Algebraic Structures 3 1998

2. Categories and functors

2.1. Definitions

2.1.1. Definition. A category Q consists of objects Ob(Q) and morphisms between objects:
for every @, R € Q there is a set Mor(R, S) which is called the set of morphisms from R to S; for
every three objects @), R, S in Q there is a composition of morphisms, i.e. a map

Mor(R, 5) x Mor(Q, R) = Mor(Q,5), (f,9) = fog.

The following axioms should be satisfied:

(1) The intersection of Mor(@, R) and Mor(Q’, R') is empty unless @ = Q' and R = R'.

(2) For every @ of Ob(Q) there is a morphism idg € Mor(Q, Q) such that for every R in
Ob(Q) and every h € Mor(R, Q), g € Mor(Q, R)

idgoh = h,goidg = g.

(unit axiom)
(3) For every @Q, R, S, T in Ob(Q) and every f € Mor(Q, R),g € Mor(R, S),h € Mor(S,T)

ho(gof)=(hog)of
(associativity of the composition of morphisms).

2.1.2. An element f € Mor(Q@, R) can be written as f:Q — R.

2.2. Examples

2.2.1. The category Set has sets as objects, maps of sets as morphisms.
2.2.2. The category Gr has groups as objects, homomorphisms of groups as morphisms.
2.2.3. The category Rg consists of rings as objects, homomorphisms of rings as morphisms.

2.2.4. The category A — mod consists of left modules over a (not necessarily commutative)
ring A as objects, homomorphisms of rings as morphisms. Note that Z — mod coincides with the
category Ab of abelian groups as objects, homomorphisms of groups as morphisms.

2.2.5. The category F'ld consists of fields as objects, homomorphisms of rings as morphisms.
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2.3. Definitions

2.3.1. Definition. A morphism f:@Q — R is called an isomorphism if there is a morphism
g:R — @ such that fog =idg and go f = idg. It is easy to show that if g exists, then g is
unique. The objects () and R are called isomorphic objects.

Isomorphisms in Set are bijections.

An isomorphism from @ to @ is called an automorphism of (Q, the set of all automorphisms is
denoted by Aut(Q). It is a group.

2.3.2. Morphisms from @ to @ are called endomorphisms. The set of all endomorphism of @
is denoted by End(Q).

2.3.3. A morphism f: @@ — R is called a monomorphism if for every two morphisms g1, g2: S —

Q
fegi=fog2=91=92
(can cancel f on the left).
Monomorphisms of categories of 2.2.1-2.2.5 are injective maps. Every morphism of a category
of 2.2.1-2.2.5 which is injective is a monomorphism.

2.3.4. A morhism f: Q) — R is called an epimorphism if for every two morphisms g1,g2: R — S

giof=g20f=g1=9

(can cancel f on the right).
Surjective morphisms of categories of 2.2.1-2.2.5 are epimorphisms.

Lemma. A morphism of Set, A — mod which is an epimorphism is surjective.

Proof. If f:(Q — R is not surjective for sets @, R, then define g;: R — {0,1} by g:(f(Q)) =0,
gi(r)=1forr € R\ f(Q) and g2(R) = 0. Then g1 0 f =gz 0 f and g1 # go.

If f:@Q — R is not surjective for modules @, R, then let g;: R — R/f(Q) be the canonical
surjective homomorphism and g>: R — R/ f(Q) be the zero homomorphism. Then g; 0 f = ga0 f
and g1 # ga.

However, in other categories there are epimorphisms which are not surjective: for example,
the inclusion f:Z — Q is an epimorphism in Rg. Indeed, assume that g;:Q — A is a ring
homomorphism, and g>: Q — A is a ring homomorphism such that g; o f = goo f. If the kernel of
g1 is Q then its image is {0}. Then Z C ker(gz2), so ker(g2) = Q and g1 = go. If the kernel of g3
is (0), then its image is an integral domain and so is the image of g; bu the preceding arguments.
From g1(n) = ga(n) for every integer n, we get mgi(n/m) = gi1(n) = ga2(n) = mga(n/m), so
g1(n/m) = g2(n/m) and g, = g.

Note that f isn't an isomorphism, though it is a monomorphism and epimorphism.

2.3.5. Definition. Let Q be a category. The opposite category Q°P has the same objects as O,
for @, R in Ob(Q°P) the set Morg.» (Q, R) is equal by the definition to the set Morg (R, Q); the
composition

Morger (R, S) x Morger(Q, R) = Morger (Q, S)
is defined as (f,g9) — go f € Morg(S, Q) = Morger (Q, S).
Monomorphisms of Q are epimorphisms of Q°P; epimorphisms of Q are monomorphisms of Q.
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2.3.6. Definition. An initial object of Q (if it exists) is an object I such that for every @ in
Ob(Q) there is exactly one morphism from I to Q. A terminal object of Q (if it exists) is an object
T such that for every @ in Ob(Q) there is exactly one morphism from @ to T'.

All initial objects are isomorphic, and all terminal objects are isomorphic.

For example, the initial object of Set is the empty set; the terminal object of Set is any one-
element set. The group consisting of one element is an initial and terminal object of Gr and Ab.
The A-module {0} is an initial and terminal object of A — mod.

2.3.7. Let Q in Cal@ and let Q¢ be a category whose objects are morphisms f: R — @, R in
Ob(Q) and morhisms from f: R — @ to g: S — @ are morphisms h: R — S such that go h = f.

2.3.8. Let Q be a category. Define a new category M (Q) whose objects are morphisms of Q
and for two morphisms f:@Q — R € Ob(M(Q)) and f": Q" — R’ € Ob(M(Q)) morphism of f
to f'in M(Q) is the pair (¢: A — A’,4: B — B’) of morphisms of Q such that 9o f = f' 0 ¢.

2.4. Products and coproducts

2.4.1. Definition. If Qg, k € K is a set of objects in Q, then a product [], o x Q (if it exists)
is an object of Q together with morphisms 7y: [, c x @r — Qg such that for every @ in Ob(Q)
and every set of morphisms f: @ — Qy, there is a unique morphism f: @ — [], ¢ x @ such that

mpof=fr forall ke K.

2.4.2. If a product exists it is unique up to an isomorphism.
If K ={1,2} we just write Q1 X Q2 for the product of @1 and Q.

2.4.3. Product in category Set is the product of sets, in Ab is the product of groups, in Rg is
the product of rings, in A — mod is the product of modules, in Fld doesn’t exist.

2.4.4. Definition. If Qx, k € K is a set of objects in Q, then a coproduct [,z Qx (if it
exists) is an object of Q together with morphisms ix: Qr — ], ¢z @& such that for every @ in
Ob(Q) and every set of morphisms f: Qr — Q there is a unique morphism f:]], ., Qr — @
such that

foir=fr forallke K.

2.4.5. Coproduct in category Set is the disjoint union of sets, in Ab is the direct sum of groups,
in A — mod is the direct sum of modules, in Rg and Fld doesn’t exist.

2.4.6. Coproduct in Q corresponds to product in Q° and product in in Q corresponds to
coproduct in Q°P.

2.5. Functors of categories

2.5.1. Definition. A (covariant) functor F from a category Q to a category R is a rule which
associates an object F(Q) of R to every object @ € Q, and a morphism F(f): F(Q) — F(R) to
every morphism f: @ — R such that the following properties hold:

(1) F(idg) = idx(q) for every @ in Ob(Q);

(2) F(fog)=F(f)o F(g) for every f € Mor(R, S),g € Mor(Q, R).



