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1

Chain Complexes

1.1 Complexes of R-Modules

Homological algebra is a tool used in several branches of mathematics: alge-
braic topology, group theory, commutative ring theory, and algebraic geometry
come to mind. It arose in the late 1800s in the following manner. Let f and g
be matrices whose product is zero. If g - v = 0 for some column vector v, say,
of length r, we cannot always write v = f - u. This failure is measured by the
defect

d =n —rank(f) — rank(g).

In modern language, f and g represent linear maps

f g
U —>V — W

with g f =0, and d is the dimension of the homology module

H =ker(g)/f(U).

In the first part of this century, Poincaré and other algebraic topologists
utilized these concepts in their attempts to describe “n-dimensional holes” in
simplicial complexes. Gradually people noticed that “vector space” could be
replaced by “R-module” for any ring R.

This being said, we fix an associative ring R and begin again in the category
mod-R of right R-modules. Given an R-module homomorphism f: A — B,
one is immediately led to study the kernel ker(f), cokernel coker{f), and
image im(f) of f. Given another map g: B — C, we can form the sequence

() a5

1



2 Chain Complexes

We say that such a sequence is exact (at B) if ker(g) = im(f). This implies
in particular that the composite gf: A — C is zero, and finally brings our
attention to sequences (x) such that gf = 0.

Definition 1.1.1 A chain complex C of R-modules is a family {Cy},cz7 of
R-modules, together with R-module maps d = d,,: C,, - C,—1 such that each
composite d o d: C, — C,_3 is zero. The maps d, are called the differentials
of C.. The kernel of d,, is the module of n-cycles of C, denoted Z,, = Z,,(C).
The image of d,+1: Cp+1 — Cp, is the module of n-boundaries of C, denoted
B, = B,(C)). Because d o d = 0, we have

0SB, CZ,CCy

for all n. The n'* homology module of C. is the subquotient H,(C) = Z,/B,
of C,. Because the dot in C_ is annoying, we will often write C for C.

Exercise 1.1.1 Set C, =Z/8 for n >0 and C, =0 for n < 0; for n >0
let d, send x(mod 8) to 4x(mod8). Show that C is a chain complex of
Z /8—modules and compute its homology modules.

There is a category Ch(mod-R) of chain complexes of (right) R-modules.
The objects are, of course, chain complexes. A morphism u:C_— D_is a
chain complex map, that is, a family of R-module homomorphisms u,: C, —
D, commuting with d in the sense that u,_1d, = dn—1u,. That is, such that
the following diagram commutes

d d d d
- — Cyy1 — Cp — Cpy —

Lu Lu Lu

d d d
- —> Dyyy — Dy — Dy — ---.

Exercise 1.1.2 Show that a morphism u: C. — D, of chain complexes sends
boundaries to boundaries and cycles to cycles, hence maps H,(C) — H,(D).
Prove that each H,, is a functor from Ch(mod-R) to mod—-R.

Exercise 1.1.3 (Split exact sequences of vector spaces) Choose vector spaces
{Bn, Hu}nez over a field, and set C, = B, & H, & Bj-1. Show that the
projection-inclusions C, — B,_1 C C,—1 make {C,} into a chain complex,
and that every chain complex of vector spaces is isomorphic to a complex of
this form.
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Exercise 1.1.4 Show that {Homg(A, C,)} forms a chain complex of abelian
groups for every R-module A and every R-module chain complex C. Taking
A = Z,, show that if H,(Homgz(Z,, C)) =0, then H,(C) = 0. Is the converse
true?

Definition 1.1.2 A morphism C, — D of chain complexes is called a quasi-
isomorphism (Bourbaki uses homologism) if the maps H,(C) — H,(D) are
all isomorphisms.

Exercise 1.1.5 Show that the following are equivalent for every C_:

1. C is exact, that is, exact at every C,,.

2. C isacyclic, that is, H,(C) = 0 for all n.

3. The map 0 — C. is a quasi-isomorphism, where “0” is the complex of
zero modules and zero maps.

The following variant notation is obtained by reindexing with superscripts:
C" = C_,. A cochain complex C- of R-modules is a family {C"} of R-
modules, together with maps d": C" — C"t! such that d od = 0. Z"(C") =
ker(d") is the module of n-cocycles, B"(C) = im(d"~!) € C" is the mod-
ule of n-coboundaries, and the subquotient H"*(C*) = Z"/B" of C" is the n**
cohomology module of C-. Morphisms and quasi-isomorphisms of cochain
complexes are defined exactly as for chain complexes.

