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Introduction

The aim of these Notes is to introduce the reader to the language of categories
with emphazis on homological algebra.

We treat with some details basic homological algebra, that is, categories
of complexes in additive and abelian categories and construct with some care
the derived functors. We also introduce the reader to the more sophisticated
concepts of triangulated and derived categories. Our exposition on these
topics is rather sketchy, and the reader is encouraged to consult the literature.

These Notes are extracted from [12]. Other references are [14], [2] for the
general theory of categories, [6], [17] and [11], Ch I for homological algebra,
including derived categories. The book [13] provides a nice elementary intro-
duction to the classical homological algebra. For further developements, see
[9], [12].

Let us briefly describe the contents of these Notes.

Chapter 1 is a survey of linear algebra over a ring. It serves as a guide for
the theory of additive and abelian categories. First, we study the functors
Hom and ® on the category Mod(A) of modules over a (non necessarily
commutative) ring A. Then we introduce the inductive and projective limits
of modules and study the exactness of the functors lim and lim. F inally we
introduce Koszul complexes.

In Chapter 2 we expose the basic language of categories and functors,
including the Yoneda Lemma, and the notions of representable and adjoint
functors.

In Chapter 3 we construct the projective and inductive limits and, as
a particular case, the kernels and cokernels, products and coproducts. We
introduce the notions filtrant category and cofinal functors, and study with
some care filtrant inductive limits in the category Set of sets. Finally, we
define right or left exact functors and give some examples.

Chapter 4 is devoted to the study of additive categories and complexes
in such categories. We expose some basic constructions such as the shift
functor, the mapping cone, the simple complex associated with a double
complex and we introduce the notion of morphism homotopic to zero. As a
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first application, we show how the Koszul complex associated with n linear
maps may be obtained as the mapping cone of a endomorphism of a Koszul
complex associated with n — 1 linear maps. We also construct complexes
associated with functors defined on simplicial sets and give a criterion for
such complexes to be homotopic to zero.

In Chapter 5 we treat abelian categories. The toy model of such cat-
egories is the category Mod(A) of modules over a ring A and for sake of
simplicity, we shall always argue as if we were working in a full abelian sub-
category of a category Mod(A). We explain the notions of exact sequences,
give some basic lemmas such as “the five lemma” and “the snake lemma”,
and study injective resolutions. We apply these results to construct the de-
rived functors of a left exact functor (or bifunctor), assuming the category
admits enough injectives. As an application we get the functors Ext and Tor.

In Chapter 6, we construct the localization of a category with respect
to a family of morphisms § satisfying suitable conditions and we construct
the localization of functors. Localization of categories appears in particular
in the construction of derived categories.

In Chapter 7, we introduce triangulated categories. The main result,
which is stated without proof, is that the homotopy category K (C) associated
with an additive category C, is triangulated. We also localize triangulated
categories and triangulated functors.

In Chapter 8, we construct the derived category of an abelian category
C, by localizing the category K (C) with respect to the quasi-isomorphisms.
We also construct the right derived functor of a left exact functor.
Caution. In these Notes, we do not mention the problem of universes. To be
correct, we should have taken care of the universes in which we were working.
For example, given a universe U, when taking inductive or projective limits
indexed by a category I with values a category C, if C is a U-category, then
the category I should be “U-small”. In particular, the localization of a U-
category may fail to be a U-category and we should consider a bigger universe.
We hope that, as far as we are concerned in these Notes, these questions may
be skipped.

Conventions. In these Notes, all rings are unital and associative but not
necessarily commutative. The operations, the zero element, and the unit are
denoted by +, -, 0, 1, respectively. However, we shall often write for short ab
instead of a - b.

All along these Notes, k will denote a commutative ring. (Sometimes, k
will be a field.)

A k-algebra A is a ring endowed with a morphism of rings ¢ : &k — A
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such that the image of k is contained in the center of A. Note that a ring A
is always a Z-algebra.

We denote by () the empty set and by {pt} a set with one element.

We denote by N the set of non-negative integers, N = {0, 1,...}.
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Chapter 1

Linear algebra over a ring

This chapter is a short review of basic and classical notions of commutative
algebra.
Some references: [1], [2].

1.1 Modules and linear maps

Let A be a ring. Since we do not assume A is commutative, we have to
distinguish between left and right structures. Unless otherwise specified,
a module M over A means a left A-module. Recall that an A-module M
is an additive group (whose operations and zero element are denoted +,0)
endowed with an external law A x M — M satisfying:

(ab)ym = a(bm)
a+bym =am + bm
m+m') =am + am’

where a,b € A and m,m’ € M.

Note that M inherits a structure of a k-module via . In the sequel, if
there is no risk of confusion, we shall not write .

We denote by A°P the ring A with the opposite structure. Hence the
product ab in A°P is the product ba in A and an A°°-module is a right A-
module.

Note that if the ring A is a field (here, a field is always commutative),
then an A-module is nothing but a vector space.

Example 1.1.1. The first example of a ring is Z, the ring of integers.
Since a field is a ring, Q, R, C are rings. If A is a commutative ring, then

9
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Alxy, ..., z,], the ring of polynomials in n variables with coefficients in A, is
also a commutative ring. It is a sub-ring of A[[z,. .., x,]], the ring of formal
powers series with coefficients in A.

Example 1.1.2. Let k be a field. Then for n > 1, the ring M, (k) of square
matrices of rank n with entries in k£ is non commutative.

Example 1.1.3. Let k be a field of characteristic 0 (i.e., k& contains Q). The
Weyl algebra in n variables, denoted W, (k), is the non commutative ring of
polynomials in the variables x;, 0; (1 < 4,5 < n) with coeflicients in k, and
relations :

[%’;%’] =0, [(9@',8]'] =0, [aj,xi] = 5;‘

where [p, q] = pg — gp and &’ the Kronecker symbol.

Notice that W, (k) may be regarded as the non commutative ring of
differential operators with coefficients in k[z1,...,x,], and k[z1,...,x,] be-
comes a left W, (k)-module: z; acts by multiplication and 0; is the deriva-
tion with respect to x;. As a left W, (k)-module, one has the isomorphism:

klzy, .o xn] = Wi(k)/ 32 Wa(k)0;.

A morphism [ : M — N of A-modules is an A-linear map, i.e. f satisfies:

{ fm+m') = f(m) + f(m')
flam) = af(m)

where m,m' € M,a € A.

A morphism f is an isomorphism if there exists a morphism g : N — M
with fog=1idy,go f =idy.

If f is bijective, it is easily checked that the inverse map f~!: N — M
is itself A-linear. Hence f is an isomorphism if and only if f is A-linear and
bijective.

The notions of submodule and quotient module will not be recalled here.
Let us only say that their constructions are similar to the corresponding ones
on vector spaces.

Let I be a set, and let (M;);c; be a family of A-modules indexed by I.
Recall that the product [, M; is the set of families {(x;);e;} with a; € M;,
and this set naturally inherits a structure of an A-module.

The direct sum €, M; is the submodule of [], M; consisting of families
{(x;)ier} with x; = 0 for all but a finite number of i € I. In particular, if
the set I is finite, the natural injection @, M; — [[, M, is an isomorphism.
There are natural injective morphisms:

5kMk_>@Mz
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and natural surjective morphisms:

WkHMz_)Mk

We shall sometimes identify M}, to its image in €, M; by &y.
If M; = M for all i € I, one writes:

MO =M, M =]]M.

A submodule of the A-module A is called an ideal of A. Note that if A is
a field, it has no non trivial ideal, i.e. its only ideals are {0} and A. If
A = Clz], then I = {P € Cl[z|; P(0) = 0} is a non trivial ideal.

An A-module M is free of rank one if it is isomorphic to A, and M is free
if it is isomorphic to a direct sum €, ; L;, each L; being free of rank one.
If card (I) is finite, say r, then r is uniquely determined and one says M is
free of rank 7.

Let f: M — N be a morphism of A-modules. One sets :

Kerf = {meM; f(m)=0}
Imf = {neN; thereexists me M, f(m)=n}.

These are submodules of M and N respectively, called the kernel and
the image of f, respectively. One also introduces the cokernel of f as the
quotient :

Coker f=N/Im f,

and the coimage of f, as :
Coim f = M/ Ker f.

Since the natural morphism Coim f — Im f is an isomorphism, one shall
not use Coim when dealing with A-modules.

If (M;);er is a family of submodules of an A-module M, one denotes by
>; M; the submodule of M obtained as the image of the natural morphism
@D, M; — M. This is also the module generated in M by the set J, M;. One
calls this module the sum of the M;’s in M.

1.2 Complexes

Definition 1.2.1. A complex M*® of A-modules is a sequence of modules
M, j € Z and A-linear maps d, : M7 — MI+! such that d}, o d’;" = 0 for
all 7.
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One writes a complex as:

j
dM

M® oo — MIT 2 A

If there is no risk of confusion, one writes M instead of M*®. One also often
write &’ instead of d;.
A morphism of complexes f : M — N is a commutative diagram:

k—1

Mk—l s Mk
lfk—l lfk
Nk:—l g Nk:
N

Remark 1.2.2. One also encounters finite sequences of morphisms
MY N L g

such that d” o d”~! = 0 when it is defined. In such a case we also call such a
sequence a complex by identifying it to the complex

.._>0_>Mjd_j>Mj+1_>..._>Mj+k‘_>0_>...,
In particular, M’ LM% M s a complex if go f = 0.
Consider a sequence
(1.1) M’ LM L M7, with gof = 0. (Hence, this sequence is a complex.)

Definition 1.2.3. (i) One says that the sequence (1.1) is exact if Im f —

Kerg.

(i) More generally, one says that a complex M7 — --. — Mtk is exact
if any sequence M™ ' — M"™ — M"™"! extracted from this complex is
exact.

(iii) An exact complex 0 — M’ — M — M"” — 0 is called a short exact
sequence.

Example 1.2.4. Let A = k[z;, 5] and consider the sequence:
0 AL 4294 40

where d°(P) = (21 P, 23 P) and d'(Q, R) = 22Q — 1 R. One checks immedi-
ately that d' o d® = 0: the sequence above is a complex.
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One defines the k-th cohomology object of a complex M* as:
H*(M*®) = Kerd®/Imd"".

Hence, a complex M* is exact if all its cohomology objects are zero, that is,
Im d*~! = Ker d* for all k.

If f*: M* — N*® is a morphism of complexes, then for each j, f7 sends
Ker d},. to Ker d). and sends Im d};. to Imd%.'. Hence it defines the mor-
phism

HI(f*): H(M*) — H’(N®).
One says that f is a quasi-isomorphism (a qis, for short) if H’(f) is an
isomorphism for all j.
As a particular case, consider a complex M*® of the type:

0— ML At —o.

Then HY(M*) = Ker f and H'(M*) = Coker f.
To a morphism f : M — N one then associates the two short exact
sequences :

0—Kerf— M —1Imf—0,
0—Imf— N — Coker f — 0,

and f is an isomorphism if and only if Ker f = Coker f = 0. In this case one
writes :

f:M = N

One says f is a monomorphism (resp. epimorphism) if Ker f (resp. Coker f)
= 0.

Proposition 1.2.5. Consider an eract sequence
(1.2) 0— M —M— M —0.
Then the following conditions are equivalent:

(a) there exists h : M" — M such that g o h = idym»,
(b) there exists k : M — M’ such that ko f =idy;

(c) there exists h : M" — M and k : M — M’ such that such that idy =
fok+hog,
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(d) there exists p = (k,g): M — M'®M" and = (f+h) : M'&M" — M,
such that ¢ and i are isomorphisms inverse to each other. In other

words, the exact sequence (1.2) is isomorphic to the exact sequence 0 —
M'—>M’@M”—>M”—>O.

Proof. (a) = (c). Since g = go hog, we get go (idy —h o g) = 0, which
implies that idy; —h o g factors through Ker g, that is, through M’. Hence,
there exists k : M — M’ such that idy; —hog = fok.

(b) = (c). The proof is similar and left to the reader.

(¢) = (a). Since go f =0, we find g = gohog, that is (goh —idym)og = 0.
Since g is onto, this implies g o h — idy» = 0.

(c) = (b). The proof is similar and left to the reader.

(d) & (a)&(b)&(c) is obvious. q.e.d.

Definition 1.2.6. In the above situation, one says that the exact sequence
(1.2) splits.

If A is a field, all exact sequences split, but this is not the case in general.
For example, the exact sequence of Z-modules

02237 —7/22—0

does not split.

1.3 Hom and Tens

In this section, A denotes a k-algebra. Let M and N be two A-modules.
One denotes by Hom ,(M, N) the set of A-linear maps f : M — N. This
is clearly a k-module. In fact one defines the action of k on Hom ,(M, N)
by setting: (Af)(m) = A(f(m)). Hence (Af)(am) = Af(am) = Aaf(m) =
arf(m) =a(Af(m)), and \f € Hom ,(M, N).

We shall often set for short

Hom (M, N) = Hom, (M, N).

Notice that if K is a k-module, then Hom (K, M) is an A-module.

There is a natural isomorphism Hom ,(A, M) ~ M: to u € Hom ,(A, M)
one associates u(1) and to m € M one associates the linear map A —
M,a — am. More generally, if I is an ideal of A then Hom ,(A/I, M) ~
{m € M;Im = 0}.



1.3. HOM AND TENS 15

Let g : K — L be an A-linear map. Composition to the left by g gives a
k-linear map :

Hom ,(M, g) : Hom ,(M,K) %5 Hom ,(M, L)
MEK) - MEKLL).

Hence, Hom , (M, -) sends the A-module K to the the k-module Hom , (M, K),
and sends Hom , (K, L) to Hom (Hom ,(M, K),Hom ,(M, L)). As we shall
see in Chapter 2, Hom ,(M,-) is a functor from the category Mod(A) of
A-modules to the category Mod(k) of k-modules.

Similarly, Hom ,(-, N) is a contravariant functor (it reverses the direc-
tion of arrows) from the category Mod(A) to the category Mod(k). If K is
an A-module, Hom ,(K, N) is a k-module, and if g : K — L is A-linear,
composition to the right by g gives a k-linear map :

Hom ,(g, N) : Hom ,(L,N) % Hom ,(K,N)
LEN) - (KZLEN),

Hence, Hom , (-, N) sends Hom , (K, L) to Hom (Hom ,(L, N), Hom , (K, N)).
One checks immediately that the two functors Hom , (M, -) and Hom 4 (-, N)
commute to finite direct sums or finite products, i.e.

Hom ,(K & L,N) ~ Hom ,(K,N) x Hom ,(L,N)
Hom ,(M; K x L) ~ Hom ,(M,K) x Hom ,(M,L).

One says that these functors are additive.

Proposition 1.3.1. (a) Let 0 — M’ LM L M bea complex of A-
modules. The assertions below are equivalent.

1) the sequence is exact
(i) q :
(ii) M’ is isomorphic by f to Kerg,

(iii) any morphism h : L — M such that g o h = 0, factorizes uniquely
through M' (i.e. h = foh/, with W : L — M"). This is visualized
by

L

. 0.
//‘/’ f g\

0 M M M
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(iv) for any module L, the sequence of k-modules
(1.3) 0 — Hom ,(L,M') — Hom ,(L, M) — Hom ,(L, M")
15 exact.

(b) Let M’ LM M = 0bea complex of A-modules. The assertions
below are equivalent.
(i) the sequence is exact,
(ii) M" is isomorphic by g to Coker f,

(iii) any morphism h : M — L such that ho f =0, factorizes uniquely
through M" (i.e. h =h"og, with h" : M" — L). This is visualized

by
=L - M" 0
\0\ lh =
F
L

(iv) for any module L, the sequence of k-modules
(14)  0— Hom ,(M",L) — Hom ,(M, L) — Hom ,(M’, L)
15 exact.

Proof. (a) (i) < (ii) is obvious, as well as (ii) < (iii), since any linear map
h : L — M such that g o h = 0 factorizes uniquely through Ker g, and this
characterizes Ker g. Finally, (iii) < (iv) is tautological.

(b) The proof is similar. q.e.d.

As we shall see in Chapter 2, the fact that (a) (i) implies (a) (iv) (resp.
(b) (i) implies (b) (iv)) is formulated as: “Hom ,(-, L) (resp. Hom ,(L,)) is
a left exact functor”.

Note that if A = k is a field, then Hom (M, k) is the algebraic dual of
M, the vector space of linear functional on M, usually denoted by M*. If M
is finite dimensional, then M ~ M**. If u : L — M is a linear map, the map
Hom, (u, k) : M* — L* is usually denoted by "u and called the transpose of
u.

Example 1.3.2. The functors Hom ,(-, L) and Hom ,(M,-) are not “right
exact” in general. In fact choose A = k[z]|, with k a field, and consider the
exact sequence of A-modules:

(1.5) 0—-A5A— AJAz — 0
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(where -z means multiplication by z). Apply Hom ,(-, A) to this sequence.
We get the sequence:

0 — Hom ,(A/Az,A) - A= A — 0

which is not exact since z- is not surjective. On the other hand, since z- is
injective and Hom , (-, A) is left exact, we find that Hom ,(A/Axz, A) = 0.

Similarly, apply Hom ,(A/Az,-) to the exact sequence (1.5). We get the
sequence:

0 — Hom ,(A/Ax, A) — Hom ,(A/Ax, A) — Hom ,(A/Az, A/Axz) — 0.

Again this sequence is not exact since Hom , (A/Az, A) = 0 but Hom ,(A/Ax,
AJAx) # 0.

Notice moreover that the functor Hom , (-, -) being additive, it sends split
exact sequences to split exact sequences. This shows again that (1.5) does
not split.

Proposition 1.3.3. Let f : M — N be a morphism of A-modules. The
conditions below are equivalent:

(i) f is an isomorphism,

(ii) for any A-module L, the map Hom ,(L, M) EAN Hom ,(L, N) is an iso-
morphism,

(iii) for any A-module L, the map Hom ,(N, L) o, Hom ,(M, L) is an iso-
morphism.

Proof. (i) = (ii) and (i) = (iii) are obvious.

(ii) = (i). Choose L = A.

(ili) = (i). By choosing L = M and idy € Hom (M, M) we find that there
exists g : N — M such that go f = id,;. Hence, f is injective and moreover,
by Proposition 1.2.5 there exists an isomorphism N ~ M & P. Therefore,
Hom ,(P, L) ~ 0 for all module L, hence Hom ,(P, P) ~ 0, and this implies
P ~0. q.e.d.

Tensor product

The tensor product, that we shall construct below, solves a “universal prob-
lem”. Namely, consider a right A-module N, a left A-module M, and a
k-module L. Let us say that a map f : N x M — L is (A, k)-bilinear if
f is additive with respect to each of its arguments and satisfies f(na,m) =

f(n,am), f(n(X),m) = A(f(n,m)) for all (n,m) € N x M and a € A, \ € k.



18 CHAPTER 1. LINEAR ALGEBRA OVER A RING

We shall construct a k-module denoted N ®, M such that f factors
uniquely through the bilinear map N x M — N ®, M followed by a k-linear
map N ®, M — L. This is visualized by:

NxM—N@, M

v
L

First, remark that when considering a module L and a set I, one may identify
I to a subset of L) as follows: to i € I, we associate {/;};c; € L) given by

Lif i—i
(16) b=30 .
0if 5 #1.

The tensor product N ®, M is the k-module defined as the quotient of
E(N>M) by the submodule generated by the following elements (where n,n’ €
N,m,m' € M,a € A\ € k and N x M is identified to a subset of k(V*M)):

(n+n',m)—(n,m) — (n',m)
(n,m+m') — (n,m) — (n,m)
(na,m) — (n,am)

A(n,m) — (n\,;m).

The image of (n,m) in N®, M is denoted n®@m. Hence an element of N® , M
may be written (not uniquely!) as a finite sum » . n; ®my;, n; € N,m; € M
and:

n+n)@m=n@m+n" @m

n@(m+m)=n@m+nem

na@m=n®gam

A(n®@m) =nA@m =n® Am.

Consider an A-linear map f : M — L. It defines a linear map idy X f :
N x M — N x L, hence a (A4, k)-bilinear map N x M — N ®, L, and finally
a k-linear map

dy@f : No, M - N®, L.

One constructs similarly ¢ ® id,; associated to g : N — L.

Note that if A is commutative, there is an isomorphism: N ®, M ~
M ®, N, given by n ® m — m ® n and moreover the tensor product is
associative, that is, if L, M, N are A-modules, there are natural isomorphisms
Lo, (M®,N)~ (Lo, M)®,N. One simply writes L ®, M ®, N.
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Tensor product commutes to direct sum, that is, there are natural iso-
morphisms:

(NeN)o, M ~ (Ng, M)s (N ®, M),
Ne,(MoM) ~ (Ne,M)o (N, M).

There is a natural isomorphism A®, M ~ M. We shall often write for short
M@ N=M®®N.

Sometimes, one has to consider various rings. Consider two k-algebras,
A; and A,. Then A; ® Ay has a natural structure of a k-algebra, by setting

(al ®a2) . (bl ®bg) = a1b1 ®a262.

An (A; ®AJP)-module M is also called a (A;, Az)-bimodule (a left A;-module
and right As-module). Note that the actions of A; and As on M commute,
that is,

a1aam = asa;m, a; € Ay, ay € Ay, m € M.

Let Ay, A, A3, A, denote four k-algebras.

Proposition 1.3.4. Let ;M; be an (A; ® Aj")-module. Then

1My ®,, 9Mj is an (A ® A3”)-module,
HomAl(lM% 1 Ms) is an (Ay @ A3Y)-module,

and there is a natural isomorphism of Ay ® A®-modules
(].7) HOIl'lAl(lM4, I‘IOH’IA2 (QMl, 2M3)) ~ I‘IOII’IA2 (2M1 ®A1 1M4, 2M3).

In particular, if A is a k-algebra, M, N are left A-modules and K is a
k-module,

(1.8) Hom , (K ®, N, M) ~ Hom ,(N,Hom, (K, M)).

One says (see Chapter 2 below) that the functors K ®, - and Hom, (K, -) are
adjoint.

Proof. We shall only prove (1.8) in the particular case where A = k. In this
case, Hom , (K ®, N, M) is nothing but the k-module of k-bilinear maps from
K x N to M, and a k-bilinear map from K x N to M defines uniquely a
linear map from K to Hom ,(IV, M) and conversely. q.e.d.
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Proposition 1.3.5. If M' — M — M" — 0 is an exact sequence of left A-
modules, then the sequence of k-modules N9 ,M' — N&, M — N®,M" — 0
15 ezact.

Proof. By Proposition 1.3.1 ((b), (ii) = (i)), it is enough to check that for
any k-module L, the sequence

0 — Hom (N ®, M", L) — Hom,(N ®, M, L) — Hom (N ®, M’', L)
is exact. This sequence is isomorphic to the sequence

0 — Hom (M" , Hom ,(N, L)) — Hom, (M, Hom ,(N, L))
— Hom, (M',Hom ,(N, L))

and it remains to apply Proposition 1.3.1 ((b), (i) = (ii)). q.e.d.

One says (see Chapter 2 below) that - ®, M (resp. N ®, -) is a right exact
functor from Mod(A°P) (resp. Mod(A)) to Mod(k).

Example 1.3.6. - ®, M is not left exact in general. In fact, consider the
commutative ring A = C|z] and the exact sequence of A-modules:

0—-A5 A— A/zA — 0.
Apply - ®, A/Azx. We get the sequence:
0— AJAz = AJAr — AJrA®, A/Ax — 0
Multiplication by z is 0 on A/Az. Hence this sequence is the same as:
0— A/Az L AJAx — AJAz ©, AJAz — 0

which shows that A/Ax ®, A/Ax ~ A/Ax and moreover that this sequence
1s not exact.