2.5.2. Example 1. The identity functor idg associates @ to @ in Ob(Q) and f to f € Mor(Q).
Example 2. A forgetful functor, for example from A — mod to Ab (forget the A-module struc-
ture), or from Gr to Set (forget the group structure).

253. f F:Q — R and G:R — S are two functors, then Go F : @ — S is defined as

(G0 F)(Q) =G(F(Q)) and (G o F)(f) = G(F([))-
Then idg oF = F = Foidg.

2.5.4. A contravariant functor F: Q@ — R is a (covariant) functor F: Q@ — R°P, i.e. arule which
associates an object F(Q) of R to every object @ in Ob(Q), and a morphism F(f): F(R) = F(Q)
to every morphism f: Q) — R such that the following properties hold:

(1) F(idg) = idr(q) for every Q in Ob(Q);
(2) F(fog)=F(g) o F(f) for every f € Mor(R, S),g € Mor(Q, R).

2.5.5. Example 3. Let Q in Ob(Q). Define a functor Hom(Q,): Q — Set by

Hom(Q,-)(R) = Mor(Q,R) and  (Hom(Q,-)(f))(g) = fog

for every g € Mor(Q, R) for a morphism f: R — S, so Hom(Q,-)(f): Mor(Q, R) — Mor(Q, S).
If @ =mod — A, then Hom(Q,-): @ — Q, Hom(Q,")(R) = Hom(Q, R).
Define a contravariant functor Hom(-,Q): Q@ — Set by

Hom(-, Q)(R) = Mor(R,Q) and  (Hom(-,Q)(f))(g) =go° f

for every g € Mor(R, @) for a morphism f:S — R, so Hom(:,Q)(f): Mor(R, Q) — Mor(S, Q).
If @ =mod — A, then Hom(-,Q): Q — Q.

2.5.6. Definition. Suppose that for every two morphisms f,g:Q — R in Q there is their
sum f + ¢g:Q — R and it is a morphism of Q. A functor F: Q — @Q is called additive if
F(f+9)=F(f)+ F(g) for every two morphisms f,g:Q — R in Q.

Lemma. /f F is an additive functor, then F(Q1 X Q2) is a product of F(Q1) and F(Q2).
Proof. First, let Q1,Q2, @ be objects of Q. Suppose there are morphisms

11:Q1 > Q, 12:Q2 = Q, p1:Q —Q1, p2:Q — Q>

such that
p1oiy =idg,, p2oix=idg,, P1oi2=0, proi; =0, i10p;+izopy =idg.

Let R be an object of @ and let fir: R — Qi be morphisms. Define f:R — Q as f =
i10 f1 +iz0 fa. Then pyo f =pgo (i1 0 f1 +iz0 fa) = fr. If g: R — Q satisfies px 0 g = f,
thenpyo(f—g)=0and f —g=(i10p1 +ia0p2)o(f—g)=0,i.e f=g. Thus, Q together
with morphisms pg: Q — Qy is a product of ()1 and Q.

Conversely, if @ is a product of Q; and @2, then there morphisms iy, pr, = 7y satisfy the listed
relations.

Thus the property of () to be a product of ()1 and ()5 can be reformulated in terms of morphisms.
Then their images with respect to F satisfy the same relations, and thus, F(Q1 X Q2) is a product
of F(Q1) and F(Q32).



2.6. Complexes, commutative diagrams and exact sequences

Let Q@ be A —mod. We write groups additively. Denote by 0 the zero A-module. It is an initial
and terminal object of Q.
Every morphism in Q has its kernel (as a homomorphism in this case) and image.

2.6.1. Definition. A sequence of objects and morphisms in Q

fn fn
e = Qu1 B Qn Qo — ..

is called exact if the kernel of f,, is equal to the image of f,,1 for every n € Z.

Example. A short sequence is
0—0Q-5 R 50

and its exactness means that f is a injective, g is surjective and the kernel of g coincides with the
image of f, so if we identify @ with its image in R, then S is isomorphic to R/Q.

2.6.2. Definition. A diagram of objects and morphisms is called commutative if the result of
compositions of morphisms doesn’t depend on the route chosen. For instance, the diagram

In,
. Qnm % Qn,m—l —_ ...

gn,er gn,m—ll

Qn—l m—1 —7 ...

)

- Qno1m

of objects @, of Q and morphisms fy, 1: Qn m — Qnm—1, Gn,m: Qnm — Qn—1,m 1S commu-
tative if fr,_1.m © gn,m = Gn,m—1° fn,m for every n,m € Z.

Note that a functor sends a commutative diagram into a commutative diagram, since F(f o
rog)=F(f)o---0F(g).

2.6.3. Definition. A chain complex C is a sequence C,, of objects of @, n € Z such that there
are morphisms d,,: C,, — C,,_1 such that d, o d,+1 is the zero morphism C,, 11 — C,,_;. Note
that every exact sequence is a chain complex.

We write

dn dn
i = Chg1 =B C 2 Cy — ...

The morphisms d,, are called differentials of C. The kernel of d,, which is an object of Q consists

of so called n-cycles and is denoted by Z,,(C). The image of d,,+1 which is an object of Q consists

of n-boundaries and is denoted by B,,(C). Since d,od,+; = 0we get 0 C B,(C) C Z,(C) C C,

for all n. The quotient Z, (C)/B,(C) is called the nth homology of C and is denoted by H, (C).
A complex C is called exact if sequence

dn dn
iii = Cpy1 =5 Cp =5 Cpey —> ...

is exact, i.e. H,(C) =0 foralln € Z.

2.6.4. Definition. A cochain complex C is a sequence C™ of objects of @, n € Z such that
there are morphisms d”: C™ — C™*! such that d" o d"~! is the zero morphism C"*~! — C"+1
We write

ot T o Dy ont
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The morphisms d” are called differentials of C. The kernel of d™ which is an object of Q consists
of n-cocycles and is denoted by Z™(C). The image of d"~! which is an object of Q consists of n-
coboundaries and is denoted by B™(C). Since d" o d"~! = 0 we get 0 ¢ B"(C) c Z"(C) c C™
for all n. The quotient Z"(C)/B™(C) is called the nth cohomology of C and is denoted by
H™(C).

2.6.5. Definition. For two chain complexes

dn dn
i = Cpy1 =5 Cp =5 Crey —> ...

and
;o Gny o dn
e — Chy — C —Cp g — ...

a morphism u: C — C’ is a sequence of of morphisms u,,: C,, — C}, such that
Up—10dy = dp_10uy

for every n. In other words, the diagram

dnt1
. —— Chpa > Cp, y Cpep ——— ...

un+1l unl unfljr

dr iy d’
L —— Ch S O — O —— ...

is commutative.

Definition. A category Ch(Q) of chain complexes over Q has chain complexes as objects and
morphisms of chain complexes as morphisms.
The morphism u: C — C’ induces morphisms H,,(C) — H,(C’) for all n.

2.6.6. Definition. A sequence of chain complexes C(™) and morphisms »(): C") — C(»=1)

(n+1) (n) _
is called exact if for every m € Z the sequence Cr(,?ﬂ) ey Cr(,?) LN 7(,? Y for every n.