A chain complex C. is called bounded if almost all the C, are zero; if
C, =0 unless @ < n < b, we say that the complex has amplitude in [a, b]. A
complex C. is bounded above (resp. bounded below) if there is a bound b (resp.
a) such that C, =0 for all n > b (resp. n < a). The bounded (resp. bounded
above, resp. bounded below) chain complexes form full subcategories of Ch
= Ch(R-mod) that are denoted Chy, Ch_ and Ch,, respectively. The sub-
category Chx¢ of non-negative complexes C. (C, =0 for all » < 0) will be
important in Chapter 8.

Similarly, a cochain complex C- is called bounded above if the chain com-
plex C (C, = C™") is bounded below, that is, if C* =0 for all large n; C
is bounded below if C is bounded above, and bounded if C is bounded.
The categories of bounded (resp. bounded above, resp. bounded below, resp.
non-negative) cochain complexes are denoted Chb, Ch—, Cht, and Chzo,
respectively.

Exercise 1.1.6 (Homology of a graph) Let I" be a finite graph with V vertices
(v1, -+, vy) and E edges (eq, - - -, eg). If we orient the edges, we can form the
incidence matrix of the graph. This is a V x E matrix whose (ij) entry is +1
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if the edge e; starts at v;, —1 if e; ends at v;, and O otherwise. Let Cg be the
free R—module on the vertices, C the free R—module on the edges, C,, =0
if n #0, 1, and d: C; — Cq be the incidence matrix. If I' is connected (i.e.,
we can get from vy to every other vertex by tracing a path with edges), show
that Hp(C) and H;(C) are free R—modules of dimensions 1 and V — E — 1
respectively. (The number V — E — 1 is the number of circuits of the graph.)
Hint: Choose basis {vg, vi — vy, - - -, vy — v} for Cp, and use a path from vy
to v; to find an element of C; mapping to v; — vp.

Application 1.1.3 (Simplicial homology) Here is a topological application
we shall discuss more in Chapter 8. Let K be a geometric simplicial complex,
such as a triangulated polyhedron, and let Kz (0 <k < n) denote the set of
k-dimensional simplices of K. Each k-simplex has k + 1 faces, which are
ordered if the set Ky of vertices is ordered (do so!), so we obtain k + 1 set
maps 9;: Ky — Ky_1(0 <i <k). The simplicial chain complex of K with
coefficients in R is the chain complex C , formed as follows. Let Cy, be the free
R-module on the set Ki; set Cy = 0 unless 0 < k < n. The set maps 9; yield
k + 1 module maps Cy — Cy—1, which we also call 9;; their aiternating sum
d= Z(—l)"a,- is the map Cy — Ck— in the chain complex C.. To see that C.
is a chain complex, we need to prove the algebraic assertion that d o d = 0.
This translates into the geometric fact that each (k — 2)-dimensional simplex
contained in a fixed k-simplex o of K lies on exactly two faces of o. The
homology of the chain complex C. is called the simplicial homology of K with
coefficients in R. This simplicial approach to homology was used in the first
part of this century, before the advent of singular homology.

Exercise 1.1.7 (Tetrahedron) The tetrahedron T is a surface with 4 ver-
tices, 6 edges, and 4 2-dimensional faces. Thus its homology is the homol-
ogy of a chain complex 0 — R* — R® - R* — 0. Write down the matrices
in this complex and verify computationally that Hx(T) = Hg(T) = R and
H((T)=0.

Application 1.1.4 (Singular homology) Let X be a topological space, and
let Sk = Sk(X) be the free R-module on the set of continuous maps from
the standard k-simplex A to X. Restriction to the i th face of A (O<i<k)
transforms a map Ay — X into a map Ax_; — X, and induces an R-module
homomorphism 3; from S to Sx—1. The alternating sums d = ) (— 1)!3; (from
Sk to Skg—1) assemble to form a chain complex

d d d
- — S — 51 — S — 0,
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called the singular chain complex of X. The n** homology module of S (X) is
called the n*” singular homology of X (with coefficients in R) and is written
H,(X; R). If X is a geometric simplicial complex, then the obvious inclusion
C(X) — 8(X) is a quasi-isomorphism, so the simplicial and singular homol-
ogy modules of X are isomorphic. The interested reader may find details in
any standard book on algebraic topology.