Injective and projective modules

Definition 1.3.7. Let M be an A-module.
(i) If the functor Hom , (-, M) is exact, one says that M is injective.
(ii) If the functor Hom , (M, -) is exact, one says that M is projective.

(iii) If the functor - ®, M (or, M ®, - in the case of right modules) is exact,
one says that M is flat.
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(iv) If M is flat and moreover N ®, M =0 (or M ®, N = 0) implies N = 0,
one says that M is faithfully flat.

Proposition 1.3.8. Let M, N,I be A-modules and assume I is injective.
Consider the diagram in which the row is exact:

0— M- N

£

I
Then the dotted arrow may be completed, making the diagram commutative.

Proof. Apply the exact functor Hom ,(-, /) to the sequence 0 — M — N.
One gets the exact sequence:

Hom , (N, T) <L Hom (M, I) — 0.
Thus there exists h: N — [ such that ho f = k. q.e.d.

By reversing the arrows, we get a similar result assuming [/ is projective.
A free module is projective and a projective module is flat (see Exercise
1.2). If A =k is a field, all modules are both injective and projective.

Generators and relations

Suppose one is interested in studying a system of linear equations

No
(19) Zpijuj = Uy, (’L: ]_,...,Nl)
j=1

where the p;;’s belong to the ring A and u;, v; belong to some left A-module
L. Using matrix notations, one can write equations (1.9) as

(1.10) Pu=v

where P is the matrix (p;;) with N; rows and Ny columns, defining the
A-linear map P-: LN — LM Now consider the right A-linear map

(1.11) P AN 5 AN

where - P operates on the right and the elements of AN and A are written
as rows. Let (eq,...,en,) and (f1,..., fn,) denote the canonical basis of AM
and AN respectively. One gets:

No
Jj=1
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Hence Im P is generated by the elements Z;V:Ol pijej fori =1,..., N;. Denote
by M the quotient module AM /ANt . P and by ¢ : AN — M the natural A-
linear map. Let (uq,...,uy,) denote the images by ¢ of (eq,...,en,). Then
M is a left A-module with generators (uy, ..., uy,) and relations Z;V:‘)l Pijl; =
0 for : = 1,..., N;. By construction, we have an exact sequence of left A-
modules:

(1.13) AN B Ao B ar o,

Applying the left exact functor Hom ,(-, L) to this sequence, we find the
exact sequence of k-modules:

(1.14) 0 — Hom ,(M, L) — LN 2 [N,

Hence, the k-module of solutions of the homogeneous equations associated
to (1.9) is described by Hom ,(M, L).

1.4 Limits

Definition 1.4.1. Let I be a set.

(i) A pre-order < on [ is a relation which satisfies: (a) ¢ <, (b) i < j &

7 < k implies ¢ < k.

(ii) The opposite pre-order (I, <°P) is defined by i <°? j if and only if j < i.
(iii) A pre-order is discrete if i < j implies 7 = j.

(iv) An pre-order is an order if i < j and j < ¢ implies i = j.

The following definition will be of constant use.

Definition 1.4.2. Let (I, <) be a pre-ordered set.

(i) One says that (I,<) is filtrant (one also says “directed”) if for any
1,7 € I there exists k with ¢+ < k and 7 < k.

(ii) Let J C I be a subset. One says that .J is cofinal to [ if for any i € [
there exists j € J with 7 < 7.

Let (I, <) be a pre-ordered set and let A be a ring. A projective system
(N, v;;) of A-modules indexed by (I, <) is the data for each i € I of an A-
module N; and for each pair 7, j with ¢ < j of an A-linear map v;; : N; — N;,
such that for all 7, j, k with ¢ < j and 7 < k:

v = idp;

Vij © Vjk = Vi
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Consider the “universal problem”: to find an A-module N and linear
maps v; : N — N, satistying v;; o v; = v; for all ¢« < j, such that for any
A-module L and linear maps g; : L — N;, satisfying v;; 0g; = g; for all ¢ < j,
there is a unique linear map ¢ : L. — N such that g; = v; o g for all 4. If such
a family (N, v;) exists (and we shall show below that it does), it is unique up
to unique isomorphism and one calls it the projective limit of the projective
system (NN;, v;;), denoted lim N;.

An inductive system (M;, u;;) of A-modules indexed by (1, <) is the data
for each i € I of an A-module M; and for each pair 7,7 with ¢ < j of an
A-linear map wuj; : M; — M, such that for all 7, j, k with ¢ < j and 7 < k:

Uiy = ldMi

Ukj © Uj; = Uks-

Note that a projective system indexed by (I, <) is nothing but an inductive
system indexed by (I, <°P).

Consider the “universal problem”: to find an A-module M and linear
maps wu; : M; — M satisfying u; o u;; = w; for all ¢ < j, such that for any
A-module L and linear maps f; : M; — L satisfying f;ouj; = f; for all ¢ < j,
there is a unique linear map f : M — L such that f; = f owu; for all ¢. If
such a family (M, u;); exists (and we shall show below that it does), it is
unique up to unique isomorphism and one calls it the inductive limit of the
inductive system (M;, u;;), denoted lim M;.

7

Theorem 1.4.3. (i) The projective limit of the projective system (N;, v;;)
is the A-module

@Ni = {(x;); € HNz';Uz‘j(%‘) =x; for all i < j}.
The maps v; : liLan — N, are the natural ones.
J
(ii) The inductive limit of the inductive system (M;, u;;) is the A-module
lim M; = (P M:)/N
i i€l

where N is the submodule of €,.; M; generated by {x; — uj;(x;); x; €
M;,i < j}. The maps u; : M; — li_r)nMj are the natural ones.
J
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Note that if [ is discrete, then lim M; = @, M; and im N; = [, V;.
-0 —

The proof is straightforward.
The universal properties on the projective and inductive limit are better
formulated by the isomorphisms which characterize lim N; and lim M;:

3 K3

(1.15) HomA(L,liLnNi) = liilHomA(L,Ni),
(1.16) Hom , (i M;, £) = lim Hom , (M, L),

(2 3

There are also natural morphisms

(1.17) mHomA(L,Mi) — HomAL,li_r)nMﬂ
(1.18) mHomA(Ni,L) — HomA(liL'nNi,L).

One should be aware morphisms (1.17) and (1.18) are not isomorphisms in
general (see Example 1.4.12 below).

Proposition 1.4.4. Let M| ELN M; 25 M! be a family of exact sequences of
A-modules, indezed by the set I. Then the sequence

I R I

15 exact.
The proof is left as an (easy) exercise.

Proposition 1.4.5. (i) Consider a projective system of exact sequences of
A-modules: 0 — Nj LN AN N{'. Then the sequence 0 — lim N ERN
lim N; % lim N7 is exact.
A A

(2 3

(ii) Consider an inductive system of exact sequences of A-modules: M ELN

M; 2 M — 0. Then the sequence lim M! L tim M; S lim M — 0 s
— — —
exact.
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Proof. (i) Since lim V] is a submodule of [[; NV, the fact that f is injective
follows from Proposition 1.4.4. Let (z;); € lim N; with g((z;);) = 0. Then

gi(x;) = 0 for all 7, and there exists a unique z; € N/ such that x; = f;(z}).
One checks immedialtely that the element (z7); belongs to lim V.

(ii) Let L be an A-module. The sequence

0 — Hom ,(lim A", L) — Hom ,(lim M;, L) — Hom ,(lim M, L)

is isomorphic to the sequence

0 — lim Hom ,(M;’, L) — lim Hom ,(M;, L) — lim Hom , (M, L)

7 7 i

and this sequence is exact by (i) and Proposition 1.3.1. Then the result
follows, again by Proposition 1.3.1. q.e.d.

One says that “the functor lim is right exact”, and “the functor lim is
H %

left exact”. We shall give a precise meaning to these sentences in Chapter 3.

Lemma 1.4.6. Assume I is a filtrant pre-ordered set and let M = lim M;.

(i) Let x; € M;. Then u;(x;) = 0 < there exists k > i with ug;(x;) = 0.
(ii) Let x € M. Then there exists i € I and x; € M; with u;(z;) = x.

Proof. We keep the notations of Theorem 1.4.3 (ii).

(i) Let N’ denote the subset of &;M; consisting of finite sums >, z;, z; €
M; such that there exists k > j for all j € J with },;ug;(z;) = 0. Since
I is filtrant, N’ is a submodule of ®;M;. Moreover, N = N’. It remains to
notice that

N' N M; = {x; € M;; there exists k > i with u;(z;) = 0}.

(ii) Let x € M. There exist a finite set J C [ and z; € M, such that
T = c;uj(x;). Choose i with i > j for all j € J. Then

T = E (XTI E wij(x;))

JjeJ jeJ

Setting x; = >, ; uij(7;), the result follows. q.ed.
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Example 1.4.7. Let X be a topological space, x € X and denote by I, the
set of open neighborhoods of x in X. We endow [, with the order: U < V' if
V cU. Given U and V in I, and setting W =U NV, we have U < W and
V < W. Therefore, I, is filtrant.

Denote by C°(U) the C-vector space of complex valued continuous func-
tions on U. The restriction maps C®(U) — C%(V),V C U define an inductive
system of C-vector spaces indexed by I,. One sets

(1.19) Ck . = lim C°(U).
vel,

An element ¢ of C% , is called a germ of continuous function at 0. Such a
germ is an equivalence class (U, ¢y)/ ~ with U a neighborhood of z, ¢y a
continuous function on U, and (U, ¢y) ~ 0 if there exists a neighborhood V/
of x with V' C U such that the restriction of ¢y to V is the zero function.
Hence, a germ of function is zero at x if this function is identically zero in a
neighborhood of x.

Proposition 1.4.8. Consider an inductive system of exact sequences of A-

modules indezed by a filtrant pre-ordered set 1: M| EIRY VAN M!. Then the
sequence

18 exact.

Proof. Let x € lim M; with g(z) = 0. There exists z; € M; with u;(x;)
)

x, and there exists j > i such that wj;(g:(x;)) = 0. Hence g;(uji(x;)) =
uji(fi(r;)) = 0, which implies that there exists 2; € M such that w;(z;)
fi(x}). Then o' = uj(z}) satisfies f(z') = f(u}(7})) = u;fi(2}) = wjuyi(z;)
. q.e.

&

Proposition 1.4.9. Assume J C I and assume that J is filtrant and cofinal
to I.

(i) Let (M;,u;;) be an inductive system of A-modules indexed by I. Then
the natural morphism lim M; — lim M; is an isomorphism.

ii) Le i, Vi) be a projective system of A-modules indexed by I. en
ii) Let (M;,v;;) b jecti t f A-modules indezed by I. Th
the natural morphism lim M; — lim M; is an isomorphism.
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The proof is left as an exercise.

In particular, assume [ = {0, 1} with 0 < 1. Then the inductive limit of
the inductive system wuqg : My — M; is M7, and the projective limit of the
projective system vg, : M7 — My is M.

Remark 1.4.10. (i) If all M;’s are submodules of a module M, and if the
maps u;; : M; — M;, (i < j) are the natural injective morphisms, then

(ii) If all M;’s are submodules of a module M, and if the maps v;; : M; —
M;, (i < j) are the natural injective morphisms, then lim M; ~ (), M;.

)

Let us study the relations of ® and inductive limits. Let (M, u;;) be an in-
ductive system of A-modules, N a right A-module. The family of morphisms
M, — h_n>1 M; defines the family of morphisms N®, M; — N®Ali_n>1 M;, hence

% 7
the morphism

(1.20) liny(N ®, M) — N @, lim M,.

Proposition 1.4.11. The morphism (1.20) is an isomorphism.

Proof. Let L be a k-module. Consider the chain of isomorphisms

Hom (N ®, lim M;, L) ~ Hom ,(lim M;, Hom, (N, L))
~ @HomA(Mi,Homk(N, L))
~ @Homk(N ®4 M;, L)

Hom, (lim(N ®, M;), L).

)

12

Then the result follows from Proposition 1.3.3. q.e.d.

Example 1.4.12. Let k£ be a commutative ring and consider the k-algebra
A := k[z]. Denote by I = A - x the ideal generated by z. Notice that
A/ ~ k[z]=", where k[z]=" denotes the k-module consisting of polyno-
mials of degree less than or equal to n.

(i) For p < n there are monomorphisms wu,, : k[z|<P>—k[z]=" which define an
inductive system of k-modules. One has the isomorphism

klx] = h_n)1k[x]§"

n
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Notice that idgp,) & lim Hom  (k[z], k[z]="). This shows that the morphism

(1.17) is not an isomorphism in general.

(ii) For p < n there are epimorphisms v, : A/I"»A/I? which define a
projective system of A-modules whose projective limit is k[[x]], the ring of
formal series with coefficients in k.

(iii) For p < n there are monomorphisms I"—I? which define a projective
system of A-modules whose projective limit is 0.

(iv) We thus have a projective system of complexes of A-modules

Ly:0—-1"—A— A/I"— 0.

Taking the projective limit, we get the complex 0 — 0 — k[z] — k[[z]] — 0
which is no more exact.

Recall (Proposition 1.4.4) that a product of exact sequences of A-modules
is an exact sequence. Let us give another criterion in order that the projective
limit of an exact sequence remains exact. This is a particular case of the so-
called “Mittag-Leffler” condition (see [8]).

Proposition 1.4.13. Let 0 — {M], In, {M,} 25 {M"} — 0 be an ezact
sequence of projective systems of A-modules indexed by N. Assume that for
each n, the map M, , — M) is surjective. Then the sequence

0 — lim M, L lim M,, & lim M — 0
p— p— p—

n n n

18 exact.

Proof. Let us denote for short by v, the morphisms M, — M,,_; which define
the projective system {M,}, and similarly for v, v}

" s " " i " ny __ 7
Let {z;}, € lim M. Hence x, € M/, and vy(x,) = x,_;.

We shall first show that v, : g;'(z) — g, (2" _,) is surjective. Let
Too1 € gyt (xl_)). Take z, € g, (). Then g, 1(vn(n) — Tno1)) =
0. Hence v,(x,) — xp—1 = fn-1(z),_;). By the hypothesis f,_1(z]_;) =
frno1(v)(x))) for some 2!, and thus v, (x, — fu(2))) = ;1.

Then we can choose z,, € g, '(z”) inductively such that v,(z,) = z,_1.

q.e.d.

1.5 Koszul complexes

First, recall that if L is a finite free k-module of rank n, one denotes by /\j L
the j-th exterior power of L. One sets /\0 L = k. Note that A" L ~ k.
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If (e1,...,e,) is a basis of L and I = {i; < --- < i;} C {1,...,n}, one
sets

elzeil/\---/\ei]..

For a subset I C {1,...,n}, one denotes by |I| its cardinal. The family of
er’s with |[I| = j is a basis of the free module A’ L.

Let M be an A-module and let ¢ = (¢4, ..., ¢,) be n endomorphisms of
M over A which commute with one another:

[QOZ',SO]'] :()7 1 S Za] S n.

(Recall the notation [a,b] := ab — ba.) Set M@ = M @ N\’ k". Hence
M®© = M and M™ ~ M. Denote by (e1,...,e,) the canonical basis of k™.
Hence, any element of M) may be written uniquely as a sum

m = Zm;@el.

[1]=3

One defines d € Hom ,(M W MU+D) by:

dim®er) = Zcpi(m) ®e; Nep
i=1

and extending d by linearity. Using the commutativity of the ¢;’s one checks
easily that d o d = 0. Hence we get a complex, called a Koszul complex and
denoted K*(M, p):

0— MO 4 .. o

When n = 1, the cohomology of this complex gives the kernel and cokernel
of ¢1. More generally,

HO(K*(M,p)) ~ Kerg,N...NKerp,,
H"(K*(M,¢)) ~= M/(p1(M)+ -+ pu(M)).

Definition 1.5.1. (i) If for each j, 1 < j <n, ¢; is injective as an endo-
morphism of M/(p1(M)+---+@;_1(M)), one says (¢1,...,¢,) is a regular
sequence.

(ii) If for each j, 1 < j < n, ¢, is surjective as an endomorphism of
KerpiN...NKerg;_1, one says (¢1,...,9,) is a coregular sequence.

Theorem 1.5.2. (i) If (¢4, .., pn) is a reqular sequence, then HI(K*(M, ¢))
=0 for j #n.
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(ii) If (p1,...,¢n) is a coreqular sequence, then H’(K*(M,p)) = 0 for
j# 0.

Proof. The proof will be given in Section 5.2. Here, we restrict ourselves
to the simple case n = 2 for coregular sequences. Hence we consider the
complex:

0—=MLH5MxMLM-—=0

where d(z) = (¢1(x), p2(x)), d(y,2) = v2(y) — p1(2) and we assume ¢ is
surjective on M, s is surjective on Ker ;.

Let (y,2z) € M x M with po(y) = p1(2). We look for x € M solution
of p1(x) =y, @a(x) = 2. First choose 2’ € M with ¢1(2') = y. Then
p20p1(2") = pa(y) = ¢1(2) = p10pa(a’). Thus pi1(z—p2(2')) = 0 and there
exists t € M with p1(t) =0, ¢a(t) = z—¢a(a’). Hencey = ¢ (t+2'), z=
ot + ') and x =t + 2’ is a solution to our problem. q.e.d.

Example 1.5.3. Let k be a field of characteristic 0 and let A = k[xy, ..., z,].
(i) Denote by z;- the multiplication by z; in A. We get the complex:

0_>A(0)i,.,._“4(n)_,0

where: .
d(ZaI ®ey) = szﬂ car ®ej Aey.
I j=1 I
The sequence (z1-,...,%,) is a regular sequence in A, considered as an A-

module. Hence the Koszul complex is exact except in degree n where its
cohomology is isomorphic to k.

(ii) Denote by 0; the partial derivation with respect to x;. This is a k-linear
map on the k-vector space A. Hence we get a Koszul complex

where: .
d(z ar®ey) = Z Zaj(aj) ®ej Ney.
i j=1 I
The sequence (0, ...,0,) is a coregular sequence, and the above complex

is exact except in degree 0 where its cohomology is isomorphic to k. Writing
dx; instead of e;, we recognize the “de Rham complex”.

Example 1.5.4. Let W = W, (k) be the Weyl algebra introduced in Ex-
ample 1.1.3, and denote by -0; the multiplication on the right by 9;. Then
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(+O1,...,-0y,) is a regular sequence on W (considered as an W-module) and
we get the Koszul complex:

0—WO 2 ... L, wm g

where:
5(Za1®61) = ZZaI-ﬁjQ@ej/\e[.
I =1 1

This complex is exact except in degree n where its cohomology is isomorphic
to klx] (see Exercise 1.3).

Remark 1.5.5. One may also encounter co-Koszul complexes. For I =
(1,...,1x), introduce

6][61:{0 lfjg{zlaazk}

(=) ep = (=) ey, AL NG N Ney, ife, = ¢

l

where e;, A...A€; A...Ae;, means that e; should be omitted in e;; A... Ae;,.
Define ¢ by:

d(m®er) = Z p;i(m)e;ler.
j=1
Here again one checks easily that 6 o = 0, and we get the complex:
Ko(M,p):0— M™ 2 ... MO 0,

This complex is in fact isomorphic to a Koszul complex. Consider the iso-
morphism

J n—j
* /\k” = /\ k"
which associates e;m ® e; to m ® ey, where I = (1,...,n)\ I and ¢ is the

signature of the permutation which sends (1,...,n) to I U I (any i € I is
smaller than any j € I). Then, up to a sign, * interchanges d and §.

Exercises to Chapter 1
Exercise 1.1. Consider two complexes of A-modules M| — M; — M{ and

M} — My — M. Prove that the two sequences are exact if and only if the
sequence M{ @ My — M; & My — My @ M is exact.
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Exercise 1.2. (i) Prove that a free module is projective and flat.

(ii) Prove that a module P is projective if and only if it is a direct summand
of a free module (i.e. there exists a module K such that P & K is free).
(iii) Deduce that projective modules are flat.

Exercise 1.3. Let k be a field of characteristic 0, W := W, (k) the Weyl
algebra in n variables.

(i) Denote by z;- : W — W the multiplication on the left by x; on W (hence,
the x;-’s are morphisms of right W-modules). Prove that ¢ = (z1-,...,2,")
is a regular sequence and calculate H’(K*(W,p)).

(ii) Denote -0; the multiplication on the right by d; on W. Prove that ¢ =
(01, ...,-0,) is a regular sequence and calculate H’(K*(W,)).

(iii) Now comnsider the left W,,(k)-module O := k[xy,...,x,] and the k-linear
map 0; : O — O (derivation with respect to ;). Prove that A = (04,...,0,)
is a coregular sequence and calculate H?(K*(O, \)).

Exercise 1.4. Let A = W;(k) be the Weyl algebra in two variables. Con-
struct the Koszul complex associated to ¢ = -x1, ¢o = -0y and calculate its
cohomology.

Exercise 1.5. If M is a Z-module, set M" = Hom ,(M, Q/Z).

(i) Prove that Q/Z is injective in Mod(Z).

(ii) Prove that for M, N € Mod(Z), the map Hom ,(M, N) — Hom (N, M")
is injective.

(iii) Prove that if P is a right projective A-module, then PV is left A-injective.
(iv) Let M be an A-module. Prove that there exists an injective A-module
I and a monomorphism M — I.

(Hint: (iii) Use formula (1.8). (iv) Prove that M — M"Y is an injective map
using (ii), and replace M with MVV.)

Exercise 1.6. Let k be a field, A = k[z,y] and consider the A-module
M = @, k[z]t", where the action of € A is the usual one and the action
of y € A'is defined by y - 2"t/*1 = 2™t/ for j > 1, y - 2™t = 0. Define the
endomorphisms of M, ¢1(m) = x-m and ¢s(m) = y - m. Calculate the
cohomology of the Kozsul complex K*(M, ).

Exercise 1.7. Let I be a filtrant pre-ordered set and let M;,i € I be an
inductive sytem of k-modules indexed by I. Let M = | |M;/ ~ where ||
denotes the set-theoretical disjoint union and ~ is the relation M; > z; ~
y; € M; if there exists k > i,k > j such that wy;(z;) = ug;(y;)-

Prove that M is naturally a k-module and is isomorphic to lim M;.

1
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Exercise 1.8. Let I be a filtrant pre-ordered set and let A;,i € I be an
inductive sytem of rings indexed by I.
(i) Prove that A :=lim A; is naturally endowed with a ring structure.

(ii) Define the notion of an inductive system M; of A;-modules, and define
the A-module h_H)lMZ

(iii) Let N; (resp. M;) be an inductive system of right (resp. left) A; modules.
Prove the isomorphism

lim (N; @,, M;) — lim N; ®, lim M;.

3 3 3
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Chapter 2

The language of categories

In this chapter we introduce some basic notions of category theory which
are of constant use in various fields of Mathematics, without spending too
much time on this language. After giving the main definitions on categories
and functors, we prove the Yoneda Lemma. We also introduce the notions

of representable functors and adjoint functors.
Some references: [14], [2], [13], [6], [11], [12].

2.1 Categories and functors

Definition 2.1.1. A category C consists of:
(i) a family Ob(C), the objects of C,

(ii) for each X,Y € Ob(C), a set Hom,(X,Y’), the morphisms from X to
Y

Y

(iii) forany X,Y,Z € Ob(C), amap: Hom,(X,Y)xHom (Y, Z) — Hom (X, Z),
called the composition and denoted (f, g) — go f,

these data satisfying:
(a) o is associative,

(b) for each X € Ob(C), there exists idy € Hom (X, X) such that for all
feHom,(X,Y) and g € Hom, (Y, X), foidx = f, idx og = g.

