
Chapter 10

Introducing Homological
Algebra

Roughly speaking, homological algebra consists of (A) that part of algebra that is funda-
mental in building the foundations of algebraic topology, and (B) areas that arise naturally
in studying (A).

10.1 Categories

We have now encountered many algebraic structures and maps between these structures.
There are ideas that seem to occur regardless of the particular structure under consider-
ation. Category theory focuses on principles that are common to all algebraic systems.

10.1.1 Definitions and Comments

A category C consists of objects A, B, C, . . . and morphisms f : A → B (where A and B
are objects). If f : A→ B and g : B → C are morphisms, we have a notion of composition,
in other words, there is a morphism gf = g ◦ f : A → C, such that the following axioms
are satisfied.

(i) Associativity : If f : A→ B, g : B → C, h : C → D, then (hg)f = h(gf);

(ii) Identity : For each object A there is a morphism 1A : A → A such that for each
morphism f : A→ B, we have f1A = 1Bf = f .

A remark for those familiar with set theory: For each pair (A, B) of objects, the
collection of morphisms f : A→ B is required to be a set rather than a proper class.

We have seen many examples:

1. Sets: The objects are sets and the morphisms are functions.

2. Groups: The objects are groups and the morphisms are group homomorphisms.

3. Rings: The objects are rings and the morphisms are ring homomorphisms.
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4. Fields: The objects are fields and the morphisms are field homomorphisms [= field
monomorphisms; see (3.1.2)].

5. R-mod: The objects are left R-modules and the morphisms are R-module homomor-
phisms. If we use right R-modules, the corresponding category is called mod-R.

6. Top: The objects are topological spaces and the morphisms are continuous maps.

7. Ab: The objects are abelian groups and the the morphisms are homomorphisms from
one abelian group to another.

A morphism f : A→ B is said to be an isomorphism if there is an inverse morphism
g : B → A, that is, gf = 1A and fg = 1B . In Sets, isomorphisms are bijections, and
in Top, isomorphisms are homeomorphisms. For the other examples, an isomorphism is
a bijective homomorphism, as usual.

In the category of sets, a function f is injective iff f(x1) = f(x2) implies x1 = x2. But
in an abstract category, we don’t have any elements to work with; a morphism f : A→ B
can be regarded as simply an arrow from A to B. How do we generalize injectivity to an
arbitrary category? We must give a definition that does not depend on elements of a set.
Now in Sets, f is injective iff it has a left inverse; equivalently, f is left cancellable, i.e.
if fh1 = fh2, then h1 = h2. This is exactly what we need, and a similar idea works for
surjectivity, since f is surjective iff f is right cancellable, i.e., h1f = h2f implies h1 = h2.

10.1.2 Definitions and Comments

A morphism f is said to be monic if it is left cancellable, epic if it is right cancellable.
In all the categories listed in (10.1.1), a morphism f is monic iff f is injective as a

mapping of sets. If f is surjective, then it is epic, but the converse can fail. See Problems 2
and 7–10 for some of the details.

In the category R-mod, the zero module {0} has the property that for any R-
module M , there is a unique module homomorphism from M to {0} and a unique module
homomorphism from {0} to M . Here is a generalization of this idea.

10.1.3 Definitions and Comments

Let A be an object in a category. If for every object B, there is a unique morphism from
A to B, then A is said to be an initial object. If for every object B there is a unique
morphism from B to A, then A is said to be a terminal object. A zero object is both
initial and terminal.

In the category of sets, there is only one initial object, the empty set. The terminal
objects are singletons {x}, and consequently there are no zero objects. In the category of
groups, the trivial group consisting of the identity alone is a zero object. We are going
to prove that any two initial objects are isomorphic, and similarly for terminal objects.
This will be a good illustration of the duality principle, to be discussed next.

10.1.4 Duality

If C is a category, the opposite or dual category Cop has the same objects as C. The
morphisms are those of C with arrows reversed; thus f : A → B is a morphism of Cop
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iff f : B → A is a morphism of C. If the composition gf is permissible in C, then fg is
permissible in Cop. To see how the duality principle works, let us first prove that if A
and B are initial objects of C, then A and B are isomorphic. There is a unique morphism
f : A → B and a unique morphism g : B → A. But 1A : A → A and 1B : B → B, and it
follows that gf = 1A and fg = 1B . The point is that we need not give a separate proof
that any two terminal objects are isomorphic. We have just proved the following:

If A and B are objects in a category C, and for every object D of C, there is a unique
morphism from A to D and there is a unique morphism from B to D, then A and B are
isomorphic.

Our statement is completely general; it does not involve the properties of any specific
category. If we go through the entire statement and reverse all the arrows, equivalently,
if we replace C by Cop, we get:

If A and B are objects in a category C, and for every object D of C, there is a unique
morphism from D to A and there is a unique morphism from D to B, then A and B are
isomorphic.

In other words, any two terminal objects are isomorphic. If this is unconvincing, just
go through the previous proof, reverse all the arrows, and interchange fg and gf . We say
that initial and terminal objects are dual. Similarly, monic and epic morphisms are dual.

If zero objects exist in a category, then we have zero morphisms as well. If Z is a
zero object and A and B arbitrary objects, there is a unique f : A → Z and a unique
g : Z → B. The zero morphism from A to B, denoted by 0AB , is defined as gf , and it
is independent of the particular zero object chosen (Problem 3). Note that since a zero
morphism goes through a zero object, it follows that for an arbitrary morphism h, we
have h0 = 0h = 0.

10.1.5 Kernels and Cokernels

If f : A → B is an R-module homomorphism, then its kernel is, as we know, {x ∈
A : f(x) = 0}. The cokernel of f is defined as the quotient group B/ im(f). Thus f
is injective iff its kernel is 0, and f is surjective iff its cokernel is 0. We will generalize
these notions to an arbitrary category that contains zero objects. The following diagram
indicates the setup for kernels.

C
i �� A

f �� B

D

h

���������
g

��

0

���������

We take C to be the kernel of the module homomorphism f , with i the inclusion map. If
fg = 0, then the image of g is contained in the kernel of f , so that g actually maps into C.
Thus there is a unique module homomorphism h : D → C such that g = ih; simply take
h(x) = g(x) for all x. The key to the generalization is to think of the kernel as the
morphism i. This is reasonable because C and i essentially encode the same information.
Thus a kernel of the morphism f : A→ B is a morphism i : C → A such that:

(1) fi = 0.
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(2) If g : D → A and fg = 0, then there is a unique morphism h : D → C such that
g = ih.

Thus any map killed by f can be factored through i.
If we reverse all the arrows in the above diagram and change labels for convenience,

we get an appropriate diagram for cokernels.

A
f ��

0 ���
��

��
��

B

g

��

p �� C

h����
��

��
�

D

We take p to be the canonical map of B onto the cokernel of f , so that C = B/ im(f). If
gf = 0, then the image of f is contained in the kernel of g, so by the factor theorem, there
is a unique homomorphism h such that g = hp. In general, a cokernel of a morphism
f : A→ B is a morphism p : B → C such that:

(1′) pf = 0.

(2′) If g : B → D and gf = 0, then there is a unique morphism h : C → D such that
g = hp.

Thus any map that kills f can be factored through p.
Since going from kernels to cokernels simply involves reversing arrows, kernels and

cokernels are dual. Note, however, that in an arbitrary category with 0, kernels and
cokernels need not exist for arbitrary morphisms. But every monic has a kernel and (by
duality) every epic has a cokernel; see Problem 5.

Problems For Section 10.1

1. Show that in any category, the identity and inverse are unique.

2. In the category of rings, the inclusion map i : Z→ Q is not surjective. Show, however,
that i is epic.

3. Show that the zero morphism 0AB is independent of the particular zero object chosen
in the definition.

4. Show that a kernel must be monic (and by duality, a cokernel must be epic). [In
the definition of kernel, we can assume that i is monic in (1) of (10.1.5), and drop
the uniqueness assumption on h. For i monic forces uniqueness of h, by definition of
monic. Conversely, uniqueness of h forces i to be monic, by Problem 4.]

5. Show that in a category with 0, every monic has a kernel and every epic has a cokernel.

6. Show that if i : C → A and j : D → A are kernels of f : A → B, then C and D are
isomorphic. (By duality, a similar statement holds for cokernels.)

7. Let f : A→ B be a group homomorphism with kernel K, and assume f not injective,
so that K �= {1}. Let g be the inclusion map of K into A. Find a homomorphism h
such that fg = fh but g �= h.
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8. It follows from Problem 7 that in the category of groups, f monic is equivalent to f
injective as a mapping of sets, and a similar proof works in the category of modules.
Why does the argument fail in the category of rings?

9. Continue from Problem 8 and give a proof that does work in the category of rings.
10. Let f : M → N be a module homomorphism with nonzero cokernel, so that f is not

surjective. Show that f is not epic; it follows that epic is equivalent to surjective in
the category of modules.

10.2 Products and Coproducts

We have studied the direct product of groups, rings, and modules. It is natural to try
to generalize the idea to an arbitrary category, and a profitable approach is to forget
(temporarily) the algebraic structure and just look at the cartesian product A =

∏
i Ai

of a family of sets Ai, i ∈ I. The key property of a product is that if we are given maps
fi from a set S into the factors Ai, we can lift the fi into a single map f : S →

∏
i Ai.

The commutative diagram below will explain the terminology.

Ai

S
f

��

fi

		�������
A

pi

��

(1)

In the picture, pi is the projection of A onto the ith factor Ai. If fi(x) = ai, i ∈ I, we
take f(x) = (ai, i ∈ I). It follows that pi ◦ f = fi for all i; this is what we mean by lifting
the fi to f . (Notice that there is only one possible lifting, i.e., f is unique.) If A is the
direct product of groups Ai and the fi are group homomorphisms, then f will also be a
group homomorphism. Similar statements can be made for rings and modules. We can
now give a generalization to an arbitrary category.

