
Chapter 6

Galois Theory

6.1 Fixed Fields and Galois Groups

Galois theory is based on a remarkable correspondence between subgroups of the Galois
group of an extension E/F and intermediate fields between E and F . In this section
we will set up the machinery for the fundamental theorem. [A remark on notation:
Throughout the chapter, the composition τ ◦ σ of two automorphisms will be written as
a product τσ.]

6.1.1 Definitions and Comments

Let G = Gal(E/F ) be the Galois group of the extension E/F . If H is a subgroup of G,
the fixed field of H is the set of elements fixed by every automorphism in H, that is,

F(H) = {x ∈ E : σ(x) = x for every σ ∈ H}.

If K is an intermediate field, that is, F ≤ K ≤ E, define

G(K) = Gal(E/K) = {σ ∈ G : σ(x) = x for every x ∈ K}.

I like the term “fixing group of K” for G(K), since G(K) is the group of automorphisms
of E that leave K fixed. Galois theory is about the relation between fixed fields and fixing
groups. In particular, the next result suggests that the smallest subfield F corresponds
to the largest subgroup G.

6.1.2 Proposition

Let E/F be a finite Galois extension with Galois group G = Gal(E/F ). Then

(i) The fixed field of G is F ;

(ii) If H is a proper subgroup of G, then the fixed field of H properly contains F .
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Proof. (i) Let F0 be the fixed field of G. If σ is an F -automorphism of E, then by
definition of F0, σ fixes everything in F0. Thus the F -automorphisms of G coincide with
the F0-automorphisms of G. Now by (3.4.7) and (3.5.8), E/F0 is Galois. By (3.5.9), the
size of the Galois group of a finite Galois extension is the degree of the extension. Thus
[E : F ] = [E : F0], so by (3.1.9), F = F0.

(ii) Suppose that F = F(H). By the theorem of the primitive element (3.5.12), we
have E = F (α) for some α ∈ E. Define a polynomial f(X) ∈ E[X] by

f(X) =
∏
σ∈H

(X − σ(α)).

If τ is any automorphism in H, then we may apply τ to f (that is, to the coefficients of f ;
we discussed this idea in the proof of (3.5.2)). The result is

(τf)(X) =
∏
σ∈H

(X − (τσ)(α)).

But as σ ranges over all of H, so does τσ, and consequently τf = f . Thus each coefficient
of f is fixed by H, so f ∈ F [X]. Now α is a root of f , since X − σ(α) is 0 when X = α
and σ is the identity. We can say two things about the degree of f :

(1) By definition of f , deg f = |H| < |G| = [E : F ], and, since f is a multiple of the
minimal polynomial of α over F ,

(2) deg f ≥ [F (α) : F ] = [E : F ], and we have a contradiction. ♣

There is a converse to the first part of (6.1.2).

6.1.3 Proposition

Let E/F be a finite extension with Galois group G. If the fixed field of G is F , then E/F
is Galois.

Proof. Let G = {σ1, . . . , σn}, where σ1 is the identity. To show that E/F is normal,
we consider an irreducible polynomial f ∈ F [X] with a root α ∈ E. Apply each au-
tomorphism in G to α, and suppose that there are r distinct images α = α1 = σ1(α),
α2 = σ2(α), . . . , αr = σr(α). If σ is any member of G, then σ will map each αi to some
αj , and since σ is an injective map of the finite set {α1, . . . , αr} to itself, it is surjective as
well. To put it simply, σ permutes the αi. Now we examine what σ does to the elementary
symmetric functions of the αi, which are given by

e1 =
r∑

i=1

αi, e2 =
∑
i<j

αiαj , e3 =
∑

i<j<k

αiαjαk, . . . ,

er =
r∏

i=1

αi.

Since σ permutes the αi, it follows that σ(ei) = ei for all i. Thus the ei belong to the
fixed field of G, which is F by hypothesis. Now we form a monic polynomial whose roots
are the αi:

g(X) = (X − α1) · · · (X − αr) = Xr − e1X
r−1 + e2X

r−2 − · · ·+ (−1)rer.
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Since the ei belong to F , g ∈ F [X], and since the αi are in E, g splits over E. We claim
that g is the minimal polynomial of α over F . To see this, let h(X) = b0+b1X+· · ·+bmXm

be any polynomial in F [X] having α as a root. Applying σi to the equation

b0 + b1α + · · · bmαm = 0

we have

b0 + b1αi + · · · bmαm
i = 0,

so that each αi is a root of h, hence g divides h and therefore g =min(α, F ). But our
original polynomial f ∈ F [X] is irreducible and has α as a root, so it must be a constant
multiple of g. Consequently, f splits over E, proving that E/F is normal. Since the αi,
i = 1, . . . r, are distinct, g has no repeated roots. Thus α is separable over F , which shows
that the extension E/F is separable. ♣

It is profitable to examine elementary symmetric functions in more detail.

6.1.4 Theorem

Let f be a symmetric polynomial in the n variables X1, . . . , Xn. [This means that if σ is
any permutation in Sn and we replace Xi by Xσ(i) for i = 1, . . . , n, then f is unchanged.]
If e1, . . . , en are the elementary symmetric functions of the Xi, then f can be expressed
as a polynomial in the ei.

Proof. We give an algorithm. The polynomial f is a linear combination of monomials
of the form Xr1

1 · · ·Xrn
n , and we order the monomials lexicographically: Xr1

1 · · ·Xrn
n >

Xs1
1 · · ·Xsn

n iff the first disagreement between ri and si results in ri > si. Since f is
symmetric, all terms generated by applying a permutation σ ∈ Sn to the subscripts of
Xr1

1 · · ·Xrn
n will also contribute to f . The idea is to cancel the leading terms (those

associated with the monomial that is first in the ordering) by subtracting an expression
of the form

et1
1 et2

2 · · · etn
n = (X1 + · · ·+ Xn)t1 · · · (X1 · · ·Xn)tn

which has leading term

Xt1
1 (X1X2)t2(X1X2X3)t3 · · · (X1 · · ·Xn)tn = Xt1+···+tn

1 Xt2+···+tn
2 · · ·Xtn

n .

This will be possible if we choose

t1 = r1 − r2, t2 = r2 − r3, . . . , tn−1 = rn−1 − rn, tn = rn.

After subtraction, the resulting polynomial has a leading term that is below Xr1
1 · · ·Xrn

n

in the lexicographical ordering. We can then repeat the procedure, which must terminate
in a finite number of steps. ♣
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6.1.5 Corollary

If g is a polynomial in F [X] and f(α1, . . . , αn) is any symmetric polynomial in the roots
α1, . . . , αn of g, then f ∈ F [X].

Proof. We may assume without loss of generality that g is monic. Then in a splitting
field of g we have

g(X) = (X − α1) · · · (X − αn) = Xn − e1X
n−1 + · · ·+ (−1)nen.

By (6.1.4), f is a polynomial in the ei, and since the ei are simply ± the coefficients of g,
the coefficients of f are in F . ♣

6.1.6 Dedekind’s Lemma

The result that the size of the Galois group of a finite Galois extension is the degree of
the extension can be proved via Dedekind’s lemma, which is of interest in its own right.
Let G be a group and E a field. A character from G to E is a homomorphism from G
to the multiplicative group E∗ of nonzero elements of E. In particular, an automorphism
of E defines a character with G = E∗, as does a monomorphism of E into a field L.
Dedekind’s lemma states that if σ1, . . . , σn are distinct characters from G to E, then the
σi are linearly independent over E. The proof is given in Problems 3 and 4.

Problems For Section 6.1

1. Express X2
1X2X3 + X1X

2
2X3 + X1X2X

2
3 in terms of elementary symmetric functions.

2. Repeat Problem 1 forX2
1X2 + X2

1X3 + X1X
2
2 + X1X

2
3 + X2

2X3 + X2X
2
3 + 4X1X2X3.

3. To begin the proof of Dedekind’s lemma, suppose that the σi are linearly dependent.
By renumbering the σi if necessary, we have

a1σ1 + · · · arσr = 0

where all ai are nonzero and r is as small as possible. Show that for every h and g ∈ G,
we have

r∑
i=1

aiσ1(h)σi(g) = 0 (1)

and
r∑

i=1

aiσi(h)σi(g) = 0. (2)

[Equations (1) and (2) are not the same; in (1) we have σ1(h), not σi(h).]
4. Continuing Problem 3, subtract (2) from (1) to get

r∑
i=1

ai(σ1(h)− σi(h))σi(g) = 0. (3)

With g arbitrary, reach a contradiction by an appropriate choice of h.



6.2. THE FUNDAMENTAL THEOREM 5

5. If G is the Galois group of Q( 3
√

2) over Q, what is the fixed field of G?

6. Find the Galois group of C/R.

7. Find the fixed field of the Galois group of Problem 6.

6.2 The Fundamental Theorem

With the preliminaries now taken care of, we can proceed directly to the main result.

6.2.1 Fundamental Theorem of Galois Theory

Let E/F be a finite Galois extension with Galois group G. If H is a subgroup of G,
let F(H) be the fixed field of H, and if K is an intermediate field, let G(K) be Gal(E/K),
the fixing group of K (see (6.1.1)).

(1) F is a bijective map from subgroups to intermediate fields, with inverse G. Both maps
are inclusion-reversing, that is, if H1 ≤ H2 then F(H1) ≥ F(H2), and if K1 ≤ K2,
then G(K1) ≥ G(K2).

(2) Suppose that the intermediate field K corresponds to the subgroup H under the
Galois correspondence. Then

(a) E/K is always normal (hence Galois);

(b) K/F is normal if and only if H is a normal subgroup of G, and in this case,

(c) the Galois group of K/F is isomorphic to the quotient group G/H. Moreover,
whether or not K/F is normal,

(d) [K : F ] = [G : H] and [E : K] = |H|.
(3) If the intermediate field K corresponds to the subgroup H and σ is any automorphism

in G, then the field σK = {σ(x) : x ∈ K} corresponds to the conjugate subgroup
σHσ−1. For this reason, σK is called a conjugate subfield of K.

The following diagram may aid the understanding.

E G
| |
K H
| |
F 1

As we travel up the left side from smaller to larger fields, we move down the right side
from larger to smaller groups. A statement about K/F , an extension at the bottom of
the left side, corresponds to a statement about G/H, located at the top of the right side.
Similarly, a statement about E/K corresponds to a statement about H/1 = H.

Proof. (1) First, consider the composite mapping H → F(H)→ GF(H). If σ ∈ H then σ
fixes F(H) by definition of fixed field, and therefore σ ∈ GF(H) = Gal(E/F(H)). Thus
H ⊆ GF(H). If the inclusion is proper, then by (6.1.2) part (ii) with F replaced by F(H),
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we have F(H) > F(H), a contradiction. [Note that E/K is a Galois extension for any
intermediate field K, by (3.4.7) and (3.5.8).] Thus GF(H) = H.

Now consider the mapping K → G(K)→ FG(K) = F Gal(E/K). By (6.1.2) part (i)
with F replaced by K, we have FG(K) = K. Since both F and G are inclusion-reversing
by definition, the proof of (1) is complete.

(3) The fixed field of σHσ−1 is the set of all x ∈ E such that στσ−1(x) = x for every
τ ∈ H. Thus

F(σHσ−1) = {x ∈ E : σ−1(x) ∈ F(H)} = σ(F(H)).

