply A left nonsingular (the
superalgebra A considered in (2.2) (iii) satisfies A0 = A1A1, A0 is left nonsingular
and A itself is not).

3. Systems of left quotients

Let A = A0 ⊕ A1 be a subsuperalgebra of a superalgebra B = B0 ⊕B1. In this
section we will study when B being a gr-left quotient algebra of A is equivalent to
B0 and B1 being a left quotient algebra and a left quotient triple system of A0 and
A1, respectively. See [7] for results on left quotient pairs.

3.1. The notion of left quotient ring was introduced by Utumi in [18]. Let A
be a subalgebra of an algebra Q. We say that Q is a (general) left quotient algebra

of A if for every p, q ∈ Q, with p 6= 0, there is an a ∈ A such that ap 6= 0 and
aq ∈ A. Notice that an algebra is a left quotient algebra of itself if and only if it is
right faithful. In this case then by [18] it has a unique maximal left quotient algebra,
which is unital, called the maximal left quotient algebra of A. This algebra will be
denoted by Ql

max(A). If we put p = q in the definition of left quotient algebra we
speak about a weak left quotient algebra of A.

3.2. In [7] a notion of left quotient pair is introduced. Let A = (A+, A−) be a
subpair of an associative pair Q = (Q+, Q−). We say that Q is a left quotient pair

of A if given p, q ∈ Qσ with p 6= 0 (and σ = + or σ = −) there exist a ∈ Aσ, b ∈ A−σ

such that
abp 6= 0 and abq ∈ Aσ.

Every right faithful associative pair is a left quotient pair of itself.
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The notion of left quotient pair extends that of Utumi of left quotient ring since
given a subalgebra A of an algebra Q, Q is a left quotient algebra of A if and only if
V (Q) is a left quotient pair of V (A).

3.3. Definition. Let S be a subsystem of an associative triple system T . We
say that T is a left quotient triple system of S if given p, q ∈ T , with p 6= 0, there
exist a, b ∈ S such that abp 6= 0 and abq ∈ S, equivalently, if V (T ) is a left quotient
pair of V (S).

3.4. Let A =
⊕

σ∈GAσ be a gr-subalgebra of a gr-algebra Q =
⊕

σ∈GQσ. We
will say that Q is a gr-left quotient algebra of A if AA is a gr-dense submodule of AQ.
If given a nonzero element qσ ∈ Qσ there exists xτ ∈ Aτ such that 0 6= xτqσ ∈ Aτσ,
we say that Q is a weak gr-left quotient algebra of A. When G = Z/Z2 we will
speak about a left quotient superalgebra and a weak left quotient superalgebra.
Notice that a gr-algebra is a gr-left quotient algebra of itself if and only if it is gr-right
faithful. In this case (see [4]) it has a unique gr-maximal left quotient algebra, which
is unital, called the gr-maximal left quotient algebra of A. This algebra will be
denoted by Ql

gr−max(A).

3.5. Definitions. Let A be a subsuperalgebra of a superalgebra B. For every
qi ∈ Bi, with i = 0, 1, define (A : qi) = {a ∈ A : aqi ∈ A}. We will say that A is
weak right faithful in B if for every q0 ∈ B0, ranB1(A : q0) = 0. We will say that
A is right faithful in B if for every qi ∈ Bi, ranBi−1(A : qi) = 0 for each i ∈ {0, 1}.
This definition has been motivated by the following fact: when B = A, the previous
condition means A right faithful. Hence every right faithful superalgebra A is right
faithful in itself.

3.6. Proposition. Let A be a subsuperalgebra of a superalgebra B and suppose
A0 = A1A1.

(i) If B is a left quotient superalgebra of A, then B0 is a left quotient algebra of A0

and B1 is a left quotient triple system of A1.

(ii) If B0 is a left quotient algebra of A0, B1 is a left quotient triple system of A1

and A is weak right faithful in B, then B is a left quotient superalgebra of A
and, consequently, a left quotient algebra of A.