Note that idx € Hom (X, X)) is characterized by the condition in (b).

Remark 2.1.2. There are some set-theoretical dangers, and one should men-
tion in which “universe” we are working. For sake of simplicity, we shall not
enter in these considerations here.

35



36 CHAPTER 2. THE LANGUAGE OF CATEGORIES

Notation 2.1.3. One often writes X € C instead of X € Ob(C) and f :
X — Y instead of f € Hom,(X,Y). One calls X the source and Y the
target of f.

A morphism f : X — Y is an isomorphism if there exists g : X «— Y
such that fo g =idy, go f =idx. In such a case, one writes f: X = Y or
simply X ~ Y. Of course g is unique, and one also denotes it by f~!.

A morphism f : X — Y is a monomorphism (resp. an epimorphism) if
for any morphisms g; and ¢s, fo gy = f o gs (resp. g1 o f = g2 0 f) implies
g1 = g2. One sometimes writes f : X»—Y orelse X — Y (resp. f: X—Y)
to denote a monomorphism (resp. an epimorphism).

Two morphisms f and g are parallel if they have the same sources and
targets, visualized by f,g: X =2 Y.

One introduces the opposite category C°P:

Ob(C®) = Ob(C), Hom g, (X, Y) = Hom (Y, X).

A category C' is a subcategory of C, denoted C' C C, if: Ob(C") C Ob(C),
Hom,(X,Y) C Hom,(X,Y) for any X,Y € C' and the composition o in C’
is induced by the composition in C. One says that C’ is a full subcategory if
for all X,Y € ', Hom,(X,Y) = Hom,(X,Y).

A category is discrete if the only morphisms are the identity morphisms.
Note that a set is naturally identified with a discrete category.

A category C is finite if the family of all morphisms in C (hence, in par-
ticular, the family of objects) is a finite set.

Examples 2.1.4. (i) Set is the category of sets and maps.

(ii) Rel is defined by: Ob(Rel) = Ob(Set) and Hom g ,(X,Y) = P(X xY),
the set of subsets of X x Y. The composition law is defined as follows. If
f:X—=Yandg:Y — Z, go f is the set

{(z,2) € X x Z; there exists y € Y with (z,y) € f, (y, 2) € g}.

Of course, idy = A C X x X, the diagonal of X x X.
Notice that Set is a subcategory of Rel, not a full subcategory.
(iii) Let A be a ring. The category of left A-modules and A-linear maps is
denoted Mod(A). In particular Mod(Z) is the category of abelian groups.
We shall often use the notations Ab instead of Mod(Z) and Hom ,(-, )
instead of Hom g, q4)(+; *)-
One denotes by Mod/(A) the full subcategory of Mod(A) consisting of
finitely generated A-modules.
(iv) C'(Mod(A)) is the category whose objects are the complexes of A-modules
and morphisms, morphisms of such complexes.
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(v) One associates to a pre-ordered set (I, <) a category, still denoted by I
for short, as follows. Ob(I) = I, and the set of morphisms from i to j has a
single element if 7 < j, and is empty otherwise. Note that I°P is the category
associated with I endowed with the opposite order.

Definition 2.1.5. Let [ be a category.
(i) One defines the category Mor(/) by
Ob(Mor(I)) = {(i,7,9);1,7 € Z,s € Hom (1, j),
Hom (s 11— j), (8" 14" —=j") = {uri—iv:ij—jivos=sou}
(ii) One defines the category Morg(I) by
Ob(Moro(1)) = {(i,4,s);i,7 € Z,s € Hom (4, j),
/

Hom 0y (s i— ), —=3) = {ui—iv:j —js=vos ou}.

The morphisms in Mor(7I) (resp. Morg(7)) are visualized by the commu-
tative diagram on the left (resp. on the right) below:
i

J
s’ !/

@—>J, Z’—>J

Z%J %

Definition 2.1.6. (i) An object P € C is called initial if for all X €
C,Hom (P, X) ~ {pt}. One often denotes by (¢ an initial object in C.

(ii) One says that P is terminal if P is initial in C°P, i.e., for all X €
C,Hom (X, P) ~ {pt}. One often denotes by pt, a terminal object in
C.

(iii) One says that P is a zero-object if it is both initial and terminal. In
such a case, one often denotes it by 0. If C has a zero object, for any
object X € C, the morphism obtained as the composition X — 0 — X
is still denoted by 0: X — X.

Note that initial (resp. terminal) objects are unique up to unique isomor-
phisms.

Examples 2.1.7. (i) In the category Set, () is initial and {pt} is terminal.
(ii) The zero module 0 is a zero-object in Mod(A).

(iii) The category associated with the ordered set (Z, <) has neither initial
nor terminal object.
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Definition 2.1.8. Let C and C’ be two categories. A functor F' : C — ('
consists of a map F' : Ob(C) — Ob(C’) and for all X,Y € C, of a map still
denoted by F': Hom,(X,Y) — Hom,,(F(X), F(Y)) such that

F(idx) = idpx), F(fog)=F(f)oF(g).

A contravariant functor from C to C’ is a functor from C° to C’. In other
words, it satisfies F'(go f) = F(f) o F(g). If one wishes to put the emphasis
on the fact that a functor is not contravariant, one says it is covariant.

One denotes by op : C — C° the contravariant functor, associated with
idcop.

Definition 2.1.9. (i) One says that F' is faithful (resp. full, resp. fully
faithful) if for X, Y in C

Hom(X,Y) — Hom,,(F(X), F(Y))
is injective (resp. surjective, resp. bijective).

(ii) Ome says that F' is essentially surjective if for each Y € C’ there exists
X € C and an isomorphism F(X) ~Y.

One defines the product of two categories C and C’ by :

Ob(C x C') = Ob(C) x Ob(C")
Hom,, (X, X), (Y,Y")) = Hom(X,Y) x Hom,, (X", Y").

A bifunctor F' : C x C" — C” is a functor on the product category. This
means that for X € C and X' € (', F(X,:): ' = C" and F(-,X'): C — ("
are functors, and moreover for any morphisms f: X - Y inC,g: X' =Y’
in C’; the diagram below commutes:

FX, X)X pix vy
F(ﬁX’)l lF(ﬁY’)
F(Y, X)) —" - F(v,Y")

In faCt7 (f7 g) = (ldy,g) © (f7 idX’) = (f7 idY’) © (lang)

Examples 2.1.10. (i) Hom,(-,-) : C®* x C — Set is a bifunctor.

(ii) If A is a k-algebra, -®4-: Mod(A°)xMod(A) — Mod(k) and Hom ,(-, -):
Mod(A)°? x Mod(A) — Mod(k) are bifunctors.

(iii) Let A be a ring. Then H’(-) : C(Mod(A)) — Mod(A) is a functor.

(iv) The forgetful functor for : Mod(A) — Set associates to an A-module
M the set M, and to a linear map f the map f.
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The following categories often appear in Category Theory.
Let C, C’' be categories and F': C — C' a functor. Let Z € C'.

Definition 2.1.11. (i) The category Cyz is defined as follows:

Ob(Cz) = {(X,u); X € C,u: F(X)toY},
Homcz((Xl,ul), (Xo,u2)) = {v: X5 — Xoju; =ugo F(v)}.

(i) The category CZ is defined as follows:

Ob(C?) = {(X,u); X eCu:Y — F(X))},
Hom . ((X1,u1), (X2,u2)) = {v: Xy — Xo;us =y 0 F(v)}.

Note that the natural functors (X,u) — X from Cz and CZ to C are
faithful.

The morphisms in Cz (resp. C%) are visualized by the commutative dia-
gram on the left (resp. on the right) below:

F(XI)L) YLF(Xl)
F(v)l/ % R lF(v)
F(X,) F(X,)

2.2 Morphisms of functors

Definition 2.2.1. Let F, F, are two functors from C to C’. A morphism of
functors 6 : F} — F} is the data for all X € C of a morphism 6(X) : Fi(X) —
F5(X) such that for all f: X — Y, the diagram below commutes:

0(X)
Fi(X) —= [(X)
Fi(f) le(f)

(V)22 By(y)

A morphism of functors is visualized by a diagram:

F
F>

Hence, by considering the family of functors from C to C’ and the morphisms
of such functors, we get a new category.



40 CHAPTER 2. THE LANGUAGE OF CATEGORIES

Notation 2.2.2. We denote by Fct(C,C’) the category of functors from C to

C’. One may also use the shorter notation (C')°.

In particular we have the notion of an isomorphism of categories. If F is
an isomorphism of categories, then there exists G : C' — C such that for all
X €C,Go F(X) = X. In practice, such a situation rarely occurs and is not
really interesting. There is an weaker notion that we introduce below.

Definition 2.2.3. A functor F' : C — C’ is an equivalence of categories if
there exists G : C' — C such that: G o F' is isomorphic to id¢ and F o G is
isomorphic to ide: .

Theorem 2.2.4. The functor F' : C — C' is an equivalence of categories if
and only if F' is fully faithful and essentially surjective.

If two categories are equivalent, all results and concepts in one of them
have their counterparts in the other one. This is why this notion of equiva-
lence of categories plays an important role in Mathematics.

Examples 2.2.5. (i) Let k be a field and let C denote the category defined
by Ob(C) = N and Hom,(n,m) = M,, ,(k), the space of matrices of type
(m,n) with entries in a field & (the composition being the usual composition
of matrices). Define the functor F : C — Mod/(k) as follows. To n € N,
F(n) associates k™ € Mod” (k) and to a matrix of type (m,n), F associates
the induced linear map from k™ to k™. Clearly F' is fully faithful, and since
any finite dimensional vector space admits a basis, it is isomorphic to k™ for
some n, hence F'is essentially surjective. In conclusion, F' is an equivalence
of categories.

(ii) let C and C’ be two categories. There is an equivalence

(2.1) Fet(C,C') ~ Fet(CP, (C)°P).

2.3 The Yoneda lemma

Definition 2.3.1. Let C be a category. One defines the categories

C" = Fct(CP,Set),
CY = Fct(CP,Set®),

and the functors

he : C—C", X+ Homy(,X),
ke : C—C", X+~ Hom/(X,").
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By (2.1) there is a natural isomorphism

(2.2) CY ~ CoPhop

Proposition 2.3.2. (The Yoneda lemma.)
(i) For AeC" and X € C, Hom (he(X), A) ~ A(X).
(i) For Be CY and X € C, Hom,, (B,ke(X)) ~ B(X).

Moreover, these isomorphisms are functorial with respect to X, A, B, that is,
they define isomorphisms of functors from C° x C" to Set or from CV°P x C
to Set.

Proof. By (2.2) is enough to prove one of the two statements. Let us prove
(i).

One constructs the morphism ¢: Hom . (he(X), A) — A(X) by the chain
of morphisms: Hom . (h¢(X), A) — Homg,, (Hom (X, X), A(X)) — A(X),
where the last map is associated with idx.

To construct ¢ : A(X) — Hom . (h(X)c, A), it is enough to associate
with s € A(X) and Y € C a map from Hom (Y, X) to A(Y). It is defined
by the chain of maps Hom (Y, X) — Homg,, (A(X), A(Y)) — A(Y') where
the last map is associated with s € A(X).

One checks that ¢ and 1) are inverse to each other. q.e.d.

Corollary 2.3.3. The two functors he and ke are fully faithful.

Proof. For X and Y in C, one has Hom . (h¢(X),h(Y)) ~ he(Y)(X) =
Hom,(X,Y). q.e.d.

One calls he and ke the Yoneda embeddings. Hence, one may consider C as
a full subcategory of C" or of C".

Corollary 2.3.4. Let C be a category and let f : X — Y be a morphism in
C.

(i) Assume that for any Z € C, the map Hom ,(Z, X) EAR Hom.(Z,Y) is
bijective. Then f is an isomorphism.

(i) Assume that for any Z € C, the map Hom (Y, Z) o, Hom (X, Z) is
bijective. Then f is an isomorphism.

Proof. (i) By the hypothesis, he(f) @ he(X) — he(Y) is an isomorphism in
C". Since he is fully faithful, this implies that f is an isomorphism.
(ii) follows by reversing the arrows, that is, by replacing C with C°?. q.e.d.
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2.4 Representable functors

Definition 2.4.1. One says that a functor F' from C°? to Set® (resp. C°P
to Set) is representable if F' ~ ke(X) (resp. he(X)) for some X € C. Such
an object X is called a representative of F.

It is important to notice that the isomorphism F' ~ h¢(X) (resp. F ~
ke(X)) determines X up to unique isomorphism.

Representable functors provides a categorical language to deal with uni-
versal problems. Let us illustrate this by an example.

Example 2.4.2. Let k£ be a commutative ring and let M, N, L be three k-
modules. Denote by B(N x M, L) the set of k-bilinear maps from N x M
to L. Then the functor F': L — B(N x M, L) is representable by N @, M,
since F'(L) = B(N x M,L) ~Hom (N ® M, L).

Definition 2.4.3. Let F': C — C' and G: C' — C be two functors. One says
that (F,G) is a pair of adjoint functors or that F' is a left adjoint to G, or
that GG is a right adjoint to F' if there exists an isomorphism of bifunctors:

Hom ., (F(-),-) ~ Hom,(-, G(+))
If G is an adjoint to F', then G is unique up to isomorphism. In fact,
G(Y) is a representative of the functor X — Hom ,(F(X),Y).

Example 2.4.4. Let A be a k-algebra. Let K € Mod(k) and let M, N €
Mod(A). The formula:

Hom ,(N ® K, M) ~ Hom , (N, Hom (K, M)).

tells us that the functors - ® K and Hom (K, -) from Mod(A) to Mod(A) are
adjoint.

In the preceding situation, denote by for : Mod(A) — Mod(k) the “forget-
ful functor” which, to an A-module M associates the underlying k-module.
Applying the above formula with N = A, we get

Hom ,(A ® K, M) ~ Hom (K, for(M)).

Hence, the functors A ® - (extension of scalars) and for are adjoint.

Exercises to Chapter 2

Exercise 2.1. Prove that the categories Set and Set°” are not equivalent.
(Hint: if F': Set — Set®” were such an equivalence, then F(()) ~ {pt} and
F({pt}) ~ 0. Now compare Homg, ({pt}, X) and Homg ., (F({pt}), F (X))
when X is a set with two elements.)



2.4. REPRESENTABLE FUNCTORS 43

Exercise 2.2. Prove that the category C is equivalent to the opposite cate-
gory C° in the following cases:

(i) C denotes the category of finite abelian groups,

(ii) C is the category Rel of relations.

Exercise 2.3. (i) Prove that in the category Set, a morphism f is a monomor-
phism (resp. an epimorphism) if and only if it is injective (resp. surjective).
(ii) Prove that in the category of rings, the morphism Z — Q is an epimor-
phism.

Exercise 2.4. Let C be a category. We denote by id¢: C — C the identity
functor of C and by End (id¢) the set of endomorphisms of the identity functor
ide : C — C, that is,

End (ldc) = Hom Fet(C,C) (idc, ldc)

Prove that the composition law on End (id¢) is commutative.
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Chapter 3
Limits

Inductive and projective limits are at the heart of category theory. They
are an essential tool, if not the only one, to construct new objects and new
functors. Inductive and projective limits in categories are constructed by
using projective limits in the category Set of sets. In this chapter we define
these limits and give many examples. We also closely analyze some related
notions, in particular those of cofinal categories, filtrant categories and exact
functors. Special attention will be paid to filtrant inductive limits in the
category Set.

3.1 Limits

In the sequel, I will denote a category. Let C be a category. A functor a: I —
C (resp. (:I°® — () is sometimes called an inductive (resp. projective)
system in C indexed by I.

For example, if (1, <) is a pre-ordered set, I the associated category, an
inductive system indexed by I is the data of a family (X;);c; of objects of
C and for all ¢ < j, a morphism X; — X, with the natural compatibility
conditions.

Assume first that C is the category Set and let us consider projective
systems. In other words, 3 is an object of I". Denote by (3, the constant
functor from I°? to Set, defined by (,(i) = {pt} for all i € I. One defines
the projective limit of 5 as

(3.1) lim 8 = Hom ;. (5, 3).

The family of morphisms:

Hom (8. ) — Homg,, (8(1). B(0)) = B(i). i€ 1.

45
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defines the map lim 3 — [L,; 5(i), and one checks immediately that:
lim 8 = {{x:}: € [ [ B(i); B(s)(x;) = a; for all s € Hom (i, 5)}.

The next result is obvious.

Lemma 3.1.1. Let 3: I°°? — Set be a functor and let X € Set. There is a
natural isomorphism

HomSet(X’ lﬁlﬁ) = liLnHomSet(X’ 6)7
where Homg , (X, B) denotes the functor I°® — Set, i — Homg_, (X, B(i)).

Now let « (resp. (3) be a functor from I (resp. I°?) to C. For X € C,
Hom(a, X) and Hom (X, 3) are functors from I°? to Set. We can then
define inductive and projective limits as functors from C or C°? to Set as
follows.

Definition 3.1.2. (i) One defines lima € C¥ and lim 3 € C" by the for-

mulas
(32) lma : = X limHom,(a,X)=lim(he(X)oa),
(3.3) lmp : = X limHom(X,3) = lim(ke(X) o 3).

(ii) If these functors are representable, one keeps the same notations to
denote their representative in C, and one calls these representative the
inductive or projective limit, respectively.

(iii) If every functor from I (resp. I°?) to C admits an inductive (resp.
projective) limit, one says that C admits inductive (resp. projective)
limits indexed by I.

(iv) One says that a category C admits finite projective (resp. inductive)
limits if it admits projective (resp. inductive) limits indexed by finite
categories.

When C = Set this definition of lim § coincides with the former one, in
view of Lemma 3.1.1. Hence, the category Set admits projective limits.

Proposition 3.1.3. The category Set admits inductive limits. More pre-
cisely, if I is a category and a: I — Set is a functor, then
lima ~ (|_| a(i))/ ~ where ~ is the equivalence relation generated by
iel
a(i) 3 x ~y € a(y) if there exists s: i — j with a(s)(z) =y.
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In particular, the coproduct in Set is the disjoint union, [[ = | |.
Proof. Let S € Set. By the definition of the projective limit in Set we get:
limHom (a, )~ {{p(i,2)}ierveati); (i, ) € S, p(i,z) = p(j, y)
if there exists s: i — j with a(s)(z) = y}.
The result follows. q.e.d.

Notation 3.1.4. In the category Set one uses the notation | | rather than

1T

By Definition 3.1.2, if lim « or lim 3 are representable, one gets:
— pa—

(3.4) Hom,(lima, X) =~ limHom,(a, X),
(3.5) Hom (X, lim ) =~ lim Hom (X, ).

Note that the right-hand sides are the projective limits in Set.
Assume lim o is representable by Y € C. One gets:

@Homc(a(i), Y) ~ Hom,(Y,Y)

and the identity of Y defines a family of morphisms
pi: a(i) =Y =lima.

Consider a family of morphisms f;: «(i) — X in C satisfying the natural
compatibility conditions, visualized by the diagram, with s: ¢ — j

This family of morphisms is nothing but an element of lim Hom (a(é), X),

hence by (3.4), an element of Hom (Y, X). Therefore all morphisms f;’s
factorize uniquely through Y.
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Similarly, if lim (3 is representable, we get a family of morphisms p; : lim 68—
B(i) and any family of morphisms from X to the 3(i)’s satisfying the nat-
ural compatibility conditions will factorize uniquely through lim 5. This is
visualized by the diagrams:

(1) \\ %6(1)
lima-~3X X7 - lim 3 B(s)
/ fi N
a(j) B()

It follows from (??) that if ¢: J — I, a: I — C and [: [°®> — C are
functors, we have natural morphisms:

(3.6) lim(aop) — lma,
(3.7 lim(Bop) — limp.

Proposition 3.1.5. Let I be a category and assume that C admits inductive
limits (resp. projective limits) indexed by I. Then for any category J, the
category C’ admits inductive limits (resp. projective limits) indexed by I.
Moreover, if a: I — C7 (resp. B: I°P — C7) is a functor, then its inductive
(resp. projective) limit is defined by

(ima)(j) = lm(a(7). j€J

(resp. (Lim B)(5) = Lm(5(5)), j € J).

The proof is obvious.

Corollary 3.1.6. The categories C" and CV admit projective and inductive
limats.

One can consider inductive or projective limits associated with bifunctors.

Proposition 3.1.7. Let I and J be two categories and assume that C admits
inductive limits indexed by I and J. Consider a bifunctor a: I x J — C.

Then the functor o defines functors cy: I — C’ and ay: J — C!, and
one has the isomorphisms

lim o ~ lim(lim o) =~ lim(lim avy ).
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Similarly, if B: I°® x J°® — C is a bifunctor, then 3 defines functors
By I° — C7™ and B;: J° — CI™" and one has the isomorphisms

lim 9 = Jim Jim 3 = lim im .
In other words:

lim a(i, j) =~ lim(lim(a(i,j)) ~ lim lim(«(, 5)),

o iny iny liny
2Y] J ? ? J
lin 37, ) = Lo Tan(6(, 7)) ~ lim lim(3(7, ).
i,J Jj i v

The proof is obvious.
Definition 3.1.8. Let F': C — C’ be a functor.

(i) Let I be a category and assume that C admits inductive limits indexed
by I. One says that F' commutes with such limits if for any a: I — C,
lim(F o a) exits in " and is represented by F'(lim ).

(ii) Similarly if I is a category and C admits projective limits indexed by
I, one says that F' commutes with such limits if for any §: I°? — C,
@(F o (3) exists and is represented by F’ (lin B).

Note that if C and C" admit inductive (resp. projective) limits indexed
by I, there is a natural morphism lim(F" o a) — F(lim ) (vesp. F(lim 3) —
lim(F o 3)).

Example 3.1.9. Let k be a field, C = C' = Mod(k), and let X € C. Then
the functor Hom, (X, -) does not commute with inductive limit if X is infinite
dimensional.

Examples

Terminal object. If I admits a terminal object, say i, and a: I — C (resp.
B: I°° — C) is a functor, then
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If I is the empty category, a: I — C (resp. (: [°? — C) is a functor and C
admits an initial object (J¢,(resp. a terminal object pt), then

lim o ~ (e,

Sums and products. Consider a discrete category I.

Definition 3.1.10. (i) When the category [ is discrete, inductive and pro-
jective limits are called coproduct and products, denoted [] and ],
respectively. Hence, writing «(i) = X; or 3(i) = X;, we get for Y € C:

Hom, (Y, [ [ X:) ~ [ [ Hom (Y, X5),

Hom (][ X;,Y) ~ [ Hom,(X;,Y).

(ii) If I is discrete with two objects, a functor I — C is the data of two
objects X and X; in C and their coproduct and product (if they exist)
are denoted by Xo[[X; and X, ] X1, respectively. Moreover, one
usually writes Xy LI X7 and Xy x X7 instead of Xy ][ X7 and X, [] X7,
respectively.

Hence, if a: [ — C is a functor, with I discrete, one writes [J « (resp.
[Ia) or [I,c; (i) (resp. [[,c;a(i)) to denote its limit. One says that
[L;c; (i) (resp. [],c; @(7)) is the coproduct (resp. product) of the a(i)’s.

If a(i) = X for all i € I, one simply denotes this limit by X’ (resp.
XIT). One also writes X and X7 instead of X7 and XII'| respectively.
Example 3.1.11. In the category Set, we have for I, X, Z € Set:

XD ~ I'xX,
X' ~ Homg,(I,X),
Homg (I x X,Z) =~ Homg,(/,Homg, (X, Z2)),
~ Homg,, (X, Z)".