2.6.7. Note that a functor send a chain complex into a chain complex, since 0 = F(0) =
F(dpodpt1) = F(dy) o Fldpy1).

2.7. Long sequence of homologies

Let Q be A — mod.
2.7.1. Let f:@Q — R be a morphism of Q. Then we have an exact sequence
0 — ker(f) — @Q EEANY N coker(f) — 0.
Here ker(f) is the kernel of f and coker(f) = R/ f(Q) is the cokernel of f.

2.7.2. Snake Lemma. For a commutative diagram

A s B —2 5 C

A
0 — A’ ‘B — C'

with exact rows there is an exact sequence

<+
e

ker(f) — ker(g) — ker(h) LN coker(f) — coker(g) — coker(h)
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with & defined by the formula 6(c) = i~1gp~'(c) mod coker(f) for ¢ € ker(h). Moreover, if
A — B is a monomorphism, then so is ker(f) — ker(g) and if B — C' is an epimorphism, then
so is coker(g) — coker(h).

Proof. Diagram chase.

2.7.3. Theorem. Let
0—A-SB-LCc—0

be a short exact sequence of chain complexes. Then there are morphisms
On: H,(C) — H,—1(A) called connecting morphisms such that

% Haan(C) ™5 Ha(A) % Hy(B) 2% H,(C) 22 Hola(A) — ...

is an exact sequence.
Similarly, if
0—A-LB-5HC—0

is a short exact sequence of cochain complexes, then there are morphisms
§": H"(C) — H™*1(A) called connecting morphisms such that

n

S mv o) S Bra) S mrB) L B o) s B A) —s

is an exact sequence.
Proof. From the diagram

00— 4, —— B, —— C, —— 0
it| | i
0 —— A,y —— By —— Cpy —— 0
and the Snake Lemma we get exact sequences
0— Z,(A) — Z,(B) — Z,(C)
and
An/diy i1 (Ans1) — Bn/dy 1 (Bat1) — Cn/dS1(Cryr) — 0.

Define morphism E:: An/d 1 (An+1) = Zn_1(A) as induced by d;;. Now we get the commuta-
tive diagram

An/dﬁ+1(An+1) — Bn/df+1(Bn+l) — Cn/dg+1(0n+1) — 0
| | |
0 — Zn_l(A) — Zn—l(B) — Zn—l(C)

The kernels of the vertical morphisms is H,(A), H,(B), H,(C) and their cokernels are H,,_1(A),
H,_1(B), H,_1(C). By the Snake Lemma we deduce an exact sequence

H,(A) — H,(B)— H,(C) — H,_1(A) — H,_1(B) — H,_1(C).

Pasting together these sequences we get the long exact sequence.



2.7.4. Remark. If

0 s A > B s C > 0
0 s 'A s B s C! s 0

is a commutative diagram with short exact sequences of chain complexes, then the diagram

. —— H,(B) —— H,(C) —— Hp11(A) —— ...

! | l

. — H,(B) —— H,(C) —— Hp+1(A) —— ...
is commutative.

The proof follows from the explicit description of the morphism 6,,: H,(C) — H,_1(A): 6,
transforms an n-cycle z € Cy, to f,*,d2g- () mod d,_14,_1.



3. Free, projective and injective modules

Let Q be A — mod.

3.1. Free objects

3.1.1. Let X be a set. Consider a category Map(X, Q) objects of which are maps f: X — @,
Q@ € Q, and a morphism from an object f: X — () to an object g: X — R is a morphism ¢: Q) — R
in Mor(Q, R) such that g =@ o f.

3.1.2. Definition. An object F' of Q together with a map f: X — F'is called a X-free (free)
object of Q if f: X — F'is an initial object of the category Map(X, Q). In other words, for every
object @ of Q and a map g: X — @ there is a unique morphism : F — @ in Q such that

Ypof=g.

Or, equivalently, for every set {g, € Q : z € X} there is a unique morphism v: F — @ such that
P(f(z)) = q, for all z € X.

Example. If X consists of one element z, then A, x — 1 is a X -free object in A — mod.

3.1.3. Lemma For every set X there exists a X -free object of Q. Every two X -free objects are
isomorphic.

Proof. Let F = [[ cx Az = @zexAg in @ where A, = A. Let the map f: X — F be defined
by £ — 1 of the xth component. It is a X-free object of Q: for an object Q) of Q and a map
g:X — Q define 9 : F — Q by ¥(®az) = > cx azg(x). Thentpo f=g. If "o f =g, then
P =1

Since F' is a X-free object, there is a unique morphism 1g: F' — F such that g o f = f. We
deduce that 9y = idp.

If F/, f': X — F' is another X-free object, then there is a unique morphism 1: F — F' such
that f/ = 1o f and a unique morphism 7': F/ — F such that f ='o f’. Then f =4’ oo f, so
by the previous paragraph ¢’ o1 = idg and similarly 9 o ¢y’ = idg, so F' and F’ are isomorphic.

3.1.4. Lemma. The coproduct of free objects is free.

Proof. Let Fy be Xj-free (with fi: Xy — Fy), k € K. Let iy:Fp, — [ cx Fr be as in

the definition of a coproduct in 2.4.4. Define pg: Xy i) Fy, LN erK Fy. By the definition
of a coproduct there is a map f:[[,cx Xr — [lycx Fx such that the composition of ji: Xj —
[xecx Xx and f coincides with py for all k € K.

For a map g: erK X, — @ put gx, = go jk, K € K. Then there are morphisms ¢: F, — @
such that ¥ o fr, = gx for all k € K. From the definition of a coproduct we deduce there is a
morphism 4: [ [ c i Fr — @ such that 1 o i) = ). Then

ofojy=1popy=1o0igofr=1poirofr=1vro fr=gr=9gojk

for every k € K. Then from the definition of a coproduct in 2.4.4 we conclude that ¢ o f = g.
If ' o f = g, then

P ofoje=v9 opr =1 oiro fk=g0jk =gk =vVr0 [
so 9’ o = 1y and then ¢’ = .
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3.1.5. Lemma. Every object of Q is a quotient of a free object.

Proof. For an object @ put X = @ and let g: X — @ be the identity map. Then there is a
X-free object F' with f: X — F such that there is a morphism : F — @ satisfying 9o f = g¢.
Since g is surjective, 1 is an epimorphism and @ is a quotient of F'.

3.2. Projective objects

3.2.1. Definition. An object P is called a summand of an object @ of Q if there are morphisms
m:@Q — P and i: P — @ such that 7 o4 = idp.
Then the kernel if 7 and the cokernel of 7 are zero.

3.2.2. Examples.

1) P is a summand of P, just take 7 and 7 as the identity morphisms.

2) Definei:P - P®R,m: P®R — P by ip(p) = (p,0),7p(p,r) = p. Then P is a summand
of P& R.

3) Let Py be a summand of Q, k = 1,2. Then P; & P, is a summand of Q1 ® @3, just take
m = (m1,m2) and i = (41, 12).

3.2.3. Definition. A short exact sequence
0—R-5Q-585—0

splits if there is a morphism w: S — @ such that v o w = idg.
Then S is a summand of (). Conversely, if S is a summand of @), then the sequence

0—R—Q -5 85—0,

where R = ker, splits: m o4 = idg.