(2a) This was observed in the proof of (1).
(2b) If σ is an F -monomorphism of K into E, then by (3.5.2) and (3.5.6), σ extends

to an F -monomorphism of E into itself, in other words (see (3.5.6)), an F -automorphism
of E. Thus each such σ is the restriction to K of a member of G. Conversely, the
restriction of an automorphism in G to K is an F -monomorphism of K into E. By (3.5.5)
and (3.5.6), K/F is normal iff for every σ ∈ G we have σ(K) = K. But by (3), σ(K)
corresponds to σHσ−1 and K to H. Thus K/F is normal iff σHσ−1 = H for every σ ∈ G,
i.e., H � G.

(2c) Consider the homomorphism of G = Gal(E/F ) to Gal(K/F ) given by σ → σ|K .
The map is surjective by the argument just given in the proof of (2b). The kernel is the
set of all automorphisms in G that restrict to the identity on K, that is, Gal(E/K) = H.
The result follows from the first isomorphism theorem.

(2d) By (3.1.9), [E : F ] = [E : K][K : F ]. The term on the left is |G| by (3.5.9), and
the first term on the right is |Gal(E/K)| by (2a), and this in turn is |H| since H = G(K).
Thus |G| = |H|[K : F ], and the result follows from Lagrange’s theorem. [If K/F is
normal, the proof is slightly faster. The first statement follows from (2c). To prove the
second, note that by (3.1.9) and (3.5.9),

[E : K] =
[E : F ]
[K : F ]

=
|G|
|G/H| = |H|.] ♣

The next result is reminiscent of the second isomorphism theorem, and is best visu-
alized via the diamond diagram of Figure 6.2.1. In the diagram, EK is the composite of
the two fields E and K, that is, the smallest field containing both E and K.

6.2.2 Theorem

Let E/F be a finite Galois extension and K/F an arbitrary extension. Assume that E
and K are both contained in a common field, so that it is sensible to consider the com-
posite EK. Then

(1) EK/K is a finite Galois extension;

(2) Gal(EK/K) is embedded in Gal(E/F ), where the embedding is accomplished by
restricting automorphisms in Gal(EK/K) to E;

(3) The embedding is an isomorphism if and only if E ∩K = F .
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Figure 6.2.1

Proof. (1) By the theorem of the primitive element (3.5.12), we have E = F [α] for some
α ∈ E, so EK = KF [α] = K[α]. The extension K[α]/K is finite because α is algebraic
over F , hence over K. Since α, regarded as an element of EK, is separable over F and
hence over K, it follows that EK/K is separable. [To avoid breaking the main line of
thought, this result will be developed in the exercises (see Problems 1 and 2).]

Now let f be the minimal polynomial of α over F , and g the minimal polynomial of α
over K. Since f ∈ K[X] and f(α) = 0, we have g | f , and the roots of g must belong to
E ⊆ EK = K[α] because E/F is normal. Therefore K[α] is a splitting field for g over K,
so by (3.5.7), K[α]/K is normal.

(2) If σ is an automorphism in Gal(EK/K), restrict σ to E, thus defining a homomor-
phism from Gal(EK/K) to Gal(E/F ). (Note that σ|E is an automorphism of E because
E/F is normal.) Now σ fixes K, and if σ belongs to the kernel of the homomorphism,
then σ also fixes E, so σ fixes EK = K[α]. Thus σ is the identity, and the kernel is trivial,
proving that the homomorphism is actually an embedding.

(3) The embedding of (2) maps Gal(EK/K) to a subgroup H of Gal(E/F ), and we
will find the fixed field of H. By (6.1.2), the fixed field of Gal(EK/K) is K, and since
the embedding just restricts automorphisms to E, the fixed field of H must be E ∩ K.
By the fundamental theorem, H = Gal(E/(E ∩K)). Thus

H = Gal(E/F ) iff Gal(E/(E ∩K)) = Gal(E/F ),

and by applying the fixed field operator F , we see that this happens if and only if E ∩
K = F . ♣

Problems For Section 6.2

1. Let E = F (α1, . . . , αn), where each αi is algebraic and separable over F . We are going
to show that E is separable over F . Without loss of generality, we can assume that the
characteristic of F is a prime p, and since F/F is separable, the result holds for n = 0.
To carry out the inductive step, let Ei = F (α1, . . . , αi), so that Ei+1 = Ei(αi+1).
Show that Ei+1 = Ei(E

p
i+1). (See Section 3.4, Problems 4–8, for the notation.)

2. Continuing Problem 1, show that E is separable over F .
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3. Let E = F (α1, . . . , αn), where each αi is algebraic over F . If for each i = 1, . . . , n, all
the conjugates of αi (the roots of the minimal polynomial of αi over F ) belong to E,
show that E/F is normal.

4. Suppose that F = K0 ≤ K1 ≤ · · · ≤ Kn = E, where E/F is a finite Galois extension,
and that the intermediate field Ki corresponds to the subgroup Hi under the Galois
correspondence. Show that Ki/Ki−1 is normal (hence Galois) if and only if Hi � Hi−1,
and in this case, Gal(Ki/Ki−1) is isomorphic to Hi−1/Hi.

5. Let E and K be extensions of F , and assume that the composite EK is defined. If A
is any set of generators for K over F (for example, A = K), show that EK = E(A),
the field formed from E by adjoining the elements of A.

6. Let E/F be a finite Galois extension with Galois group G, and let E′/F ′ be a finite
Galois extension with Galois group G′. If τ is an isomorphism of E and E′ with
τ(F ) = F ′, we expect intuitively that G ∼= G′. Prove this formally.

7. Let K/F be a finite separable extension. Although K need not be a normal extension
of F , we can form the normal closure N of K over F , as in (3.5.11). Then N/F
is a Galois extension (see Problem 8 of Section 6.3); let G be its Galois group. Let
H = Gal(N/K), so that the fixed field of H is K. If H ′ is a normal subgroup of G
that is contained in H, show that the fixed field of H ′ is N .

8. Continuing Problem 7, show that H ′ is trivial, and conclude that
⋂
g∈G

gHg−1 = {1}

where 1 is the identity automorphism.

6.3 Computing a Galois Group Directly

6.3.1 Definitions and Comments

Suppose that E is a splitting field of the separable polynomial f over F . The Galois
group of f is the Galois group of the extension E/F . (The extension is indeed Galois;
see Problem 8.) Given f , how can we determine its Galois group? It is not so easy, but
later we will develop a systematic approach for polynomials of degree 4 or less. Some
cases can be handled directly, and in this section we look at a typical situation. A useful
observation is that the Galois group G of a finite Galois extension E/F acts transitively
on the roots of any irreducible polynomial h ∈ F [X] (assuming that one, hence every,
root of h belongs to E). [Each σ ∈ G permutes the roots by (3.5.1). If α and β are roots
of h, then by (3.2.3) there is an F -isomorphism of F (α) and F (β) carrying α to β. This
isomorphism can be extended to an F -automorphism of E by (3.5.2), (3.5.5) and (3.5.6).]

6.3.2 Example

Let d be a positive integer that is not a perfect cube, and let θ be the positive cube root
of d. Let ω = ei2π/3 = − 1

2 + i 1
2

√
3, so that ω2 = e−i2π/3 = − 1

2 − i 1
2

√
3 = −(1 + ω).

The minimal polynomial of θ over the rationals Q is f(X) = X3 − d, because if f were



6.3. COMPUTING A GALOIS GROUP DIRECTLY 9

reducible then it would have a linear factor and d would be a perfect cube. The minimal
polynomial of ω over Q is g(X) = X2 + X + 1. (If g were reducible, it would have a
rational (hence real) root, so the discriminant would be nonnegative, a contradiction.)
We will compute the Galois group G of the polynomial f(X)g(X), which is the Galois
group of E = Q(θ, ω) over Q.

If the degree of E/Q is the product of the degrees of f and g, we will be able to
make progress. We have [Q(θ) : Q] = 3 and, since ω, a complex number, does not belong
to Q(θ), we have [Q(θ, ω) : Q(θ)] = 2. Thus [Q(θ, ω) : Q] = 6. But the degree of
a finite Galois extension is the size of the Galois group by (3.5.9), so G has exactly 6
automorphisms. Now any σ ∈ G must take θ to one of its conjugates, namely θ, ωθ or
ω2θ. Moreover, σ must take ω to a conjugate, namely ω or ω2. Since σ is determined by
its action on θ and ω, we have found all 6 members of G. The results can be displayed as
follows.

1 : θ → θ, ω → ω, order = 1
τ : θ → θ, ω → ω2, order = 2
σ : θ → ωθ, ω → ω, order = 3
στ : θ → ωθ, ω → ω2, order = 2
σ2 : θ → ω2θ, ω → ω, order = 3
τσ : θ → ω2θ, ω → ω2, order = 2

Note that τσ2 gives nothing new since τσ2 = στ . Similarly, σ2τ = τσ. Thus

σ3 = τ2 = 1, τστ−1 = σ−1 (= σ2). (1)

At this point we have determined the multiplication table of G, but much more insight
is gained by observing that (1) gives a presentation of S3 (Section 5.8, Problem 3). We
conclude that G ∼= S3. The subgroups of G are

{1}, G, 〈σ〉, 〈τ〉, 〈τσ〉, 〈τσ2〉

and the corresponding fixed fields are

E, Q, Q(ω), Q(θ), Q(ωθ), Q(ω2θ).

To show that the fixed field of 〈τσ〉 = {1, τσ} is Q(ωθ), note that 〈τσ〉 has index 3 in G, so
by the fundamental theorem, the corresponding fixed field has degree 3 over Q. Now τσ
takes ωθ to ω2ω2θ = ωθ and [Q(ωθ) : Q] = 3 (because the minimal polynomial of ωθ over
Q is f). Thus Q(ωθ) is the entire fixed field. The other calculations are similar.

Problems For Section 6.3

1. Suppose that E = F (α) is a finite Galois extension of F , where α is a root of the
irreducible polynomial f ∈ F [X]. Assume that the roots of f are α1 = α, α2, . . . , αn.
Describe, as best you can from the given information, the Galois group of E/F .

2. Let E/Q be a finite Galois extension, and let x1, . . . , xn be a basis for E over Q.
Describe how you would find a primitive element, that is, an α ∈ E such that E =
Q(α). (Your procedure need not be efficient.)
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3. Let G be the Galois group of a separable irreducible polynomial f of degree n. Show
that G is isomorphic to a transitive subgroup H of Sn. [Transitivity means that if i
and j belong to {1, 2, . . . , n}, then for some σ ∈ H we have σ(i) = j. Equivalently,
the natural action of H on {1, . . . , n}, given by h • x = h(x), is transitive.]

4. Use Problem 3 to determine the Galois group of an irreducible quadratic polynomial
aX2 + bX + c ∈ F [X], a �= 0. Assume that the characteristic of F is not 2, so that
the derivative of f is nonzero and f is separable.

5. Determine the Galois group of (X2 − 2)(X2 − 3) over Q.
6. In the Galois correspondence, suppose that Ki is the fixed field of the subgroup Hi,

i = 1, 2. Identify the group corresponding to K = K1 ∩K2.
7. Continuing Problem 6, identify the fixed field of H1 ∩H2.
8. Suppose that E is a splitting field of a separable polynomial f over F . Show that

E/F is separable. [Since the extension is finite by (3.2.2) and normal by (3.5.7), E/F
is Galois.]

9. Let G be the Galois group of f(X) = X4 − 2 over Q. Thus if θ is the positive fourth
root of 2, then G is the Galois group of Q(θ, i)/Q. Describe all 8 automorphisms in G.

10. Show that G is isomorphic to the dihedral group D8.
11. Define σ(θ) = iθ, σ(i) = i, τ(θ) = θ, τ(i) = −i, as in the solution to Problem 10.