10.2.1 Definition

A product of objects Ai in a category C is an object A, along with morphisms pi : A→ Ai,
with the following universal mapping property. Given any object S of C and morphisms
fi : S → Ai, there is a unique morphism f : S → A such that pif = fi for all i.

In a definition via a universal mapping property, we use a condition involving mor-
phisms, along with a uniqueness statement, to specify an object and morphisms associated
with that object. We have already seen this idea in connection with kernels and cokernels
in the previous section, and in the construction of the tensor product in Section 8.7.

Not every category has products (see Problems 1 and 2), but if they do exist, they are
essentially unique. (The technique for proving uniqueness is also essentially unique.)

10.2.2 Proposition

If (A, pi, i ∈ I) and (B, qi, i ∈ I) are products of the objects Ai, then A and B are
isomorphic.
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Proof. We use the above diagram (1) with S = B and fi = qi to get a morphism f : B → A
such that pif = qi for all i. We use the diagram with S = A, A replaced by B, pi replaced
by qi, and fi = pi, to get a morphism h : A→ B such that qih = pi. Thus

pifh = qih = pi and qihf = pif = qi.

But

pi1A = pi and qi1B = qi

and it follows from the uniqueness condition in (10.2.1) that fh = 1A and hf = 1B .
Formally, we are using the diagram two more times, once with S = A and fi = pi, and
once with S = B, A replaced by B, pi replaced by qi, and fi = qi. Thus A and B are
isomorphic. ♣

The discussion of diagram (1) indicates that in the categories of groups, abelian groups,
rings, and R-modules, products coincide with direct products. But a category can have
products that have no connection with a cartesian product of sets; see Problems 1 and 2.
Also, in the category of torsion abelian groups (torsion means that every element has
finite order), products exist but do not coincide with direct products; see Problem 5.

The dual of a product is a coproduct, and to apply duality, all we need to do is reverse
all the arrows in (1). The following diagram results.

Mj

fj

����
��

��
��

ij

��
N M

f




(2)

We have changed the notation because it is now profitable to think about modules. Sup-
pose that M is the direct sum of the submodules Mj , and ij is the inclusion map of Mj

into M . If the fj are module homomorphisms out of the factors Mj and into a module
N , the fj can be lifted to a single map f . If xj1 ∈Mj1, . . . , xjr ∈Mjr, we take

f(xj1 + · · ·+ xjr) = fj1(xj1) + · · ·+ fjr(xjr).

Lifting means that f◦ij = fj for all j. We can now give the general definition of coproduct.

10.2.3 Definition

A coproduct of objects Mj in a category C is an object M , along with morphisms
ij : Mj → M , with the following universal mapping property. Given any object N of C
and morphisms fj : Mj → N , there is a unique morphism f : M → N such that fij = fj

for all j
Exactly as in (10.2.2), any two coproducts of a given collection objects are isomorphic.
The discussion of diagram (2) shows that in the category of R-modules, the coproduct

is the direct sum, which is isomorphic to the direct product if there are only finitely many
factors. In the category of sets, the coproduct is the disjoint union. To explain what
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this means, suppose we have sets Aj , j ∈ J . We can disjointize the Aj by replacing Aj

by A′j = {(x, j) : x ∈ Aj}. The coproduct is A =
⋃

j∈J A′j , with morphisms ij : Aj → A
given by ij(aj) = (aj , j). If for each j we have fj : Aj → B, we define f : A → B by
f(aj , j) = fj(aj).

The coproduct in the category of groups will be considered in the exercises.

Problems For Section 10.2

1. Let S be a preordered set, that is, there is a reflexive and transitive relation ≤ on S.
Then S can be regarded as a category whose objects are the elements of S. If x ≤ y,
there is a unique morphism from x to y, and if x �≤ y, there are no morphisms from
x to y. Reflexivity implies that there is an identity morphism on x, and transitivity
implies that associativity holds. Show that a product of the objects xi, if it exists,
must be a greatest lower bound of the xi. The greatest lower bound will be unique
(not just essentially unique) if S is a partially ordered set, so that ≤ is antisymmetric.

2. Continuing Problem 1, do products always exist?

3. Continuing Problem 2, what can be said about coproducts?

4. If A is an abelian group, let T (A) be the set of torsion elements of A. Show that T (A)
is a subgroup of A.

5. Show that in the category of torsion abelian groups, the product of groups Ai is
T (

∏
Ai), the subgroup of torsion elements of the direct product.

6. Assume that we have a collection of groups Gi, pairwise disjoint except for a common
identity 1. The free product of the Gi (notation ∗iGi) consists of all words (finite
sequences) a1 · · · an where the aj belong to distinct groups. Multiplication is by con-
catenation with cancellation. For example, with the subscript j indicating membership
in Gj ,

(a1a2a3a4)(b4b2b6b1b3) = a1a2a3(a4b4)b2b6b1b3

and if b4 = a−1
4 , this becomes a1a2a3b2b6b1b3. The empty word is the identity, and

inverses are calculated in the usual way, as with free groups (Section 5.8). In fact a
free group on S is a free product of infinite cyclic groups, one for each element of S.
Show that in the category of groups, the coproduct of the Gi is the free product.

7. Suppose that products exist in the category of finite cyclic groups, and suppose that
the cyclic group C with generator a is the product of the cyclic groups C1 and C2 with
generators a1 and a2 respectively. Show that the projections p1 and p2 associated with
the product of C1 and C2 are surjective.

8. By Problem 7, we may assume without loss of generality that pi(a) = ai, i = 1, 2.
Show that for some positive integer n, na1 = a1 and na2 = 0. [Take f1 : C1 → C1 to
be the identity map, and let f2 : C1 → C2 be the zero map (using additive notation).
Lift f1 and f2 to f : C1 → C.]

9. Exhibit groups C1 and C2 that can have no product in the category of finite cyclic
groups.
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10.3 Functors

We will introduce this fundamental concept with a concrete example. Let HomR(M, N)
be the set of R-module homomorphisms from M to N . As pointed out at the beginning
of Section 4.4, HomR(M, N) is an abelian group. It will also be an R-module if R is a
commutative ring, but not in general. We are going to look at HomR(M, N) as a function
of N , with M fixed.

10.3.1 The Functor HomR(M, )

We are going to construct a mapping from the category of R-modules to the category of
abelian groups. Since a category consists of both objects and morphisms, our map will
have two parts:

(i) Associate with each R-module N the abelian group HomR(M, N).
(ii) Associate with each R-module homomorphism h : N → P a homomorphism h∗ from

the abelian group HomR(M, N) to the abelian group HomR(M, P ). The following
diagram suggests how h∗ should be defined.

M
f �� N

h �� P

Take

h∗(f) = hf.

Note that if h is the identity on N , then h∗ is the identity on HomR(M, N).

Now suppose we have the following situation:

M
f �� N

g �� P
h �� Q

Then (hg)∗(f) = (hg)f = h(gf) = h∗(g∗(f)), so that

(hg)∗ = h∗g∗ (= h∗ ◦ g∗).

To summarize, we have a mapping F called a functor that takes an object A in a category C
to an object F (A) in a category D; F also takes a morphism h : A→ B in C to a morphism
h∗ = F (h) : F (A)→ F (B) in D. The key feature of F is the functorial property :

F (hg) = F (h)F (g) and F (1A) = 1F (A).

Thus a functor may be regarded as a homomorphism of categories.

10.3.2 The Functor HomR( , N)

We now look at HomR(M, N) as a function of M , with N fixed. Here is an appropriate
diagram:

K
g �� L

h �� M
f �� N
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If M is an R-module, we take F (M) to be the abelian group HomR(M, N). If h : L→M
is an R-module homomorphism, we take h∗ = F (h) to be a homomorphism from the
abelian group HomR(M, N) to the abelian group HomR(L, N), given by

h∗(f) = fh.

It follows that

(hg)∗(f) = f(hg) = (fh)g = g∗(fh) = g∗(h∗(f))

hence

(hg)∗ = g∗h∗,

and if h is the identity on M , then h∗ is the identity on HomR(M, N).
Thus F does not quite obey the functorial property; we have F (hg) = F (g)F (h)

instead of F (hg) = F (h)F (g). However, F is a legal functor on the opposite category
of R-mod. In the literature, HomR( , N) is frequently referred to as a contravariant
functor on the original category R-mod, and HomR(M, ) as a covariant functor on
R-mod.

If we replace the category of R-modules by an arbitrary category, we can still define
functors (called hom functors) as in (10.3.1) and (10.3.2). But we must replace the
category of abelian groups by the category of sets.

10.3.3 The Functors M ⊗R and ⊗R N

To avoid technical complications, we consider tensor products of modules over a commu-
tative ring R. First we discuss the tensor functor T = M ⊗R The relevant diagram is
given below.

N
g �� P

f �� Q

If N is an R-module, we take T (N) = M ⊗R N . If g : N → P is an R-module homomor-
phism, we set T (g) = 1M ⊗ g : M ⊗R N → M ⊗R P , where 1M is the identity mapping
on M [Recall that (1M ⊗ g)(x⊗ y) = x⊗ g(y).] Then

T (fg) = 1M ⊗ fg = (1M ⊗ f)(1M ⊗ g) = T (f)T (g)

and

T (1N ) = 1T (N)

so T is a functor from R-mod to R-mod.
The functor S = ⊗R N is defined in a symmetrical way. If M is an R-module, then

S(M) = M⊗RN , and if f : L→M is an R-module homomorphism, then S(f) : L⊗RN →
M ⊗R N is given by S(f) = f ⊗ 1N .
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10.3.4 Natural Transformations

Again we will introduce this idea with an explicit example. The diagram below summarizes
the data.