Define a morphism p: R ® S — Q by p((r,s)) = u(r) + w(s). If p((r,s)) = 0, then 0 =
v(p((r,s))) = s and then u(r) = 0, so r = 0. Hence p is a injective. Since v(q — wv(q)) =
v(g) —v(g) =0, ¢ —wv(q) = u(r) for some r € R. Then ¢ = p((r,v(q))). Therefore, p is an
isomorphism and @ is a direct sum of R and S.

Similarly one can show that @) is isomorphic to R @ S iff there is a morphism z: Q — R such
that z o u = idpy.

Thus, S is a summand of @ iff there is a short exact split sequence

0— R-—5Q-"585—0,
iff Q is a direct sum of S and R iff there is a morphism z: ) — R such that z o u = idp.

3.2.4. Definition. An object P is called projective if it is a summand of a free object.

Examples.

1) Every free object is a summand of itself, therefore every free object is projective.

2) Let A = Z/67Z. By the Chinese remainder theorem A is isomorphic to Z/2Z & 7 /3Z, so
Z/2Z is a projective Z/6Z-module. However, it isn't a free Z/6Z-module, since every finite free
Z /6Z-module has cardinality divisible by 6.
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3.2.5. Lemma. For objects Py, P the direct sum P, & P; is projective iff Py, Py are projective.

Proof. Let pp,: Py @ P» — Py, ip,: Py — P1 ® P», k = 1,2, be morphisms introduced in
example 2) above. If P; @ P, is a summand of a free object F' with morphisms 4,7, then Py is a
summand of F' with morphisms 7p, o7 and 1 0ip,.

If Py, Py are summands of Fy, F5, then by example 3) above P; & P; is a summand of F; @ F>
which is a free object by 3.1.4.

3.2.6. Proposition. An object P is projective iff for every two objects R,(Q), a morphism
B: P — @ and an epimorphism c: R — @)
P

d
R —-Q > 0
there is a morphism v: P — R such that f = a0 .

Proof. First let’s check that if P is a X-free object with f: X — P, then it satisfies the property
of the proposition. Denote g = S o f and g, = g(x) for z € X. Since « is surjective, g, = a(ry)

for some r, € R. According to the definition of a X-free object, there is a morphism yv: P — R
such that v(f(z)) = r; for all z € X. Then ao~v(f(z)) = B(f(z)). Morphisms a0y and 8
satisfy aoyo f=g=pPBo f,so a0y =p.

Now let P be projective, so there is a free object F' and morphisms m: F — P and i: P — F
such that w o i = idp. Then we get a morphism 8’ = B o m: F' — @ and from the first paragraph
there is a morphism +': F — R such that a0y’ = 3. Then for y = 4/ 0i: P — R we get
aoy=pfoi=pFomoi =/ so P satisfied the property of the proposition.

Conversely, assume P satisfies the property of the proposition. Let F' be a free object such that
P is its quotient, i.e. there is an epimorphism a: F' — P. Then there is a morhism v: P — F' such
that oy =idp. Thus, P is a summand of F.

3.2.7. Corollary 1. Let P be projective. Then for every three objects S, R,Q and a diagram
P

d
s 3R, Q

with exact row and oo B = 0 there is a morphism e: P — S such that

B=doe.

Proof. Since a0 f = 0, we deduce that im(8) C ker(a) = 6(S). Consider the epimorphism
6’:S — 6(S). From the proposition we deduce that there is a morphism e: P — S such that
B=06oe. Then f=0doc¢.

3.2.8. Corollary 2. P is projective iff every short exact sequence
0—R—Q-5P—0

splits.
Proof. If P is projective, then by the proposition there is a morphism v: P — @ such that
v oy = idp, so the sequence splits.
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Let
0—R—F-5P—0
be an exact sequence where F' is free. Then it splits, so P is a summand of F', and therefore P is
projective.

Example 3. ) Let A =7/47. The sequence
0 —> /27 — 7.JAT. — 7.J27. — 0

(the morphism Z /4Z — Z/2Z is defined as n mod 4 — n mod 2) doesn’t split, because other-
wise Z/4Z were isomorphic to Z /27 & Z /27 and wouldn’t have an element 1 mod 4 of order 4.
Thus, Z/2Z isn't a projective object in the category Z /4Z — mod.

3.2.9. Definition. A functor F: Q — Q is called exact (left exact, right exact) if for every short
exact sequence
0—R—Q—5—0
the sequence
0 — F(R) — F(Q) — F(S) — 0

is exact (exact everywhere with exception of F(S), exact everywhere with exception of F(R)).

Lemma. The functor Hom(T,-): @ — Q defined in 2.5.5 is left exact.
Proof. Let
0-R-5Q-"-585—0
be an exact sequence. If f:T"— R and uo f:T — @ is the zero morphism, then f(7") = 0 and
so f is the zero morphism.

For f: T — R clearly vouo f: T — S is the zero morphism. If g: T — S is such that vog: T — S
is the zero morphism, then for every t € T' g(t) = u(r;) for a uniquely determined r; € R. Define
f:T — Rby f(t) =r¢. It is a morphism and g =uo f.

Similarly one can show that the contravariant functor Hom(-,T): @ — Q is left exact, i.e. for
an exact sequence

0—wR—Q—S5S—0
the sequence
0 — Hom(S,T) — Hom(Q,7T) — Hom(R,T)

is exact.

3.2.10. Corollary 3. P is projective iff the functor Hom(P,-): @ — Q is exact.
Proof. Let P be projective. Let

0—R—Q-585—0

be an exact sequence. For every morphism g: P — S there is a morphism f: P — @ such that
g =wvo f. Thus, the morphism Hom(P, Q) — Hom(P, S) is surjective.

Let the functor Hom(P,-) be exact. Then for every epimorphism v: QQ — S and a morphism
g: P — S there is a morphism f: P — (@ such that ¢ = v o f. Hence by the propostion P is
projective.

3.2.11. Remarks.
1) Projective modules over PID are free.
2) Projective modules over local rings are free.
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3.3. Injective objects

3.3.1. Definition. An object J is called injective if it is a projective object in Q°P. In other
words, for every two objects R, (), a morphism 8: R — J and an monomorphism a: R — )

0 s R —2— Q

there is a morphism v: Q — J such that
B=roa.
Note that there is not characterization of injective objects in terms of free objects.

3.3.2. Here are properties of injective objects similar to those of projective.
1) The product of objects is injective iff each object is injective.
2) If J is injective, then for every three objects S, R, @ and a diagram

Q y R —>— 8§

with exact row and 8 o § = 0 there is a morphism £: S — J such that 8 =0 a.
3) J is injective iff the functor Hom(-, J): @ — Q is exact.
4) J is injective = every short exact sequence

0—J—>Q—>R—0
splits.

3.3.3. For every object () there is an injective object J and a monomorphism Q — J. The
proof is a little tricky and is omitted.
Using this result one can replace = in 4) by <.

3.3.4. Definition. An A-module @ is called divisible if for every ¢ € @ and a € A which isn’t
a zero divisor there is ¢’ € @ such that ¢ = aq’.

For example, QQ is a divisible Z-modules.

One can prove that 1) Z-module @ is injective iff @ is divisible and 2) if @) is an A-module, then
the A-module Homy(A4, Q) of all additive homomorphisms from A to @ is a divisible A-module.