Find the fixed field of the normal subgroup N = {1, στ, σ2, σ3τ} of G, and verify that
the fixed field is a normal extension of Q.

6.4 Finite Fields

Finite fields can be classified precisely. We will show that a finite field must have pn

elements, where p is a prime and n is a positive integer. In addition, there is (up to
isomorphism) only one finite field with pn elements. We sometimes use the notation
GF (pn) for this field; GF stands for “Galois field”. Also, the field with p elements will
be denoted by Fp rather than Zp, to emphasize that we are working with fields.

6.4.1 Proposition

Let E be a finite field of characteristic p. Then |E| = pn for some positive integer n.
Moreover, E is a splitting field for the separable polynomial f(X) = Xpn −X over Fp, so
that any finite field with pn elements is isomorphic to E. Not only is E generated by the
roots of f , but in fact E coincides with the set of roots of f .

Proof. Since E contains a copy of Fp (see (2.1.3), Example 2), we may view E as a vector
space over Fp. If the dimension of this vector space is n, then since each coefficient in a
linear combination of basis vectors can be chosen in p ways, we have |E| = pn.

Now let E∗ be the multiplicative group of nonzero elements of E. If α ∈ E∗, then
αpn−1 = 1 by Lagrange’s theorem, so αpn

= α for every α ∈ E, including α = 0. Thus
each element of E is a root of f , and f is separable by (3.4.5). Now f has at most pn

distinct roots, and as we have already identified the pn elements of E as roots of f , in
fact f has pn distinct roots and every root of f must belong to E. ♣
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6.4.2 Corollary

If E is a finite field of characteristic p, then E/Fp is a Galois extension. The Galois group
is cyclic and is generated by the Frobenius automorphism σ(x) = xp, x ∈ E.

Proof. E is a splitting field for a separable polynomial over Fp, so E/Fp is Galois; see
(6.3.1). Since xp = x for each x ∈ Fp, Fp is contained in the fixed field F(〈σ〉). But
each element of the fixed field is a root of Xp − X, so F(〈σ〉) has at most p elements.
Consequently, F(〈σ〉) = Fp. Now Fp = F(Gal(E/Fp) by (6.1.2), so by the fundamental
theorem, Gal(E/Fp) = 〈σ〉. ♣

6.4.3 Corollary

Let E/F be a finite extension of a finite field, with |E| = pn, |F | = pm. Then E/F is a
Galois extension. Moreover, m divides n, and Gal(E/F ) is cyclic and is generated by the
automorphism τ(x) = xpm

, x ∈ E. Furthermore, F is the only subfield of E of size pm.

Proof. If the degree of E/F is d, then as in (6.4.1), (pm)d = pn, so d = n/m and m | n.
We may then reproduce the proof of (6.4.2) with Fp replaced by F , σ by τ , xp by xpm

,
and Xp by Xpm

. Uniqueness of F as a subfield of E with pm elements follows because
there is only one splitting field over Fp for Xpm −X inside E; see (3.2.1). ♣

How do we know that finite fields (other than the Fp) exist? There is no problem.
Given any prime p and positive integer n, we can construct E = GF (pn) as a splitting
field for Xpn −X over Fp. We have just seen that if E contains a subfield F of size pm,
then m is a divisor of n. The converse is also true, as a consequence of the following basic
result.

6.4.4 Theorem

The multiplicative group of a finite field is cyclic. More generally, if G is a finite subgroup
of the multiplicative group of an arbitrary field, then G is cyclic.

Proof. G is a finite abelian group, hence contains an element g whose order r is the
exponent of G, that is, the least common multiple of the orders of all elements of G; see
Section 1.1, Problem 9. Thus if x ∈ G then the order of x divides r, so xr = 1. Therefore
each element of G is a root of Xr − 1, so |G| ≤ r. But |G| is a multiple of the order of
every element, so |G| is at least as big as the least common multiple, so |G| ≥ r. We
conclude that the order and the exponent are the same. But then g has order |G|, so
G = 〈g〉 and G is cyclic. ♣

6.4.5 Proposition

GF (pm) is a subfield of E = GF (pn) if and only if m is a divisor of n.

Proof. The “only if” part follows from (6.4.3), so assume that m divides n. If t is any
positive integer greater than 1, then m | n iff (tm − 1) | (tn − 1). (A formal proof is not
difficult, but I prefer to do an ordinary long division of tn − 1 by tm − 1. The successive
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quotients are tn−m, tn−2m, tn−3m, . . . , so the division will be successful iff n− rm = 0 for
some positive integer r.) Taking t = p, we see that pm − 1 divides |E∗|, so by (6.4.4)
and (1.1.4), E∗ has a subgroup H of order pm−1. By Lagrange’s theorem, each x ∈ H∪{0}
satisfies xpm

= x. As in the proof of (6.4.1), H ∪ {0} coincides with the set of roots of
Xpm −X. Thus we may construct entirely inside GF (pn) a splitting field for Xpm −X
over Fp. But this splitting field is a copy of GF (pm). ♣

In practice, finite fields are constructed by adjoining roots of carefully selected irre-
ducible polynomials over Fp. The following result is very helpful.

6.4.6 Theorem

Let p be a prime and n a positive integer. Then Xpn − X is the product of all monic
irreducible polynomials over Fp whose degree divides n.

Proof. Let us do all calculations inside E = GF (pn) = the set of roots of f(X) = Xpn−X.
If g(X) is any monic irreducible factor of f(X), and deg g = m, then all roots of g lie
in E. If α is any root of g, then Fp(α) is a finite field with pm elements, so m divides n by
(6.4.5) or (6.4.3). Conversely, let g(X) be a monic irreducible polynomial over Fp whose
degree m is a divisor of n. Then by (6.4.5), E contains a subfield with pm elements,
and this subfield must be isomorphic to Fp(α). If β ∈ E corresponds to α under this
isomorphism, then g(β) = 0 (because g(α) = 0) and f(β) = 0 (because β ∈ E). Since g is
the minimal polynomial of β over Fp, it follows that g(X) divides f(X). By (6.4.1), the
roots of f are distinct, so no irreducible factor can appear more than once. The theorem
is proved. ♣

6.4.7 The Explicit Construction of a Finite Field

By (6.4.4), the multiplicative group E∗ of a finite field E = GF (pn) is cyclic, so E∗ can
be generated by a single element α. Thus E = Fp(α) = Fp[α], so that α is a primitive
element of E. The minimal polynomial of α over Fp is called a primitive polynomial. The
key point is that the nonzero elements of E are not simply the nonzero polynomials of
degree at most n− 1 in α, they are the powers of α. This is significant in applications to
coding theory. Let’s do an example over F2.

The polynomial g(X) = X4 + X + 1 is irreducible over F2. One way to verify this is
to factor X16 −X = X16 + X over F2; the factors are the (necessarily monic) irreducible
polynomials of degrees 1,2 and 4. To show that g is primitive, we compute powers of α:

α0 = 1, α1 = α, α2 = α2, α3 = α3, α4 = 1 + α (since g(α) = 0),
α5 = α + α2, α6 = α2 + α3, α7 = α3 + α4 = 1 + α + α3, α8 = α + α2 + α4 = 1 + α2

(since 1+1=0 in F2),
α9 = α+α3, α10 = 1+α+α2, α11 = α+α2+α3, α12 = 1+α+α2+α3, α13 = 1+α2+α3,

α14 = 1 + α3,
and at this point we have all 24 − 1 = 15 nonzero elements of GF (16). The pattern now
repeats, beginning with α15 = α + α4 = 1.

For an example of a non-primitive polynomial, see Problem 1.
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Problems For Section 6.4

1. Verify that the irreducible polynomial X4 +X3 +X2 +X +1 ∈ F2[X] is not primitive.

2. Let F be a finite field and d a positive integer. Show that there exists an irreducible
polynomial of degree d in F [X].

3. In (6.4.5) we showed that m | n iff (tm − 1) | (tn − 1) (t = 2, 3, . . . ). Show that an
equivalent condition is (Xm − 1) divides (Xn − 1).
If E is a finite extension of a finite field, or more generally a finite separable extension
of a field F , then by the theorem of the primitive element, E = F (α) for some α ∈ E.
We now develop a condition equivalent to the existence of a primitive element.

4. Let E/F be a finite extension, with E = F (α) and F ≤ L ≤ E. Suppose that the min-
imal polynomial of α over L is g(X) =

∑r−1
i=0 biX

i +Xr, and let K = F (b0, . . . , br−1).
If h is the minimal polynomial of α over K, show that g = h, and conclude that
L = K.

5. Continuing Problem 4, show that there are only finitely many intermediate fields L
between E and F .

6. Conversely, let E = F (α1, . . . , αn) be a finite extension with only finitely many inter-
mediate fields between E and F . We are going to show by induction that E/F has a
primitive element. If n = 1 there is nothing to prove, so assume the result holds for
all integers less than n. If L = F (α1, . . . , αn−1), show that E = F (β, αn) for some
β ∈ L.

7. Now assume (without loss of generality) that F is infinite. Show that there are distinct
elements c, d ∈ F such that F (cβ + αn) = F (dβ + αn).

8. Continuing Problem 7, show that E = F (cβ + αn). Thus a finite extension has a
primitive element iff there are only finitely many intermediate fields.

9. Let α be an element of the finite field GF (pn). Show that α and αp have the same
minimal polynomial over Fp.

10. Suppose that α is an element of order 13 in the multiplicative group of nonzero
elements in GF (3n). Partition the integers {0, 1, . . . , 12} into disjoint subsets such
that if i and j belong to the same subset, then αi and αj have the same minimal
polynomial. Repeat for α an element of order 15 in GF (2n). [Note that elements of
the specified orders exist, because 13 divides 26 = 33 − 1 and 15 = 24 − 1.]

6.5 Cyclotomic Fields

6.5.1 Definitions and Comments

Cyclotomic extensions of a field F are formed by adjoining nth roots of unity. Formally, a
cyclotomic extension of F is a splitting field E for f(X) = Xn− 1 over F . The roots of f
are called nth roots of unity, and they form a multiplicative subgroup of the group E∗ of
nonzero elements of E. This subgroup must be cyclic by (6.4.4). A primitive nth root of
unity is one whose order in E∗ is n.
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It is tempting to say “obviously, primitive nth roots of unity must exist, just take a
generator of the cyclic subgroup”. But suppose that F has characteristic p and p divides n,
say n = mp. If ω is an nth root of unity, then

0 = ωn − 1 = (ωm − 1)p

so the order of ω must be less than n. To avoid this difficulty, we assume that the
characteristic of F does not divide n. Then f ′(X) = nXn−1 �= 0, so the greatest common
divisor of f and f ′ is constant. By (3.4.2), f is separable, and consequently E/F is Galois.
Since there are n distinct nth roots of unity, there must be a primitive nth root of unity ω,
and for any such ω, we have E = F (ω).

If σ is any automorphism in the Galois group Gal(E/F ), then σ must take a primitive
root of unity ω to another primitive root of unity ωr, where r and n are relatively prime.
(See (1.1.5).) We can identify σ with r, and this shows that Gal(E/F ) is isomorphic to a
subgroup of Un, the group of units mod n. Consequently, the Galois group is abelian.

Finally, by the fundamental theorem (or (3.5.9)), [E : F ] = |Gal(E/F )|, which is a
divisor of |Un| = ϕ(n).

Cyclotomic fields are of greatest interest when the underlying field F is Q, the rational
numbers, and from now on we specialize to that case. The primitive nth roots of unity
are ei2πr/n where r and n are relatively prime. Thus there are ϕ(n) primitive nth roots
of unity. Finding the minimal polynomial of a primitive nth root of unity requires some
rather formidable equipment.