1.2 Operations en Chain Complexes

The main point of this section will be that chain complexes form an abelian
category. First we need to recall what an abelian category is. A reference for
these definitions is [MacCW].

A category A is called an Ab-category if every hom-set Hom 4(A, B) in
A is given the structure of an abelian group in such a way that composition
distributes over addition. In particular, given a diagram in 4 of the form

f g/ n
A—-—-B=—=C—D
4

wehave h(g +g) f = hgf + hg' f in Hom(A, D). The category Ch is an Ab-
category because we can add chain maps degreewise; if { f;} and {g,} are chain
maps from C_to D, their sum is the family of maps { f, + gx}.

An additive functor F: B — A between Ab-categories B and A is a functor
such that each Homp(B’, B) — Hom 4(FB’, FB) is a group homomorphism.

An additive category is an Ab-category A with a zero object (i.e., an ob-
ject that is initial and terminal) and a product A x B for every pair A, B of
objects in 4. This structure is enough to make finite products the same as fi-
nite coproducts. The zero object in Ch is the complex “0” of zero modules
and maps. Given a family {A,} of complexes of R-modules, the product [TA,
and coproduct (direct sum) @A, exist in Ch and are defined degreewise: the
differentials are the maps

I—[dot : H Agn—> l—[ Agn—t and ©dy: BeAgn— @aAtx,n-l’
[+3 o
respectively. These suffice to make Ch into an additive category.
Exercise 1.2.1 Show that direct sum and direct product commute with ho-

mology, that is, that ®H,(Ay) = H,(BAy) and TTH,(Ay) = Hy(ITA,) for
all n.
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Here are some important constructions on chain complexes. A chain com-
plex B is called a subcomplex of C if each B, is a submodule of C,, and the
differential on B is the restriction of the differential on C, that is, when the
inclusions i, : B, € C, constitute a chain map B — C. In this case we can
assemble the quotient modules C,,/ By, into a chain complex

d d d
<o = Cyi1/Buy1 —> Cu/Bp, —> Ch1/Bpy — ---

denoted C/B and called the quotient complex. If f: B — C is a chain map, the
kemnels {ker(f,)} assemble to form a subcomplex of B denoted ker( f), and
the cokernels {coker(f,)} assemble to form a quotient complex of C denoted
coker(f).

Definition 1.2.1 In any additive category A, a kernel of a morphism f: B —
C is defined to be a map i: A — B such that fi = 0 and that is universal with
respect to this property. Dually, a cokernel of f is a map e: C — D, which
is universal with respect to having ef = 0. In A, a map i: A — B is monic
if ig =0 implies g = 0 for every map g: A’ — A, and a map e:C — D is
an epi if he = 0 implies h = 0 for every map h: D — D’. (The definition of
monic and epi in a non-abelian category is slightly different; see A.l in the
Appendix.) It is easy to see that every kernel is monic and that every cokernel
is an epi (exercise!).

Exercise 1.2.2 In the additive category .4 = R—mod, show that:

1. The notions of kernels, monics, and monomorphisms are the same.
2. The notions of cokernels, epis, and epimorphisms are also the same.

Exercise 1.2.3 Suppose that .A = Ch and f is a chain map. Show that the
complex ker(f) is a kernel of f and that coker(f) is a cokernel of f.

Definition 1.2.2 An abelian category is an additive category A such that

1. every map in .4 has a kernel and cokernel.
2. every monic in A4 is the kernel of its cokernel.
3. every epi in A is the cokernel of its kernel.

The prototype abelian category is the category mod—R of R-modules. In
any abelian category the image im(f) of a map f: B — C is the subobject
ker(coker f) of C; in the category of R-modules, im(f) = {f(b):b € B}.
Every map f factors as
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e m
B — im(f) — C
with e an epimorphism and m a monomorphism. A sequence

f g
A— B — C
of maps in A is called exact (at B) if ker(g) = im(f).

A subcategory B of A is called an abelian subcategory if it is abelian, and
an exact sequence in B is also exact in A.