3.4. Projective and injective resolutions

3.4.1 Lemma. Every object () of Q possesses a projective resolution, i.e. there is an exact
sequence
. =P, — P,y —...— P —F—Q—0
in which P; are projective objects of Q.
Proof. By 3.1.5 there is an exact sequence

0— Kog—FPp—Q —0
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in which Py is a projective object (even free). For K| there is an exact sequence

00— Ki —P—Ky;—0

in which Py is a projective object. Similarly define K,,, P,,, so we get an exact sequence

00— K,—PFP,— K,_1 — 0.

Define f,: P, — P,_; as the composition of P, — K,,_; — P,_;. Then ker(f,) coincides
with the kernel of P, — K,,_; which is equal to K,, and im(f,,11) coincides with the image of
K,, — P, which is equal to K, so ker(f,) = im(f,+1).

3.4.2. Lemma. Let f:@Q — Q' be a morphism in Q and let

. P, —P, 41— ... — P —>FP—Q—0

.e.—™P —P _,—...—P —P—Q —0

be projective resolutions of Q and Q)'. Then there are morphism f,: P, — P! such that the
diagram

>y Py > Py > Q > 0

Woe

— P — P} — Q' — 0

IS commutative.

Proof. The morphism f; exists since P, is projective. The composition of the morphism
P, — Py — P| and the morphism Pj — Q' is zero, so by 3.2.7 there is a morphism f1: P, — P}
such that the composition of it with P| — Pj coincides with Py — P, — Pj. Similarly one
constructs morphisms f,.

3.4.3. Lemma. Let
0—wR—Q—S5S—0

be an exact sequence and let

o.— Pl — Pl— R—0

. — Pl — Pl — S5 —0

be projective resolutions. Denote P,, = P, ® P,/ and leti,: P, — P, m,: P, — P}’ be morphisms
associated to P, as a product and coproduct of P, and P}/

Then there are morphisms «; such that P, form a projective resolution of ) and there is a



15

commutative diagram

0 0 0
al
> Py » P} > R > 0
i ig
« (0%
> Py — P, 5 Q > 0
” "
1 To
"
«
— P/ — Py —— S — 0
0 0 0

Proof. Since Pj is projective, there is a morphism wy: P/ — @ whose composition with
@ — S is equal to P — S. Due to the definition of the coproduct for the morphisms
P} — @ and vo: P; — R — @ there is a morphism «g: Py — @ such that ag o ij = vy and
wp © Ty = . Therefore two left squares of the diagram are commutative.

For the Snake Lemma applied to the commutative diagram

0 y P gy T, pr g
a{)l aOJ, a(')'JV
0 > R >y Q » § —— 0

with exact rows we get an exact sequence
0 — ker(ag) — ker(ag) — ker(ag) — coker(ap) — coker(ag) — coker(ay ).

Since a; and «g are surjective, we deduce that «p is surjective.
Consider the diagram

P{ —— ker(o)) —— 0

P ker(ag) —— 0

P/ —— ker(aj) —— 0

0 0
and define similarly a morphism P; — ker(«g) which gives a morphism ay: P — P,. Define

further «,, by induction.
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3.4.4. Similarly one can show that every object () of Q possesses an injective resolution, i.e.
there is an exact sequence

0—Q —>Jy—>J1 — ... > dy_1 —Jp — ...

in which J; are injective objects of Q.

3.5. Left and right derived functors. Functors Ext and Tor

3.5.1. Definition. Let F: Q@ — Q be a functor. For an object @ of Q let
i.— P, ™ Py —...— P, —P—Q—0

be its projective resolution. Let dy be the zero morphism from F(FP;) to 0. Let d, = F(vy,) for
n > 0. Then

Co ... — F(Py) 2% F(Puy) — ... — F(P) 25 F(Py) 20

is a chain complex. Put
(LnF)(Q) = Hp(Cg).

For a morphism f:@Q — Q' consider their projective resolutions and the commutative diagram

>y Py > Py > Q > 0
fIJ, fol fl
> P| o > Q' > 0

which exists by 3.4.2. Then we get a commutative diagram

s F(P) —— F(Py) —— 0
f(fl)l f(fo)l
S F(P) —— F(P) —— 0

Define (L, F)(f): (LpF)(Q) — (LpF)(Q') as H,(Cg) — H,(Cgq) which is induced by the
morphism of complexes (F(fr)): Co — Cg’ where the latter chain complex is associated to the
the projective resolution of @’.

Thus defined functor L, F: Q@ — Q is called the nth left derived functor of F.

For example, Ly F(Q) = Ho(Cq) is the cokernel of d; which is = F(Py)/d1(F(Pr)).

Similarly one defines the nth right derived (contravariant) functor R"F: Q — Q of a (covariant)
functor F using injective resolutions and cohomologies instead. For example, R°F(Q) = H°(Cg)
is the kernel of d°: F(Jy) — F(J1).

Similarly one defines derived functors of contravariant functors.

3.5.2. We prove correctness of the definition of L,,F, namely that (L,,F)(Q) doesn’t depend
on the choice of a projective resolution and (L, F)(f) doesn’t depend on the choice of (f,) given
by Lemma 3.4.2.

By Lemma 3.4.2 for projective resolutions

C ...—»P, P _1—...— P3P 20Q—0,

al o al
¢ ...—P 5P _,—...—P 5P —>Q —0
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and a morphism f:Q — Q' in Q there is a commutative diagram

sy P — 5 Py —2 5 Q y 0
flJ/ fol fl
» P all>P5 a6>Q’ s 0

with morphisms f,: P, — P.. Suppose that morphisms g,: P, — P, n > 0 satisfy the same
property of Lemma 3.4.2.

Denote P.1 =Q, P2=0,P ,=Q". Puta_1=0,9-1=f-1= 1.

We claim that then there are morphisms s,,: P, — P, 1, n > —2 such that

/
gn_fn:an+103n+3n—loana n > —1.

Indeed, define s_» = 0,5_1 = 0. For inductive step assume that g, — fr, = &}, ;1 0 8n + Sp—10 Q.
Calculate the composition of b = gn41 — fa41 — 8n © 0y and a;,; using the expression for
@y, 41 © Sy, given by the induction assumption:

py10h =051 0(gnt1 — fag1) = (9n — fn — Sn—10ap) 0 apq1

= tpy1 0 (nt1 = far1) = (gn — fn) © iy = 0.
Now 3.2.7 implies that there is a morphism s, 41: P41 — P, 5 such that a;, s 08,41 = h =
In+1 = fat1 — 80 0 Qnt1, SO Gnt1 — fut1 = Qg ip © Snt1 + 8n © Q1.

Now put d, = F(aw,), d, = F(a),) for n > 0 and dy = dy = 0; r, = F(sp) for n > 0. Let
r_1 =0. Then
F(gn) = F(fn) = dpy1 0 +rp_10d, forn>0.

If z is an n-cycle of C (i.e. = € ker(d,)), then the difference

f(gn)(.’l,') - f(.fn)(a;) = dln+1 © Tn(w) +7Tp-10 dn(x) = d;z+1 o "'n(~T)

belongs to the image of d;,,;, i.e. it is an n-boundary in C’. Thus, the morphism H,(C) —
H, (C’) induced by f,, coincides with the morphism induced by g,.
This shows that (L, F)(f) is well defined.