6.5.2 Definition

The nth cyclotomic polynomial is defined by

Ψn(X) =
∏

i

(X − ωi)

where the ωi are the primitive nth roots of unity in the field C of complex numbers. Thus
the degree of Ψn(X) is ϕ(n).

¿From the definition, we have Ψ1(X) = X − 1 and Ψ2(X) = X + 1. In general, the
cyclotomic polynomials can be calculated by the following recursion formula, in which d
runs through all positive divisors of n.

6.5.3 Proposition

Xn − 1 =
∏
d|n

Ψd(X).

In particular, if p is prime, then

Ψp(X) =
Xp − 1
X − 1

= Xp−1 + Xp−2 + · · ·+ X + 1.
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Proof. If ω is an nth root of unity, then its order in C∗ is a divisor d of n, and in this
case, ω is a primitive dth root of unity, hence a root of Ψd(X). Conversely, if d | n, then
any root of Ψd(X) is a dth, hence an nth, root of unity. ♣

¿From (6.5.3) we have
Ψ3(X) = X2 + X + 1,
Ψ4(X) = X2 + 1, Ψ5(X) = X4 + X3 + X2 + X + 1,
Ψ6(X) = X6−1

(X−1)(X+1)(X2+X+1) = X6−1
(X3−1)(X+1) = X3+1

X+1 = X2 −X + 1.

It is a natural conjecture that all coefficients of the cyclotomic polynomials are integers,
and this turns out to be correct.

6.5.4 Proposition

Ψn(X) ∈ Z[X].

Proof. By (6.5.3), we have

Xn − 1 = [
∏

d|n,d<n

Ψd(X)]Ψn(X).

By definition, the cyclotomic polynomials are monic, and by induction hypothesis, the
expression in brackets is a monic polynomial in Z[X]. Thus Ψn(X) is the quotient of two
monic polynomials with integer coefficients. At this point, all we know for sure is that
the coefficients of Ψn(X) are complex numbers. But if we apply ordinary long division,
even in C, we know that the process will terminate, and this forces the quotient Ψn(X)
to be in Z[X]. ♣

We now show that the nth cyclotomic polynomial is the minimal polynomial of each
primitive nth root of unity.

6.5.5 Theorem

Ψn(X) is irreducible over Q.

Proof. Let ω be a primitive nth root of unity, with minimal polynomial f over Q. Since
ω is a root of Xn − 1, we have Xn − 1 = f(X)g(X) for some g ∈ Q[X]. Now it follows
from (2.9.2) that if a monic polynomial over Z is the product of two monic polynomials f
and g over Q, then in fact the coefficients of f and g are integers.

If p is a prime that does not divide n, we will show that ωp is a root of f . If not,
then it is a root of g. But g(ωp) = 0 implies that ω is a root of g(Xp), so f(X) divides
g(Xp), say g(Xp) = f(X)h(X). As above, h ∈ Z[X]. But by the binomial expansion
modulo p, g(X)p ≡ g(Xp) = f(X)h(X) mod p. Reducing the coefficients of a polynomial
k(X) mod p is equivalent to viewing it as an element k ∈ Fp[X], so we may write g(X)p =
f(X)h(X). Then any irreducible factor of f must divide g, so f and g have a common
factor. But then Xn − 1 has a multiple root, contradicting (3.4.2). [This is where we use
the fact that p does not divide n.]

Now we claim that every primitive nth root of unity is a root of f , so that deg f ≥
ϕ(n) =deg Ψn, and therefore f = Ψn by minimality of f . The best way to visualize this
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is via a concrete example with all the features of the general case. If ω is a primitive nth

root of unity where n = 175, then ω72 is a primitive nth root of unity because 72 and 175
are relatively prime. Moreover, since 72 = 23 × 32, we have

ω72 = (((((ω)2)2)2)3)3

and the result follows. ♣

6.5.6 Corollary

The Galois group G of the nth cyclotomic extension Q(ω)/Q is isomorphic to the group Un

of units mod n.

Proof. By the fundamental theorem, |G| = [Q(ω) : Q] = deg Ψn = ϕ(n) = |Un|. Thus the
monomorphism of G and a subgroup of Un (see (6.5.1)) is surjective. ♣

Problems For Section 6.5

1. If p is prime and p divides n, show that Ψpn(X) = Ψn(Xp). (This formula is sometimes
useful in computing the cyclotomic polynomials.)

2. Show that the group of automorphisms of a cyclic group of order n is isomorphic to
the group Un of units mod n. (This can be done directly, but it is easier to make use
of the results of this section.)

We now do a detailed analysis of subgroups and intermediate fields associated with the
cyclotomic extension Q7 = Q(ω)/Q where ω = ei2π/7 is a primitive 7th root of unity.
The Galois group G consists of automorphisms σi, i = 1, 2, 3, 4, 5, 6, where σi(ω) = ωi.

3. Show that σ3 generates the cyclic group G.

4. Show that the subgroups of G are 〈1〉 (order 1), 〈σ6〉 (order 2), 〈σ2〉 (order 3), and
G = 〈σ3〉 (order 6).

5. The fixed field of 〈1〉 is Q7 and the fixed field of G is Q. Let K be the fixed field
of 〈σ6〉. Show that ω + ω−1 ∈ K, and deduce that K = Q(ω + ω−1) = Q(cos 2π/7).

6. Let L be the fixed field of 〈σ2〉. Show that ω + ω2 + ω4 belongs to L but not to Q.

7. Show that L = Q(ω + ω2 + ω4).

8. If q = pr, p prime, r > 0, show that

Ψq(X) = tp−1 + tp−2 + · · ·+ 1

where t = Xpr−1
.

9. Assuming that the first 6 cyclotomic polynomials are available [see after (6.5.3)], cal-
culate Ψ18(X) in an effortless manner.
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6.6 The Galois Group of a Cubic

Let f be a polynomial over F , with distinct roots x1, . . . , xn in a splitting field E over F .
The Galois group G of f permutes the xi, but which permutations belong to G? When f
is a quadratic, the analysis is straightforward, and is considered in Section 6.3, Problem 4.
In this section we look at cubics (and some other manageable cases), and the appendix
to Chapter 6 deals with the quartic.

6.6.1 Definitions and Comments

Let f be a polynomial with roots x1, . . . , xn in a splitting field. Define

∆(f) =
∏
i<j

(xi − xj).

The discriminant of f is defined by

D(f) = ∆2 =
∏
i<j

(xi − xj)2.

Let’s look at a quadratic polynomial f(X) = X2 + bX + c, with roots 1
2 (−b±

√
b2 − 4c).

In order to divide by 2, we had better assume that the characteristic of F is not 2, and
this assumption is usually made before defining the discriminant. In this case we have
(x1−x2)2 = b2−4c, a familiar formula. Here are some basic properties of the discriminant.

6.6.2 Proposition

Let E be a splitting field of the separable polynomial f over F , so that E/F is Galois.

(a) D(f) belongs to the base field F .

(b) Let σ be an automorphism in the Galois group G of f . Then σ is an even permutation
(of the roots of f) iff σ(∆) = ∆, and σ is odd iff σ(∆) = −∆.

(c) G ⊆ An, that is, G consists entirely of even permutations, iff D(f) is the square of
an element of F (for short, D ∈ F 2).

Proof. Let us examine the effect of a transposition σ = (i, j) on ∆. Once again it is
useful to consider a concrete example with all the features of the general case. Say
n = 15, i = 7, j = 10. Then

x3 − x7 → x3 − x10, x3 − x10 → x3 − x7

x10 − x12 → x7 − x12, x7 − x12 → x10 − x12

x7 − x8 → x10 − x8, x8 − x10 → x8 − x7

x7 − x10 → x10 − x7.

The point of the computation is that the net effect of (i, j) on ∆ is to take xi − xj to
its negative. Thus σ(∆) = −∆ when σ is a transposition. Thus if σ is any permutation,
we have σ(∆) = ∆ if ∆ is even, and σ(∆) = −∆ if σ is odd. Consequently, σ(∆2) =
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(σ(∆))2 = ∆2, so D belongs to the fixed field of G, which is F . This proves (a), and (b)
follows because ∆ �= −∆ (remember that the characteristic of F is not 2). Finally G ⊆ An

iff σ(∆) = ∆ for every σ ∈ G iff ∆ ∈ F(G) = F . ♣

6.6.3 The Galois Group of a Cubic

In the appendix to Chapter 6, it is shown that the discriminant of the abbreviated cubic
X3 +pX + q is −4p3−27q2, and the discriminant of the general cubic X3 +aX2 + bX + c
is

a2(b2 − 4ac)− 4b3 − 27c2 + 18abc.

Alternatively, the change of variable Y = X + a
3 eliminates the quadratic term without

changing the discriminant.
We now assume that the cubic polynomial f is irreducible as well as separable. Then

the Galois group G is isomorphic to a transitive subgroup of S3 (see Section 6.3, Prob-
lem 3). By direct enumeration, G must be A3 or S3, and by (6.6.2(c)), G = A3 iff the
discriminant D is a square in F .

If G = A3, which is cyclic of order 3, there are no proper subgroups except {1}, so
there are no intermediate fields strictly between E and F . However, if G = S3, then the
proper subgroups are

{1, (2, 3)}, {1, (1, 3)}, {1, (1, 2)}, A3 = {1, (1, 2, 3), (1, 3, 2)}.

If the roots of f are α1, α2 and α3, then the corresponding fixed fields are

F (α1), F (α2), F (α3), F (∆)

where A3 corresponds to F (∆) because only even permutations fix ∆.

6.6.4 Example

Let f(X) = X3 − 31X + 62 over Q. An application of the rational root test (Section 2.9,
Problem 1) shows that f is irreducible. The discriminant is−4(−31)3−27(62)2 = 119164−
103788 = 15376 = (124)2, which is a square in Q. Thus the Galois group of f is A3.

We now develop a result that can be applied to certain cubics, but which has wider
applicability as well. The preliminary steps are also of interest.

6.6.5 Some Generating Sets of Sn

(i) Sn is generated by the transpositions (1, 2), (1, 3), . . . , (1, n).
[An arbitrary transposition (i, j) can be written as (1, i)(1, j)(1, i).]

(ii) Sn is generated by transpositions of adjacent digits, i.e., (1, 2), (2, 3), . . . , (n−1, n).
[Since (1, j − 1)(j − 1, j)(1, j − 1) = (1, j), we have

(1, 2)(2, 3)(1, 2) = (1, 3), (1, 3)(3, 4)(1, 3) = (1, 4), etc.,

and the result follows from (i).]
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(iii) Sn is generated by the two permutations σ1 = (1, 2) and τ = (1, 2, . . . , n).
[If σ2 = τσ1τ

−1, then σ2 is obtained by applying τ to the symbols of σ1 (see Section 5.2,
Problem 1). Thus σ2 = (2, 3). Similarly,

σ3 = τσ2τ
−1 = (3, 4), . . . , σn−1 = τσn−2τ

−1 = (n− 1, n),

and the result follows from (ii).]
(iv) Sn is generated by (1, 2) and (2, 3, . . . , n).

[(1, 2)(2, 3, . . . , n) = (1, 2, 3, . . . , n), and (iii) applies.]

6.6.6 Lemma

If f is an irreducible separable polynomial over F of degree n, and G is the Galois group
of f , then n divides |G|. If n is a prime number p, then G contains a p-cycle.