F (A)
tA ��

Ff

��

G(A)

Gf

��
F (B)

tB

�� G(B)

(1)

We start with abelian groups A and B and a homomorphism f : A → B. We apply
the forgetful functor, also called the underlying functor U . This is a fancy way of saying
that we forget the algebraic structure and regard A and B simply as sets, and f as
a mapping between sets. Now we apply the free abelian group functor F to produce
F (A) = FU(A), the free abelian group with A as basis (and similarly for F (B)). Thus
F (A) is the direct sum of copies of Z, one copy for each a ∈ A. The elements of F (A)
can be represented as

∑
a n(a)x(a), n(a) ∈ Z, where x(a) is the member of the direct

sum that is 1 in the ath position and 0 elsewhere. [Similarly, we represent elements of B
as

∑
b n(b)y(b).] The mapping f determines a homomorphism Ff : F (A) → F (B), via∑

n(a)x(a)→
∑

n(a)y(f(a)).
Now let G be the identity functor, so that G(A) = A, G(B) = B, Gf = f . We define

an abelian group homomorphism tA : F (A) → A by tA(
∑

n(a)x(a)) =
∑

n(a)a, and
similarly we define tB(

∑
n(b)y(b)) =

∑
n(b)b. (Remember that we began with abelian

groups A and B.) The diagram (1) is then commutative, because

ftA(x(a)) = f(a) and tB [(Ff)(x(a))] = tB(y(f(a)) = f(a).

To summarize, we have two functors, F and G from the category C to the category D.
(In this case, C = D = the category of abelian groups.) For all objects A, B ∈ C and
morphisms f : A → B, we have morphisms tA : F (A) → G(A) and tB : F (B) → G(B)
such that the diagram (1) is commutative. We say that t is a natural transformation from
F to G. If for every object C ∈ C, tC is an isomorphism (not the case in this example), t
is said to be a natural equivalence.

The key intuitive point is that the process of going from F (A) to G(A) is “natural”
in the sense that as we move from an object A to an object B, the essential features of
the process remains the same.

Problems For Section 10.3

1. Let F : S → T , where S and T are preordered sets. If we regard S and T as categories,
as in Section 10.2, Problem 1, what property must F have in order to be a functor?

2. A group may be regarded as a category with a single object 0, with a morphism for
each element g ∈ G. The composition of two morphisms is the morphism associated
with the product of the elements. If F : G → H is a function from a group G to a
group H, and we regard G and H as categories, what property must F have in order
to be a functor?
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3. We now look at one of the examples that provided the original motivation for the
concept of a natural transformation. We work in the category of vector spaces (over a
given field) and linear transformations. If V is a vector space, let V ∗ be the dual space,
that is, the space of linear maps from V to the field of scalars, and let V ∗∗ be the dual
of V ∗. If v ∈ V , let v ∈ V ∗∗ be defined by v(f) = f(v), f ∈ V ∗. The mapping from v
to v is a linear transformation, and in fact an isomorphism if V is finite-dimensional.

Now suppose that f : V → W and g : W → X are linear transformations. Define
f∗ : W ∗ → V ∗ by f∗(α) = αf , α ∈W ∗. Show that (gf)∗ = f∗g∗.

4. The double dual functor takes a vector space V into its double dual V ∗∗, and takes a
linear transformation f : V → W to f∗∗ : V ∗∗ → W ∗∗, where f∗∗(v∗∗) = v∗∗f∗. Show
that the double dual functor is indeed a functor.

5. Now consider the following diagram.

V
tV ��

f

��

V ∗∗

f∗∗

��
W

tW

�� W ∗∗

We take tV (v) = v, and similarly for tW . Show that the diagram is commutative, so
that t is a natural transformation from the identity functor to the double dual functor.

In the finite-dimensional case, we say that there is a natural isomorphism between a
vector space and its double dual. “Natural” means coordinate-free in the sense that it
is not necessary to choose a specific basis. In contrast, the isomorphism of V and its
single dual V ∗ is not natural.

6. We say that D is a subcategory of C if the objects of D are also objects of C, and
similarly for morphisms (and composition of morphisms). The subcategory D is full if
every C-morphism f : A → B, where A and B are objects of D (the key point) is also
a D-morphism. Show that the category of groups is a full subcategory of the category
of monoids.

7. A functor F : C → D induces a map from C-morphisms to D-morphisms; f : A → B
is mapped to Ff : FA → FB. If this map is injective for all objects A, B of C, we
say that F is faithful. If the map is surjective for all objects A, B of C, we say that F
is full.

(a) The forgetful functor from groups to sets assigns to each group its underlying
set, and to each group homomorphism its associated map of sets. Is the forgetful
functor faithful? full?

(b) We can form the product C ×D of two arbitrary categories; objects in the product
are pairs (A, A′) of objects, with A ∈ C and A′ ∈ D. A morphism from (A, A′) to
(B, B′) is a pair (f, g), where f : A → B and g : A′ → B′. The projection functor
from C × D to C takes (A, A′) to A and (f, g) to f . Is the projection functor
faithful? full?
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10.4 Exact Functors

10.4.1 Definitions and Comments

We are going to investigate the behavior of the hom and tensor functors when presented
with an exact sequence. We will be working in the categories of modules and abelian
groups, but exactness properties can be studied in the more general setting of abelian
categories, which we now describe very informally.

In any category C, let HomC(A, B) (called a “hom set”) be the set of morphisms in C
from A to B. [As remarked in (10.1.1), the formal definition of a category requires that
HomC(A, B) be a set for all objects A and B. The collection of all objects of C is a class
but need not be a set.] For C to be an abelian category, the following conditions must be
satisfied.

1. Each hom set is an abelian group.

2. The distributive laws f(g + h) = fg + fh, (f + g)h = fh + gh hold.

3. C has a zero object.

4. Every finite set of objects has a product and a coproduct. (The existence of finite
coproducts can be deduced from the existence of finite products, along with the re-
quirements listed so far.)

5. Every morphism has a kernel and a cokernel.

6. Every monic is the kernel of its cokernel.

7. Every epic is the cokernel of its kernel.

8. Every morphism can be factored as an epic followed by a monic.

Exactness of functors can be formalized in an abelian category, but we are going to
return to familiar ground by assuming that each category that we encounter is R-mod
for some R. When R = Z, we have the category of abelian groups.

10.4.2 Left Exactness of HomR(M, )

Suppose that we have a short exact sequence

0 �� A
f �� B

g �� C �� 0 (1)

We apply the covariant hom functor F = HomR(M, ) to the sequence, dropping the last
term on the right. We will show that the sequence

0 �� FA
Ff �� FB

Fg �� FC (2)

is exact. A functor that behaves in this manner is said to be left exact.
We must show that the transformed sequence is exact at FA and FB. We do this in

three steps.

(a) Ff is monic.
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Suppose that (Ff)(α) = fα = 0. Since f is monic (by exactness of the sequence (1)),
α = 0 and the result follows.

(b) im Ff ⊆ ker Fg.

If β ∈ im Ff , then β = fα for some α ∈ HomR(M, A). By exactness of (1), im f ⊆
ker g, so gβ = gfα = 0α = 0. Thus β ∈ ker g.

(c) ker Fg ⊆ im Ff .

If β ∈ kerFg, then gβ = 0, with β ∈ HomR(M, B). Thus if y ∈ M , then β(y) ∈
ker g = im f , so β(y) = f(x) for some x = α(y) ∈ A. Note that x is unique since f is
monic, and α ∈ HomR(M, A). Thus β = fα ∈ im Ff . ♣

10.4.3 Left Exactness of HomR( , N)

The contravariant hom functor G = HomR( , N) is a functor on the opposite category, so
before applying it to the sequence (1), we must reverse all the arrows. Thus left-exactness
of G means that the sequence

0 �� GC
Gg �� GB

Gf �� GA (3)

is exact. Again we have three steps.

(a) Gg is monic.

If (Gg)α = αg = 0, then α = 0 since g is epic.

(b) im Gg ⊆ kerGf .

If β ∈ im Gg, then β = αg for some α ∈ HomR(C, N). Thus (Gf)β = βf = αgf = 0,
so β ∈ kerGf .

(c) ker Gf ⊆ im Gg.

Let β ∈ HomR(B, N) with β ∈ ker Gf , that is, βf = 0. If y ∈ C, then since g is epic,
we have y = g(x) for some x ∈ B. If g(x1) = g(x2), then x1 − x2 ∈ ker g = im f , hence
x1− x2 = f(z) for some z ∈ A. Therefore β(x1)− β(x2) = β(f(z)) = 0, so it makes sense
to define α(y) = β(x). Then α ∈ HomR(C, N) and αg = β, that is, (Gg)α = β. ♣

10.4.4 Right Exactness of the Functors M⊗R and ⊗RN

If we apply the functor H = M ⊗R to the exact sequence

0 �� A
f �� B

g �� C �� 0

[see (1) of (10.4.2)], we will show that the sequence

HA
Hf �� HB

Hg �� HC �� 0 (4)

is exact. A similar result holds for ⊗R N . A functor that behaves in this way is said to
be right exact. Once again, there are three items to prove.
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(i) Hg is epic.

An element of M ⊗ C is of the form t =
∑

i xi ⊗ yi with xi ∈ M and yi ∈ C.
Since g is epic, there exists zi ∈ B such that g(zi) = yi. Thus (1 ⊗ g)(

∑
i xi ⊗ zi) =∑

i xi ⊗ g(zi) = t.

(ii) im Hf ⊆ kerHg.

This is a brief computation: (1⊗ g)(1⊗ f) = 1⊗ gf = 1⊗ 0 = 0.