If A is any abelian category, we can repeat the discussion of section 1.1
to define chain complexes and chain maps in A—just replace mod—R by A!
These form an additive category Ch(A4), and homology becomes a functor
from this category to .A. In the sequel we will merely write Ch for Ch(.4)
when 4 is understood.

Theorem 1.2.3 The category Ch = Ch(A) of chain complexes is an abelian
category.

Proof Condition 1 was exercise 1.2.3 above. If f: B — C is a chain map, I
claim that f is monic iff each B, — C, is monic, that is, B is isomorphic to a
subcomplex of C. This follows from the fact that the composite ker(f) — C
is zero, so if f is monic, then ker(f) = 0. So if f is monic, it is isomorphic to
the kernel of C — C/B. Similarly, f is an epi iff each B, — Cj, is an epi, that
is, C is isomorphic to the cokernel of the chain map ker(f) — B. <&

Exercise 1.2.4 Show that a sequence 0 - A, — B — C — 0 of chain com-
plexes is exact in Ch just in case each sequence 0 — A, — B, — C, — Ois
exact in A.

Clearly we can iterate this construction and talk about chain complexes of
chain complexes; these are usually called double complexes.

Example 1.2.4 A double complex (or bicomplex) in A is a family {C p.q) of
objects of A, together with maps

dc,, — Cp-14 and d":Cp4— Cp g1

such that d" 0 d" = d? o d¥ = d’d" + d"d" = 0. 1t is useful to picture the
bicomplex C as a lattice
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! ! !

d* d"
C Cp—l.q+1 — Cp,q+1 — Cp+1,p+1 -

avl dv] d’]

dh dh
C Cp—l,q <~ Cp,q < Cp+1,q <

@ @ a|

d* 4"
e Cpyg-1 «<— Cpg-1 «<— Cprig-1 «— -+

! ! !

in which the maps d” go horizontally, the maps d¥ go vertically, and each
square anticommutes. Each row C,,; and each column C . is a chain complex.
We say that a double complex C is bounded if C has only finitely many
nonzero terms along each diagonal line p + g = n, for example, if C is con-
centrated in the first quadrant of the plane (a first quadrant double complex).

Sign Trick 1.2.5 Because of the anticommutivity, the maps d? are not maps
in Ch, but chain maps fi,; from Cy, to C, 4_; can be defined by introducing

=+ signs:
fpg=(DPdy, 0 Cpg— Cpgot.

Using this sign trick, we can identify the category of double complexes with
the category Ch(Ch) of chain complexes in the abelian category Ch.

Total Complexes 1.2.6 To see why the anticommutative condition d?d” +
d"d? = 0 is useful, define the toral complexes Tot(C) = Tot'(C) and Tot®(C)
by

Tot™(C)y= [] Cpq and Tot®(Clu= P Cpy-
ptq=n p+q=n

The formula d = d" + d? defines maps (check this!)
d : Tot'(C),, > Tot™(C),_1 and d:Tot®(C), — Tot®(C),—;

such that d o d = 0, making Tot™(C) and Tot®(C) into chain complexes. Note
that Tot®(C) = Tot™(C) if C is bounded, and especially if C is a first quadrant
double complex. The difference between Tot'(C) and Tot®(C) will become
apparent in Chapter 5 when we discuss spectral sequences.
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Remark Tot"(C) and Tot®(C) do not exist in all abelian categories; they
don’t exist when A is the category of all finite abelian groups. We say that
an abelian category is complete if all infinite direct products exist (and so
Tot!! exists) and that it is cocomplete if all infinite direct sums exist (and so
Tot® exists). Both these axioms hold in R-mod and in the category of chain
complexes of R-modules.

Exercise 1.2.5 Give an elementary proof that Tot(C) is acyclic whenever C
is a bounded double complex with exact rows (or exact columns). We will see
later that this result follows from the Acyclic Assembly Lemma 2.7.3. It also
follows from a spectral sequence argument (see Definition 5.6.2 and exercise
5.6.4).

Exercise 1.2.6 Give examples of (1) a second quadrant double complex C
with exact columns such that Tot'!(C) is acyclic but Tot®(C) is not; (2) a
second quadrant double complex C with exact rows such that Tot®(C) is
acyclic but Tot'(C) is not; and (3) a double complex (in the entire plane) for
which every row and every column is exact, yet neither Tot'}(C) nor Tot®(C)
is acyclic.