Proof. If α is any root of f , then [F (α) : F ] = n, so by the fundamental theorem, G
contains a subgroup whose index is n. By Lagrange’s theorem, n divides |G|. If n = p,
then by Cauchy’s theorem, G contains an element σ of order p. We can express σ as a
product of disjoint cycles, and the length of each cycle must divide the order of σ. Since
p is prime, σ must consist of disjoint p-cycles. But a single p-cycle already uses up all the
symbols to be permuted, so σ is a p-cycle. ♣

6.6.7 Proposition

If f is irreducible over Q and of prime degree p, and f has exactly two nonreal roots in
the complex field C, then the Galois group G of f is Sp.

Proof. By (6.6.6), G contains a p-cycle σ. Now one of the elements of G must be complex
conjugation τ , which is an automorphism of C that fixes R (hence Q). Thus τ permutes
the two nonreal roots and leaves the p− 2 real roots fixed, so τ is a transposition. Since
p is prime, σk is a p-cycle for k = 1, . . . , p− 1. It follows that by renumbering symbols if
necessary, we can assume that (1, 2) and (1, 2, . . . , p) belong to G. By (6.6.5) part (iii),
G = Sp. ♣

Problems For Section 6.6

In Problems 1–4, all polynomials are over the rational field Q, and in each case, you are
asked to find the Galois group G.

1. f(X) = X3 − 2 (do it two ways)

2. f(X) = X3 − 3X + 1

3. f(X) = X5 − 10X4 + 2

4. f(X) = X3 + 3X2 − 2X + 1 (calculate the discriminant in two ways)

5. If f is a separable cubic, not necessarily irreducible, then there are other possibilities
for the Galois group G of f besides S3 and A3. What are they?
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6. Let f be an irreducible cubic over Q with exactly one real root. Show that D(f) < 0,
and conclude that the Galois group of f is S3.

7. Let f be an irreducible cubic over Q with 3 distinct real roots. Show that D(f) > 0,
so that the Galois group is A3 or S3 according as

√
D ∈ Q or

√
D /∈ Q

6.7 Cyclic and Kummer Extensions

The problem of solving a polynomial equation by radicals is thousands of years old, but
it can be given a modern flavor. We are looking for roots of f ∈ F [X], and we are only
allowed to use algorithms that do ordinary arithmetic plus the extraction of nth roots.
The idea is to identify those polynomials whose roots can be found in this way. Now if
a ∈ F and our algorithm computes θ = n

√
a in some extension field of F , then θ is a root

of Xn − a, so it is natural to study splitting fields of Xn − a.

6.7.1 Assumptions, Comments and a Definition

Assume
(i) E is a splitting field for f(X) = Xn − a over F , where a �= 0.
(ii) F contains a primitive nth root of unity ω.
These are natural assumption if we want to allow the computation of nth roots. If θ is

any root of f in E, then the roots of f are θ, ωθ, . . . , ωn−1θ. (The roots must be distinct
because a, hence θ, is nonzero.) Therefore E = F (θ). Since f is separable, the extension
E/F is Galois (see (6.3.1)). If G = Gal(E/F ), then |G| = [E : F ] by the fundamental
theorem (or by (3.5.9)).

In general, a cyclic extension is a Galois extension whose Galois group is cyclic.

6.7.2 Theorem

Under the assumptions of (6.7.1), E/F is a cyclic extension and the order of the Galois
group G is a divisor of n. We have |G| = n if and only if f(X) is irreducible over F .

Proof. Let σ ∈ G; since σ permutes the roots of f by (3.5.1), we have σ(θ) = ωu(σ)θ.
[Note that σ fixes ω by (ii).] We identify integers u(σ) with the same residue mod n. If
σi(θ) = ωu(σi)θ, i = 1, 2, then

σ1(σ2(θ)) = ωu(σ1)+u(σ2)θ,

so

u(σ1σ2) = u(σ1) + u(σ2)

and u is a group homomorphism from G to Zn. If u(σ) is 0 mod n, then σ(θ) = θ, so σ is
the identity and the homomorphism is injective. Thus G is isomorphic to a subgroup of
Zn, so G is cyclic and |G| divides n.

If f is irreducible over F , then |G| = [E : F ] = [F (θ) : F ] = deg f = n. If f is not
irreducible over F , let g be a proper irreducible factor. If β is a root of g in E, then β is
also a root of f , so E = F (β) and |G| = [E : F ] = [F (β) : F ] = deg g < n. ♣
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Thus splitting fields of Xn− a give rise to cyclic extensions. Conversely, we can prove
that a cyclic extension comes from such a splitting field.

6.7.3 Theorem

Let E/F be a cyclic extension of degree n, where F contains a primitive nth root of
unity ω. Then for some nonzero a ∈ F , f(X) = Xn − a is irreducible over F and E is a
splitting field for f over F .

Proof. Let σ be a generator of the Galois group of the extension. By Dedekind’s lemma
(6.1.6), the distinct automorphisms 1, σ, σ2, . . . , σn−1 are linearly independent over E.
Thus 1 + ωσ + ω2σ2 + · · ·+ ωn−1σn−1 is not identically 0, so for some β ∈ E we have

θ = β + ωσ(β) + · · ·+ ωn−1σn−1(β) �= 0.

Now

σ(θ) = σ(β) + ωσ2(β) + · · ·+ ωn−2σn−1(β) + ωn−1σn(β) = ω−1θ

since σn(β) = β. We take a = θn. To prove that a ∈ F , note that

σ(θn) = (σ(θ))n = (ω−1θ)n = θn

and therefore σ fixes θn. Since σ generates G, all other members of G fix θn, hence a
belongs to the fixed field of Gal(E/F ), which is F .

Now by definition of a, θ is a root of f(X) = Xn − a, so the roots of Xn − a
are θ, ωθ, . . . , ωn−1θ. Therefore F (θ) is a splitting field for f over F . Since σ(θ) = ω−1θ,
the distinct automorphisms 1, σ, . . . , σn−1 can be restricted to distinct automorhisms
of F (θ). Consequently,

n ≤ |Gal(F (θ)/F )| = [F (θ) : F ] ≤ deg f = n

so [F (θ) : F ] = n. It follows that E = F (θ) and (since f must be the minimal polynomial
of θ over F ) f is irreducible over F . ♣

A finite abelian group is a direct product of cyclic groups (or direct sum, in additive
notation; see (4.6.4)). It is reasonable to expect that our analysis of cyclic Galois groups
will help us to understand abelian Galois groups.

6.7.4 Definition

A Kummer extension is a finite Galois extension with an abelian Galois group.

6.7.5 Theorem

Let E/F be a finite extension, and assume that F contains a primitive nth root of unity ω.
Then E/F is a Kummer extension whose Galois group G has an exponent dividing n if
and only if there are nonzero elements a1, . . . , ar ∈ F such that E is a splitting field of
(Xn − a1) · · · (Xn − ar) over F . [For short, E = F ( n

√
a1, . . . ,

n
√

ar).]
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Proof. We do the “if” part first. As in (6.7.1), we have E = F (θ1, . . . , θr) where θi is a
root of Xn − ai. If σ ∈ Gal(E/F ), then σ maps θi to another root of Xn − ai, so

σ(θi) = ωui(σ)θi.

Thus if σ and τ are any two automorphisms in the Galois group G, then στ = τσ and G
is abelian. [The ui are integers, so ui(σ) + ui(τ) = ui(τ) + ui(σ).] Now restrict attention
to the extension F (θi). By (6.7.2), the Galois group of F (θi)/F has order dividing n, so
σn(θi) = θi for all i = 1, . . . , r. Thus σn is the identity, and the exponent of G is a divisor
of n.

For the “only if” part, observe that since G is a finite abelian group, it is a direct
product of cyclic groups C1, . . . , Cr. For each i = 1, . . . , r, let Hi be the product of the
Cj for j �= i; by (1.5.3), Hi � G. We have G/Hi

∼= Ci by the first isomorphism theorem.
(Consider the projection mapping x1 · · ·xr → xi ∈ Ci.) Let Ki be the fixed field of Hi. By
the fundamental theorem, Ki/F is a Galois extension and its Galois group is isomorphic
to G/Hi, hence isomorphic to Ci. Thus Ki/F is a cyclic extension of degree di = |Ci|,
and di is a divisor of n. (Since G is the direct product of the Ci, some element of G has
order di, so di divides the exponent of G and therefore divides n.) We want to apply
(6.7.3) with n replaced by di, and this is possible because F contains a primitive dth

i root
of unity, namely ωn/di . We conclude that Ki = F (θi), where θdi

i is a nonzero element
bi ∈ F . But θn

i = θ
di(n/di)
i = b

n/di

i = ai ∈ F .
Finally, in the Galois correspondence, the intersection of the Hi is paired with the

composite of the Ki, which is F (θ1, . . . , θr); see Section 6.3, Problem 7. But
⋂r

i=1 Hi = 1,
so E = F (θ1, . . . , θr), and the result follows. ♣

Problems For Section 6.7

1. Find the Galois group of the extension Q(
√

2,
√

3,
√

5,
√

7) [the splitting field of (X2−
2)(X2 − 3)(X2 − 5)(X2 − 7)] over Q.

2. Suppose that E is a splitting field for f(X) = Xn − a over F , a �= 0, but we drop
the second assumption in (6.7.1) that F contains a primitive nth root of unity. Is it
possible for the Galois group of E/F to be cyclic?

3. Let E be a splitting field for Xn − a over F , where a �= 0, and assume that the
characteristic of F does not divide n. Show that E contains a primitive nth root of
unity.

We now assume that E is a splitting field for f(X) = Xp − c over F , where c �= 0, p is
prime and the characteristic of F is not p. Let ω be a primitive pth root of unity in E (see
Problem 3). Assume that f is not irreducible over F , and let g be an irreducible factor
of f of degree d, where 1 ≤ d < p. Let θ be a root of g in E.

4. Let g0 be the product of the roots of g. (Since g0 is ± the constant term of g, g0 ∈ F .)
Show that gp

0 = θdp = cd.

5. Since d and p are relatively prime, there are integers a and b such that ad + bp = 1.
Use this to show that if Xp − c is not irreducible over F , then it must have a root
in F .
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6. Continuing Problem 5, show that if Xp− c is not irreducible over F , then E = F (ω).

7. Continuing Problem 6, show that if Xp − c is not irreducible over F , then Xp − c
splits over F if and only if F contains a primitive pth root of unity.

Let E/F be a cyclic Galois extension of prime degree p, where p is the characteristic of F .
Let σ be a generator of G = Gal(E/F ). It is a consequence of Hilbert’s Theorem 90 (see
the Problems for Section 7.3) that there is an element θ ∈ E such that σ(θ) = θ + 1.
Prove the Artin-Schreier theorem:

8. E = F (θ).

9. θ is a root of f(X) = Xp −X − a for some a ∈ F .

10. f is irreducible over F (hence a �= 0).

Conversely, Let F be a field of prime characteristic p, and let E be a splitting field for
f(X) = Xp −X − a, where a is a nonzero element of F .

11. If θ is any root of f in E, show that E = F (θ) and that f is separable.

12. Show that every irreducible factor of f has the same degree d, where d = 1 or p. Thus
if d = 1, then E = F , and if d = p, then f is irreducible over F .