Proof: (i) The fact of B0 being a left quotient algebra of A0 was proved in [4,
(3.2)]. To see that B1 is a left quotient triple system of A1, consider p1, q1 ∈ B1,
with p1 6= 0. Since B is a left quotient superalgebra of A = A0 +A1 and A0 = A1A1,
0 6= t1p1 for some t1 ∈ A1. Apply that B0 is a left quotient algebra of A0 to find
a0 ∈ A0 such that a0t1p1 6= 0 and a0t1p1, a0t1q1 ∈ A0. By (0.9), A0 has no total
right zero divisors, hence 0 6= A0a0t1p1 = A1A1a0t1p1. Choose b1 ∈ A1 satisfying



Associative systems of left quotients 17

0 6= b1a0t1p1. Then u1 = b1a0 ∈ A1 and t1 verify: u1t1p1 6= 0 and u1t1q1 ∈ A1. This
shows our claim.

(ii) Consider p0, q0 ∈ B0, with p0 6= 0. Since B0 is a left quotient algebra
of A0, there exists a0 ∈ A0 such that a0p0 6= 0 and a0q0 ∈ A0. Now, consider
0 6= p1 ∈ B1, q0 ∈ B0. Apply 0 6= (A : q0)p1 to find aj ∈ Aj satisfying 0 6= ajp1 and
ajq0 ∈ Aj . For the third case, take 0 6= p0 ∈ B0, q1 ∈ B1. Since B0 is a left quotient
algebra of A0, 0 6= A0p0 = A1A1p0, so that 0 6= t1p0 for some t1 ∈ A1. Apply the
previous case to find aj ∈ Aj satisfying 0 6= ajt1p0 and ajt1q1 ∈ Aj . Then u = ajt1
is an homogeneous element of A such that 0 6= up0 and uq1 ∈ A0 ∪A1. Finally, given
p1, q1 ∈ B1, with p1 6= 0, apply that B1 is a left quotient triple system of A1 to find
a1, b1 ∈ A1 such that a1b1p1 6= 0 and a1b1q1 ∈ A1. Then u0 = a1b1 ∈ A0 satisfies
0 6= u0p1 and u0q1 ∈ A1.

3.7. Remark: By (0.10), (3.6) (i) may fail if A0 6= A1A1.

Other examples of right faithful subsuperalgebras in overalgebras (different from
the given in (3.5)) can be found in the following result.

3.8. Lemma. Let B be an oversuperalgebra of a superalgebra A satisfying
A0 = A1A1 and suppose that B0 is a left quotient algebra of A0 and that B1 is a left
quotient triple system of A1.

(i) If A is left faithful then A is right faithful in B.

(ii) If A is left supernonsingular (in particular, if it is left nonsingular) then B is a
left quotient algebra of A and A is right faithful in B. Moreover,

(i)′ The left faithfulness of A in (i) can be replaced by the left faithfulness of Ai for
i = 0 or i = 1.

(ii)′ The left supernonsingularity of A in (ii) can be replaced by the left nonsingularity
of Ai for i = 0 or i = 1.

Proof: (i) We will prove the case i = 0. The other one is similar. Suppose
0 6= b1 ∈ ranB1(A : q0) for some q0 ∈ B0. Apply that B1 is a left quotient triple
system of A1 to find u1, v1 ∈ A1 such that 0 6= u1v1b1 ∈ A1. Since A is left faithful
and A0 = A1A1, there exists w1 ∈ A1 such that u1v1b1w1 6= 0. B0 being a left
quotient algebra of A0 implies a0u1v1b1w1 6= 0 and a0u1v1q0 ∈ A0 for some a0 ∈ A0.
Now, a0u1v1 ∈ (A : q0) and b1 ∈ ranB1(A : q0) imply a0u1v1b1 = 0, a contradiction.

(ii) We prove first that B is a left quotient algebra of A.