The coproduct and product of two objects are visualized by the diagrams:
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In other words, any pair of morphisms from (resp. to) Xy and X to (resp.
from) X factors uniquely through X, U X; (resp. Xo x X3). If C is the
category Set, Xy U X is the disjoint union and Xy x X; is the product of
the two sets Xy and Xj;.

Cokernels and kernels. Consider the category I with two objects and two
parallel morphisms other than identities, visualized by

_—
[ ] e

A functor a: I — C is characterized by two parallel arrows in C:

(3.8) frg: Xo—=X,

In the sequel we shall identify such a functor with the diagram (3.8).
Definition 3.1.12. Consider two parallel arrows f,g: Xo = X; in C.

(i) A co-equalizer (one also says a cokernel), if it exists, is an inductive
limit of this functor. It is denoted by Coker(f,g).

(ii) An equalizer (one also says a kernel), if it exists, is a projective limit of
this functor. It is denoted by Ker(f, g).

(iii) A sequence Xy = X; — Z (resp. Z — Xo = X;) is exact if Z is
isomorphic to the co-equalizer (resp. equalizer) of Xy = Xj.

(iv) Assume that the category C admits a zero-object 0. Let f: X — Y
be a morphism in C. A cokernel (resp. a kernel) of f, if it exists, is a
cokernel (resp. a kernel) of f,0: X = Y. It is denoted Coker(f) (resp.

Ker(f)).

The co-equalizer L is visualized by the diagram:

f k
Xo—=X|——

X

which means that any morphism h: X; — X such that ho f = h o g factors
uniquely through k.
Note that

(3.9) k is an epimorphism.



52 CHAPTER 3. LIMITS

Indeed, consider a pair of parallel arrows a,b: L = X such that a o k =
bok=h. Then ho f=aokof=aokog=bokog=hog. Hence h
factors uniquely through k, and this implies a = b.

Dually, the equalizer K is visualized by the diagram:

h f
K—X—=X,

X

and
(3.10) h is a monomorphism.

We have seen that coproducts and co-equalizers (resp. products and
equalizers) are particular cases of inductive (resp. projective) limits. We
shall show that conversely, one can construct inductive (resp. projective)
limits using coproducts and co-equalizers (resp. products and equalizers),
when such objects exist.

Denote by I; the discrete category associated with I, and recall that
Mor(/) denote the set of morphisms in /. There are two natural functors
(source and target) from Mor(/) to I:

o: Mor(l) — I,(s:1— j)— 1,
7: Mor(I) = I,(s:i— j)+— j.
If a: I — Cis a functor and s: i — j a morphism in I, we get two morphisms
| e :
a(i) % a(l) Ualy)

from which we deduce two morphisms a(o(s)) = [[,c; (). These mor-
phisms define the two morphisms

(3.11) Hsentorn) (o (s)) —>—:> [Lier a(d).
Similarly, if §: I°? — C is a functor and s: i — j, we get two morphisms
. N s
i) x B(5) T B(i)

from which we deduce two morphisms [],., 3(:) = B(co(s)). These mor-
phisms define the two morphisms

(312 Mier 50) == Macntort B(0(5))
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Proposition 3.1.13. (i) lima is the co-equalizer of (a,b) in (3.11),
(i) lim B ds the equalizer of (a,b) in (3.12).

Proof. Replacing C with C°P, it is enough to prove (ii).

When C = Set, (ii) is nothing but the definition of projective limits in
Set.

Therefore if Z € Set, then @Homc(Z, 3) is the equalizer of

Hié] HomC(Z7 B(Z» % HsGMor(]) HOH’IC(Z, /6(0(8)))

The result follows. q.e.d.

Corollary 3.1.14. A category C admits finite projective limits if and only if
it satisfies:

(i) C admits a terminal object,
(i) for any X,Y € Ob(C), the product X xY ezists in C,
(iii) for any parallel arrows in C, f,g: X =Y, the equalizer exists in C.

Moreover, if C admits finite projective limits, a functor F': C — C' commutes
with such limits if and only if it commutes with the terminal object, (finite)
products and kernels.

There is a similar result for finite inductive limits, replacing a terminal
object by an initial object, products by coproducts and equalizers by co-
equalizers.

3.2 Filtrant inductive limits

We shall generalize some notions of Definition 1.4.2 as well as Lemma 1.4.6
and Proposition 1.4.8.

Definition 3.2.1. A category [ is called filtrant if it satisfies the conditions
(i)—(iii) below.

(i) I is non empty,

(ii) for any ¢ and j in I, there exists k € I and morphisms i — k,j — k,
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(iii) for any parallel morphisms f,g: i = j, there exists a morphism h: j —
k such that ho f = hog.

One says that [ is cofiltrant if 7°P is filtrant.

The conditions (ii)—(iii) of being filtrant are visualized by the diagrams:

k k

Of course, if (I, <) is a non-empty directed ordered set, then the associated
category [ is filtrant.
We shall first study filtrant inductive limits in the category Set.

Proposition 3.2.2. Let a: I — Set be a functor, with I filtrant. Define the
relation ~ on [, a(i) by a(i) > x; ~ z; € a(j) if there exists s: i — k and
t: j — k such that a(s)(z;) = a(t)(x;). Then

(i) the relation ~ is an equivalence relation,

(i) lima = [T, a(i)/ ~

Proof. (i) Let z; € (i), j = 1,2,3 with x; ~ 29 and 29 ~ x3. There exist
morphisms visualized by the diagram:

such that a(s1)z1 = a(s2)xe, a(ta)rs = a(ts)rs, and vou; 0 sy = v oug o ts.
Set w; =vouy 081, Wy =V 01U OSg =V OUy Oty and w3z = v o ugoty. Then
a(wy)r; = a(wy)ry = a(ws)zrs. Hence z1 ~ x3.

(ii) follows from Proposition 3.1.3. q.e.d.

Corollary 3.2.3. Let a: I — Set be a functor, with I filtrant.
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(i) Let S be a finite subset in lim . Then there exists i € I such that S is
contained in the image of a(i) by the natural map a(i) — lim o.

(ii) Let i € I and let x and y be elements of (i) with the same image in
lima. Then there exists s: i — j such that a(s)(x) = a(s)(y) in a(j).

The proof is left as an exercise.

Corollary 3.2.4. Let A be a ring and denote by for the forgetful functor
Mod(A) — Set. Then the functor for commutes with filtrant inductive
limits. In other words, if I is filtrant and a: I — Mod(A) is a functor, then

foro (hi>n at)) = @(for o afi)).

Inductive limits with values in Set indexed by filtrant categories commute
with finite projective limits. More precisely:

Proposition 3.2.5. For a filtrant category I, a finite category J and a func-
tor a: I x J° — Set, one has limlima(i,j) — limlim (i, j). In other

7 J J (2
words, the functor

lim: Fet(7,Set) — Set
—)

commutes with finite projective limits.

Proof. 1t is enough to prove that hi>n commutes with equalizers and with

finite products. This verification is left to the reader. q.e.d.
Applying this result together with Corollary 3.2.4, we obtain:

Corollary 3.2.6. Let A be a ring and let I be a filtrant category. Then the

functor lim: Mod(A)" — Mod(A) commutes with finite projective limits.

One says that filtrant inductiv elimits are exact in Mod(A).

Cofinal functors

Definition 3.2.7. Let I be a filtrant category and let ¢: J — I be a fully
faithful functor. One says that J is cofinal to I (or that ¢ : J — I is cofinal)
if for any 7 € I there exists j € J and a morphism i — ¢(j).
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Note that the hypothesis implies that .J is filtrant.

Proposition 3.2.8. Assume [ is filtrant, ¢: J — I is fully faithful and
J — I is cofinal. Let a: I — C (resp. (: I°® — C) be a functor. Then
the natural morphism lim(a o @) — lima (resp. lim 8 — Lm(8 o ¢)) is an

isomorphism in C¥ (resp. in C").
The proof is left as an exercise.

Remark 3.2.9. In Definition 3.2.7, we have assumed that [ is filtrant, but
there exists a general definition of cofinal functor which do not make this
hypothesis and for which the conclusion of Proposition 3.2.8 remains true.
(See Exercise 3.8 for an example.)

3.3 Exact functors

Proposition 3.3.1. Let F': C — C' be a functor. Assume that
(i) F' admits a left adjoint G: C' — C,
(ii) C admits projective limits indexed by a category I.

Then F' commutes with projective limits indexed by I, that is, F(lim (3(i)) ~

lim F(5(0)). Z

)

Proof. Let 3: I°°P — C be a projective system indexed by I and let Y € C’.
One has the chain of isomorphisms

12

Hom, (Y, F(lim 6(i))) Hom (G(Y), lim 5(7))

@Homc(G(Y),ﬁ(i))

12

lim Hom g, (Y, F(5(3)))

2

12

12

Hom . (Y, lim F(A(3)).

7

Then the result follows by the Yoneda lemma. q.e.d.

Of course there is a similar result for inductive limits. If C admits inductive
limits indexed by I and F admits a right adjoint, then F' commutes with
such limits.
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Definition 3.3.2. Let F': C — C’ be a functor.

(i) Assume that C admits finite projective limits. One says that F is left
exact if it commutes with such limits.

(ii) Assume that C admits finite inductive limits. One says that F is right
exact if it commutes with such limits.

(iii) Onme says that F' is exact if it is both left and right exact.

Proposition 3.3.3. (i) Let C be a category which admits finite inductive
and finite projective limits. Then the functor Hom,: C°? x C — Set is
left exact.

(ii) Let F: C — C' be a functor. If F' admits a right (resp. left) adjoint,
then F' is right (resp. left) exact.

(iii) Let I and C be two categories and assume that C admits inductive limits
indexved by I. Then the functor lim: Fet(I,C) — C is right exact.

Similarly, if C admits projective limits indexed by J, then the functor
lim: Fet(JP — C) is left ezact.

(iv) Let I be a filtrant category. The functor hi>n Set! — Set as well as

the functor lim: Mod(k)! — Mod(k) are ezact.
—

(v) Let I be a discrete category. Then the functor []: Mod(k)! — Mod(k)
s exact.

Proof. (i) follows immediately from (3.4) and (3.5).

(ii) is a particular case of Proposition 3.3.1.

(iii) Apply Proposition 3.1.7.

(iv) follows from Proposition 3.2.5 and Corollary 3.2.6.

(v) is well-known and obvious. q.e.d.

Exercises to Chapter 3

Exercise 3.1. Let X,Y € C and consider the category D whose arrows are
triplets Z € C, f : Z — X, g : Z — Y, the morphisms being the natural one.
Prove that this category admits a terminal object if and only if the product
X x Y exists in C, and that in such a case this terminal object is isomorphic
to X XY, X XY — X, X XY — Y. Deduce that if X xY exists, it is unique
up to unique isomorphism.
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Exercise 3.2. (i) Let I be a (non necessarily finite) set and (X;);c; a family
of sets indexed by I. Show that ][, X; is the disjoint union of the sets Xj.
(ii) Construct the natural map [[, Homg, (Y, X;) — Homg, (Y, ][, X;) and
prove it is injective.

(iii) Prove that the map [[, Homg,, (X;,Y) — Homg (], X;,Y) is not in-
jective in general.

Exercise 3.3. Let I and C be two categories and denote by A the functor
from C to C! which, to X € C, associates the constant functor A(X): I >
i— X eC, (i—j)€ Mor(]) — idx. Assume that any functor from I to C
admits an inductive limit.

(i) Prove that lim : C" — C is a functor.

(ii) Prove the formula (for a: I — C and Y € C):

Hom (lim a(i), Y) = Hom p,; oy (a, A(Y)).

2

(iii) Replacing I with the opposite category, deduce the formula (assuming
projective limits exist):

Hom (X, lim G/(7)) >~ Hom g ep ) (A(X), G).

7

Exercise 3.4. Let C be a category which admits filtrant inductive limits.
One says that an object X of C is of finite type (resp. of finite presentation) if
for any functor a: I — C with [ filtrant, the natural map lim Hom (X, o) —

Hom (X, lim «v) is injective (resp. bijective).

(i) Show that this definition coincides with the classical one when C =
Mod(A), for a ring A.

(ii) Does this definition coincide with the classical one when C denotes the
category of commutative algebras?

Exercise 3.5. Let C be a category and recall that the category C" admits
inductive limits. One denotes by “lim” the inductive limit in C*. Let &k be a

field and let C = Mod(k). Prove that the Yoneda functor he: C — C* does

not commute with inductive limits.

Exercise 3.6. Consider the category I with three objects {a,b,c} and two
morphisms other than the identities, vizualized by the diagram

a<+—c—b.
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Let C be a category. A functor 5: I°°? — C is nothing but the data of three
objects X, Y, Z and two morphisms vizualized by the diagram

xLz~ay

The fiber product X xz Y of X and Y over Z, if it exists, is the projective
limit of .

(1) Assume that C admits products (of two objects) and kernels. Prove that
the sequence

XxXzY =-X=2Y

is exact. Here, the two morphisms X = Y are given by f, g.
(ii) Prove that C admits finite projective limits if and only if it admits fiber
products and a terminal object.

Exercise 3.7. Let I and C be two categories and let F,G : I = C be two
functors. Prove the isomorphism:

Hom g o) (F, G) =
Ker([[Hom (F(i),G(i)) =[]  Homo(F(j), G(k))).
el (j—k)eMor(I)
Here, the double arrow is associated with the two maps:
[] Hom, (F(). G(i)) — Hom o (F(5). G(j)) — Hom (F(j), G(k)),
iel
HHomC(F(i),G(i)) — Hom (F'(k), G(k)) — Hom(F(j), G(k)).
iel
Equivalently, with the notations of Example 2.1.4 (vi), prove the isomorphism

~

(3.13) Hom FCt(LC)(F, G) — lim Hom (F(z), G(5)).
(i—>j)eMoro(I)

Exercise 3.8. Prove Proposition 3.2.8.

Exercise 3.9. Let I be a category, J a full subcategory. Assume that for

any ¢ € I, there is a unique j € J and a unique morphism j — ¢ (in other

words, for any i € I, the category J* is reduced to {pt}, the discrete category

with a single objet).

(i) Prove that J is discrete.

(ii) Let a: I — C be a functor. Prove that the natural morphism lim(aop) —

lima (resp. lim 8 — lim(8 0 ¢°F)) is an isomorphism in CV (resp. in C*). In

other words, Proposition 3.2.8 holds in this case.
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Chapter 4

Additive categories

Many results or constructions in the category Mod(A) of modules over a
ring A have their counterparts in other contexts, such as finitely generated
A-modules, or graded modules over a graded ring, or sheaves of A-modules,
etc. Hence, it is natural to look for a common language which avoids to
repeat the same arguments. This is the language of additive and abelian
categories.

In this chapter, we give the main properties of additive categories. We
expose some basic constructions on complexes such as the shift functor, the
mapping cone, the simple complex associated with a double complex and we
introduce the notion of morphism homotopic to zero.

4.1 Additive categories

Definition 4.1.1. A category C is additive if it satisfies conditions (i)-(v)
below:

(i) for any X,Y € C, Hom,(X,Y) € Ab,
(ii) the composition law o is bilinear,
(iii) there exists a zero object in C,
(iv) the category C admits finite coproducts,
(v) the category C admits finite products.

Note that Hom,(X,Y’) # 0 since it is a group. Note that Hom (X, 0) =
Hom,(0,X) =0 for all X €C.

61
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Notation 4.1.2. If X and Y are two objects of C, one denotes by X &Y
(instead of X LIY') their coproduct, and calls it their direct sum. One denotes
as usual by X x Y their product. This change of notations is motivated by
the fact that if A is a ring, the forgetful functor Mod(A) — Set does not
commute with coproducts.

By the definition of a coproduct and a product in a category, for each
Z € C, there is an isomorphism in Mod(Z):

x Hom (Y, Z) ~ Hom (X @Y, Z),

(4.1) Hom (X, Z)
Z,X)x Hom.(Z,Y) ~ Hom,(Z,X xY).

(4.2) Hom.(Z,

Notice that, assuming (i) to (iii), conditions (iv) and (v) are equivalent. In
fact, each condition (iv) or (v) is equivalent to
(vi) For any two objects X and Y there exits an object Z and morphisms
W X—>2Z p:2Z—X,15:Y — Z, py: Z — Y, satisfying p; o4, = idy,
p2oiy =idy, 13 0py +ig0py =idg, ppoiy =0, proiz =0.

For example, assume (iv). Choosing Z = X @Y in (4.1), the identity of
X @Y defines i, and iy. Choosing Z = X, the identity of X and the zero
morphism Y — X define pq, etc.

As a consequence of (vi), we obtain the natural isomorphism

(4.3) XoY S XxY.

Example 4.1.3. (i) If A is a ring, Mod(A) and Mod/(A) are additive cate-
gories.

(ii) Ban, the category of C-Banach spaces and linear continuous maps is
additive.

(iii) If C is additive, then C° is additive.

(iv) Let I be category. If C is additive, the category C! of functors from I to
C, is additive.

Let F': C — C’ be a functor of additive categories. One says that F' is

additive if for X, Y € C, Hom ,(X,Y) — Hom_, (F(X), F(Y)) is a morphism
of groups. One can prove the following

Proposition 4.1.4. Let F': C — C' be a functor of additive categories. Then
F' is additive if and only if it commutes with direct sum, that is, for X and

Y inC:

F(0)
FIX®Y)

12

0
F(X)® F(Y).

12
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Unless otherwise specified, functors between additive categories will be
assumed to be additive.

Generalization: Let k be a commutative ring. One defines the notion of
a k-additive category by assuming that for X and Y in C, Hom,(X,Y) is a
k-module and the composition is k-bilinear.

From now on, C, C' will denote additive categories.

Let f: X — Y be a morphism in C. Recall that if Ker f exists, it is
unique up to unique isomorphism, and for any W € C, the sequence

(44) 0 — Hom (W, Ker f) — Hom (W, X) & Hom (W, Y)

is exact in Mod(Z).
Similarly, if Coker f exists, then for any W € C, the sequence

(4.5) 0 — Hom(Coker f, W) — Hom (Y, W) £ Hom (X, W)
is exact in Mod(Z).

Example 4.1.5. Let A be a ring, I an ideal which is not finitely generated
and let M = A/I. Then the natural morphism A — M in Mod”(A) has no
kernel.

Let C be an additive category which admits kernels and cokernels. Let
f X — Y be a morphism in C. One defines:

Coim f = Cokerh, where h: Ker f — X
Imf = Kerk, where k:Y — Coker f.

Consider the diagram:

Ker f h X ! Y ¥ Coker f

Since foh = 0, f factors uniquely through f, and ko f factors through ko f .
Since ko f = ko fos =0 and s is an epimorphism, we get that ko f = 0.
Hence f factors through Ker k = Im f. We have thus constructed a canonical
morphism:

(4.6) Coim f = Im f.
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Examples 4.1.6. (i) If A is a ring and f is a morphism in Mod(A), then
(4.6) is an isomorphism.

(ii) The category Ban admits kernels and cokernels. If f : X — Y is a
morphism of Banach spaces, define Ker f = f~1(0) and Coker f = Y/Im f
where Im f denotes the closure of the space Im f. It is well-known that there
exist continuous linear maps f: X — Y which are injective, with dense and
non closed image. For such an f, Ker f = Coker f = 0 although f is not an
isomorphism. Thus Coim f ~ X and Im f ~ Y. Hence, the morphism (4.6)
is not an isomorphism.

4.2 Complexes in additive categories

Let C denote an additive category.

Definition 4.2.1. A complex X* in C is a sequence of objects X* and mor-
phisms d*, k € Z:

..._>Xk_1dk—71>Xkﬁ>Xk+l_)...
such that d* o d*~1 = 0 for all k.

A morphism of complexes f*: X*® — Y* is visualized by a commutative
diagram:

xXn d} Xn+l
lf’n l/fn-‘—l
dy
Y™ Xn+l

One defines naturally the direct sum of two complexes. Hence, we get a new
additive category, the category C(C) of complexes in C.

A complex is bounded (resp. bounded below, bounded above) if X™ =0
for |n| >> 0 (resp. n << 0, n >> 0). One denotes by C*(C)(x = b,+,—)
the full additive subcategory of C'(C) consisting of bounded complexes (resp.
bounded below, bounded above).

One considers C as a full subcategory of C?(C) by identifying an object
X € C with the complex X* “concentrated in degree 0”:

where X stands in degree 0.
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Shift functor
Let X € C(C) and k € Z. One defines the shifted complex X [k] by:
{ Gty - o

d&[k] - (—1)kdnx+k

If f:X — Y is a morphism in C(C) one defines f[k] : X[k] — Y[k] by
(fIk])" = free.
The shift functor X +— X[1] is an automorphism (i.e. an invertible func-

tor) of C'(C).

Homotopy

Let C denote an additive category.

Definition 4.2.2. (i) A morphism f : X — Y in C(C) is homotopic to
zero if for all k there exists a morphism s* : X* — Y*~1 such that:

ko kHl o gk gk—1 ok
fF=s""ody +dy ! os"

(ii) Two morphisms f,g : X — Y are homotopic if f — g is homotopic to
Zero.

(iii)) A morphism f : X — Y is a homotopy equivalence if there exists
g:Y — X such that go f —idy and f o g —idy are homotopic to zero.

(iv) An object X in C'(C) is homotopic to 0 if idx is homotopic to zero.

A morphism homotopic to zero is visualized by the diagram (which is not

commutative):

dk
Xkl ——= xk —2 xktl

R

Yk—l F Yk - > Yk-i—l
Y

Note that an additive functor sends a morphism homotopic to zero to a
morphism homotopic to zero.

Example 4.2.3. The complex 0 — X' — X' ® X" — X” — 0 is homotopic
to zero.
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Mapping cone

Definition 4.2.4. Let f : X — Y be a morphism in C(C). The mapping
cone of f, denoted Mc(f), is the object of C(C) defined by:

Me(f) = (X[A)Fev*
Mec(f) fk—i—l dl;;/

Of course, before to state this definition, one should check that d’lf/fg%

< _d? ) ] < _d 0 ) .
frrz gk gk
Notice that although Mc(f)* = (X[1])* ®Y*, Mc(f) is not isomorphic to

X[1]®Y in C(C) unless f is the zero morphism.
There are natural morphisms of complexes

a(f) Y — Mc(f),  B(f): Mc(f) — X[1].

and 3(f) o a(f) = 0.
If F:C — (Cis an additive functor, then F'(Mc(f)) ~ Mc(F(f)).

n°

4.3 Applications to Koszul complexes

Consider a Koszul complex, as in §1.5. Keeping the notations of this section,
set ' ={¥1,...,pn_1} and denote by d’ the differential in K*(M, ¢’). Then
©, defines a morphism

(4.7) On K*(M, ') — K*(M, )

Proposition 4.3.1. The complex K*(M, p)[1] is isomorphic to the mapping
cone of —p,,.

Proof. Consider the diagram

v
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given explicitly by:
(M ® /\p-i-l Zn—l) ® (M ® /\p Zn—l)

M@A?Z Yy & (M e APz

id ®(id ®enA) id @ (id ®enA)

M ® /\p+l 7n M ® /\p+2 T

Then

dla®e;+bRek)=—d(a®ey)+ (d(b®ek) — pnla) ®ey),
Na®ej+bReg)=a®e;+bRe, Aeg.