13. If f is irreducible over F , show that the Galois group of f is cyclic of order p.

6.8 Solvability By Radicals

6.8.1 Definitions and Comments

We wish to solve the polynomial equation f(X) = 0, f ∈ F [X], under the restriction that
we are only allowed to perform ordinary arithmetic operations (addition, subtraction,
multiplication and division) on the coefficients, along with extraction of nth roots (for
any n = 2, 3, . . . ). A sequence of operations of this type gives rise to a sequence of
extensions

F ≤ F (α1) ≤ F (α1, α2) ≤ · · · ≤ F (α1, . . . , αr) = E

where αn1
1 ∈ F and αni

i ∈ F (α1, . . . , αi−1), i = 2, . . . , r. Equivalently, we have

F = F0 ≤ F1 ≤ · · · ≤ Fr = E

where Fi = Fi−1(αi) and αni
i ∈ Fi−1, i = 1, . . . , r. We say that E is a radical extension

of F . It is convenient (and legal) to assume that n1 = · · · = nr = n. (Replace each ni

by the product of all the ni. To justify this, observe that if αj belongs to a field L, then
αmj ∈ L, m = 2, 3, . . . .) Unless otherwise specified, we will make this assumption in all
hypotheses, conclusions and proofs.

We have already seen three explicit classes of radical extensions: cyclotomic, cyclic
and Kummer. (In the latter two cases, we assume that the base field contains a primitive
nth root of unity.)
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We say that the polynomial f ∈ F [X] is solvable by radicals if the roots of f lie in
some radical extension of F , in other words, there is a radical extension E of F such
that f splits over E.

Since radical extensions are formed by successively adjoining nth roots, it follows that
the transitivity property holds: If E is a radical extension of F and L is a radical extension
of E, then L is a radical extension of F .

A radical extension is always finite, but it need not be normal or separable. We
will soon specialize to characteristic 0, which will force separability, and we can achieve
normality by taking the normal closure (see (3.5.11)).

6.8.2 Proposition

Let E/F be a radical extension, and let N be the normal closure of E over F . Then N/F
is also a radical extension.

Proof. E is obtained from F by successively adjoining α1, . . . , αr, where αi is the nth

root of an element in Fi−1. On the other hand, N is obtained from F by adjoining
not only the αi, but their conjugates αi1, . . . , αim(i). For any fixed i and j, there is an
automorphism σ ∈ Gal(N/F ) such that σ(αi) = αij (see (3.2.3), (3.5.5) and (3.5.6)).
Thus

αn
ij = σ(αi)n = σ(αn

i )

and since αn
i belongs to F (α1, . . . , αi−1), it follows from (3.5.1) that σ(αn

i ) belongs to
the splitting field Ki of

∏i−1
j=1min(αj , F ) over F . [Take K1 = F , and note that since

αn
1 = b1 ∈ F , we have σ(αn

1 ) = σ(b1) = b1 ∈ F. Alternatively, observe that by (3.5.1), σ
must take a root of Xn − b1 to another root of this polynomial.] Thus we can display N
as a radical extension of F by successively adjoining

α11, . . . , α1m(1), . . . , αr1, . . . , αrm(r). ♣

6.8.3 Preparation for the Main Theorem

If F has characteristic 0, then a primitive nth root of unity ω can be adjoined to F to
reach an extension F (ω); see (6.5.1). If E is a radical extension of F and F = F0 ≤
F1 ≤ · · · ≤ Fr = E, we can replace Fi by Fi(ω), i = 1, . . . , r, and E(ω) will be a radical
extension of F . By (6.8.2), we can pass from E(ω) to its normal closure over F . Here is
the statement we are driving at:

Let f ∈ F [X], where F has characteristic 0. If f is solvable by radicals, then there is
a Galois radical extension N = Fr ≥ · · · ≥ F1 ≥ F0 = F containing a splitting field K for
f over F , such that each intermediate field Fi, i = 1, . . . , r, contains a primitive nth root
of unity ω. We can assume that F1 = F (ω) and for i > 1, Fi is a splitting field for Xn−bi

over Fi−1. [(Look at the end of the proof of (6.8.2).] By (6.5.1), F1/F is a cyclotomic
(Galois) extension, and by (6.7.2), each Fi/Fi−1, i = 2, . . . , r is a cyclic (Galois) extension.

We now do some further preparation. Suppose that K is a splitting field for f over F ,
and that the Galois group of K/F is solvable, with

Gal(K/F ) = H0 � H1 � · · · � Hr = 1
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with each Hi−1/Hi abelian. By the fundamental theorem, we have the corresponding
sequence of fixed fields

F = K0 ≤ K1 ≤ · · · ≤ Kr = K

with Ki/Ki−1 Galois and Gal(Ki/Ki−1) isomorphic to Hi−1/Hi. Let us adjoin a primitive
nth root of unity ω to each Ki, so that we have fields Fi = Ki(ω) with

F ≤ F0 ≤ F1 ≤ · · · ≤ Fr.

We take n = |Gal(K/F )|. Since Fi can be obtained from Fi−1 by adjoining everything
in Ki \Ki−1, we have

Fi = Fi−1Ki = KiFi−1

the composite of Fi−1 and Ki, i = 1, . . . , r. We may now apply Theorem 6.2.2. In the
diamond diagram of Figure 6.2.1, at the top of the diamond we have Fi, on the left Ki,
on the right Fi−1, and on the bottom Ki ∩ Fi−1 ⊇ Ki−1 (see Figure 6.8.1). We conclude
that Fi/Fi−1 is Galois, with a Galois group isomorphic to a subgroup of Gal(Ki/Ki−1).
Since Gal(Ki/Ki−1) ∼= Hi−1/Hi, it follows that Gal(Fi/Fi−1) is abelian. Moreover, the
exponent of this Galois group divides the order of H0, which coincides with the size of
Gal(K/F ). (This explains our choice of n.)

Fi

����������

����������

Ki Fi−1

Ki ∩ Fi−1

����������

���������

Ki−1

Figure 6.8.1

6.8.4 Galois’ Solvability Theorem

Let K be a splitting field for f over F , where F has characteristic 0. Then f is solvable
by radicals if and only if the Galois group of K/F is solvable.

Proof. If f is solvable by radicals, then as in (6.8.3), we have

F = F0 ≤ F1 ≤ · · · ≤ Fr = N
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where N/F is Galois, N contains a splitting field K for f over F , and each Fi/Fi−1 is
Galois with an abelian Galois group. By the fundamental theorem, the corresponding
sequence of subgroups is

1 = Hr � Hr−1 � · · · � H0 = G = Gal(N/F )

with each Hi−1/Hi abelian. Thus G is solvable, and since

Gal(K/F ) ∼= Gal(N/F )Gal(N/K)

[map Gal(N/F )→ Gal(K/F ) by restriction; the kernel is Gal(N/K)], Gal(K/F ) is solv-
able by (5.7.4).

Conversely, assume that Gal(K/F ) is solvable. Again as in (6.8.3), we have

F ≤ F0 ≤ F1 ≤ · · · ≤ Fr

where K ≤ Fr, each Fi contains a primitive nth root of unity, with n = |Gal(K/F )|,
and Gal(Fi/Fi−1) is abelian with exponent dividing n for all i = 1, . . . , r. Thus each
Fi/Fi−1 is a Kummer extension whose Galois group has an exponent dividing n. By
(6.7.5) (or (6.5.1) for the case i = 1), each Fi/Fi−1 is a radical extension. By transitivity
(see (6.8.1)), Fr is a radical extension of F . Since K ⊆ Fr, f is solvable by radicals. ♣

6.8.5 Example

Let f(X) = X5 − 10X4 + 2 over the rationals. The Galois group of f is S5, which is not
solvable. (See Section 6.6, Problem 3 and Section 5.7, Problem 5.) Thus f is not solvable
by radicals.

There is a fundamental idea that needs to be emphasized. The significance of Galois’
solvability theorem is not simply that there are some examples of bad polynomials. The
key point is there is no general method for solving a polynomial equation over the rationals
by radicals, if the degree of the polynomial is 5 or more. If there were such a method,
then in particular it would work on Example (6.8.5), a contradiction.

Problems For Section 6.8

In the exercises, we will sketch another classical problem, that of constructions with ruler
and compass. In Euclidean geometry, we start with two points (0, 0) and (1, 0), and we
are allowed the following constructions.

(i) Given two points P and Q, we can draw a line joining them;

(ii) Given a point P and a line L, we can draw a line through P parallel to L;

(iii) Given a point P and a line L, we can draw a line through P perpendicular to L;

(iv) Given two points P and Q, we can draw a circle with center at P passing through Q;

(v) Let A, and similarly B, be a line or a circle. We can generate new points, called
constructible points, by forming the intersection of A and B. If (c, 0) (equivalently
(0, c)) is a constructible point, we call c a constructible number. It follows from (ii)
and (iii) that (a, b) is a constructible point iff a and b are constructible numbers. It
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can be shown that every rational number is constructible, and that the constructible
numbers form a field. Now in (v), the intersection of A and B can be found by
ordinary arithmetic plus at worst the extraction of a square root. Conversely, the
square roof of any nonnegative constructible number can be constructed. Therefore
c is constructible iff there are real fields Q = F0 ≤ F1 · · · ≤ Fr such that c ∈ Fr and
each [Fi : Fi−1] is 1 or 2. Thus if c is constructible, then c is algebraic over Q and
[Q(c) : Q] is a power of 2.

1. (Trisecting the angle) If it is possible to trisect any angle with ruler and compass, then
in particular a 60 degree angle can be trisected, so that α = cos 20◦ is constructible.
Using the identity

ei3θ = cos 3θ + i sin 3θ = (cos θ + i sin θ)3,

reach a contradiction.
2. (Duplicating the cube) Show that it is impossible to construct, with ruler and compass,

a cube whose volume is exactly 2. (The side of such a cube would be 3
√

2.)
3. (Squaring the circle) Show that if it were possible to construct a square with area π,

then π would be algebraic over Q. (It is known that π is transcendental over Q.)
To construct a regular n-gon, that is, a regular polygon with n sides, n ≥ 3,we must
be able to construct an angle of 2π/n; equivalently, cos 2π/n must be a constructible
number. Let ω = ei2π/n, a primitive nth root of unity.

4. Show that [Q(ω) : Q(cos 2π/n)] = 2.
5. Show that if a regular n-gon is constructible, then the Euler phi function ϕ(n) is a

power of 2.
Conversely, assume that ϕ(n) is a power of 2.

6. Show that Gal(Q(cos 2π/n)/Q) is a 2-group, that is, a p-group with p = 2.
7. By Section 5.7, Problem 7, every nontrivial finite p-group has a subnormal series in

which every factor has order p. Use this (with p = 2) to show that a regular n-gon is
constructible.

8. ¿From the preceding, a regular n-gon is constructible if and only if ϕ(n) is a power
of 2. Show that an equivalent condition is that n = 2sq1 · · · qt, s, t = 0, 1, . . . , where
the qi are distinct Fermat primes, that is, primes of the form 2m +1 for some positive
integer m.

9. Show that if 2m + 1 is prime, then m must be a power of 2. The only known Fermat
primes have m = 2a, where a = 0, 1, 2, 3, 4 (232 + 1 is divisible by 641). [The key
point is that if a is odd, then X + 1 divides Xa + 1 in Z[X]; the quotient is Xa−1 −
Xa−2 + · · · −X + 1 (since a− 1 is even).]
Let F be the field of rational functions in n variables e1, . . . , en over a field K with
characteristic 0, and let f(X) = Xn − e1X

n−1 + e2X
n−2 − · · ·+ (−1)nen ∈ F [X]. If

α1, . . . , αn are the roots of f in a splitting field over F , then the ei are the elementary
symmetric functions of the αi. Let E = F (α1, . . . , αn), so that E/F is a Galois
extension and G = Gal(E/F ) is the Galois group of f .