Given p0, q0 ∈ B0, with p0 6= 0, apply that B0 is a left quotient algebra of A0

to find a0 ∈ A0 such that a0p0 6= 0 and a0q0 ∈ A0. If p1, q1 ∈ B1, with p1 6= 0, by
using that B1 is a left quotient triple system of A1 we find u1, v1 ∈ A1 satisfying
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0 6= u1v1p1 and u1v1q1 ∈ A1. Now, consider 0 6= p0 ∈ B0 and q1 ∈ B1; apply that
B0 is a left quotient algebra of A0 to find a0 ∈ A0 such that 0 6= a0p0 ∈ A0. Since
A is right faithful (by (2.5)) and A0 = A1A1, b1a0p0 6= 0 for some b1 ∈ A1. Notice
that V (B1) is a left quotient pair of V (A1) and that V (A1) is left nonsingular (by
(2.5)(i) and (2.13); by [7, (2.4)] (A1 : b1a0q1)b1a0p0 6= 0, hence there exists c1 ∈ A1

satisfying c1b1a0p0 6= 0 and c1b1a0q1 ∈ A1. The element u0 = c1b1a0 ∈ A0 satisfies:
u0p0 6= 0 and u0q1 ∈ A1.

Finally, given 0 6= p1 ∈ B1 and q0 ∈ B0, apply that B1 is a left quotient triple
system of A1 to find a1 ∈ A1 such that a1p1 6= 0. By the previous case there exists
u0 ∈ A0 satisfying 0 6= u0a1p1 and u0a1q0 ∈ A1.

The equality ranB1−i(A : qi) = 0 for every qi ∈ Bi and every i = 0, 1 follows
from the fact of B being a left quotient superalgebra of A.

(i)′ Under the conditions of the main statement, A is left faithful if and only if
A0 and A1 are left faithful (by (0.9)). Suppose A0 left faithful, and consider a1 ∈ A1

such that a1A1A1 = 0. If a1 6= 0, A1a1 6= 0 by the right faithfulness of A1.Apply
that A0 is left faithful to have 0 6= A1a1A0 = A1a1A1A1, which is a contradiction.

Now, suppose A1 left faithful, and consider a0 ∈ A0 satisfying a0A0 = 0. Then
a0A1A1A1 = a0A0A1 = 0. Since A1 has no total right zero divisors, a0A1 = 0. If
a0 6= 0, apply the right faithfulness of A0 to have 0 6= A0a0 = A1A1a0. Apply again
the left faithfulness of A1 to obtain 0 6= A1a0A1A1, a contradiction.

(ii)′ follows by (0.9) and (2.13).

3.9. Remark. The converses of (i) and (ii) in the previous Lemma are not
true: Consider A = B and take into account that right faithfulness implies neither
left faithfulness nor left supernonsingularity.

3.10. Corollary. Let A be a right faithful subsuperalgebra of a superalgebra B
and suppose A0 = A1A1. If A is left faithful (equivalently gr-left faithful) or gr-left
nonsingular, then B is a left quotient superalgebra of A if and only if B0 is a left
quotient algebra of A0 and B1 is a left quotient triple system of A1.

Proof: Apply (3.6) (i) and (3.8).

4. The maximal left quotient system of an associative system

4.1. Let A be an associative pair and denote by (E , e) and A its standard
imbedding and standard envelope, respectively. Then A and E can be considered as
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superalgebras by defining

A0 := A12A21 ⊕A21A12, A1 := A12 ⊕A21

and
E0 := eEe⊕ (1− e)E(1− e), E1 := A1

Moreover, by (1.2), A0 = A1A1, although the same is not true, in general, for
E0. When E0 = E1E1, then E = A and A is said to be a unital associative pair. As
it is not difficult to see, the pair A is unital if and only if e is a full idempotent in E ,
if and only if A = E = E0 ⊕ E1 is a strongly graded superalgebra.

4.2. Remark: Notice that the standard envelope of an associative pair A is
not necessarily a strongly graded superalgebra. For a commutative ring R, take

A =
(
< x2 > < x >
< x > < x2 >

)
,

where < f(x) > denotes the ideal generated by {f(x)} in the polynomial ring R[x].
Then the standard envelope of the associative pair A = V (< x >) is isomorphic to
A (consider A as a subpair of (A, ϕ), where ϕ = (ϕ+, ϕ−) is given by:

ϕ+ : A+ −→ A

a+ 7→
(

0 a+

0 0

) ϕ− : A− −→ A

a− 7→
(

0 0
a− 0

)
and apply (1.6)). Moreover,

A0A1 =
(
< x2 > 0

0 < x2 >

) (
0 < x >

< x > 0

)
=

(
0 < x3 >

< x3 > 0

)
6= A1.