(iii) ker Hg ⊆ im Hf .

By (ii), the kernel of 1⊗ g contains L = im(1⊗ f), so by the factor theorem, there is a
homomorphism g : (M ⊗R B)/L→M ⊗R C such that g(m⊗ b + L) = m⊗ g(b), m ∈M ,
b ∈ B.

Let π be the canonical map of M ⊗R B onto (M ⊗R B)/L. Then gπ(m ⊗ b) =
g(m⊗ b + L) = m⊗ g(b), so

gπ = 1⊗ g.

If we can show that g is an isomorphism, then

ker(1⊗ g) = ker(gπ) = kerπ = L = im(1⊗ f)

and we are finished. To show that g is an isomorphism, we will display its inverse. First
let h be the bilinear map from M×C to (M⊗R B)/L given by h(m, c) = m⊗b+L, where
g(b) = c. [Such a b exists because g is epic. If g(b) = g(b′) = c, then b− b′ ∈ ker g = im f ,
so b− b′ = f(a) for some a ∈ A. Then m⊗ b−m⊗ b′ = m⊗ f(a) = (1⊗ f)(m⊗ a) ∈ L,
and h is well-defined.] By the universal mapping property of the tensor product, there is
a homomorphism h : M ⊗R C → (M ⊗R B)/L such that

h(m⊗ c) = h(m, c) = m⊗ b + L,where g(b) = c.

But g : (M ⊗R B)/L→M ⊗R C and

g(m⊗ b + L) = m⊗ g(b) = m⊗ c.

Thus h is the inverse of g. ♣

10.4.5 Definition

A functor that is both left and right exact is said to be exact. Thus an exact functor is
one that maps exact sequences to exact sequences. We have already seen one example,
the localization functor (Section 8.5, Problems 4 and 5).

If we ask under what conditions the hom and tensor functors become exact, we are
led to the study of projective, injective and flat modules, to be considered later in the
chapter.
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Problems For Section 10.4

In Problems 1–3, we consider the exact sequence (1) of (10.4.2) with R = Z, so that we
are in the category of abelian groups. Take A = Z, B = Q, the additive group of rational
numbers, and C = Q/Z, the additive group of rationals mod 1. Let f be inclusion, and g
the canonical map. We apply the functor F = HomR(M, ) with M = Z2. [We will omit
the subscript R when R = Z, and simply refer to Hom(M, ).]

1. Show that Hom(Z2,Q) = 0.
2. Show that Hom(Z2,Q/Z) �= 0.
3. Show that Hom(Z2, ) is not right exact.

In Problems 4 and 5, we apply the functor G = Hom( , N) to the above exact
sequence, with N = Z.

4. Show that Hom(Q,Z) = 0.
5. Show that Hom( ,Z) is not right exact.

Finally, in Problem 6 we apply the functor H = M ⊗ to the above exact sequence,
with M = Z2.

6. Show that Z2 ⊗ (and similarly ⊗ Z2) is not left exact.
7. Refer to the sequences (1) and (2) of (10.4.2). If (2) is exact for all possible R-modules

M , show that (1) is exact.
8. State an analogous result for the sequence (3) of (10.4.3), and indicate how the result

is proved.

10.5 Projective Modules

Projective modules are direct summands of free modules, and are therefore images of
natural projections. Free modules are projective, and projective modules are sometimes
but not always free. There are many equivalent ways to describe projective modules, and
we must choose one of them as the definition. In the diagram below and the definition
to follow, all maps are R-module homomorphisms. The bottom row is exact, that is, g is
surjective.

P
h

����
��

��
��

f

��
M g

�� N �� 0

10.5.1 Definition

The R-module P is projective if given f : P → N , and g : M → N surjective, there
exists h : P →M (not necessarily unique) such that the diagram is commutative, that is,
f = gh. We sometimes say that we have “lifted” f to h.

The definition may look obscure, but the condition described is a familiar property of
free modules.
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10.5.2 Proposition

Every free module is projective.

Proof. Let S be a basis for the free module P . By (4.3.6), f is determined by its behavior
on basis elements s ∈ S. Since g is surjective, there exists a ∈ M such that g(a) = f(s).
Take h(s) = a and extend by linearity from S to P . Since f = gh on S, the same must
be true on all of P . ♣

Here is the list of equivalences.

10.5.3 Theorem

The following conditions on the R-module P are equivalent.

(1) P is projective.
(2) The functor HomR(P, ) is exact.
(3) Every short exact sequence 0→M → N → P → 0 splits.
(4) P is a direct summand of a free module.

Proof. (1) is equivalent to (2). In view of the left exactness of F = HomR(P, ) (see
(10.4.2)), (2) says that if g : M → N is surjective, then so is Fg : FM → FN . But Fg
maps h : P →M to gh : P → N , so what we must prove is that for an arbitrary morphism
f : P → N , there exists h : P → M such that gh = f . This is precisely the definition of
projectivity of P .

(2) implies (3). Let 0→M → N → P → 0 be a short exact sequence, with g : N → P
(necessarily surjective). Since P is projective, we have the following diagram.

P
h

����
��

��
��

1

��
M g

�� P �� 0

Thus there exists h : P → N such that gh = 1P , which means that the exact sequence
splits (see (4.7.1)).

(3) implies (4). By (4.3.6), P is a quotient of a free module, so there is an exact
sequence 0 → M → N → P → 0 with N free. By (3), the sequence splits, so by (4.7.4),
P is a direct summand of N .

(4) implies (1). Let P be a direct summand of the free module F , and let π be the
natural projection of F on P ; see the diagram below.

F
π ��

h

��

P

f

��
M g

�� N �� 0

Given f : P → N , we have fπ : F → N , so by (10.5.2) there exists h : F → M such that
fπ = gh. If h′ is the restriction of h to P , then f = gh′. ♣



10.5. PROJECTIVE MODULES 17

10.5.4 Corollary

The direct sum P = ⊕Pj is projective if and only if each Pj is projective.

Proof. If P is a direct summand of a free module, so is each Pj , and therefore the Pj

are projective by (4) of (10.5.3). Conversely, assume that each Pj is projective. Let
f : P → N and g : M → N , with g surjective. If ij is the inclusion map of Pj into P ,
then fij : Pj → N can be lifted to hj : Pj → M such that fij = ghj . By the universal
mapping property of direct sum (Section 10.2), there is a morphism h : P →M such that
hij = hj for all j. Thus fij = ghij for every j, and it follows from the uniqueness part of
the universal mapping property that f = gh. ♣

If we are searching for projective modules that are not free, the following result tells
us where not to look.

10.5.5 Theorem

A module M over a principal ideal domain R is projective if and only if it is free.

Proof. By (10.5.2), free implies projective. If M is projective, then by (4) of (10.5.3), M
is a direct summand of a free module. In particular, M is a submodule of a free module,
hence is free by (4.6.2) and the discussion following it. ♣

10.5.6 Examples

1. A vector space over a field k is a free k-module, hence is projective.

2. A finite abelian group G is not a projective Z-module, because it is not free. [If g ∈ G
and n = |G|, then ng = 0, so g can never be part of a basis.]

3. If p and q are distinct primes, then R = Zpq = Zp ⊕ Zq. We claim that Zp and Zq

are projective but not free R-modules. (As in Example 2, they are not projective
Z-modules.) This follows from (4) of (10.5.3) and the fact that any ring R is a free
R-module (with basis {1}).

Problems For Section 10.5

In Problems 1–5, we are going to prove the projective basis lemma, which states that an R-
module P is projective if and only if there are elements xi ∈ P (i ∈ I) and homomorphisms
fi : P → R such that for every x ∈ P , fi(x) = 0 for all but finitely many i and

x =
∑

i

fi(x)xi.

The set of xi’s is referred to as the projective basis.

1. To prove the “only if” part, let P be a direct summand of the free module F with basis
{ei}. Take f to be the inclusion map of P into F , and π the natural projection of F
onto P . Show how to define the fi and xi so that the desired results are obtained.
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2. To prove the “if” part, let F be a free module with basis {ei, i ∈ I}, and define
π : F → P by π(ei) = xi. Define f : P → F by f(x) =

∑
i fi(x)ei. Show that πf is the

identity on P .

3. Continuing Problem 2, show that P is projective.

4. Assume that P is finitely generated by n elements. If Rn is the direct sum of n copies
of R, show that P is projective iff P is a direct summand of Rn.

5. Continuing Problem 4, show that if P is projective and generated by n elements, then
P has a projective basis with n elements.

6. Show that a module P is projective iff P is a direct summand of every module of
which it is a quotient. In other words, if P ∼= M/N , then P is isomorphic to a direct
summand of M .

7. In the definition (10.5.1) of a projective module, give an explicit example to show that
the mapping h need not be unique.

10.6 Injective Modules

If we reverse all arrows in the mapping diagram that defines a projective module, we
obtain the dual notion, an injective module. In the diagram below, the top row is exact,
that is, f is injective.

0 �� N
f ��

g

��

M

h����
��

��
��

E

10.6.1 Definition

The R-module E is injective if given g : N → E, and f : N → M injective, there exists
h : M → E (not necessarily unique) such that g = hf . We sometimes say that we have
“lifted” g to h.

As with projectives, there are several equivalent ways to characterize an injective
module.

10.6.2 Theorem

The following conditions on the R-module E are equivalent.

(1) E is injective.

(2) The functor HomR( , E) is exact.

(3) Every exact sequence 0→ E →M → N → 0 splits.

Proof. (1) is equivalent to (2). Refer to (3) of (10.4.3), (1) of (10.4.2) and the definition
of the contravariant hom functor in (10.3.2) to see what (2) says. We are to show that
if f : N → M is injective, then f∗ : HomR(M, E) → HomR(N, E) is surjective. But
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f∗(h) = hf , so given g : N → E, we must produce h : M → E such that g = hf . This is
precisely the definition of injectivity.