10. Show that G ∼= Sn.
11. What can you conclude from Problem 10 about solvability of equations?
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6.9 Transcendental Extensions

6.9.1 Definitions and Comments

An extension E/F such that at least one α ∈ E is not algebraic over F is said to be
transcendental. An idea analogous to that of a basis of an arbitrary vector space V turns
out to be profitable in studying transcendental extensions. A basis for V is a subset of V
that is linearly independent and spans V . A key result, whose proof involves the Steinitz
exchange, is that if {x1, . . . , xm} spans V and S is a linearly independent subset of V ,
then |S| ≤ m. We are going to replace linear independence by algebraic independence
and spanning by algebraic spanning. We will find that every transcendental extension has
a transcendence basis, and that any two transcendence bases for a given extension have
the same cardinality. All these terms will be defined shortly. The presentation in the
text will be quite informal; I believe that this style best highlights the strong connection
between linear and algebraic independence. An indication of how to formalize the devel-
opment is given in a sequence of exercises. See also Morandi, “Fields and Galois Theory”,
pp. 173–182.

Let E/F be an extension. The elements t1, . . . , tn ∈ E are algebraically dependent
over F (or the set {t1, . . . , tn} is algebraically dependent over F ) if there is a nonzero
polynomial f ∈ F [X1, . . . , Xn] such that f(t1, . . . , tn) = 0; otherwise the ti are alge-
braically independent over F . Algebraic independence of an infinite set means algebraic
independence of every finite subset.

Now if a set T spans a vector space V , then each x in V is a linear combination
of elements of T , so that x depends on T in a linear fashion. Replacing “linear” by
“algebraic”, we say that the element t ∈ E depends algebraically on T over F if t is
algebraic over F (T ), the field generated by T over F (see Section 3.1, Problem 1). We
say that T spans E algebraically over F if each t in E depends algebraically on T over F ,
that is, E is an algebraic extension of F (T ). A transcendence basis for E/F is a subset
of E that is algebraically independent over F and spans E algebraically over F . (From
now on, we will frequently regard F as fixed and drop the phrase “over F”.)

6.9.2 Lemma

If S is a subset of E, the following conditions are equivalent.

(i) S is a transcendence basis for E/F ;

(ii) S is a maximal algebraically independent set;

(iii) S is a minimal algebraically spanning set.

Thus by (ii), S is a transcendence basis for E/F iff S is algebraically independent and E
is algebraic over F (S).

Proof. (i) implies (ii): If S ⊂ T where T is algebraically independent, let u ∈ T \ S.
Then u cannot depend on S algebraically (by algebraic independence of T ), so S cannot
span E algebraically.
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(ii) implies (i): If S does not span E algebraically, then there exists u ∈ E such
that u does not depend algebraically on S. But then S∪{u} is algebraically independent,
contradicting maximality of S.

(i) implies (iii): If T ⊂ S and T spans E algebraically, let u ∈ S \ T . Then u depends
algebraically on T , so T ∪ {u}, hence S, is algebraically dependent, a contradiction.

(iii) implies (i): If S is algebraically dependent, then some u ∈ S depends algebraically
on T = S \ {u}. But then T spans E algebraically, a contradiction. ♣

6.9.3 Proposition

Every transcendental extension has a transcendence basis.

Proof. The standard argument via Zorn’s lemma that an arbitrary vector space has a
maximal linearly independent set (hence a basis) shows that an arbitrary transcendental
extension has a maximal algebraically independent set, which is a transcendence basis
by (6.9.2). ♣

For completeness, if E/F is an algebraic extension, we can regard ∅ as a transcendence
basis.

6.9.4 The Steinitz Exchange

If {x1, . . . , xm} spans E algebraically and S ⊆ E is algebraically independent, then
|S| ≤ m.

Proof. Suppose that S has at least m + 1 elements y1, . . . , ym+1. Since the xi span E
algebraically, y1 depends algebraically on x1, . . . , xm. The algebraic dependence relation
must involve at least one xi, say x1. (Otherwise, S would be algebraically dependent.)
Then x1 depends algebraically on y1, x2, . . . , xm, so {y1, x2, . . . , xm} spans E algebraically.
We claim that for every i = 1, . . . , m, {y1, . . . , yi, xi+1, . . . , xm} spans E algebraically. We
have just proved the case i = 1. If the result holds for i, then yi+1 depends algebraically on
{y1, . . . , yi, xi+1, . . . , xm}, and the dependence relation must involve at least one xj , say
xi+1 for convenience. (Otherwise, S would be algebraically dependent.) Then xi+1 de-
pends algebraically on y1, . . . , yi+1, xi+2, . . . , xm, so {y1, . . . , yi+1, xi+2, . . . , xm} spans E
algebraically, completing the induction.

Since there are more y’s than x’s, eventually the x’s disappear, and y1, . . . , ym span E
algebraically. But then ym+1 depends algebraically on y1, . . . , ym, contradicting the alge-
braic independence of S. ♣

6.9.5 Corollary

Let S and T be transcendence bases of E. Then either S and T are both finite or they
are both infinite; in the former case, |S| = |T |.

Proof. Assume that one of the transcendence bases, say T , is finite. By (6.9.4), |S| ≤ |T |,
so S is finite also. By a symmetrical argument, |T | ≤ |S|, so |S| = |T |. ♣
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6.9.6 Proposition

If S and T are arbitrary transcendence bases for E, then |S| = |T |. [The common value
is called the transcendence degree of E/F .]

Proof. By (6.9.5), we may assume that S and T are both infinite. Let T = {yi : i ∈ I}.
If x ∈ S, then x depends algebraically on finitely many elements yi1 , . . . , yir

in T . Define
I(x) to be the set of indices {i1, . . . , ir}. It follows that I = ∪{I(x) : x ∈ S}. For if j
belongs to none of the I(x), then we can remove yj from T and the resulting set will still
span E algebraically, contradicting (6.9.2) part (iii). Now an element of ∪{I(x) : x ∈ S}
is determined by selecting an element x ∈ S and then choosing an index in I(x). Since
I(x) is finite, we have |I(x)| ≤ ℵ0. Thus

|I| = |
⋃
{I(x) : x ∈ S}| ≤ |S|ℵ0 = |S|

since S is infinite. Thus |T | ≤ |S|. By symmetry, |S| = |T |. ♣

6.9.7 Example

Let E = F (X1, . . . , Xn) be the field of rational functions in the variables X1, . . . , Xn

with coefficients in F . If f(X1, . . . , Xn) = 0, then f is the zero polynomial, so S =
{X1, . . . , Xn} is an algebraically independent set. Since E = F (S), E is algebraic over
F (S) and therefore S spans E algebraically. Thus S is a transcendence basis.

Now let T = {Xu1
1 , . . . , Xun

n }, where u1, . . . , un are arbitrary positive integers. We
claim that T is also a transcendence basis. As above, T is algebraically independent.
Moreover, each Xi is algebraic over F (T ). To see what is going on, look at a concrete
example, say T = {X5

1 , X3
2 , X4

3}. If f(Z) = Z3−X3
2 ∈ F (T )[Z], then X2 is a root of f , so

X2, and similarly each Xi, is algebraic over F (T ). By (3.3.3), E is algebraic over F (T ),
so T is a transcendence basis.

Problems For Section 6.9

1. If S is an algebraically independent subset of E over F , T spans E algebraically over F ,
and S ⊆ T , show that there is a transcendence basis B such that S ⊆ B ⊆ T .

2. Show that every algebraically independent set can be extended to a transcendence
basis, and that every algebraically spanning set contains a transcendence basis.

3. Prove carefully, for an extension E/F and a subset T = {t1, . . . , tn} ⊆ E, that the
following conditions are equivalent.

(i) T is algebraically independent over F ;

(ii) For every i = 1, . . . , n, ti is transcendental over F (T \ {ti});
(iii) For every i = 1, . . . , n, ti is transcendental over F (t1, . . . , ti−1) (where the state-

ment for i = 1 is that t1 is transcendental over F ).

4. Let S be a subset of E that is algebraically independent over F . Show that if t ∈ E \S,
then t is transcendental over F (S) if and only if S ∪ {t} is algebraically independent
over F .
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[Problems 3 and 4 suggest the reasoning that is involved in formalizing the results of this
section.]

5. Let F ≤ K ≤ E, with S a subset of K that is algebraically independent over F , and T
a subset of E that is algebraically independent over K. Show that S∪T is algebraically
independent over F , and S ∩ T = ∅.

6. Let F ≤ K ≤ E, with S a transcendence basis for K/F and T a transcendence basis
for E/K. Show that S∪T is a transcendence basis for E/F . Thus if tr deg abbreviates
transcendence degree, then by Problem 5,

tr deg(E/F ) = tr deg(K/F ) + tr deg(E/K).

7. Let E be an extension of F , and T = {t1, . . . , tn} a finite subset of E. Show that
F (T ) is F -isomorphic to the rational function field F (X1, . . . , Xn) if and only if T is
algebraically independent over F .

8. An algebraic function field F in one variable over K is a field F/K such that there
exists x ∈ F transcendental over K with [F : K(x)] < ∞. If z ∈ F , show that z is
transcendental over K iff [F : K(z)] <∞.

9. Find the transcendence degree of the complex field over the rationals.

Appendix To Chapter 6

We will develop a method for calculating the discriminant of a polynomial and apply the
result to a cubic. We then calculate the Galois group of an arbitrary quartic.

A6.1 Definition

If x1, . . . , xn (n ≥ 2) are arbitrary elements of a field, the Vandermonde determinant of
the xi is

det V =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x1 x2 · · · xn

...
xn−1

1 xn−1
2 · · · xn−1

n

∣∣∣∣∣∣∣∣∣

A6.2 Proposition

det V =
∏
i<j

(xj − xi).

Proof. detV is a polynomial h of degree 1 + 2 + · · · + (n − 1) = ( n
2 ) in the variables

x1, . . . , xn, as is g =
∏

i<j(xj − xi). If xi = xj for i < j, then the determinant is 0, so
by the remainder theorem (2.5.2), each factor of g, hence g itself, divides h. Since h and
g have the same degree, h = cg for some constant c. Now look at the leading terms of h
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and g, i.e., those terms in which xn appears to as high a power as possible, and subject
to this constraint, xn−1 appears to as high a power as possible, etc. In both cases, the
leading term is x2x

2
3 · · ·xn−1

n , and therefore c must be 1. (For this step it is profitable to
regard the xi as abstract variables in a polynomial ring. Then monomials xr1

1 · · ·xrn
n with

different sequences (r1, . . . , rn) of exponents are linearly independent.) ♣

A6.3 Corollary

If f is a polynomial in F [X] with roots x1, . . . , xn in some splitting field over F , then the
discriminant of f is (det V )2.

Proof. By definition of the discriminant D of f (see 6.6.1), we have D = ∆2 where
∆ = ±detV . ♣

A6.4 Computation of the Discriminant

The square of the determinant of V is det(V V t), which is the determinant of




1 1 · · · 1
x1 x2 · · · xn

...
xn−1

1 xn−1
2 · · · xn−1

n







1 x1 · · · xn−1
1

1 x2 · · · xn−1
2

...
1 xn . . . xn−1

n




and this in turn is
∣∣∣∣∣∣∣∣∣

t0 t1 · · · tn−1

t1 t2 · · · tn
...

tn−1 tn · · · t2n−2

∣∣∣∣∣∣∣∣∣

where the power sums tr are given by

t0 = n, tr =
n∑

i=1

xr
i , r ≥ 1.

We must express the power sums in terms of the coefficients of the polynomial f . This
will involve, improbably, an exercise in differential calculus. We have

F (z) =
n∏

i=1

(1− xiz) =
n∑

i=0

ciz
i with c0 = 1;

the variable z ranges over real numbers. Take the logarithmic derivative of F to obtain

F ′(z)
F (z)

=
d

dz
log F (z) =

n∑
i=1

−xi

1− xiz
= −

n∑
i=1

∞∑
j=0

xj+1
i zj = −

∞∑
j=0

tj+1z
j .
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Thus

F ′(z) + F (z)
∞∑

j=0

tj+1z
j = 0,

that is,

n∑
i=1

iciz
i−1 +

n∑
i=0

ciz
i
∞∑

j=1

tjz
j−1 = 0.