4.3. Lemma. Let B be a left quotient pair of an associative pair A, and denote
by A and B their standard envelopes. Then:

(i) Ajibii 6= 0 for every 0 6= bii ∈ Bii, i, j ∈ {1, 2}.
(ii) Bii is a left quotient algebra of Aii for i ∈ {1, 2}.

Proof: Notice that by [7, (2.5)(i)], A ⊆ B.

(i) The case i 6= j is [7, (2.6)]. Now, suppose i = j. By the previous case, akibii 6=
0 for some aki ∈ Aki, with k 6= i and k, i ∈ {1, 2}. Apply that B is a left quotient
pair of A to find (xik, xki) ∈ (Aik,Aki) such that 0 6= xkixikakibii ∈ AkiAiibii. This
shows Aiibii 6= 0.

(ii) Consider bii, cii ∈ Bii, with bii 6= 0. By (i) there exists aji ∈ Aji, with j 6= i

and j ∈ {1, 2}, such that ajibii 6= 0. Apply that B is a left quotient pair of A and
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take (xij , xji) ∈ (Aij ,Aji) satisfying xjixijajibii 6= 0 and xjixijajicii ∈ Aji. Since A
is right faithful, yijxjixijajibii 6= 0 for some yij ∈ Aij . Then uii = yijxjixijaji ∈ Aii

satisfies uiibii 6= 0 and uiicii ∈ Aii.

4.4. Corollary. Let A be a right faithful associative pair and denote by A and
(E , e) its standard envelope and standard imbedding, respectively. Then eEe is a left
quotient algebra of eAe.

Proof: We first show ranA(eA) = 0. Suppose 0 6= x ∈ ranA(eA). If x11 6= 0
then, by (4.3)(i), 0 6= A11x11 = A12A21x11 ⊆ eAxe = 0, a contradiction. If x12 6= 0
then (since A has no total right zero divisors) 0 6= A12A21x12 ⊆ eAx(1 − e) = 0, a
contradiction. Analogously we obtain x22 = x21 = 0 and hence x = 0. Now, the
result follows by [7, (1.5)] and [3, (1.7)].

4.5. Lemma. Let A be a right faithful associative pair, and denote by A and
(E , e) its standard envelope and standard imbedding, respectively. Then, for every left
quotient algebra Q of A such that Qe+ eQ+Q(1− e) + (1− e)Q ⊆ Q we have that
Q := (eQ(1− e), (1− e)Qe) is a left quotient pair of A.

Proof: Notice that the products uQv, for u, v ∈ {1, e, 1 − e} make sense by
considering 1, u, v,Q inside Ql

max(Q) = (by [18, (1.14)])Ql
max(A) = (by [7, (1.5)(ii)]

and [18, (1.14)]) Ql
max(E).

Consider p12, q12 ∈ eQ(1 − e), with p12 6= 0. Since Q is a left quotient algebra
of A there exists a ∈ A such that ap12 6= 0 and ap12, aq12 ∈ A. Suppose first
a11p12 6= 0. Then a11p12, a11q12 ∈ eA(1 − e). Apply that A is a left quotient pair
of A to find x12, x21 ∈ A satisfying x12x21a11p12 6= 0, x12x21a11q12 ∈ A12. Notice
that x21a11 ∈ A21. Now, suppose a21p12 6= 0. Since A has no total right zero
divisors, 0 6= Aa21p12 ⊆ A12a21p12 +A22a21p12 = A12a21p12 +A21A12a21p12; hence
b12a21p12 6= 0 for some b12 ∈ A12. The element c11 = b12a21 ∈ A satisfies c11p12 6= 0,
c11p12, c11q12 ∈ A, and the previous case applies.

4.6. Remark: [7, (2.5)(ii)] is a particular case of the previous result.

4.7. Lemma. Let B be a left quotient pair of an associative pair A. Denote
by (B, e) and (A, e) their standard envelopes and by QB and QA their maximal left
quotient algebras. Then uQBu is a left quotient algebra of uAu, for u ∈ {e, 1 − e}.
In particular, uQAu is a left quotient algebra of uAu.