(2) implies (3). Let 0→ E →M → N → 0 be a short exact sequence, with f : E →M
(necessarily injective). Since E is an injective module, we have the following diagram:

0 �� E
f ��

1

��

M

g
����

��
��

��

E

Thus there exists g : M → E such that gf = 1E , which means that the exact sequence
splits.

(3) implies (1). Given g : N → E, and f : N →M injective, we form the pushout of f
and g, which is a commutative square as indicated in the diagram below.

N
f ��

g

��

M

g′

��
E

f ′
�� Q

Detailed properties of pushouts are developed in the exercises. For the present proof, all
we need to know is that since f is injective, so is f ′. Thus the sequence

0 �� E
f ′ �� Q �� Q/ im f ′ �� 0

is exact. By (3), there exists h : Q → E such that hf ′ = 1E . We now have hg′ : M → E
with hg′f = hf ′g = 1Eg = g, proving that E is injective. ♣

We proved in (10.5.4) that a direct sum of modules is projective iff each component
is projective. The dual result holds for injectives.

10.6.3 Proposition

A direct product
∏

j Ej of modules is injective iff each Ej is injective. Consequently, a
finite direct sum is injective iff each summand is injective.

Proof. If f : N →M is injective and g : N →
∏

i Ei, let gi = pig, where pi is the projection
of the direct product on Ei. Then finding h : M →

∏
i Ei such that g = hf is equivalent

to finding, for each i, a morphism hi : M → Ei such that gi = hif . [If pig = hif = pihf
for every i, then g = hf by the uniqueness part of the universal mapping property for
products.] The last assertion holds because the direct sum of finitely many modules
coincides with the direct product. ♣

In checking whether an R-module E is injective, we are given g : N → E, and
f : N → M , with f injective, and we must lift g to h : M → E with g = hf . The
next result drastically reduces the collection of maps f and g that must be examined. We
may take M = R and restrict N to a left ideal I of R, with f the inclusion map.
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10.6.4 Baer’s Criterion

The R-module E is injective if and only if every R-homomorphism f : I → E, where I is
a left ideal of R, can be extended to an R-homomorphism h : R→ E.

Proof. The “only if” part follows from the above discussion, so assume that we are given
g : N → E and f : N → M , where (without loss of generality) f is an inclusion map.
We must extend g to h : M → E. A standard Zorn’s lemma argument yields a maximal
extension g0 in the sense that the domain M0 of g0 cannot be enlarged. [The partial
ordering is (g1, D1) ≤ (g2, D2) iff D1 ⊆ D2 and g1 = g2 on D1.] If M0 = M , we are
finished, so assume x ∈ M \M0. Let I be the left ideal {r ∈ R : rx ∈ M0}, and define
h0 : I → E by h0(r) = g0(rx). By hypothesis, h0 can be extended to h′0 : R → E. Let
M1 = M0 + Rx and define h1 : M1 → E by

h1(x0 + rx) = g0(x0) + rh′0(1).

To show that h1 is well defined, assume x0 + rx = y0 + sx, with x0, y0 ∈M0 and r, s ∈ R.
Then (r − s)x = y0 − x0 ∈M0, so r − s ∈ I. Using the fact that h′0 extends h0, we have

g0(y0 − x0) = g0((r − s)x) = h0(r − s) = h′0(r − s) = (r − s)h′0(1)

and consequently, g0(x0) + rh′0(1) = g0(y0) + sh′0(1) and h1 is well defined. If x0 ∈ M0,
take r = 0 to get h1(x0) = g0(x0), so h1 is an extension of g0 to M1 ⊃M0, contradicting
the maximality of g0. We conclude that M0 = M . ♣

Since free modules are projective, we can immediately produce many examples of
projective modules. The primary source of injective modules lies a bit below the surface.

10.6.5 Definitions and Comments

Let R be an integral domain. The R-module M is divisible if each y ∈M can be divided
by any nonzero element r ∈ R, that is, there exists x ∈ M such that rx = y. For
example, the additive group of rational numbers is a divisible abelian group, as is Q/Z,
the rationals mod 1. The quotient field of any integral domain (regarded as an abelian
group) is divisible. A cyclic group of finite order n > 1 can never be divisible, since it is
not possible to divide by n. The group of integers Z is not divisible since the only possible
divisors of an arbitrary integer are ±1. It follows that a nontrivial finitely generated
abelian group, a direct sum of cyclic groups by (4.6.3), is not divisible.

It follows from the definition that a homomorphic image of a divisible module is
divisible, hence a quotient or a direct summand of a divisible module is divisible. Also, a
direct sum of modules is divisible iff each component is divisible.

10.6.6 Proposition

If R is any integral domain, then an injective R-module is divisible. If R is a PID, then
an R-module is injective if and only if it is divisible.
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Proof. Assume E is injective, and let y ∈ E, r ∈ R, r �= 0. Let I be the ideal Rr,
and define an R-homomorphism f : I → E by f(tr) = ty. If tr = 0, then since R is
an integral domain, t = 0 and f is well defined. By (10.6.4), f has an extension to an
R-homomorphism h : R→ E. Thus

y = f(r) = h(r) = h(r1) = rh(1)

so division by r is possible and E is divisible. Conversely, assume that R is a PID and
E is divisible. Let f : I → E, where I is an ideal of R. Since R is a PID, I = Rr for
some r ∈ R. We have no trouble extending the zero mapping, so assume r �= 0. Since E
is divisible, there exists x ∈ E such that rx = f(r). Define h : R → E by h(t) = tx. If
t ∈ R, then

h(tr) = trx = tf(r) = f(tr)

so h extends f , proving E injective. ♣

Problems For Section 10.6

We now describe the construction of the pushout of two module homomorphisms f : A→C
and g : A→ B; refer to Figure‘10.6.1. Take

D = (B ⊕ C)/W, where W = {(g(a),−f(a)) : a ∈ A},

and

g′(c) = (0, c) + W, f ′(b) = (b, 0) + W.

In Problems 1–6, we study the properties of this construction.

A
f ��

g

��

C

g′

�� g′′

��

B
f ′ ��

f ′′ ��

D

h ���
��

��
��

E

Figure 10.6.1

1. Show that the pushout square ACDB is commutative, that is, f ′g = g′f .

2. Suppose we have another commutative pushout square ACEB with maps f ′′ : B → E
and g′′ : C → E, as indicated in Figure 10.6.1. Define h : D → E by

h((b, c) + W ) = g′′(c) + f ′′(b).

Show that h is well defined.
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3. Show that h makes the diagram commutative, that is, hg′ = g′′ and hf ′ = f ′′.
4. Show that if h′ : D → E makes the diagram commutative, then h′ = h.

The requirements stated in Problems 1, 3 and 4 can be used to define the pushout
via a universal mapping property. The technique of (10.2.2) shows that the pushout
object D is unique up to isomorphism.

5. If f is injective, show that f ′ is also injective. By symmetry, the same is true for g
and g′.

6. If f is surjective, show that f ′ is surjective. By symmetry, the same is true for g
and g′.

Problems 7–10 refer to the dual construction, the pullback, defined as follows (see
Figure 10.6.2). Given f : A→ B and g : C → B, take

D = {(a, c) ∈ A⊕ C : f(a) = g(c)}
and

g′(a, c) = a, f ′(a, c) = c.

E
g′′



h

���
��

��
��

f ′′

��

D
g′

��

f ′

��

A

f

��
C g

�� B

Figure 10.6.2

7. Show that the pullback square DABC is commutative, that is, fg′ = gf ′.
8. If we have another commutative pullback square EABC with maps f ′′ : E → C

and g′′ : E → A, show that there is a unique h : E → D that makes the diagram
commutative, that is, g′h = g′′ and f ′h = f ′′.

9. If f is injective, show that f ′ is injective. By symmetry, the same is true for g and g′.
10. If f is surjective, show that f ′ is surjective. By symmetry, the same is true for g

and g′.
11. Let R be an integral domain with quotient field Q, and let f be an R-homomorphism

from an ideal I of R to Q. Show that f(x)/x is constant for all nonzero x ∈ I.
12. Continuing Problem 11, show that Q is an injective R-module.

10.7 Embedding into an Injective Module

We know that every module is a quotient of a projective (in fact free) module. In this
section we prove the more difficult dual statement that every module can be embedded
in an injective module. (To see that quotients and submodules are dual, reverse all the
arrows in a short exact sequence.) First, we consider abelian groups.
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10.7.1 Proposition

Every abelian group can be embedded in a divisible abelian group.

Proof. If A is an abelian group, then A is a quotient of a free abelian group F , say
A ∼= F/B. Now F is a direct sum of copies of Z, hence F can be embedded in a direct
sum D of copies ofQ, the additive group of rationals. It follows that F/B can be embedded
in D/B; the embedding is just the inclusion map. By (10.6.5), D/B is divisible, and the
result follows. ♣

10.7.2 Comments

In (10.7.1), we used Q as a standard divisible abelian group. It would be very desirable
to have a canonical injective R-module. First, we consider H = HomZ(R, A), the set of
all abelian group homomorphisms from the additive group of the ring R to the abelian
group A. If we are careful, we can make this set into a left R-module. The abelian group
structure of H presents no difficulties, but we must also define scalar multiplication. If
f ∈ H and s ∈ R, we set

(sf)(r) = f(rs), r ∈ R.

Checking the module properties is routine except for associativity:

((ts)f)(r) = f(rts), and (t(sf))(r) = (sf)(rt) = f(rts)

so (ts)f = t(sf). Notice that sf is an abelian group homomorphism, not an R-module
homomorphism.