Truncations 1.2.7 If C is a chain complex and » is an integer, we let 7>,C
denote the subcomplex of C defined by

0 ifi<n
(1>nC)i=13 Z, ifi=n
C,’ ifi > n.

Clearly H;(1>,C) =0 for i <n and H;(z>,C) = H;(C) for i > n. The com-
plex 7>,C is called the (good) truncation of C below n, and the quotient
complex 7.,C = C/(1>,C) is called the (good) truncation of C above n;
H;(t.,C)is H;(C) fori < n and O fori > n.

Some less useful variants are the brutal truncations o.,C and 0>,C =
C/(6<nC). By definition, (0.,C); is C; if i <n and 0 if i > n. These have
the advantage of being easier to describe but the disadvantage of introducing
the homology group H,(0>,C) = Cy/Bp.

Translation 1.2.8 Shifting indices, or translation, is another useful operation
we can perform on chain and cochain complexes. If C is a complex and p an
integer, we form a new complex C|[p] as follows:

Clpla=Cnsp (tesp.Clp]"=C""F)
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with differential (—1)Pd. We call C[p] the p’h translate of C. The way to
remember the shift is that the degree 0 part of C[p] is C,. The sign convention
is designed to simplify notation later on. Note that translation shifts homology:

Hy(ClpD) = Hpyp(C)  (resp. H(C[p]) = H""P(C)).

We make translation into a functor by shifting indices on chain maps. That is,
if f:C — D is a chain map, then f[p] is the chain map given by the formula

flpln = fn+p (resp. flpI" = f"P).

Exercise 1.2.7 If C is a complex, show that there are exact sequences of
complexes:

0 — Z(IC) —> C -5 BO)[-1] —> 0

0 — H({C) — C/B(C) —d> ZIO)[-1] — HO)[-1] — 0.

Exercise 1.2.8 (Mapping cone) Let f: B — C be a morphism of chain com-
plexes. Form a double chain complex D out of f by thinking of f as a chain
complex in Ch and using the sign trick, putting B[—1] in the row g = 1 and
C in the row g = 0. Thinking of C and B[—1] as double complexes in the
obvious way, show that there is a short exact sequence of double complexes

)
0 -——»C — D — B[-1] — 0.

The total complex of D is cone{f’), the mapping cone (see section 1.5) of
a map f’, which differs from f only by some + signs and is isomorphic

to f.

1.3 Long Exact Sequences

It is time to unveil the feature that makes chain complexes so special from a
computational viewpoint: the existence of long exact sequences.

Theorem 1.3.1 Ler0 — A, —f> B LN C. — 0 be a short exact sequence of
chain complexes. Then there are natural maps 3: H,(C) — H,_{(A), called
connecting homomorphisms, such that

] 9
2 By 1 (©) <D Ha(A) D> Hu(B) 55 Hu(©) < Ho_i(A) L

is an exact sequence.
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Similarly, if 0 > A —f> B % C >0 is a short exact sequence of
cochain complexes, there are natural maps 3: H*(C) > H nt1(AY and a long
exact sequence

B H L) L Ay L BB 5 A ) S B (4) L

Exercise 1.3.1 Let0 - A — B — C — 0 be a short exact sequence of com-
plexes. Show that if two of the three complexes A, B, C are exact, then so is
the third.

Exercise 1.3.2 (3 x 3 lemma) Suppose given a commutative diagram

0 0 0
! ! !

0 —> A — B — ¢ — 0
! ! !

0—-— A — B — C — 0

! ! !

O N A// N B// - C/l N O

1 ! !

0 0 0
in an abelian category, such that every column is exact. Show the following:

1. If the bottom two rows are exact, so is the top row.

2. If the top two rows are exact, so is the bottom row.

3. If the top and bottom rows are exact, and the composite A — C is zero,
the middle row is also exact.

Hint: Show the remaining row is a complex, and apply exercise 1.3.1.

The key tool in constructing the connecting homomorphism 8 is our next
result, the Snake Lemma. We will not print the proof in these notes, because
it is best done visually. In fact, a clear proof is given by Jill Clayburgh at the
beginning of the movie Its My Turn (Rastar-Martin Elfand Studios, 1980). As
an exercise in “diagram chasing” of elements, the student should find a proof
(but privately—keep the proof to yourself!).