(i) The vertical arrows are isomorphisms. Indeed, let us treat the first one.
It is described by:

(48) ZCL]®€J+ZZ7K®€KHZGJ®6J+Z[)K®6”/\6K
J K J K

with |J| = p+ 1 and |K| = p. Any element of M ® AP*' Z" may uniquely
be written as in the right hand side of (4.8).
(ii) The diagram commutes. Indeed,
MNHodh (a®e;+bReg) =—d(a®es) +e, ANd(bReg) — pn(a) e, Aey
=—d(a®e;)—d(b®e, Nex) — pn(a) e, Aey,
d?lo)\p(a®eJ+b®eK) =—da®e;+b®e, Aeg)
=—-d(a®ey) —ppla)@e, Ney —d (bRe, Neg).

4.4 Simplicial constructions

The simplicial category A is defined as follows. The objects of A are the
finite totally ordered sets and the morphisms are the order-preserving maps.
We denote by A; the subcategory of A such that Ob(A;) = Ob(A), the
morphisms being the injective order-preserving maps.
We denote by A the subcategory of A consisting of non-empty sets, the
morphisms being given by

Hom (0, 7) =
u sends the smallest (resp. the largest)

u € Hom 4 (0, 7); element of o to the smallest (resp. the
largest) element of 7
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For integers n, m denote by [n,m] the totally ordered set {k € Z; n < k <
m}.
The following results are obvious

(a) the natural functor A — Set/ is faithful and moreover, if two objects of
A are isomorphic in Set’, then they are isomorphic in A,

(b) the full subcategory of A consisting of objects {[0,n]},>_1 is equivalent
to A,

(c) A admits an initial object, namely ), and a terminal object, namely {0},

(d) A admits an initial object, namely [0, 1], and a terminal object, namely

{0}.

(e) Denote by t: A — A the canonical functor and by x: A — A the
functor 7 — {—1} U7 U {oo} (with —1 the smallest element in {—1} LI
7 U {oo} and oo the largest). Then (k,¢) is a pair of adjoint functors.

Let us denote by
d;: [0,n]—[0,n+ 1] 0<i<n+1)
the increasing injective map which does not take the value 7. In other words

‘ .
d?(k:):{k or k < i,

E+1 fork >1.
One checks immediately that
(4.9) d?“ od! =d"" o di jfor0<i<j<n+2.
For n > 0, denote by
st [0,n]—[0,n — 1] 0<i<n-1)

the decreasing surjective map which takes the same value for ¢ and ¢ + 1. In
other words

k for k <1
st (k) = .
k—1 fork>u1.
One checks immediately that

(4.10) stositt =s josit for0<j<i<n.
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Moreover,

s?“od?:d?_los?_l for 0 <i<j<m,

(411) st od! =idjy for0<i<n+1,i=4j7+1,

sitlodl =di ' os?  for1<j+1l<i<n+l

Note that the map d} are morphisms in the category Al and the maps s}
are morphisms in the category A. B
Let C be an additive category and F': A; — C a functor. We set

F" = F([0,n]), 0" = F(dV)

i
n+1

dp: P — Py = (=)

=0
Consider the sequence F'® of objects and morphisms
4
(4.12) Fr=0 pt i, po e opr
Proposition 4.4.1. (i) The sequence F'* is a complex.

(ii) Assume that there ezists a functor G A — C such that F is isomorphic

to the composition A AL A S, C. Then F* is homotopic to zero.

Proof. (i) By (4.9), we have 87" o 67 = 67" 007 | for 0 <i < j <n+2.
Then

n+1 n+1
l+k n+l g _ _\itg snt+l n _\etj—1gn+1 n
E E o op = E (=)o 00 + (—) 0; " 005,
1=0 k=0 0<i<j<n+2
= 0
(ii) Define
n __ n n __ n_n . n n—1
ol =F(s), sp=(=)'og_: F"— F""".
One has
n+1 n
splodi+ditosy =3 (-)FHon o gt 4 > () oo
=0 =0

lan + E H—n-i—l n+l o 5;1 - 5?—1 o Ug_1>

= lan .
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4.5 Double complexes

Let C be as above an additive category. A double complex (X** dx) in C is
the data of
(X A" A" (n,m) € Z0x 7}

where X™™ € C and the “differentials” d'y™ : X™™ — Xntbm  g"e™ .
Xmm — Xl gatisfy:

(413> d/?{ _ d//?{ _ 07 dod =d od.

One can represent a double complex by a commutative diagram:

qrmm

X nm Xn,m-i—l -

d/n,'m d/ n,m-+1

- 5 Xn-i—l,m

ey Xn-i—l,m—i—l N

One defines naturally the notion of a morphism of double complexes, and
one obtains the additive category C*(C) of double complexes.

There are two functors Fr, Fir : C?(C) — C(C(C)) which associate to
a double complex X the complex whose objects are the rows (resp. the
columns) of X. These two functors are clearly isomorphisms of categories.

Now consider the finiteness condition:

(4.14) forallpeZ, {(m,n)€ZxZ;X™™ #0,m+ n = p} is finite

and denote by C7(C) the full subcategory of C*(C) consisting of objects X
satisfying (4.14). To such an X one associates its “total complex” tot(X) by
setting:
tOt(X)p = @m-i-n:an’ma
Ayl xnm = d™" 4 (=1)"d"™

This is visualized by the diagram:

nm (_)nd// 1
X —>Xn,m+

!

Xn+l7m
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Proposition 4.5.1. {tot(X)?, di; ) }pez is a complex (i.e. df;(lX)odfot(X) =

0) and tot : CF(C) — C(C) is a functor of additive categories.

Proof. For (n,m) € Z x Z, one has

dO d(Xn,m) — d” od/l(Xn,m) + dl o dl(Xn,m) + (_)ndl/ odl(Xn,m) + (_)n-i—ld/ od/l(Xn,m)

It is left to the reader to check that tot is an additive functor. q.e.d.

Example 4.5.2. Let f*: X* — Y* be a morphism in C(C). Consider the
double complex Z** such that Z=1* = X*, Z%* =Y* Z»* =0 fori# —1,0,
with differentials f7: Z=1 — Z% . Then

(4.15) tot(Z**) ~ Mc(f*).

Bifunctor

Let C,C’" and C” be additive categories and let ' : C x C" — C” be an additive
bifunctor (i.e., F(+,-) is additive with respect to each argument). It defines
an additive bifunctor C%(F) : C(C) x C(C") — C?*(C"). In other words, if
X € C(C) and X’ € C(C’") are complexes, then C?*(F)(X, X’) is a double
complex.

Example 4.5.3. Consider the bifunctor Hom, : C x C®? — Mod(Z). We
shall write Hom'c" instead of C?(Hom,,). If X and Y are two objects of C(C),
one has

Hom?® (X, V)" — Hom,(X~™, V™),
A" = Hom (X~ d),  d"™™ = Hom((=)"dy" ", Y™).

Note that Hom'c”(X ,Y) is a double complex in the category Ab, which
should not be confused with the group Hom ;) (X, Y).

Definition 4.5.4. Let X € C*(C) and Y € C*(C). One sets

(4.16) Homy,(X,Y) = tot(Hom?%*(X,Y)).

Exercises to Chapter 4

Exercise 4.1. Let C be an additive category and let X € C(C).
(i) Prove that dx: X — X][1] defines a morphism in C'(C).
(ii) Prove that dx: X — X][1] is homotopic to zero.

=0.
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Exercise 4.2. Let C be an additive category, f,¢: X = Y two morphisms
in C(C). Prove that f and g are homotopic if and only if there exists a
commutative diagram in C'(C)

Y o Mcl(f) Yol X[1]

Y a(g) Me(f) B(g) X1

In such a case, prove that u is an isomorphism in C(C).

Exercise 4.3. Let C be an additive category and let f: X — Y be a mor-

phism in C(C).

Prove that the following conditions are equivalent:

(a) f is homotopic to zero,

(b) f factors through a(idx): X — Mc(idx),

(c) f factors through GB(idy)[—1]: Mc(idy)[—1] — Y,
)

(d) f decomposes as X — Z — Y with Z a complex homotopic to zero.



Chapter 5

Abelian categories

In this chapter, we give the main properties of abelian categories and expose
some basic constructions on complexes in such categories, such as the snake
Lemma. We explain the notion of injective resolutions and apply it to the
construction of derived functors, with applications to the functors Ext and
Tor.

For sake of simplicity, we shall always argue as if we were working in a full
abelian subcategory of Mod(A) for a ring A. (See Convention 5.1.1 below.)
Some important historical references are the book [4] and the paper [7].

5.1 Abelian categories

Convention 5.1.1. In these Notes, when dealing with an abelian category
C (see Definition 5.1.2 below), we shall assume that C is a full abelian sub-
category of a category Mod(A) for some ring A. This makes the proofs
much easier and moreover there exists a famous theorem (due to Freyd &
Mitchell) that asserts that this is in fact always the case (up to equivalence
of categories).

Definition 5.1.2. Let C be an additive category. One says that C is abelian
if:

(i) any f: X — Y admits a kernel and a cokernel,

(ii) for any morphism f in C, the natural morphism Coim f — Im f is an
isomorphism.

In an abelian category, a morphism f is a monomorphism (resp. an
epimorphism) if and only if Ker f ~ 0 (resp. Coker f ~ 0). If f is both a
monomorphism and an epimorphism, it is an isomorphism.

73
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Examples 5.1.3. (i) If A is a ring, Mod(A) is an abelian category.

(ii) If A is noetherian, then Mod”/(A) is abelian.

(iii) The category Ban admits kernels and cokernels but is not abelian. (See
Examples 4.1.6 (ii).)

(iv) Let I be category. Then if C is abelian, the category C! of functors
from I to C, is abelian. For example, if F,G : I — C are two functors
and ¢ : ' — (G is a morphism of functors, define the functor Ker¢ by
Kerp(X) = Ker(F(X) — G(X)). Then clearly, Ker ¢ is a kernel of ¢. One
defines similarly the cokernel.

(v) If C is abelian, then the opposite category C°P is abelian.

Unless otherwise specified, we assume until the end of this chapter that
C is abelian.
One naturally extends Definition 1.2.1 to abelian categories. Consider a

sequence of morphisms X’ 1 X % X" with go f =0 (sometimes, one calls
such a sequence a complex). It defines a morphism Coim f — Ker g, hence,
C being abelian, a morphism Im f — Ker g.

Definition 5.1.4. (i) One says that a sequence X' L X & X with
go f =0isexact if Im f = Kerg.

(ii) More generally, a sequence of morphisms X? 2 X" with dt o
d' =0 for alli € [p,n—1] is exact if Imd’ = Ker d"™! for all i € [p,n—1].

(iii) A short exact sequence is an exact sequence 0 — X' — X — X” — 0

Any morphism f : X — Y may be decomposed into short exact se-
quences:
0—Kerf—X—->Imf—0

0—Imf—Y — Coker f — 0.

Proposition 5.1.5. Let 0 — X’ L X % X" = 0 be a short eact sequence
in C. Then the conditions (i) to (iii) are equivalent.

(i) there exists h: X" — X such that g o h = idxn,
(i) there exists k : X — X' such that ko f =idyx/,

(iii) there exists ¢ = (k,g) and 1 = (f + h) such that X % X' & X" and

X' @ X" % X are isomorphisms inverse to each other,
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The proof is similar to the case of A-modules and is left as an exercise.

If the conditions of the above proposition are satisfied, one says that the
sequence splits.

Note that an additive functor of abelian categories sends split exact se-
quences into split exact sequences.

Lemma 5.1.6. (The “five lemma”.) Consider a commutative diagram.:

@Q a1 a2

X0 X! X? X3

fol fll le f3l
0 1 2 3

Y Bo Y 51 Y B2 Y

and assume that the rows are exact sequences.

(i) If f° is an epimorphism and f1, f3 are monomorphisms, then f? is a
monomorphism.

(ii) If f3 is a monomorphism, and f°, f* are epimorphisms, then fl is an
epimorphism.

According to Convention 5.1.1, we shall assume that C is a full abelian
subcategory of Mod(A) for some ring A. Hence we may choose elements in
the objects of C.

Proof. (i) Let x3 € Xy and assume that f2(z9) = 0. Then f3 o ag(xy) = 0
and f3 being a monomorphism, this implies ay(z2) = 0. Since the first row
is exact, there exists z; € X; such that aq(x1) = z9. Set y; = f(x1). Since
B o fY(x1) = 0 and the second row is exact, there exists iy € Y such that
Bo(yo) = f(x1). Since fO is an epimorphism, there exists zo € X° such
that yo = f%(zo). Since f!o ap(xg) = f'(x;) and f! is a monomorphism,
ap(xg) = x1. Therefore, o = ay(z1) = 0.

(ii) is nothing but (i) in CP. q.e.d.

Let F : C — C’ be an additive functor of abelian categories. Since F'
is additive, F(0) ~ 0 and F(X @Y) ~ F(X) ® F(Y). In other words, F
commutes with finite direct sums (and with finite products).

Let F : C — C’ be an additive functor. Recall that F is left exact if and
only if it commutes with kernels, that is, if and only if for any exact sequence
inC,0— X' — X — X” the sequence 0 — F(X') — F(X) —» F(X") is
exact in C'.

Similarly, F'is right exact if and only if it commutes with cokernels, that
is, if and only if for any exact sequence in C, X' — X — X" — 0 the
sequence F(X') — F(X) — F(X") — 0 is exact.
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Note that F'is exact iff for any exact sequence X' — X — X” in C, the
sequence F(X') — F(X) — F(X") is exact.

Examples 5.1.7. (i) Let C be an abelian category. The functor Hom , from
C? x C to Mod(Z) is left exact.

(ii) Let A be a k-algebra. Let M and N in Mod(A). It follows from (i) that
the functors Hom , from Mod(A)° x Mod(A) to Mod(k) is left exact.

The functors ®, from Mod(A%) x Mod(A) to Mod (k) is right exact.

If A is a field, all the above functors are exact.

(iii) Let I and C be two categories with C abelian. Assume that C admits
inductive limits. Recall that the functor lim : Fet(/,C) — C is right exact.

If C = Mod(A) and [ is filtrant, then the functor lim is exact.
Similarly, if C admits projective limits, the functor lim : Fet(1°°,C) — C
is left exact. If C = Mod(A) and I is discrete, the functor lim (that is, the

functor []) is exact.

5.2 Complexes in abelian categories

We assume that C is abelian. Notice first that the categories C*(C) are clearly
abelian for x = (), +, — b. For example, if f: X — Y is a morphism in C(C),
the complex Z defined by Z" = Ker(f™ : X" — Y™), with differential induced
by those of X, will be a kernel for f, and similarly for Coker f.

Let X € C(C). One defines the following objects of C:

ZM(X) = Kerdk
Bk(X) = Imd’?{1
H*X) = ZMX)/B*(X) (:= Coker(B*(X)— Z"(X)))

One calls H*(X) the k-th cohomology object of X. If f: X — Y is a mor-
phism in C(C), then it induces morphisms Z*(X) — Z*¥(Y) and B*(X) —
B*(Y'), thus a morphism H*(f) : H*(X) — H*(). Clearly, H*(X ®Y) ~
H*(X) @ H*(Y). Hence we have obtained an additive functor:

H*):c«C) —cC.
Notice that:

H*(X) = H(X[k]).
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Lemma 5.2.1. Let C be an abelian category and let f : X — Y be a mor-
phism in C(C) homotopic to zero. Then H*(f) : H*(X) — H*(Y) is the 0
morphism.

Proof. Let f* = s"odk +d5'os*. Then d% = 0 on Ker d% and db 'os* =0
on Kerd¥ /Imd¥™". Hence H*(f) : Kerdk /Im di ' — Kerdf./ Im di " is the
zero morphism. q.e.d.

Definition 5.2.2. One says that a morphism f: X — Y in C(C) is a quasi-
isomorphism (a gis, for short) if H*(f) is an isomorphism for all k € Z. In
such a case, one says that X and Y are quasi-isomorphic.

In particular, X is qgis to 0 means that the complex X is exact.

Remark 5.2.3. Consider a bounded complex X* and denote by Y* the
complex given by Y7 = H/(X*),d}, = 0. One has:

(5.1) Y =@, H (X*)[-i].

The complexes X*® and Y® have the same cohomology objects, that is, H?(Y'®) ~
H7(X*). However, in general these isomorphisms are neither induced by a
morphism from X*® — Y*, nor by a morphism from Y* — X* and the two
complexes X*® and Y* are not quasi-isomorphic.

There are exact sequences

X1 Kerdh, — H*(X) — 0,
0 — H*(X) — Cokerdi* — Xk,

which give rise to the exact sequence:

k
5.2) 0— H*(X) — Coker(d"1) 25 Ker db! — HF(X) — 0,
X X

Lemma 5.2.4. (The snake lemma.) Consider the commutative diagram in
C below with exact rows:

X Y A 0
v g’
0 X' Y’ 7'

Then it gives rise to an exact sequence:

Ker a — Ker 8 — Kery % Coker @ — Coker 3 — Coker 7.
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The proof is similar to that of Lemma 5.1.6 and is left as an exercise.

Theorem 5.2.5. Let 0 — X' L X L X" — 0 be an evact sequence in

C(C).
(i) For each k € Z, the sequence H*(X') — H*(X) — H*(X") is ezact.
(ii) For each k € Z, there exists 6% : H¥(X") — H*Y(X') making the
sequence:
(53)  HYX)— HY(X") 5 HF(X) — HY(X)

exact. Moreover, one can construct 6% functorial with respect to short
ezact sequences of C(C).

Proof. The exact sequence in C(C) gives rise to commutative diagrams with
exact rows:

Coker d,! — Coker d% ' —— Coker d,' —0

d;z,l df;(l dxl

0 —— Ker d'};,rl Ker d™ Ker d’;;,r,l

f g

Then using the exact sequence (5.2), the result follows from Lemma 5.2.4.
q.e.d.

Remark 5.2.6. Let us denote for a while by 6*(f,g) the map 6 con-
structed in Theorem 5.2.5. Then one can prove that 6%(—f, g) = 6*(f, —g) =

Corollary 5.2.7. In the situation of Theorem 5.2.5, if two of the complezes
X', X, X" are exact, so is the third one.

Corollary 5.2.8. Let f : X — Y be a morphism in C(C). Then there is a
long ezact sequence

o ) B (Y) = B (M) = -

Proof. There are natural morphisms Y — Mec(f) and Mc(f) — X[1] which
give rise to an exact sequence in C'(C):

(5.4) 0—Y — Mc(f) — X[1] — 0.
Applying Theorem 5.2.5, one finds a long exact sequence
= HYX[1]) S HRY) — B (Me(f)) — -

One can prove that the morphism 6% : H* (X)) — H*Y(Y) is H*(f) up
to a sign. q.e.d.
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Application to Koszul complexes

Let us come back to the situation of §1.5 and §4.3.

Proposition 5.2.9. With the notations of §1.5 and §4.3, set ' = {1, ..., @n_1}.
Then there exists a long exact sequence

(5.5) = HI(K*(M, ') = H(K* (M, ¢')) — HIH (K (M, ) — -
Proof. Apply Pproposition 4.3.1 and Corollary 5.2.8. q.e.d.

We can now give a proof to Theorem 1.5.2. Assume for example that
(p1,...,pn) is a regular sequence, and let us argue by induction on n. The
cohomology of K*(M, ') is thus concentrated in degree n — 1 and is isomor-
phic to M/(e1(M) + -+ ¢,—1(M)). By the hypothesis, ¢, is injective on
this group, and Theorem 1.5.2 follows.

Truncation functors

One defines the truncation functors:
7=hoo=h s 0e) -0 (0)
gk 2k c(iC)— C*(C)

as follows. Let X := .- — X* 1 — X* — X*1 ... One sets:
X = s X S Kedi -0—-0— -
FREX = s XL XP s Imd -0 — -
72"X = .. —0—0— Cokerdi ' — Xk+t — ...
FPX = o 50— Imdyt — XF— X

There is a chain of morphisms in C(C):
TSEXY 7SR X 2R X TZkX,
and there are exact sequences in C(C):

0— 71X — 7P X — HF(X)[—k] — 0
0— H¥X)[-k] = 72*X — 721X — 0
0—75FX - X — 721X =0
0— 751X 5 X - 72FX — 0

We have the isomorphisms

(5.6)

; ~ ; 0 7>k
J(~<k J(x<k ~ J )
H(T X)—)H(T X) ~ {HJ(X) j<k
; ~ ; 0 j<k
J(x2k J(~2k ~ J ’
H(T X)—)H(T X) ~ {HJ(X) >k

The verification is straightforward.
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Double complexes

Let C denote as above an abelian category.

Theorem 5.2.10. Let X** be a double complex such that all rows X7* and
columns X*7 are 0 for j <0 and are exact for j > 0.
Then HP(X%*) ~ HP(X*%) ~ HP(tot(X**)) for all p.

Proof. We shall only describe the first isomorphism H?(X%*) ~ HP(X*?) in
the case where C = Mod(A), by the so-called “Weil procedure”.

Let 2P0 € XPY with d'zP° = 0 which represents y € HP(X*?). Define
2Pl = d"2P°. Then d’a”' = 0, and the first column being exact, there exists
2P~ e XP7L with d'2P~b! = 2!, One can iterate this procedure until
getting %7 € X%, Since d'd"z"? = 0, and d’ is injective on X°? for p > 0
by the hypothesis, we get d”z%? = 0. The class of %7 in H?(X%*) will be the
image of y by the Weil procedure. Of course, one has to check that this image
does not depend of the various choices we have made, and that it induces an
isomorphism.

This can be visualized by the diagram:

u

d
x07p —_— 0

.

1p—2_ 4" 1p-1
e

v

q.e.d.

Proposition 5.2.11. Let X** be a double complex such that all rows X7
and columns X*7 are 0 for j < 0. Assume that all rows (resp. all columns)
of X** are exact. Then the complex tot(X**) is exact.

The proof is left as an exercise. Note that if there are only two rows let’s
say in degrees —1 and 0, then the result follows from Theorem 5.5.4
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5.3 Injective objects

Definition 5.3.1. (i) Anobject I of C is injective if the functor Hom ,(-, I)
is exact.

(ii) Ome says that C has enough injectives if for any X € C there exists a
monomorphism X»—TI with I injective.

(iii) An object P is projective in C iff it is injective in C°P, i.e. if the functor
Hom (P, -) is exact.

(iv) One says that C has enough projectives if for any X € C there exists
an epimorphism P—X with P projective.

Example 5.3.2. Let A be a ring. An A-module M is called injective (resp.
projective) if it is so in the category Mod(A). If M is free then it is projective.
More generally, if there exists an A-module N such that M@ N is free then M
is projective (see Exercise 1.2). One immediately deduces that the category
Mod(A) has enough projectives. One can prove that Mod(A) has enough
injectives (see Exercise 1.5).

If k is a field, then any object of Mod(k) is both injective and projective.

Proposition 5.3.3. The object W € C is injective if and only if, for any
X, Y € C and any diagram in which the row is exact:

0—>X—f>

R

w
the dotted arrow may be completed, making the solid diagram commutative.
Proof. (i) Assume that W is injective. Since fo: Hom (Y, W) — Hom (X, W)

is an epimorphism, the morphism k: X — W may be written as f o h.

(ii) Conversely, consider an exact sequence 0 — X Ly % 7 5 0and apply
the functor Hom,(-,W). Since we know that this functor is left exact, it

remains to show that the map Hom (Y, W) AN Hom (X, W) is surjective,
and this follows from the hypothesis. q.e.d.

Lemma 5.3.4. Let 0 — X' L X % X" — 0 be an ezact sequence in C, and
assume that X' is injective. Then the sequence splits.