Now if A is an R-module and B an abelian group, we claim that

HomZ(A, B) ∼= HomR(A,HomZ(R, B)), (1)

equivalently,

HomZ(R⊗R A, B) ∼= HomR(A,HomZ(R, B)). (2)

This is a special case of adjoint associativity :
If SMR, RN , SP , then

HomS(M ⊗R N, P ) ∼= HomR(N, HomS(M, P )). (3)

Thus if F is the functor M ⊗R and G is the functor HomS(M, ), then

HomS(FN, P ) ∼= HomR(N, GP ) (4)

which is reminiscent of the adjoint of a linear operator on an inner product space. We
say that F and G are adjoint functors, with F left adjoint to G and G right adjoint
to F . [There is a technical naturality condition that is added to the definition of adjoint
functors, but we will not pursue this since the only adjoints we will consider are hom and
tensor.]
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Before giving the formal proof of (3), we will argue intuitively. The left side of the
equation describes all biadditive, R-balanced maps from M ×N to P . If (x, y)→ f(x, y),
x ∈ M , y ∈ N , is such a map, then f determines a map g from N to HomS(M, P ),
namely, g(y)(x) = f(x, y). This is a variation of the familiar fact that a bilinear map
amounts to a family of linear maps. Now if s ∈ S, then g(y)(sx) = f(sx, y), which need
not equal sf(x, y), but if we factor f through the tensor product M ⊗R N , we can then
pull out the s. Thus g(y) ∈ HomS(M, P ). Moreover, g is an R-module homomorphism,
because g(ry)(x) = f(x, ry), and we can factor out the r by the same reasoning as above.
Since g determines f , the correspondence between f and g is an isomorphism of abelian
groups.

To prove (3), let f : M ⊗R N → P be an S-homomorphism. If y ∈ N , define
fy : M → P by fy(x) = f(x ⊗ y), and define ψ(f) : N → HomS(M, P ) by y → fy.
[HomS(M, P ) is a left R-module by Problem 1.]

(a) ψ(f) is an R-homomorphism:
ψ(f)(y1 + y2) = fy1+y2 = fy1 + fy2 = ψ(f)(y1) + ψ(f)(y2);
ψ(f)(ry) = fry = rfy = (rψ(f))(y).
[fry(x) = f(x⊗ ry) and (rfy)(x) = fy(xr) = f(xr ⊗ y).]

(b) ψ is an abelian group homomorphism:
We have fy(x) + gy(x) = f(x ⊗ y) + g(x ⊗ y) = (f + g)(x ⊗ y) = (f + g)y(x) so
ψ(f + g) = ψ(f) + ψ(g).

(c) ψ is injective:
If ψ(f) = 0, then fy = 0 for all y ∈ N , so f(x ⊗ y) = 0 for all x ∈ M and y ∈ N .
Thus f is the zero map.

(d) If g ∈ HomR(N, HomS(M, P )), define ϕg : M ×N → P by ϕg(x, y) = g(y)(x). Then
ϕg is biadditive and R-balanced:
By definition, ϕg is additive in each coordinate, and [see Problem 1] ϕg(xr, y) =
g(y)(xr) = (rg(y))(x) = g(ry)(x) = ϕg(x, ry).

(e) ψ is surjective:

By (d), there is a unique S-homomorphism β(g) : M⊗RN → P such that β(g)(x⊗y) =
ϕg(x, y) = g(y)(x), x ∈ M , y ∈ N . It follows that ψ(β(g)) = g, because ψ(β(g))(y) =
β(g)y, where β(g)y(x) = β(g)(x⊗ y) = g(y)(x). Thus β(g)y = g(y) for all y in N , so ψβ
is the identity and ψ is surjective.

It follows that ψ is an abelian group isomorphism. This completes the proof of (3).
Another adjointness result, which can be justified by similar reasoning, is that if NR,

RMS , PS , then

HomS(N ⊗R M, P ) ∼= HomR(N, HomS(M, P )) (5)

which says that F = ⊗R M and G = HomS(M, ) are adjoint functors.

10.7.3 Proposition

If E is a divisible abelian group, then HomZ(R, E) is an injective left R-module.
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Proof. By (10.6.2), we must prove that HomR( ,HomZ(R, E)) is exact. As in the proof
of (1) implies (2) in (10.6.2), if 0→ N →M is exact, we must show that

HomR(M, HomZ(R, E))→ HomR(N, HomZ(R, E))→ 0

is exact. By (1) of (10.7.2), this is equivalent to showing that

HomZ(M, E)→ HomZ(N, E)→ 0

is exact. [As indicated in the informal discussion in (10.7.2), this replacement is allowable
because a bilinear map can be regarded as a family of linear maps. A formal proof would
invoke the naturality condition referred to in (10.7.2).] Since E is an injective Z-module,
the result now follows from (10.6.2). ♣

We can now prove the main result.

10.7.4 Theorem

If M is an arbitrary left R-module, then M can be embedded in an injective left R-module.

Proof. If we regard M as an abelian group, then by (10.7.1), we can assume that M is a
subset of the divisible abelian group E. We will embed M in the injective left R-module
N = HomZ(R, E) (see (10.7.3)). If m ∈ M , define f(m) : R → E by f(m)(r) = rm.
Then f : M → N , and we claim that f is an injective R-module homomorphism. If
f(m1) = f(m2), then rm1 = rm2 for every r ∈ R, and we take r = 1 to conclude
that m1 = m2, proving injectivity. To check that f is an R-homomorphism, note that if
r, s ∈ R and m ∈M , then

f(sm)(r) = rsm and (sf(m))(r) = f(m)(rs) = rsm

by definition of scalar multiplication in the R-module N ; see (10.7.2). ♣

It can be shown that every module M has an injective hull, that is, there is a smallest
injective module containing M .

Problems For Section 10.7

1. If RMS and RN , show that HomR(M, N) is a left S-module via

(sf)(m) = f(ms).

2. If RMS and NS , show that HomS(M, N) is a right R-module via

(fr)(m) = f(rm).

3. If MR and SNR, show that HomR(M, N) is a left S-module via

(sf)(m) = sf(m).
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4. If SM and SNR, show that HomS(M, N) is a right R-module via

(fr)(m) = f(m)r.

5. A useful mnemonic device for remembering the result of Problem 1 is that since M
and N are left R-modules, we write the function f on the right of its argument. The
result is m(sf) = (ms)f , a form of associativity. Give similar devices for Problems 2, 3
and 4.

Note also that in Problem 1, M is a right S-module, but HomR(M, N) is a left S-
module. The reversal might be expected, because the hom functor is contravariant in its
first argument. A similar situation occurs in Problem 2, but in Problems 3 and 4 there is
no reversal. Again, this might be anticipated because the hom functor is covariant in its
second argument.

6. Let R be an integral domain with quotient field Q. If M is a vector space over Q, show
that M is a divisible R-module.

7. Conversely, if M is a torsion-free divisible R-module, show that M is a vector space
over Q.

8. If R is an integral domain that is not a field, and Q is the quotient field of R, show
that HomR(Q, R) = 0.

10.8 Flat Modules

10.8.1 Definitions and Comments

We have seen that an R-module M is projective iff its covariant hom functor is exact,
and M is injective iff its contravariant hom functor is exact. It is natural to investigate
the exactness of the tensor functor M ⊗R , and as before we avoid complications by
assuming all rings commutative. We say that M is flat if M ⊗R is exact. Since the
tensor functor is right exact by (10.4.4), an equivalent statement is that if f : A → B is
an injective R-module homomorphism, then

1⊗ f : M ⊗A→M ⊗B

is injective. In fact it suffices to consider only R-modules A and B that are finitely
generated. This can be deduced from properties of direct limits to be considered in the
next section. [Any module is the direct limit of its finitely generated submodules (10.9.3,
Example 2). The tensor product commutes with direct limits (Section 10.9, Problem 2).
The direct limit is an exact functor (Section 10.9, Problem 4).] A proof that does not
involve direct limits can also be given; see Rotman, “An Introduction to Homological
Algebra”, page 86.

10.8.2 Example

Since Z2 ⊗Z is not exact (Section 10.4, Problem 6), Z2 is not a flat Z-module.
The next result is the analog for flat modules of property (10.5.4) of projective modules.
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10.8.3 Proposition

The direct sum ⊕iMi is flat if and only if each Mi is flat.

Proof. Let f : A→ B be an injective R-homomorphism. In view of (8.8.6(b)), investigat-
ing the flatness of the direct sum amounts to analyzing the injectivity of the mapping

g : ⊕i (Mi ⊗A)→ ⊕i(Mi ⊗B)

given by

xi1 ⊗ a1 + · · ·+ xin ⊗ an → xi1 ⊗ f(a1) + · · ·+ xin ⊗ f(an).

The map g will be injective if and only if all component maps xi ⊗ ai → xi ⊗ f(ai) are
injective. This says that the direct sum is flat iff each component is flat. ♣

We now examine the relation between projectivity and flatness.

10.8.4 Proposition

R is a flat R-module.

Proof. If f : A→ B is injective, we must show that (1⊗f) : R⊗RA→ R⊗RB is injective.
But by (8.7.6), R⊗R M ∼= M via r⊗x→ rx. Thus the following diagram is commutative.

R⊗R A
1⊗f �� R⊗R B

A
f

�� B

Therefore injectivity of 1⊗ f is equivalent to injectivity of f , and the result follows. ♣

10.8.5 Corollary

Every projective module, hence every free module, is flat.

Proof. By (10.8.3) and (10.8.4), every free module is flat. Since a projective module is a
direct summand of a free module, it is flat by (10.8.3). ♣

Flat abelian groups can be characterized precisely.
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10.8.6 Theorem

A Z-module is flat iff it is torsion-free.