Proof: We will prove the result for u = e. Notice that by [7, (2.5) (i)] the
idempotent e is the same for A and B; moreover, we may consider A ⊆ B ⊆ QB.

ranBe(eB) = 0: Indeed, consider 0 6= be ∈ Be; by [7, (1.5)] Bbe 6= 0, so eBbe 6= 0
or (1− e)Bbe 6= 0; in the first case, be /∈ ranBe(eB); in the second one, choose c ∈ B
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satisfying 0 6= (1 − e)cbe ∈ B and apply that B is a left quotient pair of A to find
(x, y) ∈ A such that 0 6= yx(1− e)cbe ∈ A21Bbe = A21eBbe; then be /∈ ranBe(eB).

Now we see ranB(1−e)(eB) = 0: Consider b ∈ B such that b(1 − e) 6= 0. By
[7, (1.5)], Bb(1 − e) 6= 0. If eBb(1 − e) 6= 0 we have b(1 − e) /∈ ranB(1−e)(eB). If
(1−e)Bb(1−e) 6= 0, by (4.3)(i) 0 6= eA(1−e)Bb(1−e) and so b(1−e) /∈ ranB(1−e)(eB).
Since ranB(eB) = ranBe(eB) ⊕ ranB(1−e)(eB) = 0, we may apply [3, (1.7)] to the
algebras B and QB and to the idempotent e to obtain that eQBe is a left quotient
algebra of eBe. If we apply (4.3) (ii) and the transitivity of the relation “being a left
quotient algebra of”, we finish the proof.

4.8. Definition. Let A be a subpair of an associative pair B ⊆ B, where B is
the standard envelope of B. We will say that A is right faithful in B if:

ranB12(A21 :
m∑

i=1

pi
12p

i
21) = 0 and ranB21(A12 :

n∑
j=1

qj
21q

j
12) = 0

for every finite family (pi
12, p

i
21), (q

j
12, q

j
21) ∈ B, with (i, j) ∈ {1, . . . ,m} × {1, . . . , n}.

4.9. Definition. An associative triple system A is said to be right faithful in
an associative triple oversystem B when V (A) is a right faithful associative pair in
V (B).

4.10. Lemma. Let A be a subpair of an associative pair B ⊆ B, where B is the
standard envelope of B, and denote by A the graded algebra generated by A inside B.

(i) A is right faithful in B if and only if A is weak right faithful in B.

Suppose that B is a left quotient pair of A.

(ii) A is the standard envelope of A.

(iii) If A is left faithful or left nonsingular then A is right faithful in B. In particular
A is right faithful in B.

Proof: Consider (q11, q22) ∈ (B11,B22), and put q0 := q11 + q22. Then

ranB1(A : q0) = ranB12(A21 : q11)⊕ ranB21(A12 : q22). (1)

Indeed, the containment “⊆” is not difficult to prove. For the converse, consider
b12 ∈ ranB12(A21 : q11). Since we want to prove (A : q0)b12 = 0, take a ∈ (A : q0).
Then a21,A21a11 belong to (A21 : q11) and so a21b12 = 0 = A21a11b12. Since B is a
left quotient pair of A, a11b12 = 0, which proves our claim. Analogously we obtain
ranB21(A12 : q22) ⊆ ranB1(A : q0).
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Now, (i) follows immediately from (1).

(ii) By (1.6) it is enough to prove that A is right faithful, equivalently (by [4,
(1.10)]) A is right superfaithful. If Aa1 = 0 for some a1 ∈ A1 := A+ ⊕ A−, then
A1a1 = 0. Since A is right faithful (equivalently A1 is right faithful), a1 = 0.
Suppose now Aa0 = 0 for some a0 ∈ A0 = A1A1. Since B is right faithful, by [7,
(1.5)] B is right faithful. Hence, a0 is not a total right zero divisor in B. Apply
B = B0 ⊕ B1 = B1B1 ⊕ B1 to find x1 ∈ B1 satisfying x1a0 6= 0. Since B is a left
quotient pair of A (equivalently B1 is a left quotient triple system of A1) there exist
b1, c1 ∈ A1 such that b1c1x1a0 6= 0 and b1c1x1 ∈ A1. But b1c1x1a0A1a0 ⊆ Aa0 = 0,
a contradiction.