Proof. Applying the preceding result with & = idx/, we find h: X — X’ such
that ko f =idx,. Then apply Proposition 5.1.5. q.e.d.
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It follows that if F': C — C’ is an additive functor of abelian categories, and
the hypotheses of the lemma are satisfied, then the sequence 0 — F(X') —
F(X) — F(X") — 0 splits and in particular is exact.

Lemma 5.3.5. Let X', X" belong to C. Then X' & X" is injective if and
only if X' and X" are injective.

Proof. 1t is enough to remark that for two additive functors of abelian cat-
egories ' and G, X — F(X) @ G(X) is exact if and only if /' and G are
exact. q.e.d.

Applying Lemmas 5.3.4 and 5.3.5, we get:

Proposition 5.3.6. Let 0 — X' — X — X" — 0 be an exact sequence in C
and assume X' and X are injective. Then X" is injective.

5.4 Resolutions

In this section, C denotes an abelian category and Z¢ its full additive subcat-
egory consisting of injective objects. We shall asume

(5.7) the abelian category C admits enough injectives.

Definition 5.4.1. Let J be a full additive subcategory of C. We say that
J is cogenerating if for all X in C, there exist Y € J and a monomorphism
X—Y.

Note that the category of injective objects is cogenerating iff C has enough
injectives.
Notations 5.4.2. Consider an exact sequence in C, 0 — X — J% — ... —
J* — .- and denote by J*® the complex 0 — J* — -+ — J* — .... We
shall say for short that 0 — X — J*® is a resolution of X. If the J*’s belong

to J, we shall say that this is a J-resolution of X. When J denotes the
category of injective objects one says this is an injective resolution.

Proposition 5.4.3. Assume J is cogenerating. Then for any X € C, there
exists a J-resolution of X.

Proof. We proceed by induction. Assume to have constructed:
0—=X—J0— ... J"

For n = 0 this is the hypothesis. Set B" = Coker(J""! — J") (with J~! =
X). Then J* ! — J* — B™ — 0 is exact. Embed B" in an object of J:
0 — B" — Jof! Then J* ! — J* — J"! is exact, and the induction
proceeds. q.e.d.
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Proposition 5.4.3 is a particular case of a result that we state without proof.

Proposition 5.4.4. Assume J is cogenerating. Then for any X* € C*(C),
there ezists Y* € CT(J) and a quasi-isomorphism X* — Y*.

Proposition 5.4.5. (i) Let f*: X* — I* be a morphism in C*(C). As-
sume I*® belongs to CT(Z¢) and X*® is exact. Then f* is homotopic to
0.
(ii) Let I* € C*(Z¢) and assume I* is exact. Then I* is homotopic to 0.
Proof. (i) Consider the diagram:

Xk—2 —_ Xk’—l —_ Xk _— Xk+l

k-1 .- koo k+1 -
s _..--'fkll 5" fkl s

[k—2 - - Ik—l [k [k+1

We shall construct by induction morphisms s* satisfying:
fF=s"odi +di o s".

For j << 0, s/ = 0. Assume we have constructed the s’ for j < k. Define
g* = f¥ —dk' o sk, One has

gk ° d,;(_l — fk o dl;{_l . dl[f—l ° Sk ° d,;(_l
_ k k—1 k—1 k—1 k—1 k—2 k—1
= ffody —dj of +d; "od] "os
0.

Hence, ¢* factorizes through X*/Im d’;{l. Since the complex X* is exact,
the sequence 0 — X*/Imd% ' — X**1 is exact. Consider

00— Xk/ Im d];(_l —>.Xk’+1

skl -
gkl
Ik £
The dotted arrow may be completed by Proposition 5.3.3.
(ii) Apply the result of (i) with X* = I* and f = idx. q.e.d.

Proposition 5.4.6. (i) Let f: X — Y be a morphism inC, let 0 — X —
X* be a resolution of X and let 0 — Y — J* be a complex with the
J*’s injective. Then there exists a morphism f®: X* — J* making the
diagram below commutative:

0—X——X"

1

0O—Y —J°
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(ii) The morphism f* in C(C) constructed in (i) is unique up to homotopy.

Proof. (i) Let us denote by dx (resp. dy) the differential of the complex X*®
(resp. J*®), by dy' (resp. dy') the morphism X — X° (resp. Y — J°) and
set [l =f.

We shall construct the f™’s by induction. Morphism f° is obtained by
Proposition 5.3.3. Assume we have constructed f° ..., f". Let g" = d% o
f":X™ — J"*1. The morphism g" factorizes through A" : X"/Imdy ' —
JnL Since X* is exact, the sequence 0 — X"/Imd% ' — X"+ is exact.
Since J"*! is injective, h" extends as f7+! . X+l — Jgntl
(ii)) We may assume f = 0 and we have to prove that in this case f* is
homotopic to zero. Since the sequence 0 — X — X* is exact, this follows
from Proposition 5.4.5 (i), replacing the exact sequence 0 — Y — J*® by the
complex 0 — 0 — J°. q.e.d.

5.5 Derived functors

In this section, C and C’ will denote abelian categories and F' : C — C’ a left
exact functor. We shall make the hypothesis

(5.8) the category C admits enough injectives.

Lemma 5.5.1. (i) Let X € C and let I% be an injective resolution of
X. Then H¥(F(I%)) does not depend on the choice of the injective
resolution I%.

(i) Let f: X — Y be a morphism inC, let I and I3 be injective resolutions
of X andY and let f*: I, — I3 be a morphism of complexes such as in
Proposition 5.4.6. Then H*(F(f*)): H*(F(I%)) — H*(F(I})) depends
neither on the choice of the injective resolutions 1% and I3 nor on the

choice of f°.
Proof. Apply Proposition 5.4.6 and Lemma 5.2.1. q.e.d.

In particular, we get that if g: Y — Z is another morphism in C and I is
an injective resolutions of Z, then

HY(F(g* o f*)) = H*(F((go [)*)).

Definition 5.5.2. Let X € C. Onesets RFF(X) = H*(F(I%)) and RFF(f) =
HY(F(f*)). One calls RFF(-) the k-th right derived functor of F.
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Note that R*F is an additive functor from C to C’' and

R*F(X) ~ 0fork <0,
R'F(X) ~ F(X),
if Fis exact R*F(X) ~ 0for k#0,
if X is injective RFF(X) =~ 0 for k # 0.

The first assertion is obvious since I = 0 for k£ < 0, and the second one
follows from the fact that F' being left exact, then Ker(F(I%) — F(I%)) ~
F(Ker(I§ — I%))~ F(X). The third assertion is clear since F' being exact,
it commutes with H7(-). The last assertion is obvious by the construction of
RIF(X).

Definition 5.5.3. An object X of C such that RFF(X) ~ 0 for all £ > 0 is
called F-acyclic.

Hence, injective objects are F-acyclic for all left exact functors F.

Theorem 5.5.4. Let 0 — X' L X % X" — 0 be an ezact sequence in C.
Then there exists a long exact sequence:

0— F(X')— F(X)—-— R'FX') - RF(X)— RF(X")— -

Sketch of the proof. One constructs an exact sequence of complexes 0 —
X" — X* — X”* — 0 whose objects are injective and this sequence is

quasi-isomorphic to the sequence 0 — X’ Lx % X" 50 C(C). Since
the objects X" are injectice, we get a short exact sequence in C'(C’):

0— F(X")— F(X*)— F(X"") =0
Then one applies Theorem 5.2.5. q.e.d.

Definition 5.5.5. Let J be a full additive subcategory of C. One says that
J is F-injective if:

(i) J is cogenerating,

(ii) for any exact sequence 0 — X’ — X — X" - 0inC with X' € J, X €
J, then X" € 7,

(iii) for any exact sequence 0 — X’ — X — X” — 0in C with X’ € J, the
sequence 0 — F(X') — F(X) — F(X") — 0 is exact.



86 CHAPTER 5. ABELIAN CATEGORIES

By considering C°P, one obtains the notion of an F-projective subcategory,
F' being right exact.

Proposition 5.5.6. Let F : C — C’ be a left exact functor and denote by
Ir the full subcategory of C consisting of F-acyclic objects. Then Lp is F'-
mjective.

Proof. Since injective objects are F-acyclic, hypothesis (5.8) implies that Zg
is co-generating. The conditions (ii) and (iii) in Definition 5.5.5 are satisfied
by Theorem 5.5.4. q.e.d.

Examples 5.5.7. (i) If C has enough injectives, the category Z of injective
objects is F-acyclic for all left exact functors F.

(ii) Let A be a ring and let N be a right A-module. The full additive
subcategory of Mod(A) consisting of flat A-modules is projective with respect
to the functor N ®, -.

Lemma 5.5.8. Assume J is F-injective and let X* € CT(J) be a complex
qis to zero (i.e. X* is exact). Then F(X*®) is qis to zero.

Proof. We decompose X* into short exact sequences (assuming that this
complex starts at step 0 for convenience):

0-X"-X'-52"—=0

02" X*—72=0

O—> 7"t Xt s 720
By induction we find that all the Z7’s belong to 7, hence all the sequences:

0— F(Z"Y) — F(X") = F(Z") — 0
are exact. Hence the sequence
0— F(X% - F(X') — -

is exact. q.e.d.
Theorem 5.5.9. Assume J is F-injective and contains the category Zc of

injective objects. Let X € C and let 0 — X — J*® be a resolution of X with
J¥ € J. Then for each k, there is an isomorphism RFF(X) ~ H*(F(J*)).
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Proof. Let 0 — X — J*® be a J-resolution of X and let 0 — X — [I°®
be an injective resolution of X. Applying Proposition 5.4.6, there exists
f+J* — I°* making the diagram below commutative

ds d}

0 X JO J Jl J

N
d° dl

0 X IO 1 Il I

Define the complex K* = Mc(f), the mapping cone of f. By the hypothesis,
K* belongs to C*(J) and this complex is qis to zero by Corollary 5.2.7. By
Lemma 5.5.8, F/(K*) is gis to zero.

On the other-hand, F'(Mc(f)) is isomorphic to Mc(F'(f)), the mapping
cone of F(f): F(J*) — F(I*). Applying Theorem 5.2.5 to this sequence, we
find a long exact sequence

= H"(F(J*)) — H"(F(I*)) — H"(F(K®)) — -
Since F(K*) is qis to zero, the result follows. q.e.d.

By this result, one sees that in order to calculate the k-th derived functor
of I' at X, the recipe is as follows. Consider a resolution 0 — X — J*®
of X by objects of J, then apply F' to the complex J°®, and take the k-th
cohomology object.

Proposition 5.5.10. Let F': C — C" and G : C' — C” be left exact functors
of abelian categories. We assume that C and C' have enough injectives.

(i) If G is exact, then RI(Go F) ~ G o R'F.
(i) There is a natural morphism R (G o F) — (R'G)o F.

(iii) Let J' be a G-injective subcategory of C' and assume that F' sends the
injective objects of C in J'. If X € C satisfies R*F(X) =0 for k # 0,
then RV(Go F)(X) ~ RG(F(X)).

(iv) In particular, let J' be a G-injective subcategory of C' and assume that
F is exact and sends the injective objects of C in J'. Then R/ (GoF) ~
R'GoF.

Proof. Let X € C and let 0 — X — I% be an injective resolution of X. Then
RI(GoF)(X)~ H/(Go F(I%)).
(i) If G is exact, the right-hand side is isomorphic to G(H?(F(I%)).
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(ii) Consider an injective resolution 0 — F'(X) — Jp ) of F'(X). By Propo-
sition 5.4.6, there exists a morphism F(I%) — Jrix)- Applying G we get a
morphism of complexes: (G o F)(I%) — G(Jx,)- Since HI((Go F)(I%)) =~
R(G o F)(X) and H(G(J}xy)) ~ R'G(F(X)), we get the result.

(iii) By the hypothesis, F/(I%) is gis to F(X) and belongs to C*(J’). Hence
R'G(F(X)) ~ H'(G(F(I%)))-

(iv) is a particular case of (iii). q.e.d.

5.6 Bifunctors

Now consider an additive bifunctor F': C xC" — C” of abelian categories, and
assume: F' is left exact with respect of each of its arguments (i.e., F(X,-)
and F(-,Y) are left exact).

Let Z¢ (resp. Zer) denote the full additive subcategory of C (resp. C')
consisting of injective objects.

Definition 5.6.1. (a) One says that (Z¢,C’) is F-injective if C admits enough
injective and for all I € Z¢, F(I,-) is exact.

(b) If (Z¢, C') is F-injective, we denote by R¥F(X,Y') the k-th derived functor
of F(-,Y) at X, ie., REFF(X,Y) = RFF(-,Y)(X).

(This definiton will be generalized in Definition 8.4.1.)
Proposition 5.6.2. Assume that (Z¢,C') is F-injective.

(i) Let 0 —» X' — X — X" — 0 be an exact sequence in C and let Y € C'.
Then there is a long exact sequence in C”:

= RIP(X")Y) = RPF(X)Y) —» REF(X,Y) — RFF(X",Y) — -+

(ii) Let 0 = Y' =Y = Y"” — 0 be an exact sequence in C' and let X € C.
Then there is a long exact sequence in C”:

o= RFIP(X)Y) - RFF(X)Y') — RFF(X,Y) — REF(X,Y") — - -

Proof. (i) is a particular case of Theorem 5.5.4.

(ii) Let 0 — X — I® be an injective resolution of X. By the hypothesis, the
sequence in C(C"):

0— F(I°,Y') — F(I*,Y) — F(I*,Y") = 0

is exact. By Theorem 5.2.5, it gives rise to the desired long exact sequence.
q.e.d.
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Proposition 5.6.3. We assume that both (Z¢,C') and (C,Z¢) are F-injective.
Then for X € C and Y € C', we have the isomorphism: RFF(X,Y) =
RFF(LY)(X) ~ REF(X,)(Y).

Moreover if 1% is an injective resolution of X and Iy an injective resolu-
tion of Y, then RFF(X,Y) ~ totH*(F(I%, I3).

Proof. Let 0 = X — I} and 0 — Y — I3 be injective resolutions of X and
Y, respectively. Consider the double complex:

0 0 0

0—F(X, Iy) —=F(I%. I}) — F(Ix, Iy) —

0—=F(X,Iy) —=F(I%, Iy) —= F(Ix, Iy) —

The cohomology of the first row (resp. column) calculates the objects R¥F (-, Y)(X)
(resp. RFF(X,-)(Y)). Since the other rows and columns are exact by the
hypotheses, the result follows from Theorem 5.2.10. q.e.d.

Example 5.6.4. Assume C has enough injectives. Then
RkHomc :CP"xC— Ab

exists and is calculated as follows. Let X € C, Y € C. There exists a qis in
C*t(C), Y — I*, the I’’s being injective. Then:

RFHom (X, Y) ~ H*(Hom,(X, I*)).

If C has enough projectives, and P* — X is a qis in C~(C), the P’’s being
projective, one also has:

RFHom,(X,Y) =~ H"Hom,(P*,Y)
~ H"tot(Hom,(P*,I*)).

If C has enough injectives or enough projectives, one sets:

(5.9) Extg (-, -) = RFHom,(-, -).



90 CHAPTER 5. ABELIAN CATEGORIES

For example, let A = k[z,y], M = k ~ A/xA+yA and let us calculate the
groups Ext’,(M, A). Since injective resolutions are not easy to calculate, it
is much simpler to calculate a free (hence, projective) resolution of M. Since
(x,y) is a regular sequence of endomorphisms of A (viewed as an A-module),
M is quasi-isomorphic to the complex:

M*:0—-A5 A5 A—0,

where u(a) = (ya, —wa), v(b,c) = xb + yc and the module A on the right
stands in degree 0. Therefore, Ext’, (M, N) is the j-th cohomology object of
the complex Hom ,(M?*, N), that is:

0-NL N2 N o,

where v' = Hom (v, N), v’ = Hom (u, N) and the module N on the left stands
in degree 0. Since v'(n) = (zn,yn) and u'(m,l) = ym — zl, we find again a
Koszul complex. Choosing N = A, its cohomology is concentrated in degree
2. Hence, Ext’; (M, A) ~ 0 for j # 2 and ~ k for j = 2.

Example 5.6.5. Let A be a k-algebra. Since the category Mod(A) admits
enough projective objects, the bifunctor

- ®-: Mod(AP) x Mod(A) — Mod(k)

admits derived functors, denoted Tor?, (-, -) or else, Tork (-, ).
If Q* — N — 0 is a projective resolution of the A°°-module N, or
P* — M — 0 is a projective resolution of the A-module M, then :

Tory (N, M) ~ H*Q*®, M)
~ H*Nwo, P
~ H *tot(Q* ®, P*)).

Exercises to Chapter 5

Exercise 5.1. Let C be an abelian category.

(i) Prove that a complex 0 — X — Y — Z is exact iff and only if for
any object W € C the complex of abelian groups 0 — Hom (W, X) —
Hom ,(W,Y) — Hom (W, Z) is exact.

(ii) By reversing the arrows, state and prove a similar statement for a complex
X—=Y—>7-—-0.
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Exercise 5.2. Let C be an abelian category. A square is a commutative
diagram:

vy

g lg
x-1-z7

A square is Cartesian if moreover the sequence 0 — V — X xY — Z is
exact, that is, if V' ~ X x Y (recall that X x Y = Ker(f —g), where f—g :
X®Y — Z). A square is co-Cartesian if the sequence V — X®Y — Z — 0
is exact, that is, if Z ~ X @y Y (recall that X @, Y = Coker(f’' — ¢’), where
f'—q¢:V—-XxY).

(i) Assume the square is Cartesian and f is an epimorphism. Prove that f’
is an epimorphism.

(ii) Assume the square is co-Cartesian and f’ is a monomorphism. Prove
that f is a monomorphism.

Exercise 5.3. Let C be an abelian category and consider two sequences of
morphisms X! 25 X; % X" i =1,2 with gio f; = 0. Set X' = X! ® X},

and define similarly X, X” and f, g. Prove that the two sequences above are

exact if and only if the sequence X’ L X % X7 is exact.

Exercise 5.4. Let C be an abelian category and consider a commutative
diagram of complexes

0—> X} —— Xy —= X!

Assume that all rows are exact as well as the second and third column. Prove
that all columns are exact.

Exercise 5.5. Let C be an abelian category and let X **® be a double complex
with X% =0 for i < —1 or j < —1. Assume all rows and all columns of X**
are exact, and denote by Y** the double complex obtained by replacing X ~1
and X! by 0 for all j and all 7. Prove that there is a qis X 71 — tot(Y**).
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Exercise 5.6. Let C be an abelian category. To X € C?(C), one associates
the new complex H*(X) = @ H?(X)[—j] with 0-differential. In other words

HYX):= - = H(X)% HY(X) S
(i) Prove that H®: C*(C) — C*(C) is a well-defined additive functor.
(ii) Give examples which show that in general, H® is neither right nor left
exact.

Exercise 5.7. Let ¢ = (¢1,...,¢,) be n commuting endomorphisms of an
A-module M. Let ¢' = (p1,...,¢n—p) and ¢" = (Ppn_ps1s-- -, Pn)-

Calculate the cohomology of K*(M, ) assuming that ¢’ is a regular sequence
and ¢” is a coregular sequence.

Exercise 5.8. Let A = k[x1, 22].One considers the A-modules: M' = A/(Ax1+
Axy), M = AJ(Ax? + Axyzo), M" = A/(Axy).

(i) Show that the monomorphism Az; < A induces a monomorphism M’ —
Mand deduce an exact sequence of A-modules 0 — M’ — M — M" — 0.

(ii) By considering the action of z; on these three modules, show that the
sequence above does not split.

(iii) Construct free resolutions of M’ and M".

(iv) Calculate Ext’, (M, A) for all j .

Exercise 5.9. Let C and C' be two abelian categories. We assume that
C' admits inductive limits and filtrant inductive limits are exact in C’. Let
{F;}icr be an inductive system of left exact functors from C to C’, indexed
by a filtrant categoryl.

(i) Prove that lim F; is a left exact functor.

(ii) Prove that for each k € Z, {R*F;}cr is an inductive system of functors

and R*(lim F;) ~ lim R*F;.

Exercise 5.10. Let F': C — C’ be a left exact functor of abelian categories.
Let J be an F-injective subcategory of C, and let Y'* be an object of CT (7).
Assume that H*(Y*) = 0 for all k # p for some p € Z, and let X = HP(Y'®).
Prove that RFF(X) ~ HMP(F(Y®)).

Exercise 5.11. We consider the following situation: F' : C — C’ and G :
C' — (" are left exact functors of abelian categories having enough injectives,
J' is an G-injective subcategory of C' and F sends injective objects of C in
J'.

(i) Let X € C and assume that there is ¢ € N with RFF(X) = 0 for k # q.
Prove that R/ (G o F)(X) ~ RF79G(RYF(X)). (Hint: use Exercise 5.10.)
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(i) Assume now that R/F(X) = 0 for j # 0,1. Prove that there is a long
exact sequence:

-+ = RIG(R'F(X)) — RMG o F)(X) — RG(F(X)) — -
(Hint: construct an exact sequence 0 — X — XY — X! — (0 with X
injective and X' F-acyclic.)
Exercise 5.12. In the situation of Proposition 5.5.10, let X € C and assume
that R/F(X) ~ 0 for j < n. Prove that R"(F' o F)(X) ~ F'(R"F(X)).
Exercise 5.13. Let C,C’ and C” be abelian categories, G : C x ' — C"” an
exact bifunctor. Let 0 — X — I®* and 0 — Y — J*® be resolutions of X € C
and Y € C’ respectively. Prove that 0 — G(X,Y) — tot(G(I*,J°%)) is a
resolution of G(X,Y’). (Hint: use Exercise 5.5.)

Exercise 5.14. Here, we shall use the notation H*® introduced in Exercise
5.6. Assume that k is a field and consider the complexes in Mod(k):

x* = x°Lx
ve= Yy°Ly?
and the double complex
f&id
X'oY*:= X'@V'—=X'®Y"
id®gl id®gl
f&id

XY — XY™

(i) Prove that tot(X°*®Y™®) and tot(H*(X*®)®Y*) have the same cohomology

objects.
(ii) Deduce that tot(X*® ® Y*) and tot(H*(X*) ® H*(Y*)) have the same
cohomology objects.

Exercise 5.15. Assume that k is a field. Let X*® and Y* be two objects of
C®(Mod(k)). Prove the isomorphism

HP(tot(X* ®@Y*)) ~ P H(X*)@H (V")

=~ (@ H X 0P ()=

Here, we use the convention that:
(A B)@(CeD)~(AxC)® (A®D)® (Be(C)® (B®D)
All]l ® B[j] ~ A® Bli + j].

(Hint: use the result of Exercise 5.14.)
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Chapter 6

Localization

Consider a category C and a family S of morphisms in C. The aim of localiza-
tion is to find a new category Cs and a functor ) : C — Cgs which sends the
morphisms belonging to S to isomorphisms in Cg, (Q,Cs) being “universal”
for such a property.

In this chapter, we shall construct the localization of a category when S
satisfies suitable conditions and the localization of functors.

Localization of categories appears in particular in the construction of
derived categories.

A classical reference is [5].

6.1 Localization of categories

Let C be a category and let S be a family of morphisms in C.

Definition 6.1.1. A localizaton of C by S is the data of a category Cs and
a functor @) : C — Cg satisfying:

(a) for all s € S, Q(s) is an isomorphism,

(b) for any functor F' : C — A such that F'(s) is an isomorphism for all s € S,
there exists a functor Fs : Cs — A and an isomorphism F =~ Fgso @,

c—L> A
Cs

(c) if Gy and Gy are two objects of Fct(Cs,.A), then the natural map

(6.1)  Hom g ey 4)(G1,G2) = Hom 0 4)(GroQ,G20Q)

95
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is bijective.