If
c ..—-P,—PFP,_1—...— P —FP—Q—0,

¢ ..—P —P,_,—...—P —P—Q—0
are two projective resolutions of @, then by the previous results we have morphisms H, (C) —
H,(C') and H,(C') — H,(C) both induced by the identity morphism of ). The composition
H,(C) — H,(C') —» H,(C) should coincide with the identity morphism H,(C) — H,(C) due to
the previous arguments. Similarly the composition H,(C') — H,(C) — H,(C’) should coincide
with the identity morphism of H,,(C’). Hence H, (C) is isomorphic to H,(C’). Thus, L,F(Q)
doesn’t depend on the choice of a projective resolution of Q.

3.5.3. Two important examples.

1) If F is the functor Hom(T, -) defined in 2.5.5, the nth right derived functor R™ of the functor
Hom(T,-) defined in 2.5.5 is called the nth Ext-functor and denoted by Ext" (T, ) or, to specify
the ring A, by Ext’ (T, -).

By 3.2.9 the covariant functor Hom(T,-) is left exact, so if

0—Q —Jy—J1 — ...



18

is an injective resolution, then the sequence
0 — Hom(T, Q) — Hom(T, Jy) — Hom(T,J;) — ...
is exact and thus H°(Cg) which is equal to the kernel of
d’: F(Jy) = Hom(T, Jy) — Hom(T, J;) = F(J1)
is isomorphic to Hom(7T', Q). Thus,
Ext’(T, Q) ~ Hom(T, Q).

The nth right derived fuctor R"™ of the (contravariant) functor Hom(-,T') gives nothing new:
using double cochain complexes one can prove that

R"Hom(T,-)(Q) = R"Hom(-,Q)(T).

2) For an object T define a functor (T'®,-):mod — A — mod — A by Q@ — T ® @ and for a
morphism f:@Q — R put (T®,-)(f):T®Q — T ® R as the module homomorphism induced by f.
The nth left derived functor L,, of (T'®,-) is called the nth Tor-functor and denoted Tor,, (7, -) or
Tor (T, -) One can check that Tory(T,Q) =T ® Q and

L, (T®’ )(Q) = Ln('7 ®Q) (T)

3.5.4. Theorem. Let

0—T —>Q—>85—0

be a short exact sequence. Let F: Q — Q be an additive functor, which means that it transforms
the sum of morphisms into the sum of the images. Then there are long exact sequences

co.. — LyF(T) — Ly F(Q) — Ly F(S) — L1 F(T) — Ln—1F(Q)

and
R°F(T) — R°F(Q) — R°F(S) — R'F(T) — R'F(Q)
— R'F(S) — ... — R"F(T) — R"F(Q) — R"F(S) — ...

Proof. By Lemma 3.4.3 there are projective resolutions

oo — Pl — P —T —0,
...—)Pl—)P()—)Q—>0,

. — P — P —S—0
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which form a commutative diagram

0 0 0
> Pj » P} > T > 0
s Py s Py > Q » 0
s Pl y P > S > 0
0 0 0

By 2.5.6 and 3.2.7 we know that the sequence
0 — F(P))— F(P,) — F(P)) —0

is exact.
The diagram
0 0
A ... — FP) — FP) —— 0
B ... —— F(P) —— F(P) —— 0
C ... — FP/) —— F(Py) —— 0
0 0

is commutative and every column is exact, so the sequence of complexes
0—A—B—C—0

is exact.
By Theorem 2.7.3 we get now the first long sequence of this theorem.

3.5.5. Examples.
1) For an exact sequence 0 — R — @ —» S — 0 the sequences

0 — Hom(T, R) — Hom(T, Q) — Hom(T, S) — Ext' (T, R) — Ext'(T,Q) — ...
and
0 — Hom(R,T) — Hom(Q,T) — Hom(S,T) — Ext'(R,T) — Ext'(Q,T) — ...

are exact (the exactness in the first term follows from left exactness of Hom (T, ) and Hom(-, T)).
So Ext! measures how far Hom (-, T) is from an exact functor.
From 3.2.10 we deduce that T is projective iff Ext'(T, R) = 0 for all objects R.
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2) For an exact sequence 0 — R — Q@ — S — 0 the sequence
... — Tory (T, R) — Tory(T,Q) — Tor1(T,S) = TR —TQ®Q —t®5 —0

is exact (the exactness in the last term follows from right exactness of (T'®, -)).
So Tor; measures how far (T'®,-) is from an exact functor.
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4. Group cohomologies

4.1. Category fGr — mod

4.1.1. Let G be a finite group. The group ring Z[G] by definition consists of »
ag € Z with operations

Zagg + Z bgg = Z(ag + bg)g, (Z a,gg)(z bgg) — Zagbg’ggl _ chg

where cg = >, apby—14.

An abelian group A is called a G-module if A is a left Z[G]-module. It means there is an
operation G X A — A, (g,a) — ga such that g(a + b) = ga + gb, (gh)a = g(ha).

A morphism f: A — B of Z[G]-modules is called a morphism of G-modules.

9€G %99 with

An abelian group A is called a trivial G-module if ga = a for every a € A. For example, Z is a
trivial G-module.

4.1.2. Define a category fGr —mod whose objects are couples (G, A) where A is a G-module,
G is a finite group and whose morphisms are couples (¢,v): (G, A) — (G', A") where ¢:G' —» G
and ¢: A — A’ are group homomorphisms and ¥ (p(g)a) = g¢(a) for all a € A, g € G'.

In particular, if H is a subgroup of G we have a morphism called restriction

res = (inc,id): (G, A) — (H, A)

where inc: H — G is the inclusion of groups.
If f:A — B is a homomorphism of G-modules, we have a morphism (id, f): (G, A) — (G, B)
in fGr — mod.

4.2. Complexes D(G,A) and C(G,A)

4.2.1. For a G-module A and n > 0 define abelian groups
D"(G,A) ={maps :G x -+ xG— A
N—_———

n+1 times

such that a(ggo, - - -, 9gn+1) = ga(go, - - -, gn+1) for all g € G}.

The addition is given by the sum of maps.

Note that there is an isomorphism of abelian groups u°: D°(G, A) — A given by a — «(1).
The inverse isomorphism v°: A — D°(G, A) is given by a — «, a(g) = ga.

Define d® = d2: D™(G, A) — D"+1(G, A) for n > 0 by

n+1

dn(a)(907 s agn—|—1) = Z(_l)ia(907 e 7§i7 .. 7gn+1)
=0

where ¢; means g; is excluded. Then indeed

(d"@)(g90;-- - 99n+1) = g(d"@)(go; - - -, Gnt1)-
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We get d" o d"~! =0 for n > 1, since

(dn © dn_l(a))(g(]a s 7gn+1)

= Z ((_I)H—j-l_(_1)i+j_1)a(901"'7.in7"'a.dj7"'7gn+1) =0.
0<i<j<n+1

We get a cochain complex
0 — D@, A) L5 DY@, A) % DM@, A) —s ... — DG, A) L DG, A) — ...
which we denote by D(G, A).
4.2.2. Definition. The nth cohomology group H"(G, A) of the G-module A is H"(D(G, A)).
4.2.3. For a G-module A and n > 0 define abelian groups

"(G,A) = : A}.
C"(G,A) = {maps f:G x --- x G — A}

n times

Put C°(G, A) = A.
Define v": D" (G, A) — C™(G, A) for n > 0 by u"(«) = 8 where

,8(91, ree agn) = a(laglaglg2a <9192 - gn)
Define v": C" (G, A) — D" (G, A) by v"(8) = a where

01(90; tee 7gn) = 90:8(90_191591_1923 .. 7g;ilgn)