Proof. Suppose that M is a Z-module that is not torsion-free. Let x ∈ M be a nonzero
element such that nx = 0 for some positive integer n. If f : Z→ Z is multiplication by n,
then (1⊗ f) : M ⊗ Z→M ⊗ Z is given by

y ⊗ z → y ⊗ nz = ny ⊗ z

so that (1⊗ f)(x⊗ 1) = nx⊗ 1 = 0. Since x⊗ 1 corresponds to x under the isomorphism
between M ⊗ Z and M , x⊗ 1 �= 0, and 1⊗ f is not injective. Therefore M is not flat.

The discussion in (10.8.1) shows that in checking flatness of M , we can restrict to
finitely generated submodules of M . [We are examining equations of the form
(1 ⊗ f)(t) = 0, where t =

∑n
i=1 xi ⊗ yi, xi ∈ M , yi ∈ A.]Thus without loss of gener-

ality, we can assume that M is a finitely generated abelian group. If M is torsion-free,
then by (4.6.5), M is free and therefore flat by (10.8.5). ♣

10.8.7 Corollary

The additive group of rationals Q is a flat but not projective Z-module.

Proof. Since Q is torsion-free, it is flat by (10.8.6). If Q were projective, it would be free
by (10.5.5). This is a contradiction (see Section 4.1, Problem 5). ♣

Sometimes it is desirable to change the underlying ring of a module; the term base
change is used in these situations.

10.8.8 Definitions and Comments

If f : R→ S is a ring homomorphism and M is an S-module, we can create an R-module
structure on M by rx = f(r)x, r ∈ R, x ∈ M . This is a base change by restriction of
scalars.

If f : R → S is a ring homomorphism and M is an R-module, we can make S ⊗R M
into an S-module via

s(s′ ⊗ x) = ss′ ⊗ x, s, s′ ∈ S, x ∈M.

This is a base change by extension of scalars. Note that S is an R-module by restriction
of scalars, so the tensor product makes sense. What we are doing is allowing linear
combinations of elements of M with coefficients in S. This operation is very common in
algebraic topology.

In the exercises, we will look at the relation between base change and flatness. There
will also be some problems on finitely generated algebras, so let’s define these now.
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10.8.9 Definition

The R-algebra A is finitely generated if there are elements a1, . . . , an ∈ A such that every
element of A is a polynomial in the ai. Equivalently, the algebra homomorphism from the
polynomial ring R[X1, . . . , Xn] → A determined by Xi → ai, i = 1, . . . , n, is surjective.
Thus A is a quotient of the polynomial ring.

It is important to note that if A is finitely generated as an R-module, then it is finitely
generated as an R-algebra. [If a = r1a1 + · · ·+ rnan, then a is certainly a polynomial in
the ai.]

Problems For Section 10.8

1. Give an example of a finitely generated R-algebra that is not finitely generated as an
R-module.

2. Show that R[X]⊗R R[Y ] ∼= R[X, Y ].

3. Show that if A and B are finitely generated R-algebras, so is A⊗R B.

4. Let f : R → S be a ring homomorphism, and let M be an S-module, so that M is an
R-module by restriction of scalars. If S is a flat R-module and M is a flat S-module,
show that M is a flat R-module.

5. Let f : R→ S be a ring homomorphism, and let M be an R-module, so that S ⊗R M
is an S-module by extension of scalars. If M is a flat R-module, show that S ⊗R M is
a flat S-module.

6. Let S be a multiplicative subset of the commutative ring R. Show that for any R-
module M , S−1R ⊗R M ∼= S−1M via α : (r/s) ⊗ x → rx/s with inverse β : x/s →
(1/s)⊗ x.

7. Continuing Problem 6, show that S−1R is a flat R-module.

10.9 Direct and Inverse Limits

If M is the direct sum of R-modules Mi, then R-homomorphisms fi : Mi → N can be lifted
uniquely to an R-homomorphism f : M → N . The direct limit construction generalizes
this idea. [In category theory, there is a further generalization called the colimit. The
terminology is consistent because the direct sum is the coproduct in the category of
modules.]

10.9.1 Direct Systems

A directed set is a partially ordered set I such that given any i, j ∈ I, there exists k ∈ I
such that i ≤ k and j ≤ k. A typical example is the collection of finite subsets of a set,
ordered by inclusion. If A and B are arbitrary finite subsets, then both A and B are
contained in the finite set A ∪B.

Now suppose I is a directed set and we have a collection of objects Ai, i ∈ I, in a
category C. Assume that whenever i ≤ j, there is a morphism h(i, j) : Ai → Aj . Assume
further that the h(i, j) are compatible in the sense that if i ≤ j ≤ k and we apply h(i, j)
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followed by h(j, k), we get h(i, k). We also require that for each i, h(i, i) is the identity
on Ai. The collection of objects and morphisms is called a direct system. As an example,
take the objects to be the finitely generated submodules of a module, and the morphisms
to be the natural inclusion maps. In this case, the directed set coincides with the set of
objects, and the partial ordering is inclusion.

10.9.2 Direct Limits

Suppose that {Ai, h(i, j), i, j ∈ I} is a direct system. The direct limit of the system will
consist of an object A and morphisms αi : Ai → A. Just as with coproducts, we want to
lift morphisms fj : Aj → B to a unique f : A→ B, that is, fαj = fj for all j ∈ I. But we
require that the maps αj be compatible with the h(i, j), in other words, αjh(i, j) = αi

whenever i ≤ j. A similar constraint is imposed on the fj , namely, fjh(i, j) = fi, i ≤ j.
Thus the direct limit is an object A along with compatible morphisms αj : Aj → A such
that given compatible morphisms fj : Aj → B, there is a unique morphism f : A → B
such that fαj = fj for all j. Figure 10.9.1 summarizes the discussion.

A

��
B

Ai
h(i,j)

��

fi

		��������

αi

��

Aj

fj

���������

αj

��

Figure 10.9.1
As in Section 10.2, any two direct limits of a given direct system are isomorphic.
If the ordering on I is the equality relation, then the only element j such that i ≤ j

is i itself. Compatibility is automatic, and the direct limit reduces to a coproduct.
A popular notation for the direct limit is

A = lim
→

Ai.

The direct limit is sometimes called an inductive limit.

10.9.3 Examples

1. A coproduct is a direct limit, as discussed above. In particular, a direct sum of modules
is a direct limit.

2. Any module is the direct limit of its finitely generated submodules. [Use the direct
system indicated in (10.9.1).]

3. The algebraic closure of a field F can be constructed (informally) by adjoining roots of
all possible polynomials in F [X]; see (3.3.7). This suggests that the algebraic closure
is the direct limit of the collection of all finite extensions of F . This can be proved
with the aid of (3.3.9).

In the category of modules, direct limits always exist.
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10.9.4 Theorem

If {Mi, h(i, j), i, j ∈ I} is a direct system of R-modules, then the direct limit of the system
exists.

Proof. Take M to be (⊕iMi)/N , with N the submodule of the direct sum generated by
all elements of the form

βjh(i, j)xi − βixi, i ≤ j, xi ∈Mi (1)

where βi is the inclusion map of Mi into the direct sum. Define αi : Mi →M by

αixi = βixi + N.

The αi are compatible, because

αjh(i, j)xi = βjh(i, j)xi + N = βixi + N = αixi.

Given compatible fi : Mi → B, we define f : M → B by

f(βixi + N) = fixi,

the only possible choice. This forces fαi = fi, provided we show that f is well-defined.
But an element of N of the form (1) is mapped by our proposed f to

fjh(i, j)xi − fixi

which is 0 by compatibility of the fi. Thus f maps everything in N to 0, and the result
follows. ♣

10.9.5 Inverse Systems and Inverse Limits

Inverse limits are dual to direct limits. An inverse system is defined as in (10.9.1),
except that if i ≤ j, then h(i, j) maps “backwards” from Aj to Ai. If we apply h(j, k)
followed by h(i, j), we get h(i, k); as before, h(i, i) is the identity on Ai. The inverse
limit of the inverse system {Ai, h(i, j), i, j ∈ I} is an object A along with morphisms
pi : A → Ai. As with products, we want to lift morphisms fi : B → Ai to a unique
f : B → A. There is a compatibility requirement on the pi and fi: if i ≤ j, then
h(i, j)pj = pi, and similarly h(i, j)fj = fi. Thus the inverse limit is an object A along with
compatible morphisms pi : A → Ai such that given compatible morphisms fi : B → Ai,
there is a unique morphism f : B → A such that pif = fi for all i. See Figure 10.9.2.

A

pi

��

pj

��

B

��

fi

����
��

��
�� fj

���
��

��
��

Ai Aj
h(i,j)
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Figue 10.9.2
As in Section 10.2, the universal mapping property determines the inverse limit up to

isomorphism.
If the ordering on I is the equality relation, the the inverse limit reduces to a product.

In category theory, the limit is a generalization of the inverse limit.
A popular notation for the inverse limit is

A = lim
←

Ai.

The inverse limit is sometimes called a projective limit.
We constructed the direct limit of a family of modules by forming a quotient of the

direct sum. By duality, we expect that the inverse limit involves a submodule of the direct
product.

10.9.6 Theorem

If {Mi, h(i, j), i, j ∈ I} is an inverse system of R-modules, then the inverse limit of the
system exists.