Snake Lemma 1.3.2 Consider a commutative diagram of R-modules of the
form
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A — B — ¢ — 0
i el nl

0 — A —l> B — C.
If the rows are exact, there is an exact sequence
ker(f) — ker(g) — ker(h) LN coker( f) — coker(g) — coker(h)
with 0 defined by the formula
ac)=i"lgp7Uc),  eker(h).

Moreover, if A’ — B’ is monic, then so is ker(f) — ker(g), and if B — C is
onto, then so is coker( f) — coker(g).

Etymology The term snake comes from the following visual mnemonic:

ker(fh) —— ker(g) —> ker(h) ----- -

----> coker(fy —> coker(g) — coker(h).

Remark The Snake Lemma also holds in an arbitrary abelian category C. To
see this, let A be the smallest abelian subcategory of C containing the ob-
jects and morphisms of the diagram. Since 4 has a set of objects, the Freyd-
Mitchell Embedding Theorem (see 1.6.1) gives an exact, fully faithful embed-
ding of A into R—mod for some ring R. Since 3 exists in R—mod, it exists in
A and hence in C. Similarly, exactness in R—mod implies exactness in .A and
hence in C.



1.3 Long Exact Sequences

Exercise 1.3.3 (5-Lemma) In any commutative diagram

A — B — ¢ — D — F
al% bl; cl dl; el;

A — B —C — D — FE

13

with exact rows in any abelian category, show that if a, b, d, and e are isomor-
phisms, then c is also an isomorphism. More precisely, show that if » and d
are monic and a is an epi, then ¢ is monic. Dually, show that if b and d are

epis and ¢ is monic, then c is an epi.

We now proceed to the construction of the connecting homomorphism 3 of

Theorem 1.3.1 associated to a short exact sequence
0-A—>B—->C—>0

of chain complexes. From the Snake Lemma and the diagram

0 0 0

B ! !

0 — Z,A — Z,B — Z,C

! : !

00— A4, -— B, — (C, — 0

al al al

0 — A,y — B,y — Cho1 — 0

! ! !

An—l Bn-l Cn—l
— — —
dA, dB, dcC,
1 ! !
0 0 0

we see that the rows are exact in the commutative diagram

An Bﬂ Cn
— —
dAn+1 dBy+1 dCpy1

dj al al

f
0 — Zn_1(A) —> Zn_1(b) —> Zu_1(C).
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The kernel of the left vertical is H,(A), and its cokernel is H,_1(A). Therefore
the Snake Lemma yields an exact sequence

f ]
Hy(A) — Hy(B) =5 Hy(C) —> Hy—1(A) > Hy_1(B) = Ho1(C).
The long exact sequence 1.3.1 is obtained by pasting these sequences together.

Addendum 1.3.3 When one computes with modules, it is useful to be able to
push elements around. By decoding the above proof, we obtain the following
formula for the connecting homomorphism: Let z € H,(C), and represent it by
a cycle ¢ € Cy,. Lift the cycle to b € B, and apply d. The element db of B,_;
actually belongs to the submodule Z,,_1(A) and represents d(z) € H,_1(A).

We shall now explain what we mean by the naturality of 3. There is a
category S whose objects are short exact sequences of chain complexes (say,
in an abelian category C). Commutative diagrams

0 — A — B — C — 0

(*) l l !
0 — A — B — C — 0

give the morphisms in S (from the top row to the bottom row). Similarly, there
is a category L of long exact sequences in C.

Proposition 1.3.4 The long exact sequence is a functor from S to L. That is,
for every short exact sequence there is a long exact sequence, and for every
map (*) of short exact sequences there is a commutative ladder diagram

. —a—> H,(A) — H,(B) — H,(C) -i> H, (A —>
! ! ! !