Note that indeed ga(go, - --,9n) = a(990,---,9gn) Since

9908(95 " 915+, 9 219n) = 9908((990) " (991), - - - » (99n-1)""99n)-
Then u™ o v™ and v™ o u™ are identity maps for n > 1:

u” o v™ (B)(g1,---59n) = V" (B)(1,91,9192, -, 91---Gn) = 18(g1,-- -, 9n) = B(g1,--- 1 9n)s

and v" o u"(@)(go, - -, gn) = gou™(@)(95 ' 91 - -, 9, 219n) = gox(1,95 91, -, 95 9n)
=a(go,.--,9n)-
Thus, C™(G, A) is isomorphic to D"(G, A) for n > 0 (use u°,v° from 4.2.1).
Define d2: C™ (G, A) — C"*1(G, A) as the composition u" ! o d%, o v™, then

0 — COG, A) 285 C1G, A) — ... — CV(G, A) %5 Cm (G, A) — ...
is a cochain complex C(G, A) isomorphic to the complex D(G, A) and so
H"(G,A) = H"(C(G,A)).
Explicitly, d2(a)(g) = ga —a for all g € G and for n > 1
de(B)(g1s- -+ s gnt1)

n
= 18(g2,- -1 gn+1) + D _(=1)'B(G1,-- - giGi+1s-- > Gnt1) + (1) Blg1, -, gn)
=1

and d¢ = 0 for n < 0. Indeed,

dea(1,91) = a(g1) — a(1) = gra(1) — o(1)
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and
d"a(1,91,9192,-- 191+ Gnt+1) = (91,9192, -, 91 - - - Gnt1)

n
+ ) (=11, 91,91+ Gim1: 91+ Gilit1s- -1 91 -+ - Gnt1)
i=1

+ (=1)"Ma(1,91,...,91--.gn)-

4.2.4. A morphism (¢,9): (G, A) — (G', A’) in fGr — mod induces a morphism D(G, A) —
D(G', A’) and hence a morphism H"(G,A) — H™(G', A’). In particular, a morphism of G-
modules f: A — B induces a morphism f:D(G,A) — D(G,B), a € D*(G,A) = foa €
D™(G, B).

4.3. Small cohomology groups

4.3.1. H°(G, A) = kerd® consists of maps a: G — A such that a(gg) = a(g1) for all gg, g1 €
G and ga(g1) = a(gg1)- So a(g1) = a € Aforall gy € G and ga = a for all g € G, ie.
a belongs to the subgroup A% of A consisting of fixed elements under the action of G. Thus,
HY(G, A) = AC.

4.3.2. H'(G, A) coincides with ker(d})/im(d2). The "numerator” consists of maps 8: G — A
such that g18(g2) — B(g9192) + B(91) =0, i.e.

B(9192) = 918(g2) + B(g1),

such 3 are called crossed homomorphisms (1-cocycles). If G acts trivially on A, then cross homo-
morphisms are just homomorphisms. The "denominator” consists of maps 8: G — A such that
for somea € A

B(g) =ga—a forallge G
called principal crossed homomorphisms (1-coborders). Thus H!(G, A) measures "how many”
crossed homomorphisms are not principal.

4.4. Long sequence of cohomology groups

4.4.1. Let
0—sAB Yo —o0

be a short exact sequence of G-modules. Then the sequence of complexes
0 — C(G, 4) 5 c(@, B) 5 €(G,C) — 0
is exact. So by the theorem 2.7.3 we get a long exact sequence of groups
LU w6, A) S 56, B) S BHY(G, 0) D BTG, A) —
the first terms of which are
0— A9 — B¢ — % — HY(G,A) — HYG,B) — HYG,C) — ...

(exactness at A follows from injectivity of A — B).
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4.4.2. Consider the functor F¢: Z[G]—mod — Z[G]—mod: FC(A) = A, FE(f) = f: A® —
BC for f: A — B.

f0— A — Jyg — Ji —> ... is an injective resolution of A, then the sequence 0 —
A — J§ < JE is exact, so from 3.5 we deduce that F¢ = R?(F%). Now from 4.4.1 one can
deduce that H™(G,-) is the nth right derived functor of the functor F¢.

Remark. Using the properties of Ext"(Q,T) from 3.5.3 and 3.5.5 and the equality
Extyg)(Z, A) = Homgq)(Z, A) = AS = H*(G, A)

one can show that
The nth homology group H, (G, A) of the G-module A is defined as TorZ(C(Z, A).
4.43. If
0—wA—B—C—0, 0—A—B —C—0

are exact sequences, then from 2.7.4 we deduce that the diagram

0 —— A€ — B¢ -~ Y —— HY(G,A) —— HY(G,B) —— ...
0 — A'© » B¢ y ¢'° —— HY(G,A") —— HYG,B') — ...

is commutative.

4.5. Cohomologies of a group and its subgroup

4.5.1. Let H be a subgroup of a finite group G. Let A be an H-module. Then the set
Mg(A) = HomZ[H](Z[G]a A)
of all H-morphisms from Z[G] to A, i.e. all maps a: G — A satisfying
a(hg) = ha(g) forallhe H
is a G-module with respect to the action G x MH# (A) - ME (A): a — ga, (ga)(g') = ald'g).
A morphism f: A — B induces a morphism f: M¥ (A) — ME (B).
4.5.2. Lemma. Let A be an abelian group. For o € MY (A) and h € H, g € G define
(I(a)(g))(h) = a(hg). Then () belongs to Mg(M;II}A and we get a map
M (A) - ME P A).

Moreover, [ is an isomorphism of G-modules Mél}(A) and Mg(MI{{l}A).
Proof. First, I(c) belongs to ME (M} A), ie. W (I(c)(g)) = () (h'g) for k' € H. Indeed,
(W' (I()(9)))(h) = (la)(9))(hh') = a(hb’g) = (I()(h'g))(R)-
Furthermore, [ is a homomorphism of G-modules: since (I(¢’@)(g))(h) = ¢'a(hg) = a(hgg') =
([(2)(g9')(h), we get I(g'a)(g) = () (gg") and I(¢'a) = ¢'l(a) for ¢’ € G.
Now define a map
m: ME (M 4) - MY (4)
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by m(8)(9) = (8(9))(1) for B € ME(MLH A), g € G. Then (mol)(a)(g) = (I()(9))(1) = a(g)
and

(Lo m)(B)(9)(h) = m(B)(hg) = (B(hg))(1) = (hB(9))(1) = B(g)(h)

since 3 € Mg(MI{Jl}A). Thus, m and [ are isomorphisms of G-modules.

4.5.3. Define c: ME (A) — A by the formula c¢(a) = a(1). Then c(ha) = (ha)(1) = a(h) =
ha(l) = he(a), so according to the definition of the category fGr — mod given at 4.1.2, the
inclusion H C G and the homomorphism c induce a map (G, MZ (A)) — (H, A) in the category
fGr —mod. So we get a homomorphism H" (G, M¥ (A)) — H™(H, A).

4.5.4. Lemma. Let 0 — A %5 B 25 C — 0 be an exact sequence of H-modules, then
0— MEA) L ME(B) -2 ME(C) -0

is an exact sequence of G-modules.

Proof. We get a sequence of G-modules
0 — MEA) L ME(B) 2 ME(C) — 0.