Note that (c¢) means that the functor o@ : Fct(Cs, A) — Fet(C, A) is fully
faithful. This implies that Fs in (b) is unique up to unique isomorphism.

Proposition 6.1.2. (i) IfCs ezists, it is unique up to equivalence of cal-
egories.

(ii) If Cs ewists, then, denoting by S° the image of S in CP by the functor
op, (C°P)ser exists and there is an equivalence of categories:

(Cs)%P = (C°P) s

Proof. (i) is obvious.

(i) Assume Cs exists. Set (C°P)sor := (Cs)°P and define QP : C°? — (C°P)gop
by Q°° = opo @ oop. Then properties (a), (b) and (c) of Definition 6.1.1 are
clearly satisfied. q.e.d.

Definition 6.1.3. One says that S is a right multiplicative system if it
satisfies the axioms S1-S4 below.

S1 For all X €C,idx € S.
S2 Forall feS,g€ S, if go f exists then go f € S.

S3 Given two morphisms, f: X — Y and s : X — X’ with s € S, there
exist t: Y — Y and g: X' — Y’ witht € S and go s =to f. This can
be visualized by the diagram:

X/ = X/ ...... g> Y/
A

ST ST t

X —f> Y X —f> Y

S4 Let f,g : X — Y be two parallel morphisms. If there exists s € S :
W — X such that f os = gos then there exists t € S : Y — Z such
that t o f =t o g. This can be visualized by the diagram:

Notice that these axioms are quite natural if one wants to invert the
elements of §. In other words, if the element of S would be invertible, then
these axioms would clearly be satisfied.
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Remark 6.1.4. Axioms S1-S2 asserts that § is the family of morphisms of
a subcategory S of C with Ob(S) = Ob(C).

Remark 6.1.5. One defines the notion of a left multiplicative system S
by reversing the arrows. This means that the condition S3 is replaced by:
given two morphisms, f: X — Y and t:Y’' — Y, with t € S, there exist
s: X' —w Xandg: X' - Y with s € Sand tog = fos. This can be
visualized by the diagram:

Y/ = X/ ...... g> Y/

| c
f Voof

X—Y X—Y

and S4 is replaced by: if there exists t € S: Y — Z such that to f =tog
then there exists s € § : W — X such that fos = gos. This is visualized
by the diagram

s f t
W ot >X—g>Y—>Z

In the literature, one often calls a multiplicative system a system which is
both right and left multiplicative.

Many multiplicative systems that we shall encounter satisfy a useful prop-
erty that we introduce now.

Definition 6.1.6. Let S be a right multiplicative system. One says that S
is saturated if it satisfies

S5 for any morphisms f: X — Y, ¢g:Y — Z and h : Z — W such that
go f and ho g belong to S, the morphism f belongs to S.

Definition 6.1.7. Assume that S satisfies the axioms S1-S2 and let X € C.
One defines the categories Sy and S¥ as follows.

Ob(S*) = {s: X — X':s¢ S}
Homgx((s: X = X'),(s: X = X")) = {h: X' - X" hos=14"}

Ob(Sx) = {s: X'— X;se S}
Homg ((s: X' — X),(s": X" = X)) = {h: X" — X';s'oh=s}.

Proposition 6.1.8. Assume that S is a right (resp. left) multiplicative
system. Then the category S* (resp. SY) is filtrant.
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Proof. By reversing the arrows, both results are equivalent. We treat the
case of S¥.

(a) Let s : X — X' and ¢ : X — X" belong to S. By S3, there exists
t: X' —- X" and t' : X” — X" such that ' o’ =tos, and t € S. Hence,
tos €S by S2and (X — X”) belongs to S¥.

(b) Let s : X — X’ and ¢ : X — X” belong to S, and consider two
morphisms f,g : X' — X" with fos =gos = s'. By S4 there exists
t: X" — W, teSsuchthat tof =tog. Hence tos : X — W belongs to
SX. q.e.d.

One defines the functors:
ax:S* —=C (s: X —= X)X,
Bx : ST —=C (s: X' - X)— X'
We shall concentrate on right multiplicative system.

Definition 6.1.9. Let § be a right multiplicative system, and let X,Y €
Ob(C). We set

Hom,, (X,Y)= lim  Hom,(X,Y").
(Y—Y")esY

Lemma 6.1.10. Assume that S is a right multiplicative system. Let Y € C
and let s : X — X' € S. Then s induces an isomorphism

Hom,, (X"Y) = Hom, (X,Y).

Proof. (i) The map os is surjective. This follows from S3, as visualized by
the diagram in which s,t,¢ € S:

X =y
A
ST t’

(ii)) The map os is injective. This follows from S4, as visualized by the
diagram in which s,t, ¢ € S:

S /—f> y "
X—2-X Y e >y
g

|

Y
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Using Lemma 6.1.10, we define the composition

(6.2) Homcg(X, Y) x Homcg(Y, Z) — Homcg(X, Z)
as
lim Hom,(X,Y”") x lim Hom,(Y,Z’)
Y=Y 72—
~ lim (Hom,(X,Y’) x lim Hom,(Y,Z’))
Y —Y 72—z
< lim (Hom,(X,Y") x lim Hom(Y",Z"))
Y=Y 72—z
— lim lim Hom,(X,Z)
— =
Y=Y 2=
~ lim Hom,(X,Z')
Z—7

Lemma 6.1.11. The composition (6.2) is associative.

The verification is left to the reader.

Hence we get a category Cs whose objects are those of C and morphisms
are given by Definition 6.1.9.

Let us denote by (s : C — Cg the natural functor associated with

Hom,(X,Y) —  lim  Hom/(X,Y").
(Y—Y")eSY

If there is no risk of confusion, we denote this functor simply by Q.
Lemma 6.1.12. Ifs: X — Y belongs to S, then Q(s) is invertible.
Proof. For any Z € Cg, the map Homcg(Y, Z) — Hom g, (X, Z) is bijective
by Lemma 6.1.10. q.e.d.

A morphism f : X — Y in Cg is thus given by an equivalence class of
triplets (Y’ ¢, f") witht: Y - Y/t € Sand f': X — Y’, that is:

X7>Y'<t—y

the equivalence relation being defined as follows: (Y',¢, f') ~ (Y" ¢/, f") if
there exists (Y, t", f") (t,t',t" € ) and a commutative diagram:

(6.3) Yy’
Ay Dy
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Note that the morphism (Y7, ¢, f') in C5 is Q(¢)~' o Q(/f’), that is,

(6.4) f=Q) " oQ(f).

For two parallel arrows f,g: X = Y in C we have the equivalence

(6.50(f) = Q(g) € C5 <= thereexits s : Y — Y/, s € Swithso f=so0g.

The composition of two morphisms (Y’ ¢, f') : X — Y and (Z',s,¢') :
Y — Z is defined by the diagram below in which ¢, s,s" € S:

X ——>Y'-

Theorem 6.1.13. Assume that S is a right multiplicative system.
(1) The category C% and the functor Q define a localization of C by S.

(ii) For a morphism f: X — Y, Q(f) is an isomorphism in Cs if and only
if there exist g : Y — Z and h : Z — W such that go f € S and
hogeS.

Corollary 6.1.14. If S is saturated, a morphism f in C belongs to S if and
only if Q(f) is an isomorphism.

Notation 6.1.15. From now on, we shall write Cs instead of Cs. This is
justified by Theorem 6.1.13.

Remark 6.1.16. (i) In the above construction, we have used the property of
S of being a right multiplicative system. If S is a left multiplicative system,
one sets

Homcé(X, V)= lim  Hom/,(X"Y).
(X’—>X)€SX

By Proposition 6.1.2 (i), the two constructions give equivalent categories.
(ii) If S is both a right and left multiplicative system,

Hom, (X,Y) =~ lim Hom (X', Y7).
(X'—X)eSx,(Y—Y")eSY
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6.2 Localization of subcategories

Proposition 6.2.1. Let C be a category, T a full subcategory, S a right
multiplicative system in C, T the family of morphisms in I which belong to
S.

(i) Assume that T is a right multiplicative system in . Then Ir — Cs is
well-defined.

(ii) Assume that for every f:Y — X, f € S8,Y €Z, there exists g : X —
W, W e€Z, withgo feS. Then T is a right multilplicative system
and Ir — Cs is fully faithful.

Proof. (i) is obvious.

(ii) It is left to the reader to check that 7 is a right multpiplicative system.
For X € Z, TX is the full subcategory of S* whose objects are the morphisms
s: X —= Y withY € Z. By Proposition 6.1.8 and the hypothesis, the functor
TX — SX is cofinal, and the result follows from Definition 6.1.9. q.e.d.

Corollary 6.2.2. Let C be a category, I a full subcategory, S a right mul-

tiplicative system in C, T the family of morphisms in T which belong to S.

Assume that for any X € C there exists s : X — W with W € 7 and s € S.
Then T is a right multpiplicative system and I7 is equivalent to Cg.

Proof. The natural functor Zr — Cg is fully faithful by Proposition 6.2.1 and
is essentially surjective by the assumption. q.e.d.

6.3 Localization of functors

Let C be a category, S a right multiplicative system in C and F': C — A a
functor. In general, F' does not send morphisms in S to isomorphisms in A.
In other words, F' does not factorize through Cs. It is however possible in
some cases to define a localization of F' as follows.

Definition 6.3.1. A right localization of F' (if it exists) is a functor Fjs :
Cs — A and a morphism of functors 7 : F' — Fso() such that for any functor
G : Cs — A the map

(6.6) Hom p; s 4 (Fs, G) — Hom o 4 (F, G0 Q)

is bijective. (This map is obtained as the composition Hom Fet(Cs,A) (Fs,G) —

Hom peyc 4 (Fs © @, G 0 Q) = Hom gy o 4y(F. G0 Q).)
We shall say that F' is right localizable if it admits a right localization.
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One defines similarly the left localization. Since we mainly consider right
localization, we shall sometimes omit the word “right” as far as there is no
risk of confusion.

If (7, Fs) exists, it is unique up to unique isomorphisms. Indeed, Fis is a
representative of the functor

G+ Hom g0 4 (F.G o Q).
(This last functor is defined on the category Fct(Cs, . A) with values in Set.)

Proposition 6.3.2. Let C be a category, T a full subcategory, S a right
multiplicative system in C, T the family of morphisms in T which belong to
S. Let F:C — A be a functor. Assume that

(i) for any X € C there exists s : X — W with W € Z and s € S,
(ii) for anyt € T, F(t) is an isomorphism.
Then F' is right localizable.

Proof. We shall apply Corollary (6.2.2).
Denote by ¢ : Z — C the natural functor. By the hypothesis, the local-
ization Frr of F o exists. Consider the diagram:

T ~
Qi
I&I’T Fs

Fou V

A

Denote by Lél a quasi-inverse of (g and set Fs := Frro Lél. Let us show that
Fs is the localization of F'. Let G : Cs — A be a functor. We have the chain
of morphisms:

Hom Fct(c,A)(F> GoQs) 2, Hom Fct(ZA)(F o1,GoQsol)
~ Hom Fct(I,A)(FT 0Qr,GouigoQr)
~ Hom Fct(ImA)(Fq—, Goug)
~ Hom Fct(C&A)(FT o Lél, G)
~ Hom oy 4)(Fs, G).

The first isomomorphism above follows from the fact that ()7 satisfies the
hypothesis (c) of Definition 6.1.1 and the other isomorphisms are obvious. It
remains to check that A is an isomorphism. This is left to the reader. q.e.d.
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Remark 6.3.3. Let C (resp. (') be a category and S (resp. S') a right
multiplicative system in C (resp. C’). One checks immediately that S x &’
is a right multiplicative system in the category C x C’ and (C X C')sxs' is
equivalent to Cs x C%,. Since a bifunctor is a functor on the product C x C’,
we may apply the preceding results to the case of bifunctors. In the sequel,
we shall write Fss instead of Flgysr.

Exercises to Chapter 6

Exercise 6.1. Let C be a category, S a right multiplicative system. Let 7
be the set of morphisms f : X — Y in C such that there exist g : ¥ — Z
and h: Z — W, with hog and go f in S.

Prove that 7 is a right saturated multiplicative system and that the
natural functor Cs — C7 is an equivalence.

Exercise 6.2. Let C be a category, S a right and left multiplicative system.
Prove that S is saturated if and only if forany f : X — Y, g:Y — Z,
h:Z—W,hogeSand go feSimply g€ S.

Exercise 6.3. Let C be a category with a zero object 0, S a right and left
saturated multiplicative system.

(i) Show that Cs has a zero object (still denoted by 0).

(ii) Prove that Q(X) ~ 0 if and only if the zero morphism 0 : X — X belongs
to S.

Exercise 6.4. Let C be a category, S a right multiplicative system. Consider
morphisms f: X — Y and f': X’ — Y’ in C and morphism o : X — X'
and #:Y — Y’ in Cgs, and assume that f'oa = o f (in Cs). Prove that
there exists a commutative diagram in C

XL/>X1<S—X'

|,

Yy —= Y, <y

with s and ¢t in S, a = Q(s)' o Q(a/) and 8= Q(t)"' o Q(F).

Exercise 6.5. Let F': C — A be a functor and assume that C admits fimite
inductive limits and F' is right exact. Let S denote the set of morphisms s
in C such that F(s) is an isomorphism.

(i) Prove that S is a right saturated multiplicative system.

(ii) Prove that the localized functor Fs : Cs — A is faithful.
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Exercise 6.6. Let A be a commutative ring, S C A a multiplicative subset
(ie. 1 € S and s,t € S implies s-t € S). Let S™'A denote the localization
of the ring A and if M is an A-module, denote by S~1M its localization,
S™IM = S7'A ® M. Note that the functor M — S™1M is exact. Let S
denote the family of morphisms in Mod(A) defined by: f: M — N € S if
and only if f induces an isomorphism S™!M — S™IN.

(i) Prove that S is a right and left multiplicative system.

(ii) Construct the natural functor (Mod(A))s — Mod(S™'A).

(iii) Prove that this functor is an equivalence.



Chapter 7

Triangulated categories

Triangulated categories play an increasing role in mathematics and this sub-
ject might deserve a whole book. However, we have restricted ourselves to
describe their main properties with the construction of derived categories in
mind.

Some references: [6], [11], [12], [15], [16], [17].

7.1 Triangulated categories

Let D be an additive category endowed with an automorphism 7' (i.e., an
invertible functor 7' : D — D).

Definition 7.1.1. Let D be an additive category endowed with an automor-
phism 7. A triangle in D is a sequence of morphisms:

(7.1) XLy %z,

A morphism of triangles is a commutative diagram:

Xty 2oz o(X)
al ﬁl “/L T@l
x' Ly L Mop(xy

Example 7.1.2. The triangle X Ly =%z T(X) is isomorphic to the

triangle (7.1), but the triangle X Ly Lz (X) is not isomorphic
to the triangle (7.1) in general.

105
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Definition 7.1.3. A triangulated category is an additive category D en-
dowed with an automorphism 7" and a family of triangles called distinguished
triangles (d.t. for short), this family satisfying axioms TRO - TR5 below.

TRO

TR1

TR2

TR3

TR4

TR5

A triangle isomorphic to a d.t. is a d.t.
The triangle X <=5 X — 0 — T(X) is a d.t.

For all f: X — Y there exists a d.t. X &V — Z — T(X).

A triangle X Ly % z5h T(X)is a d.t. if and only if YV & Z LN

7(X) % vy is a dut.
Given two dt. X LV L Z 5 7(X)and X' L v 4 22 2 (X7

and morphisms a: X — X’ and #:Y — Y’ with ffoa = Fo f, there
exists a morphism ~ : Z — Z’ giving rise to a morphism of d.t.:

X y =7l T(X)

ai ﬁi 2 T(a)l
f/ / V

X' y' L g T (X,

(Octahedral axiom) Given three d.t.
xLythzorx,
Y4 725X 1)
X 2Lz Ly - 7(X),

Y

there exists a distinguished triangle Z' % Y’ YX - T(Z'") making
the diagram below commutative:

(7.2) XLyt g T(X)
id g 80 id
° \%
X g f Z l Y, T(X)
f id K T(f)
9 ko,
Y Z X T(Y)rm)
h l id
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Diagram (7.2) is often called the octahedron diagram. Indeed, it can be
written using the vertexes of an octahedron.

Remark 7.1.4. The morphism v in TR 4 is not unique and this is the origin
of many troubles.

Remark 7.1.5. The category D endowed with the image by the contravari-
ant functor op : D — D°P of the family of the d.t. in D, is a triangulated
category.

Definition 7.1.6. (i) A triangulated functor of triangulated categories F' :
(D, T) — (D', T") is an additive functor which satisfies FFoT ~T" o F
and which sends distinguished triangles to distinguished triangles.

(ii) A triangulated subcategory D’ of D is a subcategory D’ of D which is
triangulated and such that the functor D' — D is triangulated.

(iii) Let (D, T) be a triangulated category, C an abelian category, F' : D — C
an additive functor. One says that F'is a cohomological functor if for
any d.t. X - Y — Z — T(X) in D, the sequence F(X) — F(Y) —
F(Z) is exact in C.

Remark 7.1.7. By TR3, a cohomological functor gives rise to a long exact
sequence:

Proposition 7.1.8. (i) If X Ly %z T(X) is a d.t. then go f =0.

(i) For any W € D, the functors Hom (W, ) and Hom (-, W) are coho-
mological.

Note that (ii) means that if ¢ : W — Y (resp. ¢ : Y — W) satisfies
gow =0 (resp. po f =0), then ¢ factorizes through f (resp. through g).
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Proof. (i) Applying TR1 and TR4 we get a commutative diagram:

x4 x 0 T(X)

RN

X Y A T(X).

Then g o f factorizes through 0.
(ii)) Let X - Y — Z — T(X) be a d.t. and let W € D. We want to
show that
Hom (W, X) L% Hom (W, V) £ Hom (W, 2)

is exact, i.e., : for all ¢ : W — Y such that gop = 0, there exists v : W — X
such that ¢ = f o). This means that the dotted arrow below may be
completed, and this follows from the axioms TR4 and TR3.

W =W —0——=T(W)
Voo p v
X y L+ 7 —~T(X).
The proof for Hom (-, W) is similar. q.e.d.

Proposition 7.1.9. Consider a morphism of d.t.:

|,

X' Y’

g

7' —IST(X).

If o and B are isomorphisms, then so is 7.

Proof. Apply Hom (W, -) to this diagram and write X instead of Hom (W, X )
& instead of Hom (W, a), etc. We get the commutative diagram:

X Y 7 —>T(X)
RRE
oLy

—_—~

The rows are exact in view of the preceding proposition, and &, 3, T(«), T(G)
are isomorphisms. Therefore ¥ = Hom (W, ~) : Hom (W, Z) — Hom (W, Z")
is an isomorphism. This implies that + is an isomorphism by the Yoneda
lemma. q.e.d.
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Corollary 7.1.10. Let D' be a full triangulated category of D.

(i) Consider a triangle X Ly -z T(X) in D' and assume that this
triangle is distinguished in D. Then it is distinguished in D’.

(ii) Consider a d.t. X — Y — Z — T(X) in D, with X and Y in D'.
Then there exists Z' € D' and an isomorphism Z ~ 7Z'.

Proof. (i) There exists a d.t. X 5V — 2/ — T(X) in D'. Then Z' is
isomorphic to Z by TR4 and Proposition 7.1.9.
(ii) Apply TR2 to the morphism X — Y in D'. q.e.d.

Remark 7.1.11. The proof of Proposition 7.1.9 does not make use of axiom
TR 5, and this proposition implies that TR 5 is equivalent to the axiom:
TR5: given f: X — Y and g: Y — Z, there exists a commutative diagram
(7.2) such that all rows are d.t.

By Proposition 7.1.9, one gets that the object Z given in TR4 is unique
up to isomorphism. However, this isomorphism is not unique, and this is the
source of many difficulties (e.g., glueing problems in sheaf theory).

7.2 The homotopy category K(C)

Let C be an additive category.

Starting with C'(C), we shall construct a new category by deciding that
a morphism of complexes homotopic to zero is isomorphic to the zero mor-
phism. Set:

Ht(X,Y)={f: X —Y; f is homotopic to 0}.

If f: X =Y andg:Y — Z are two morphisms in C(C) and if f or g is
homotopic to zero, then g o f is homotopic to zero. This allows us to state:

Definition 7.2.1. The homotopy category K (C) is defined by:

Ob(K(C)) = Ob(C(C))
Hom o) (X,Y) = Hom g (X,Y)/Ht(X,Y)

In other words, a morphism homotopic to zero in C'(C) becomes the zero
morphism in K (C) and a homotopy equivalence becomes an isomorphism.

One defines similarly K*(C), (x = b,+,—). They are clearly additive
categories, endowed with an automorphism, the shift functor [1] : X — X[1].
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Recall that if f: X — Y is a morphism in C(C), one defines its mapping
cone Mc(f), an object of C(C), and there is a natural triangle

(7.4) Y one(r) 22 x) 2 yq.

Such a triangle is called a mapping cone triangle.

Definition 7.2.2. A distinguished triangle (d.t. for short) in K(C) is a
triangle isomorphic in K (C) to a mapping cone triangle.

Theorem 7.2.3. The category K(C) endowed with the shift functor [1] and
the family of d.t. is a triangulated category.

We shall not give the proof of this fundamental result here.

Notation 7.2.4. For short, we shall sometimes write X — Y — Z RN
instead of X — Y — Z — X|[1] to denote a d.t. in K(C).

The complex Hom®

Let X € C7(C) and Y € CT(C). Recall that
(7.5) Hom?(X,Y) = tot(Hom%"(X,Y)).
Hence, Hom (X, Y)" = @,Hom (X*, Y"**) and
d" : Hom,(X,Y)" — Hom,(X,Y) "
is defined as follows. To f = {f*}x € @rezHom (X", Y™ ) one associates
d"f = {g"}r € BrezHom (X* Y1),
with
gF = @R PR (YL gk L=k el
In other words, the components of df in Hom ,(X,Y)" ! will be
(76) (@) = d o fF 4 ()" 1 o

Proposition 7.2.5. Let C be an additive category and let X,Y € C(C).
There are isomorphisms:

ZO(Hom'C(X, Y))=Kerd® o~ Hom (X, Y),
B°(Hom$,(X,Y)) = Imd ™" Ht(X,Y),
H°(Hom%,(X,Y)) = (Kerd’)/(Imd™") =~ Hom (X, Y).

12
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Proof. (i) Let us calculate Z°(Hom?(X,Y)). By (7.6), the component of
d°{f*}) in Hom,(X* Y**1) will be zero if and only if d§ o f* = f*1odk,
that is, if the family {f*}; defines a morphism of complexes.

(i) Let us calculate B(Hom$,(X,Y)). An element f* € Hom,(X*,Y") will
be in the image of d~* if it is in the sum of the image of Hom (X", Y*~1) by
dy ! and the image of Hom ,(X*1,Y*) by d%. Hence, if it can be written
as fF=ditosk 4 sFl o dk. q.e.d.

7.3 Localization of triangulated categories

Definition 7.3.1. Let D be a category and let N' C Ob(D). One says that
N is a null system if it satisfies:

N1 0eWN,
N2 X € N if and only if T(X) € N,
N3if X —>Y—-Z7Z—T(X)isadt. inDand X,Y € N then Z € NV.
To a null system one associates a multiplicative system as follows. Define:
S={f:X =Y, thereexistsadt. X =Y — Z — T(X) with Z € N'}.
Theorem 7.3.2. (i) S is a right and left multiplicative system.
(ii) Denote as usual by Ds the localization of D by S and by Q the lo-
calization functor. Then Dgs is an additive category endowed with an

automorphism (the image of T, still denoted by T ).