Proof. We take M to be the set of all x = (xi, i ∈ I) in the direct product
∏

i Mi such
that h(i, j)xj = xi whenever i ≤ j. Let pi be the restriction to M of the projection on
the ith factor. Then h(i, j)pjx = h(i, j)xj = xi = pix, so the pi are compatible. Given
compatible fi : N → Mi, let f be the product of the fi, that is, fx = (fix, i ∈ I). By
compatibility, h(i, j)fjx = fix for i ≤ j, so f maps

∏
i Mi into M . By definition of f we

have pif = fi, and the result follows. ♣

10.9.7 Example

Recall from Section 7.9 that a p-adic integer can be represented as a0 + a1p + a2p
2 + · · · ,

where the ai belong to {0, 1, . . . , p−1}. If we discard all terms after ar−1p
r−1, r = 1, 2, . . . ,

we get the ring Zpr . These rings form an inverse system; if x ∈ Zps and r ≤ s, we take
h(r, s)x to be the residue of x mod pr. The inverse limit of this system is the ring of
p-adic integers.

Problems For Section 10.9

1. In Theorem (10.9.6), why can’t we say “obviously”, since direct limits exist in the
category of modules, inverse limits must also exist by duality.

2. Show that in the category of modules over a commutative ring, the tensor product
commutes with direct limits. In other words,

lim
→

(M ⊗Ni) = M ⊗ lim
→

Ni

assuming that the direct limit of the Ni exists.
3. For each n = 1, 2, . . . , let An be an R-module, with A1 ⊆ A2 ⊆ A3 ⊆ · · · . Take h(i, j),

i ≤ j, to be the inclusion map. What is the direct limit of the An? (Be more explicit
than in (10.9.4).)
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4. Suppose that A, B and C are the direct limits of direct systems {Ai}, {Bi} and {Ci}
of R-modules. Assume that for each i, the sequence

Ai
fi �� Bi

gi �� Ci

is exact. Give an intuitive argument to suggest that the sequence

A
f �� B

g �� C

is exact. Thus direct limit is an exact functor.

[A lot of formalism is being suppressed here. We must make the collection of direct
systems into a category, and define a morphism in that category. This forces compatibility
conditions on the fi and gi: fjhA(i, j) = hB(i, j)fi, gjhB(i, j) = hC(i, j)gi. The direct
limit functor takes a direct system to its direct limit, but we must also specify what it
does to morphisms.]

A possible strategy is to claim that since an element of a direct sum has only finitely
many nonzero components, exactness at B is equivalent to exactness at each Bi. This
is unconvincing because the direct limit is not simply a direct sum, but a quotient of a
direct sum. Suggestions are welcome!

Problems 5 and 6 give some additional properties of direct products.

5. Show that

HomR(⊕Ai, B) ∼=
∏

i

HomR(Ai, B).

6. Show that

HomR(A,
∏

i

Bi) ∼=
∏

i

HomR(A, Bi).

7. If M is a nonzero R-module that is both projective and injective, where R is an integral
domain that is not a field, show that HomR(M, R) = 0.

8. Let R be an integral domain that is not a field. If M is an R-module that is both
projective and injective, show that M = 0.

Appendix to Chapter 10

We have seen that an abelian group is injective if and only if it is divisible. In this
appendix we give an explicit characterization of such groups.

A10.1 Definitions and Comments

Let G be an abelian group, and T the torsion subgroup of G (the elements of G of
finite order). Then G/T is torsion-free, since n(x + T ) = 0 implies nx ∈ T , hence
x ∈ T . If p is a fixed prime, the primary component Gp associated with p consists
of all elements whose order is a power of p. Note that Gp is a subgroup of G, for if
pna = pmb = 0, n ≥ m, then pn(a − b) = 0. (We use the fact that G is abelian; for
example, 3(a− b) = a− b + a− b + a− b = a + a + a− b− b− b.)
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A10.2 Proposition

The torsion subgroup T is the direct sum of the primary components Gp, p prime.

Proof. Suppose x has order m =
∏k

j=1 p
rj

j . If mi = m/pri
i , then the greatest common

divisor of the mi is 1, so there are integers a1, . . . , ak such that a1m1 + · · · + akmk = 1.
Thus x = 1x =

∑k
i=1 ai(mix), and (by definition of mi) mix has order pri

i and therefore
belongs to the primary component Gpi

. This proves that G is the sum of the Gp. To show
that the sum is direct, assume 0 �= x ∈ Gp ∩

∑
q 	=p Gq. Then the order of x is a power

of p and also a product of prime factors unequal to p, which is impossible. For example,
if y has order 9 and z has order 125, then 9(125)(y + z) = 0, so the order of y + z is of
the form 3r5s. ♣

A10.3 Definitions and Comments

A Prüfer group, also called a quasicyclic group and denoted by Z(p∞), is a p-primary
component of Q/Z, the rationals mod 1. Since every element of Q/Z has finite order, it
follows from (A10.2) that

Q/Z =
⊕

p

Z(p∞).

Now an element of Q/Z whose order is a power of p must be of the form a/pr + Z for
some integer a and nonnegative integer r. It follows that the elements ar = 1/pr + Z,
r = 1, 2, . . . , generate Z(p∞). These elements satisfy the following relations:

pa1 = 0, pa2 = a1, . . . , par+1 = ar, . . .

A10.4 Proposition

Let H be a group defined by generators b1, b2, . . . and relations pb1 = 0, pb2 = b1, . . . ,
pbr+1 = br, . . . . Then H is isomorphic to Z(p∞).

Proof. First note that the relations imply that every element of H is an integer multiple
of some bi. Here is a typical computation:

4b7 + 6b10 + 2b14 = 4(pb8) + 6(pb11) + 2b14

= · · · = 4(p7b14) + 6(p4b14) + 2b14 = (4p7 + 6p4 + 2)b14.

By (5.8.5), there is an epimorphism f : H → Z(p∞), and by the proof of (5.8.5), we can
take f(bi) = ai for all i. To show that f is injective, suppose f(cbi) = 0 where c ∈ Z.
Then cf(bi) = cai = 0, so c/pi ∈ Z, in other words, pi divides c. ( We can reverse
this argument to conclude that f(cbi) = 0 iff pi divides c.) But the relations imply that
pibi = 0, and since c is a multiple of pi, we have cbi = 0. ♣
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A10.5 Proposition

Let G be a divisible abelian group. Then its torsion subgroup T is also divisible. Moreover,
G can be written as T ⊕D, where D is torsion-free and divisible.

Proof. If x ∈ T and 0 �= n ∈ Z, then for some y ∈ G we have ny = x. Thus in the
torsion-free group G/T we have n(y + T ) = x + T = 0. But then ny ∈ T , so (as in
(A10.1)) y ∈ T and T is divisible, hence injective by (10.6.6). By (10.6.2), the exact
sequence 0→ T → G→ G/T → 0 splits, so G ∼= T ⊕G/T . Since G/T is torsion-free and
divisible (see (10.6.5)), the result follows. ♣

We are going to show that an abelian group is divisible iff it is a direct sum of copies
of Q (the additive group of rationals) and quasicyclic groups. To show that every divisible
abelian group has this form, it suffices, by (A10.2), (A10.5) and the fact that a direct sum
of divisible abelian groups is divisible, to consider only two cases, G torsion-free and G a
p-group.

A10.6 Proposition

If G is a divisible, torsion-free abelian group, then G is isomorphic to a direct sum of
copies of Q.

Proof. The result follows from the observation that G can be regarded as a Q-module,
that is, a vector space over Q; see Section 10.7, Problem 7. ♣

For any abelian group G, let G[n] = {x ∈ G : nx = 0}.

A10.7 Proposition

Let G and H be divisible abelian p-groups. Then any isomorphism ϕ of G[p] and H[p]
can be extended to an isomorphism ψ of G and H.

Proof. Our candidate ψ arises from the injectivity of H, as the diagram below indicates.

H

0 �� G[p] ��

��

G

ψ
����������

The map from G[p] to G is inclusion, and the map from G[p] to H is the composition of ϕ
and the inclusion from H[p] to H. Suppose that x ∈ G and the order of x is |x| = pn.
We will prove by induction that ψ(x) = 0 implies x = 0. If n = 1, then x ∈ G[p],
so ψ(x) = ϕ(x), and the result follows because ϕ is injective. For the inductive step,
suppose |x| = pn+1 and ψ(x) = 0. Then |px| = pn and ψ(px) = pψ(x) = 0. By induction
hypothesis, px = 0, which contradicts the assumption that x has order pn+1.

Now we prove by induction that ψ is surjective. Explicitly, if y ∈ H and |y| = pn,
then y belongs to the image of ψ. If n = 1, then y ∈ H[p] and the result follows because ϕ
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is surjective. If |y| = pn+1, then pny ∈ H[p], so for some x ∈ G[p] we have ϕ(x) = pny.
Since G is divisible, there exists g ∈ G such that png = x. Then

pn(y − ψ(g)) = pny − ψ(png) = pny − ψ(x) = pny − ϕ(x) = 0.

By induction hypothesis, there is an element z ∈ G such that ψ(z) = y − ψ(g). Thus
ψ(g + z) = y. ♣

A10.8 Theorem

An abelian group G is divisible if and only if G is a direct sum of copies of Q and
quasicyclic groups.

Proof. Suppose that G is such a direct sum. Since Q and Z(p∞) are divisible [Z(p∞) is a
direct summand of the divisible group Q/Z], and a direct sum of divisible abelian groups
is divisible, G must be divisible. Conversely, assume G divisible. In view of (A10.6) and
the discussion preceding it, we may assume that G is a p-group. But then G[p] is a vector
space over the field Fp = Z/pZ; the scalar multiplication is given by (n + pZ)g = ng.
Since pg = 0, scalar multiplication is well-defined. If the dimension of G[p] over Fp is d,
let H be the direct sum of d copies of Z(p∞). An element of order p in a component of the
direct sum is an integer multiple of 1/p+Z, and consequently H[p] is also a d-dimensional
vector space over Fp. Thus G[p] is isomorphic to H[p], and it follows from (A10.7) that
G is isomorphic to H. ♣