Equating powers of zr−1, we have, assuming that n ≥ r,

rcr + c0tr + c1tr−1 + · · ·+ cr−1t1 = 0; (1)

if r > n, the first summation does not contribute, and we get

tr + c1tr−1 + · · ·+ cntr−n = 0. (2)

Our situation is a bit awkward here because the roots of F (z) are the reciprocals of the xi.
The xi are the roots of

∑n
i=0 aiz

i where ai = cn−i (so that an = c0 = 1). The results can
be expressed as follows.

A6.5 Newton’s Identities

If f(X) =
∑n

i=0 aiX
i (with an = 1) is a polynomial with roots x1, . . . , xn, then the power

sums ti satisfy

tr + an−1tr−1 + · · ·+ an−r+1t1 + ran−r = 0, r ≤ n (3)

and

tr + an−1tr−1 + · · ·+ a0tr−n = 0, r > n. (4)

A6.6 The Discriminant of a Cubic

First consider the case where the X2 term is missing, so that f(X) = X3 + pX + q. Then
n = t0 = 3, a0 = q, a1 = p, a2 = 0 (a3 = 1). Newton’s identities yield

t1 + a2 = 0, t1 = 0; t2 + a2t1 + 2a1 = 0, t2 = −2p;
t3 + a2t2 + a1t1 + 3a0 = 0, t3 = −3a0 = −3q;
t4 + a2t3 + a1t2 + a0t1 = 0, t4 = −p(−2p) = 2p2

D =

∣∣∣∣∣∣
3 0 −2p
0 −2p −3q
−2p −3q 2p2

∣∣∣∣∣∣
= −4p3 − 27q2.

We now go to the general case f(X) = X3 + aX2 + bX + c. The quadratic term can be
eliminated by the substitution Y = X + a

3 . Then

f(X) = g(Y ) = (Y − a

3
)3 + a(Y − a

3
)2 + b(Y − a

3
) + c
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= Y 3 + pY + q where p = b− a2

3
, q =

2a3

27
− ba

3
+ c.

Since the roots of f are translations of the roots of g by the same constant, the two
polynomials have the same discriminant. Thus D = −4p3 − 27q2, which simplifies to

D = a2(b2 − 4ac)− 4b3 − 27c2 + 18abc.

We now consider the Galois group of a quartic X4 + aX3 + bX2 + cX + d, assumed
irreducible and separable over a field F . As above, the translation Y = X + a

4 eliminates
the cubic term without changing the Galois group, so we may assume that f(X) =
X4 + qX2 + rX + s. Let the roots of f be x1, x2, x3, x4 (distinct by separability), and
let V be the four group, realized as the subgroup of S4 containing the permutations
(1, 2)(3, 4), (1, 3)(2, 4) and (1, 4)(2, 3), along with the identity. By direct verification (i.e.,
brute force), V � S4. If G is the Galois group of f (regarded as a group of permutations
of the roots), then V ∩G � G by the second isomorphism theorem.

A6.7 Lemma

F(V ∩G) = F (u, v, w), where

u = (x1 + x2)(x3 + x4), v = (x1 + x3)(x2 + x4), w = (x1 + x4)(x2 + x3).

Proof. Any permutation in V fixes u, v and w, so GF (u, v, w) ⊇ V ∩ G. If σ ∈ G
but σ /∈ V ∩ G then (again by direct verification) σ moves at least one of u, v, w. For
example, (1,2,3) sends u to w, and (1,2) sends v to w. Thus σ /∈ GF (u, v, w). Therefore
GF (u, v, w) = V ∩ G, and an application of the fixed field operator F completes the
proof. ♣

A6.8 Definition

The resolvent cubic of f(X) = X4 + qX2 + rX + s is g(X) = (X − u)(X − v)(X − w).
To compute g, we must express its coefficients in terms of q, r and s. First note that

u− v = −(x1−x4)(x2−x3), u−w = −(x1−x3)(x2−x4), v−w = −(x1−x2)(x3−x4).
Thus f and g have the same discriminant. Now

X4 + qX2 + rX + s = (X2 + kX + l)(X2 − kX + m)

where the appearance of k and −k is explained by the missing cubic term. Equating
coefficients gives l + m− k2 = q, k(m− l) = r, lm = s. Solving the first two equations for
m and adding, we have 2m = k2 + q + r/k, and solving the first two equations for l and
adding, we get 2l = k2 + q − r/k. Multiply the last two equations and use lm = s to get
a cubic in k2, namely

k6 + 2qk4 + (q2 − 4s)k2 − r2 = 0.

(This gives a method for actually finding the roots of a quartic.) To summarize,

f(X) = (X2 + kX + l)(X2 − kX + m)
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where k2 is a root of

h(X) = X3 + 2qX2 + (q2 − 4s)X − r2.

We claim that the roots of h are simply −u,−v,−w. For if we arrange the roots of f so
that x1 and x2 are the roots of X2 +kX + l, and x3 and x4 are the roots of X2−kX +m,
then k = −(x1 + x2),−k = −(x3 + x4), so −u = k2. The argument for −v and −w
is similar. Therefore to get g from h, we simply change the sign of the quadratic and
constant terms, and leave the linear term alone.

A6.9 An Explicit Formula For The Resolvent Cubic:

g(X) = X3 − 2qX2 + (q2 − 4s)X + r2.

We need some results concerning subgroups of Sn, n ≥ 3.

A6.10 Lemma

(i) An is generated by 3-cycles, and every 3-cycle is a commutator.

(ii) The only subgroup of Sn with index 2 is An.

Proof. For the first assertion of (i), see Section 5.6, Problem 4. For the second assertion
of (i), note that

(a, b)(a, c)(a, b)−1(a, c)−1 = (a, b)(a, c)(a, b)(a, c) = (a, b, c).

To prove (ii), let H be a subgroup of Sn with index 2; H is normal by Section 1.3,
Problem 6. Thus Sn/H has order 2, hence is abelian. But then by (5.7.2), part 5,
S′n ≤ H, and since An also has index 2, the same argument gives S′n ≤ An. By (i),
An ≤ S′n, so An = S′n ≤ H. Since An and H have the same finite number of elements
n!/2, it follows that H = An. ♣

A6.11 Proposition

Let G be a subgroup of S4 whose order is a multiple of 4, and let V be the four group
(see the discussion preceding A6.7). Let m be the order of the quotient group G/(G∩V ).
Then

(a) If m = 6, then G = S4;

(b) If m = 3, then G = A4;

(c) If m = 1, then G = V ;

(d) If m = 2, then G = D8 or Z4 or V ;

(e) If G acts transitively on {1, 2, 3, 4}, then the case G = V is excluded in (d). [In all
cases, equality is up to isomorphism.]
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Proof. If m = 6 or 3, then since |G| = m|G∩ V |, 3 is a divisor of |G|. By hypothesis, 4 is
also a divisor, so |G| is a multiple of 12. By A6.10 part (ii), G must be S4 or A4. But

|S4/(S4 ∩ V )| = |S4/V | = 24/4 = 6

and

|A4/(A4 ∩ V )| = |A4/V | = 12/4 = 3

proving both (a) and (b). If m = 1, then G = G∩V , so G ≤ V , and since |G| is a multiple
of 4 and |V | = 4, we have G = V , proving (c).

If m = 2, then |G| = 2|G ∩ V |, and since |V | = 4, |G ∩ V | is 1, 2 or 4. If it is 1,
then |G| = 2 × 1 = 2, contradicting the hypothesis. If it is 2, then |G| = 2 × 2 = 4, and
G = Z4 or V (the only groups of order 4). Finally, assume |G∩V | = 4, so |G| = 8. But a
subgroup of S4 of order 8 is a Sylow 2-subgroup, and all such subgroups are conjugate and
therefore isomorphic. One of these subgroups is D8, since the dihedral group of order 8
is a group of permutations of the 4 vertices of a square. This proves (d).

If m = 2, G acts transitively on {1, 2, 3, 4} and |G| = 4, then by the orbit-stabilizer
theorem, each stabilizer subgroup G(x) is trivial (since there is only one orbit, and its size
is 4). Thus every permutation in G except the identity moves every integer 1, 2, 3, 4. Since
|G∩V | = 2, G consists of the identity, one other element of V , and two elements not in V ,
which must be 4-cycles. But a 4-cycle has order 4, so G must be cyclic, proving (e). ♣

A6.12 Theorem

Let f be an irreducible separable quartic, with Galois group G. Let m be the order of
the Galois group of the resolvent cubic. Then:

(a) If m = 6, then G = S4;

(b) If m = 3, then G = A4;

(c) If m = 1, then G = V ;

(d) If m = 2 and f is irreducible over L = F (u, v, w), where u, v and w are the roots of
the resolvent cubic, then G = D8;

(e) If m = 2 and f is reducible over L, then G = Z4.

Proof. By A6.7 and the fundamental theorem, [G : G ∩ V ] = [L : F ]. Now the roots of
the resolvent cubic g are distinct, since f and g have the same discriminant. Thus L is
a splitting field of a separable polynomial, so L/F is Galois. Consequently, [L : F ] = m
by (3.5.9). To apply (A6.11), we must verify that |G| is a multiple of 4. But this follows
from the orbit-stabilizer theorem: since G acts transitively on the roots of f , there is only
one orbit, of size 4 = |G|/|G(x)|. Now (A6.11) yields (a), (b) and (c), and if m = 2, then
G = D8 or Z4.

To complete the proof, assume that m = 2 and G = D8. Thinking of D8 as the
group of symmetries of a square with vertices 1,2,3,4, we can take D8 to be generated by
(1, 2, 3, 4) and (2, 4), with V = {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. The elements of V
are symmetries of the square, hence belong to D8; thus V = G∩V = Gal(E/L) by (A6.7).
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[E is a splitting field for f over F .] Since V is transitive, for each i, j = 1, 2, 3, 4, i �= j,
there is an L-automorphism τ of E such that τ(xi) = xj . Applying τ to the equation
h(xi) = 0, where h is the minimal polynomial of xi over L, we see that each xj is a root
of h, and therefore f | h. But h | f by minimality of h, so h = f , proving that f is
irreducible over L.

Finally, assume m = 2 and G = Z4, which we take as {1, (1, 2, 3, 4), (1, 3)(2, 4),
(1, 4, 3, 2)}. Then G ∩ V = {1, (1, 3)(2, 4)}, which is not transitive. Thus for some i �= j,
xi and xj are not roots of the same irreducible polynomial over L. In particular, f is
reducible over L. ♣

A6.13 Example

Let f(X) = X4 + 3X2 + 2X + 1 over Q, with q = 3, r = 2, s = 1. The resolvent cubic is,
by (A6.9), g(X) = X3−6X2 +5X +4. To calculate the discriminant of g, we can use the
general formula in (A6.6), or compute g(X + 2) = (X + 2)3− 6(X + 2)2 + 5(X + 2) + 4 =
X3 − 7X − 2. [The rational root test gives irreducibility of g and restricts a factorization
of f to (X2 + aX ± 1)(X2 − aX ± 1), a ∈ Z, which is impossible. Thus f is irreducible
as well.] We have D(g) = −4(−7)3 − 27(−2)2 = 1264, which is not a square in Q. Thus
m = 6, so the Galois group of f is S4.