(iii) If A is right faithful, and left faithful or left nonsingular, by [7, (1.5), (2.14)],
A is right faithful, and left faithful or left nonsingular. On the other hand, B is a
left quotient algebra of A (apply [7, (2.5)]). Notice that A0 = A1A1. Moreover, B1

is a left quotient triple system of A1 (since B is a left quotient pair of A), and B0 is
a left quotient algebra of A0 (apply (4.3)), which imply, by virtue of (3.8), A right
faithful in B. Now the result follows by (i).

4.11. Remark: The converse of (4.10) (iii) is not true, that is, there are
examples of associative pairs A ⊆ B, with B a left quotient pair of A, and A right
faithful in B, and such that A is neither left faithful nor left nonsingular: Take A = B.
Then being A right faithful in A says merely A is right faithful, but right faithfulness
implies neither left faithfulness nor left nonsingularity: For the first example, consider

a field F and take A = B =
((

F F
0 0

)
,

(
F F
0 0

))
, which is a right but not a left

faithful associative pair. For the second one take, for example, A = (A,A), for A a
right faithful algebra with Ql

max(A) not being von Neumann regular.

4.12. Theorem. Let A be a left quotient subpair of an associative pair B such
that A is right faithful in B, and denote by A, (EA, e) and B, (EB, e) the standard
envelopes and standard imbeddings of A and B, respectively. Then:

(i) Q := Ql
gr−max(A) = Ql

max(A) = Ql
max(B) = Ql

gr−max(B).

(ii) Q := (eQ(1− e), (1− e)Qe) is a left quotient pair of A.

Proof: (i) By (4.3) (ii), B0 is a left quotient algebra of A0; since B1 is a left
quotient triple system of A1 (because B is a left quotient pair of A) and A is right
faithful in B (by (4.10) (i)), we obtain from (3.6) (ii) that B is a left quotient super-
algebra of A and, consequently, a left quotient algebra of A. Hence, by [18, (1.14)]
and [4, (2.8), (1.12)], Q := Ql

max(A) = Ql
max(B) and Ql

gr−max(A) = Ql
gr−max(B).

To finish the proof, apply [4, (1.18), (2.3), (2.4)] and the fact that Q is graded and
contains A as a gr-subalgebra (notice that the grading is given by the idempotent e).
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(ii) is (4.5).

4.13. Definition. Given a right faithful associative pair A with standard
envelope and imbedding A and (E , e), respectively, write Q := Ql

max(A). By (4.5),
Q := (eQ(1−e), (1−e)Qe) is a left quotient pair of A. Moreover, if B is a left quotient
pair of A such that A is right faithful in B, then by (4.12) (i), Q = Ql

gr−max(B) and
hence there exists a monomorphism (of associative pairs) from B into Q which is
the identity when restricted to A. The associative pair Q is called the maximal left

quotient pair of A and will be denoted by Ql
max(A). It is maximal among all left

quotient pairs of A in which A is right faithful in the sense previously explained.

4.14. Remark: The previous definition strictly generalizes that of [7, (2.11)].
Moreover, it cannot be improved.

Proof: Indeed, when A is an associative pair without total right and total left
zero divisors, or it is left nonsingular, the definition coincides with the given in [7,
(2.11)] because by (4.10) (ii), under this conditions, A is right faithful in every left
quotient pair of A. It strictly generalizes [7, (2.11)] by virtue of (4.11).

For the second sentence, suppose that B is a left quotient pair of A such that
there exists a monomorphism (of associative pairs) from B into Q := (eQl

max(A)(1−
e), (1 − e)Ql

max(A)e) which is the identity when restricted to A. Identify B with
its image inside Q and denote by Q the standard envelope of Q. Then A ⊆ B ⊆
Q ⊆ Q ⊆ Ql

max(A) (notice that Q and Ql
max(A) may not coincide -see [7, (2.12)] for

an example-). Then, Q being a gr-left quotient algebra of A implies (by [4, (1.17),
(1.18)]) that for every q0 ∈ Q0, A is a left quotient superalgebra of (A : q0) and
so Q is a left quotient superalgebra of (A : q0). Hence ranQ1(A : q0) = 0. By
(4.10)(i), A is right faithful in Q. Now, denote by B the graded algebra generated
by B inside Q. Then B is the standard envelope of B: Since Q is a left quotient
pair of A and A ⊆ B ⊆ Q, Q is a left quotient pair of B; this implies, by (4.10)(ii),
our statement. Finally, for every finite family {(pi

12, p
i
21)} ⊆ (B12,B21), ranB12(A21 :∑

i p
i
12p

i
21) = ranQ12(A21 :

∑
i p

i
12p

i
21)∩B12 = 0. This fact and the analogue obtained

by exchanging the roles of 1 and 2, complete the proof.