Exactness at M (A) is easy to check.
Check exactness at M (C). Let v € ME (C). Write G as a disjoint union of right cosets Hg;.
Then v(g;) = p(b;) for some b; € B. Define a map 3: G — B by hg; — hb;. Then 3 € ME (B)

and v = p(B).
Check exactness in the middle term. First po i = 0. Second, if p(3) = 0, then for every g € G

p(B(g)) =0, so B(g) = u(ay) for a uniquely determined a, € A. Define a: G — A by g — a,.

Then o € M (A): p(halg)) = nlhag) = hyu(ag) = hu(alg)) = hB(g) = B(hg) = u(alhg)), so
from injectivity of u we deduce that ha(g) = a(hg). Thus a € ME (A) and 8 = ji(«).

4.5.5. Lemma. H"(G, M7 (A)) =0 forn > 0.
Proof. Define a map s": C™(G, M (A)) — C"=1(G, M (A)) by

Sn(a)(gla S agn—l)(g) = a(gagl, s ,gn—l)(l)-

Now

d"ls "( )(91, - - 9n)(9) = 915" (@) (92, - - -, 9n) (9)

+Z )91, -5 9iGiv15-- -, 9n)(9) + (=1)"s™ (@) (g1, -, gn-1)(9) =
s”(a)(gz,...,gn><ggl>+i(—l)i (@)1, s gi8i1s - 90)(9)
1=1

+ (=1)"s"(a)(g1,-- -+ gn- 1)(9)
= (991,92, - - gn) 1)+Z (9,91, -+ 9iGit1- -+ > 9n)(1)
=1

+(-1)"a(g,91,---,9n-1)(1)
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and
s"T1d" (@) (g1, - -, gn)(9) = d"alg, g1, -, 9n) (1) = ga(ga, -, gn)(1)

— (991,92, ---,9n)(1) + Z(—l)ia(g, ooy Gim1Gis- -5 9n)(1)

+(-1)""a(g, g1, 9n=1)(1) = (g1, ..., 90)(9) — (991,92, -- -, 9n)(1)

n

+ > (=1)'elg, -5 Gi-18ir- - gn) (1) + (=1)" (g, g1, - -, gn—1)(1).
=2

Thus d"~1 0 5™ + s"*T1 o d" is the identity map of C”(G,Mél}(A)). Hence if d"(a) = 0, then
a belongs to the image of d"~!, thus H" (G, ML (4)) = 0.

4.5.6. Theorem. Let H be a subgroup of a finite group G. Let A be an H-module. Then the
homomorphism
H"(G,MZ(A)) — H"(H, A)
is an isomorphism.
Proof. First check the theorem for n = 0. From 4.5.3 we get the homomorphism

)-

a(1
If « € ME(A)C, then a(hg) = ha(g) for all h € H and a(g') = ga(g’) = a(g'g) for all g € G.
So a: G — A is a constant map. We deduce that ha(l) = a(h) = a(1), ie c(a) € AH. So
' (ME(4)) c AR
Define a homomorphism b: A% — MZ(A)¢ by a — «, a(g) = a for all g € G-
Then ¢’ and b are inverse to each other, and so are isomorphisms. That proves the case n = 0.

d:MEAC = A, d(a)=

Now argue by induction on n.
There is a homomorhism of H-modules A — Mlgl}(A), a— o, alh)=aforallhe H. ltis
injective, so we have an exact sequence of H-modules

0—>A—>M{1}(A)—>X—>O.
Apply Lemma 4.5.4 and get an exact sequence
0 — ME(A) — MEMLHA) — ME(X) —0

of G-modules. The middle term is isomorphic to Mél}(A) according to Lemma 4.5.2.
Now we get a long sequence of cohomological groups and the commutative diagram

. — H™(G,ME(X)) — H"(G,ME(A)) — H"(G, MY (A) — ...
. —  HY(H,X) — HWYHA) — H(HMMA) — ...

The left vertical arrow is an isomorphism by the inductional assumption. The right vertical arrow
is an isomorphism, since both groups are zero by Lemma 4.5.5. Thus, by the Snake Lemma the
central vertical arrow is an isomorphism.

4.5.7. Remark. The theorem implies that if Y is defined from the exact sequence
0—>A—>Mé1}(A)—>Y—>O,

then
H" (@G, A) ~ H(G,Y).
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This can be used to define group cohomologies by induction in n

4.5.8. For a G-module A the restriction map res = (inc,id): (G, A) — (H,A) from 4.1.2
induces a homomorphism res™: H" (G, A) — H"™(H, A) which is called a restriction.

For example, res’: A9 — A is the inclusion A¢ C AH.

Define a map z: A — M (A) by z(a) = aq, a,(g) = ga. It is a homomorphism of G-modules,
since

z(g10)(9) = 9910 = a(gg1) = 912(a)(g)-
So we get a morphism (G, 4) = (G, ME (A)) in fGr — mod.

The composition H"(G, A) — H"(G, M (A)) — H"(H, A) which uses the isomorphism of
Theorem 4.5.6 corresponds to the morphism (G, A) — (G, M (A)) — (H,A) in fGr — mod
which is explicitly desribed as the map coz:a — @4(1) = a on A and the inclusion H C G. Thus,
the restriction res™ coincides with the composition

H"(G,A) = H"(G, M (A)) — H"(H, A).

4.5.9. Define a map y: ME (A) — A by
=> gla(g™
ges

where g € S runs through any set of elements of G such that G is a disjoint union of gH. If
{g' € S'} form another set with this property, then for every ¢’ € S’ there is a unique g € S such
that ¢ H = gH, i.e. ¢ = gh,h € H. Then

g'(alg' ™) = gh(a(h™tg™)) = gla(hh™g™1)) = g(a(g™Y)),

so the map y doesn’t depend on the choice of S.
The map y is a homomorphism of G-modules:

y(gra) =Y _g((g1e)(g™") = > g((a) (g7 1))

geS geSs

=Y g (@)™ = D> g1d((@)(g' ™) = gry(e),

g€es 9'€S'=g7'S
since (G is the disjoint union of gl_lgH where g runs over all elements of S.
So we get a morphism (id,y): (G, MZ (A)) — (G, A) in fGr — mod and there is a homo-
morphism H"(G,M#(A)) — H"(G,A). Using the isomorphism of Theorem 4.5.6 we get a
homomorphism

or™: H"(H,A) — H"(G,ME (A)) — H"(G, A)
which is called a corestriction.
For example, cor®: A# — A% is defined as cor’(a) = 3 ¢ g ga.

4.5.10. Since the composition A -2 M (A) - A is equal to

o= aq =Y glaalg™)) =) g9 'a=|G: Hla,
geS gesS

we conclude from 4.5.8 and 4.5.9 that the composition
H™(G, A) =5 H"(H, A) 5 H™(G, A)

is equal to multiplication by the index |G : H|.
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Alternatively we can look at n = 0 where it is obvious that corores = |G : H| and then use
Remark 4.5.7 and the commutative diagram

H"(G,Y) —— H"1(G, A)
| ]
H"(H,Y) —— H"'(H,A)
o |
H"(G,Y) —— H"(G, A)

to prove the result in the previous paragraph by induction on n.
Since for n = 0 the composition res’ o cor: A# — A" is equal to a — des ga we can deduce

in the same way as above that
H"(H,A) =% H" (G, A) =5 H"(H, A)

is equal to f — > g gf for f € H"(H,A).