(iii) Define a d.t. in Ds as being isomorphic to the image by Q of a d.t. in
D. Then Dg is a triangulated category.

(iv) If X € N then Q(X) ~ 0.

(v) Let FF : D — D" be a functor of triangulated categories such that
F(X)~0 for any X € N. Then F factors uniquely through Q.

The proof is tedious and will not be given here.

Notation 7.3.3. We will write D/ instead of Dgs.
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Let NV be a null system and let X € D.

Ob(SX) = {s: X — X'; there exists a d.t. X 5 X' — Z - T(X) with Z e N}
Homgx((s: X = X'),(s: X = X"))={h: X' - X" hos =4}

and similarly for Sx. Recall that the categories Sy and S* are filtrant.
Now consider a full triangulated subcategory Z of D. We shall write N NZ
instead of AN Ob(Z). This is clearly a null system in Z.

Proposition 7.3.4. Let D be a triangulated category, N a null system, T a
full triangulated category of D. Assume condition (i) or (ii) below

(i) any morphismY — Z withY € T and Z € N, factorizes asY — Z' —
7 with 7' e NN T,

(ii) any morphism Z — Y withY € T and Z € N, factorizes as Z — Z' —
Y with Z' e NNT.

Then Z/(N'NI) — D/N is fully faithful.

Proof. We shall apply Proposition 6.2.1. We may assume (ii), the case (i)
being deduced by considering D°?. Let f : ¥ — X is a morphism in &
with Y € Z. We shall show that there exists ¢ : X — W with W € I and
go f € S8. The morphism f is embedded in a d.t. ¥ — X — Z — T(Y),
with Z € N'. By the hypothesis, the morphism Z — T'(Y") factorizes through
an object Z' € N'NZ. We may embed Z' — T(Y) into a d.t. and obtain a
commutative diagram of d.t.:

y 1 X 7 ——~T(Y)
lid vg l lid
Y W A TY)

By TR4, the dotted arrow ¢ may be completed, and Z’ belonging to N, this
implies that go f € S. q.e.d.

Proposition 7.3.5. Let D be a triangulated category, N a null system, T a
full triangulated subcategory of D, and assume conditions (i) or (ii) below:

(i) for any X € D, there exists a d.t. X =Y — Z - T(X) with Z e N
and Y €T,
(i) for any X € D, there exists a dt. Y — X — Z — T(X) with Z € N
andY € 7.
Then T/N NZ — D/N is an equivalence of categories.
Proof. Apply Corollary 6.2.2. q.e.d.



7.3. LOCALIZATION OF TRIANGULATED CATEGORIES 113

Localization of triangulated functors

Let F: D — D’ be a functor of triangulated categories, A a null system in
D. One defines the localization of F' similarly as in the usual case, replacing
all categories and functors by triangulated ones. Applying Proposition 6.3.2,
we get:

Proposition 7.3.6. Let D be a triangulated category, N a null system, T a
full triangulated category of D. Let F' : D — D' be a triangulated functor,
and assume

(i) for any X € D, there exists a d.t. X —Y — Z — T(X) with Z € N
and Y € 7,

(ii) foranyY e NNZ, F(Y)~0.
Then F' is right localizable.
One can define F)s by the diagram:
D D/N

I——~TI/INN Fy

Y
D

If one replace condition (i) in Proposition 7.3.6 by the condition

(i)’ for any X € D, there exists a d.t. Y - X — 7 — T(X) with Z e N/
and Y € 7,

one gets that F is left localizable.
Finally, let us consider triangulated bifunctors, i.e., bifunctors which are
additive and triangulated with respect to each of their arguments.

Proposition 7.3.7. Let D,N,T and D', N',I' be as in Proposition 7.5.6.
Let F : D x D' — D" be a triangulated bifunctor. Assume:

(i) for any X € D, there exists a d.t. X —-Y — Z — T(X) with Z € N
andY € T

(ii) for any X' € D', there exists a dt. X' —Y' — Z' — T(X') with
Z'e N andY' €T
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(iii) foranyY € Z andY' € 'NN', F(Y,Y’) ~ 0,
(iv) foranyY € ZNN andY' €Z’, F(Y,Y') ~ 0.
Then F' is right localizable.

One denotes by Faa its localization.
Of course, there exists a similar result for left localizable functors by
reversing the arrows in the hypotheses (i) and (ii) above.

Exercises to Chapter 7

Exercise 7.1. Let D be a triangulated category and consider a commutative
diagram in D:

x Loy 2oz tom(X)
L

X Loy T g,

Assume that T'(f) o A’ = 0 and the first row is a d.t. Prove that the second

row is also a d.t. under one of the hypotheses:
(i) for any P € D, the sequence below is exact:

Hom (P, X) — Hom (P,Y) — Hom (P, Z') — Hom (P, T(X)),

(ii) for any P € D, the sequence below is exact:
Hom (T'(Y), P) — Hom (T'(X), P) — Hom (Z', P) — Hom (Y, P).

Exercise 7.2. Let D be a triangulated category and let X; — Y, — Z; —
T(X;) and Xo — Yy — Zy — T(X3) be two d.t. Show that X; & Xy —
In particular, X - X @Y -V 2 T(X)is a d.t.

(Hint: Consider a d.t. X1 & Xo - V1 @Y, - H — T(X;) & T(X3) and
construct the morphisms H — Z; @& Z,, then apply the result of Exercise
7.1.)

Exercise 7.3. Let X L vV % 7 & T(X) be a d.t. in a triangulated
category.

(i) Prove that if h = 0, this d.t. is isomorphic to X — X ® Z — Z > T(X).
(i) Prove the same result by assuming now that there exists k : Y — X with
k’ o) f = ldX

(Hint: to prove (i), construct the morphism Y — X @& Z by TRA4, then use
Proposition 7.1.9.)
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Exercise 7.4. Let X L YV — Z — T(X) be a d.t. in a triangulated
category. Prove that f is an isomorphism if and only if Z is isomorphic to 0.

Exercise 7.5. Let D be a triangulated category, NV a null system, and let
Y be an object of D such that Hom ,(Z,Y) ~ 0 for all Z € N. Prove that

Hom ,(X,Y) = Homp, (X, Y).
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Chapter 8

Derived categories

In this chapter we construct the derived category of an abelian category C
and the right derived functor RF of a left exact functor F': C — C’ of abelian
categories.

Some references: [6], [10], [11], [12], [15], [16], [17].

8.1 Derived categories

In all this chapter, C will denote an abelian category.

Recall that if f : X — Y is a morphism in C(C), one says that f is
a quasi-isomorphism (a qis, for short) if H*(f) : H*(X) — H*() is an
isomorphism for all k. One extends this definition to morphisms in K(C).

If one embeds f into ad.t. X 5V — Z &5 then f is a qis iff H*(Z)~0
for all k£ € Z, that is, if Z is qis to 0.

Proposition 8.1.1. Let C be an abelian category. Then the functor H*: K(C) —
C is a cohomological functor.

Proof. Let X Ly 7 ™ be adt. Then it is isomorphic to X — Y o),

Mec(f) 29), X[1] *1, Since the sequence in C/(C):
0—Y — Mc(f) — X[1] =0
is exact, it follows from Theorem 5.2.5 that the sequence
HYY) — H*(Mc(f)) — H*(X)

is exact. Therefore, H*(Y) — H*(Z) — H*'(X) is exact. q.e.d.

117
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Corollary 8.1.2. Let 0 — X Ly % 7 =0 be an exact sequence in C(C)
and define p: Mc(f) — Z as ¢ = (0,9™). Then @ is a qis.

Proof. Consider the exact sequence in C'(C):

0— M(idy) 5 Mc(f) & Z =0

where 4"+ (X" & X") — X" @ Y" is defined by: 7" = ( ld)gﬂ ]9n )
Since H*(Mc(idx)) ~ 0 for all k, we get the result. qed.

We shall localize K(C) with respect to the family of objects qis to zero
(see Section 7.3). Define:

N(C)={X € K(C); H*(X) ~ 0 for all k}.
One also defines N*(C) = N(C) n K*(C) for * = b, +, —.
Clearly, N*(C) is a null system in K*(C).

Definition 8.1.3. One defines the derived categories D*(C) as K*(C)/N*(C),
where * = (),b,4+, —. One denotes by @ the localization functor K*(C) —
D*(C).

By Theorem 7.3.2, these are triangulated categories.
Hence, a quasi-isomorphism in K(C) becomes an isomorphism in D(C).
The functors below are well defined:

H/(): D) — C
T=":D(C) — D (C)
=" :D(C) — DT(C)

and HY(-) is a cohomological functor on D*(C). In fact, if X € N(C), then
HI(X)~0inC,and if f: X — Y isa qis in K(C), then 7="(f) and 7="(f)
are qis.

In particular, if X Ly % 7z isadt in D(C), we get a long exact
sequence:

(81) = HYX) — HYY) — H*Z) — H*Y(X) — -

Let X € K(C), with H/(X) = 0 for j > n. Then the morphism 7"X —
X in K(C) is a qis, hence an isomorphism in D(C).

It follows from Proposition 7.3.4 that DT(C) is equivalent to the full
subcategory of D(C) consisting of objects X satisfying H’(X) ~ 0 for j <<
0, and similarly for D=(C), D’(C). Moreover, C is equivalent to the full
subcategory of D(C) consisting of objects X satisfying H?(X) ~ 0 for j # 0.
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Definition 8.1.4. Let X,Y be objects of C. One sets

Ext¢(X,Y) = Hom ) (X, Y[K]).

We shall see in Theorem 8.4.5 below that if C has enough injectives, this
definition is compatible with (5.9).

Notation 8.1.5. Let A be a ring. We shall write for short D*(A) instead of
D*(Mod(A)), for * =0,b,+, —.

Remark 8.1.6. (i) Let X € K(C), and let Q(X) denote its image in D(C).
One can prove that:

Q(X)~0 < X isqisto0in K(C).

(ii) Let f : X — Y be a morphism in C(C). Then f ~ 0in D(C) iff there
exists X’ and a qis g : X’ — X such that f o g is homotopic to 0, or else iff
there exists Y and a qis A : Y — Y such that h o f is homotopic to 0.

Remark 8.1.7. Consider the morphism v : Z — X[1]in D(C). If X, Y, Z be-
long to C (i.e. are concentrated in degree 0), the morphism H*(y) : H*(Z) —
HM1(X) is 0 for all k € Z. However, ~ is not the zero morphism in D(C) in
general (this happens if the short exact sequence splits). In fact, let us apply
the cohomological functor Hom (W, -) to the d.t. above. It gives rise to the
long exact sequence:

- — Hom (W, Y) — Hom (W, Z) 2 Hom (W, X[1]) — -

where 4 = Hom (W, ). Since Hom.(W,Y) — Hom (W, Z) is not an epi-
morphism in general, 4 is not zero. Therefore « is not zero in general. The
morphism v may be described as follows.

Z = 0 0 A 0
| ]
Me(f) =  0—=X—>y—>0
ﬁ(f)l idt L
X[1] = 0—> X —>0—>0.
Proposition 8.1.8. Let X € D(C).
(i) There are d.t. in D(C):
(8.2) TX - X 2ty T
(8.3) TS X - 15X — HY(X)[-n]

(8.4) H"(X)[-n] - 72"X — 721 x
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(i) Moreover, H"(X)[—n] ~ 7Sn72" X ~ 72nrSnX,
Corollary 8.1.9. Let C be an abelian category and assume that for any
X, Y €C, Ext*(X,Y) =0 for k>2. Let X € D*(C). Then:
X ~@;H (X) [—j].

Proof. Call “amplitude of X” the smallest integer k such that H?(X) = 0
for j not belonging to some interval of length k. If £ = 0, this means that
there exists some i with H’(X) = 0 for j # 4, hence X ~ H'(X) [—i]. Now
we argue by induction on the amplitude. Consider the d.t. (8.3):
TS IX - X — HY(X) [-n] 15

and assume 7=""'X ~ @;_,,H/(X)[—j]. By the result of Exercise 7.3, it it
enough to show that Hom p ) (H™(X)[-n], H(X) [~j +1]) = 0 for j < n.
Since n + 1 — 5 > 2, the result follows. q.e.d.
Example 8.1.10. (i) If a ring A is a principal ideal domain (such as a field,
or Z, or k[z] for k a field), then the category Mod(A) satisfies the hypotheses

of Corollary 8.1.9.
(i) See Example 8.4.8 to see an object which does not split.

8.2 Resolutions

Lemma 8.2.1. Let J be an additive subcategory of C, and assume that J
is cogenerating. Let X* € CT(C).

Then there exists Y* € Kt (J) and a gis X* — Y.
Proof. The proof is of the same kind of those in Section 5.4 and is left to the
reader. q.e.d.

We set NT(J) := N(C)NK*(J). It is clear that N*(7) is a null system in
K*(J).

Proposition 8.2.2. Assume J is cogenerating in C. Then the natural func-
tor 0 : KH(J)/NT(J) — D*(C) is an equivalence of categories.

Proof. Apply Lemma 8.2.1 and Proposition 7.3.4. q.e.d.

Let us apply the preceding proposition to the category Z. of injective
objects of C.

Corollary 8.2.3. Assume that C admits enough injectives. Then K*(Z¢) —
D*(C) is an equivalence of categories.

Proof. Recall that if X* € C*(Z¢) is qis to 0, then X* is homotopic to 0.
q.e.d.
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8.3 Derived functors

In this section, C and C’ will denote abelian categories. Let F': C — C’ be a
left exact functor. It defines naturally a functor

K*F: K*(C) — K*(C).

For short, one often writes F' instead of K F. Applying the results of Chap-
ter 7?7, we shall construct (under suitable hypotheses) the right localization
of F. Recall Definition 5.5.5. By Lemma 5.5.8, K*(F) sends N*(7) to
NT(C).

Definition 8.3.1. If the functor K*(F): K*(C) — D*(C’) admits a right
localization (with respect to the qis in K (C)), one says that F' admits a
right derived functor and one denotes by RF: DT (C) — D*(C’) the right
localization of F'.

Theorem 8.3.2. Let F' : C — C’' be a left exact functor of abelian categories,
and let J C C be a full additive subcategory. Assume that J is F-injective.
Then F admits a right derived functor REF : DT(C) — D*(C’).

Proof. This follows immediately from Lemma 8.2.1 and Proposition 7.3.6
applied to Kt (F) : K*(C) — D*(C'). q.e.d.

It is vizualised by the diagram

K-i—(j) K+(C,)
‘)
K*(J)/N*(TJ) Q
l K*(F)n)
D+(C) .................. [T . D+(C’).

Note that if C admits enough injectives, then
(8.5) R*F = H* o RF.

Recall that the derived functor RF is triangulated, and does not depend
on the category [J. Hence, if X' — X — X" *isadt. in D*(C), then
RF(X') — RF(X) — RF(X") *% is a d.t. in D*(C’). (Recall that an
exact sequence 0 — X’ — X — X” — 0 in C gives rise to a d.t. in D(C).)
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Applying the cohomological functor H°, we get the long exact sequence in
c"

= R*F(X') = RFF(X) —» RFF(X") — RFP'F(X)) — - -

By considering the category C°P, one defines the notion of left derived
functor of a right exact functor F.

We shall study the derived functor of a composition.

Let F : C — C' and G : C" — C” be left exact functors of abelian
categories. Then G o F : C — C” is left exact. Using the universal property
of the localization, one shows that if F', G and G o F are right derivable, then
there exists a natural morphism of functors

(8.6) R(G o F) — RG o RF.

Proposition 8.3.3. Assume that there exist full additive subcategories J C
C and J' C C' such that J is F-injective, J' is G-injective and F(J) C J'.
Then J is (G o F')-injective and the morphism in (8.6) is an isomorphism:

R(Go F) ~ RG o RF.

Proof. The fact that J is (G o F') injective follows immediately from the
definition. Let X € K*(C) and let Y € K(J) with a gis X — Y. Then
RF(X) is represented by the complex F'(Y) which belongs to K*(J"). Hence
RG(RF(X)) is represented by G(F(Y)) = (Go F)(Y'), and this last complex
also represents R(G o F')(Y) since Y € J and J is G o F' injective.  q.e.d.

Note that in general F' does not send injective objects of C to injective ob-
jects of C’; and that is why we had to introduce the notion of “F-injective”
category.

8.4 Bifunctors

Now consider three abelian categories C,C’,C"” and an additive bifunctor:
F:CxC ="

We shall assume that F' is left exact with respect to each of its arguments.

Let X € KT(C), X’ € K*(C') and assume X (or X') is homotopic to 0.
Then one checks easily that tot(F(X, X')) is homotopic to zero. Hence one
can naturally define:

K*(F): K*(C) x K*(C') — K*(C")
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by setting:
KT (F)(X,X") = tot(F(X, X")).
If there is no risk of confusion, we shall sometimes write I instead of KT F.
Definition 8.4.1. One says (7, J’) is F-injective if:
(i) for all X € J, J" is F(X, -)-injective.
(ii) for all X' € J', J is F(-, X')-injective.

Lemma 8.4.2. Let X € K™(J), X' € K*(J'). If X or X' is qis to 0, then
F(X,X') is qis to zero.

Proof. The double complex F'(X,Y") will satisfy the hypothesis of Proposition
5.2.11. q.e.d.

Using Lemma 8.4.2 and Proposition 7.3.7 one gets that F' admits a right

derived functor,
RF : D*(C) x D*(C") — D*(C").

Example 8.4.3. Assume C has enough injectives. Then
RHom, : D~(C)®® x D*(C) — D (Ab)

exists and may be calculated as follows. Let X € D7(C), Y € D*(C). There
exists a qis in K7(C), Y — I, the I?’s being injective. Then:

RHom(X,Y’) ~ Hom? (X, I).

If C has enough projectives, and P — X is a gis in K~ (C), the P?’s being
projective, one also has:

RHom (X, Y) >~ Hom?%,(P,Y).
These isomorphisms hold in Dt (Ab).
Example 8.4.4. Let A be a ring. The functor
- ®@% 1 D™(Mod(A)) x D™ (Mod(A)) — D™ (Ab)

is well defined.

N@'M ~ s(N®,P)
s(Q ®4 M)

where P (resp. Q) is a complex of projective A-modules qis to M (resp. N).

12
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In the preceding situation, one has:

Tor, (N, M) = H¥(N @ M).

The following result relies the derived functor of Hom , and Hom D(C)-

Theorem 8.4.5. Let C be an abelian category with enough injectives. Then
for X € D7(C) and Y € D*(C)

H°RHom (X, Y) =~ Hom ,,, (X, Y).

Proof. By Proposition 5.4.4, there exists Iy € CT(Z) and a qis Y — Iy.
Then we have the isomorphisms:

Hom (X, Y[k]) =~ Hom (X, Iy[k])
~ H°(Hom$ (X, Iy[k]))
~ R"Hom,(X,Y),
where the second isomorphism follows from Proposition 7.2.5. q.e.d.

Theorem 8.4.5 implies the isomorphism
Ext$(X,Y) ~ H"RHom,(X,Y).

Example 8.4.6. Let W be the Weyl algebra in one variable over a field k:
W = k[xz, ] with the relation [z,0] = —1.
Let O =W/W-0, Q=W/0-W and let us calculate Q®VLV O. We have

an exact sequence:

O—>Wi>W—>Q—>O

hence 2 is qis to the complex
0—w'Lwo o

where W1 = W% = W and W is in degree 0. Then Q ®VLV O is qis to the
complex

O—>(’)_1i>(90—>0,

where O~1 = 0% = O and 0° is in degree 0. Since 9 : O — O is surjective
and has k as kernel, we obtain:

Q ®VLV O ~ k[1].
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Example 8.4.7. Let k be a field and let A = k[z4,...,x,]. This is a commu-
tative noetherian ring and it is known (Hilbert) that any finitely generated
A-module M admits a finite free presentation of length at most n, i.e. M is
gis to a complex:

L:= 0—>L_"—>-~-&>L0—>O
where the L7’s are free of finite rank. Consider the functor
Hom ,(-, A) : Mod(A) — Mod(A).

It is contravariant and left exact.
Since free A-modules are projective, we find that RHom ,(M, A) is iso-
morphic in D?(A) to the complex

Py

L¥'= 0—L™c—...2L% 0

where L7* = Hom ,(L’, A). Set for short * = RHom ,(-, A) Using (8.6), we
find a natural morphism of functors

kk

id —
Applying RHom , (-, A) to the object RHom , (M, A) we find:

RHom ,(RHom ,(M, A),A) ~ RHom ,(L*, A)
~ L
~ M.

In other words, we have proved the isomorphism in D°(A): M ~ M**.

Assume now n = 1, i.e. A = k[z] and consider the natural morphism in
Mod(A): f: A — A/Azx. Applying the functor + = RHom ,(-, A), we get
the morphism in D?(A):

f*:RHom ,(A/Az, A) — A.

Remember that RHom ,(A/Ax, A) ~ A/xA[-1]. Hence H/(f*) = 0 for all
j € Z, although f* # 0 since f** = f.

Let us give an example of an object of a derived category which is not
isomorphic to the direct sum of its cohomology objects (hence, a situation in
which Corollary 8.1.9 does not apply).
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Example 8.4.8. Let k be a field and let A = k[zy, x5]. Define the A-modules
M' = A/(Azy + Axy), M = AJ(Az? + Axyxs) and M" = A/Ax;. There is

an exact sequence
(8.7) 0—-M —>M-—->M —0

and this exact sequence does not split since x; kills M’ and M” but not
M. For N an A-module, set N* = RHom ,(N, A), an object of D°(A) (see
Example 8.4.7). We have M"* ~ H*(M'*)[-2] and M"* ~ H'(M'*)[—1], and
the functor * = RHom ,(-, A) applied to the exact sequence (8.7) gives rise
to the long exact sequence

0— H'M") — H'(M*) = 0—0— H*(M*) — H*(M"™) — 0.

Hence H'(M*)[—1] ~ HY{(M"*)[—1] ~ M"* and H*(M*)[-2] ~ H*(M"*)[-2]
M'*. Assume for a while M* ~ @;H’(M*)[—j]. This implies M* ~ M"* &
M"* hence (by applying again the functor *), M ~ M’ & M", which is a
contradiction.

12

Exercises to Chapter 8

Exercise 8.1. Let C be an abelian category with enough injectives. Prove
that the two conditions below are equivalent.

(i) For all X and Y in C, Ext/(X,Y) ~ 0 for all j > n.

(ii) For all X in C, there exists an exact sequence 0 — X — X0 — ... —
X" — 0, with the X?’s injective.

In such a situation, one says that C has homological dimension < n and one
writes dh(C) < n.

(iii) Assume moreover that C has enough projectives. Prove that (i) is equiv-
alent to: for all X in C, there exists an exact sequence 0 — X" — .. —
X% — X — 0, with the X7’s projective.

Exercise 8.2. Let C be an abelian category with enough injective and such

that dh(C) < 1. Let F': C — C' be a left exact functor and let X € D*(C).
(i)Construct an isomorphism H*(RF(X)) ~ F(H*(X)) ® R'F(H*1(X)).

(ii) Recall that dh(Mod(Z)) = 1. Let X € D~ (Mod(Z)), and let M €
Mod(Z). Deduce the isomorphism H*(X®@FM) ~ (H*(X)@M)®Tor,(H*(X), M).

Exercise 8.3. Let C be an abelian category with enough injectives and let
0 — X' — X — X” — 0 be an exact sequence in C. Assuming that
Ezt' (X", X') ~ 0, prove that the sequence splits.
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