5. The maximal left quotient system of an associative triple
system

5.1. Let A be an associative triple system and denote byA the standard envelope
of V (A) := (A,A). Consider the natural inclusion (τ+, τ−), with τσ : V (A)σ → A,
for σ = ±.

Then the linear map τ : A−1 ⊕A0 ⊕A1 → A−1 ⊕A0 ⊕A1 satisfying
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τ(τ+(u) +
∑
τ+(ai)τ−(bi) +

∑
τ−(ci)τ+(di) + τ−(v)) :=

τ−(u) +
∑
τ−(ai)τ+(bi) +

∑
τ+(ci)τ−(di) + τ+(v)

for every u, v, ai, bi ∈ A, is an involutory gr-homomorphism of gr-algebras, i.e., τ2 =
1A, τ(al) ∈ A−l, for l = −1, 0, 1, and τ(ab) = τ(a)τ(b).

5.2. Theorem. Let A be a right faithful associative triple system and let A and
τ be as in (5.1). Denote Q−1 ⊕Q0 ⊕Q1 = Q := Ql

gr−max(A) = Ql
max(A). Then:

(i) τ can be extended to an involutory gr-homomorphism of gr-algebras τ̃ : Q−1 ⊕
Q0 ⊕Q1 → Q−1 ⊕Q0 ⊕Q1 which coincides with τ when restricted to A.

(ii) Q := Q1 with the triple product given by: x ·y ·z := xyτ̃z (being the juxtaposition
the product in Q and yτ̃ the image of y via τ̃) is an associative triple system and
a left quotient triple system of A.

(iii) Q is maximal among all left quotient triple systems of A in which A is right
faithful in the sense that if T is a left quotient triple system of A, then there
exists a monomorphism from T into Q (of associative triple systems) which
restricted to A is the identity.

Proof: (i) It is easy to see that A is a gr-left quotient algebra of a gr-ideal I if
and only if A is a gr-left quotient algebra of Iτ and that for any f ∈ HOMA(Iτ ,A)l

(where HOMA(Iτ ,A)l denotes the set of all graded homomorphisms of left A-gr-
modules from Iτ to A) the map fτ : Iτ → A given by fτ (yτ ) := f(y)τ lies in
HOMA(Iτ ,A)−l, for l = −1, 0, 1. Moreover, τ̃ : Q → Q defined by [f, I]τ̃ = [fτ , Iτ ]
satisfies the desired conditions.

(ii) It is immediate to see that Q is a left quotient triple system with the given
triple product. Now, let p, q be in Q, with p 6= 0. Apply (4.12) (ii) to find (a, b) ∈
V (A) such that 0 6= abp = a · bτ · p and a · bτ · q = abq ∈ A. This proves that A is a
left quotient triple system of A.

(iii) If B is a left quotient triple system of A in which A is right faithful then,
by (3.3), V (B) is a left quotient pair of V (A). Clearly, the right faithfulness of A
inside B can be read as the right faithfulness of V (A) inside V (B). By (4.13) Q =
Ql

gr−max(E(V (B))) = Ql
max(E(V (B))) = Ql

gr−max(E(V (A))) = Ql
max(E(V (A))),

where E(V (−)) denotes the envelope of V (−), and (Q−1,Q1) is a left quotient pair
of V (A). By (i) and (ii), B can be seen as a subtriple of Q.

5.3. Definition. For every associative triple system A the left quotient triple
system Q defined in (5.2) is called the maximal left quotient triple system of A.



Associative systems of left quotients 25

ACKNOWLEDGMENTS

The authors would like to thank the referee for his/her careful reading of the
paper and many valuable suggestions which have improved it.

REFERENCES

[1] J. A. Anquela, T. Cortés, M. Gómez Lozano, M. Siles Molina,
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