3 3
© —> Hy(A) —> Huy(B) —> Hu(C) — Hp1(A)—> -

Proof All we have to do is establish the ladder diagram. Since each H, is a
functor, the left two squares commute. Using the Embedding Theorem 1.6.1,
we may assume C = mod—R in order to prove that the right square commutes.
Given z € H,(C), represented by ¢ € Cp, its image z' € H,(C") is represented
by the image of c. If b € B, lifts c, its image in B, lifts ¢’. Therefore by 1.3.3
8(z") € H,_1(A) is represented by the image of db, that is, by the image of a
representative of 3(z), so (') is the image of 3(z). &
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Remark 1.3.5 The data of the long exact sequence is sometimes organized
into the mnemonic shape

H(4)  — H.(B)

AN e
H,(C)

This is called an exact triangle for obvious reasons. This mnemonic shape
is responsible for the term “triangulated category,” which we will discuss in
Chapter 10. The category K of chain equivalence classes of complexes and
maps (see exercise 1.4.5 in the next section) is an example of a triangulated
category.

Exercise 1.3.4 Consider the boundaries-cycles exact sequence 0 — Z —
C — B(—1) — 0 associated to a chain complex C (exercise 1.2.7). Show that
the corresponding long exact sequence of homology breaks up into short exact
sequences.

Exercise 1.3.5 Let f be a morphism of chain complexes. Show that if ker( f)
and coker( f) are acyclic, then f is a quasi-isomorphism. Is the converse true?

Exercise 1.3.6 Let0 - A — B — C — 0 be a short exact sequence of dou-
ble complexes of modules. Show that there is a short exact sequence of total
complexes, and conclude that if Tot(C) is acyclic, then Tot(A4) — Tot(B) is a
quasi-isomorphism.

1.4 Chain Homotopies

The ideas in this section and the next are motivated by homotopy theory in
topology. We begin with a discussion of a special case of historical impor-
tance. If C is any chain complex of vector spaces over a field, we can always
choose vector space decompositions:

Cn=2,9 B, B, =Cy/Zy=d(Cy) = Byt
Z,=B,®H,, H, = Z,/B, = H,(C).

Therefore we can form the compositions

Chn— Zn— By =B, | S Chyi
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to get splitting maps s,: C, — Cp1, such that d = dsd. The compositions ds
and sd are projections from C,, onto B, and B}, respectively, so the sum ds +
sd is an endomorphism of C, whose kernel H,, is isomorphic to the homology
H,(C). The kernel (and cokernel!) of ds + sd is the trivial homology complex
H,(C). Evidently both chain maps H.(C) — C and C — H,(C) are quasi-
isomorphisms. Moreover, C is an exact sequence if and only if ds + sd is the
identity map.

Over an arbitrary ring R, it is not always possible to split chain complexes
like this, so we give a name to this notion.

Definition 1.4.1 A complex C is called split if there are maps s,: Cp, — Cp41
such that d = dsd. The maps sy, are called the splitting maps. If in addition C
is acyclic (exact as a sequence), we say that C is split exact.

Example 1.4.2 Let R = Z or Z/4, and let C be the complex

RN YRy Y7 LNy 7 SN

This complex is acyclic but not split exact. There is no map s such that ds + sd
is the identity map, nor is there any direct sum decomposition C,, = Z, @ B;,.

Exercise 1.4.1 The previous example shows that even an acyclic chain com-
plex of free R-modules need not be split exact.

1. Show that acyclic bounded below chain complexes of free R-modules
are always split exact.

2. Show that an acyclic chain complex of finitely generated free abelian
groups is always split exact, even when it is not bounded below.

Exercise 1.4.2 Let C be a chain complex, with boundaries B, and cycles Z,
in C,. Show that C is split if and only if there are R-module decompositions
Cn=Z,® B), and Z, = B, @ H,,. Show that C is split exact iff H; =0.

Now suppose that we are given two chain complexes C and D, together
with randomly chosen maps s,: C, — Dy.1. Let f, be the map from C,, to D,
defined by the formula f, = dp418, + Sp—14dn .

d d
Chy1 —> Cp —> Cuy
s £l s

Dy 7 D, 7 Dy
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Dropping the subscripts for clarity, we compute
df =d(ds + sd) =dsd = (ds + sd)d = fd.
Thus f =ds + sd is a chain map from C to D.

Definition 1.4.3 We say that a chain map f:C — D is null homotopic if
there are maps s,: Cp — Dp4y such that f = ds + sd. The maps {s,} are
called a chain contraction of f.

Exercise 1.4.3 Show that C is a split exact chain complex if and only if the
identity map on C is null homotopic.

The chain contraction construction gives us an easy way to proliferate chain
maps: if g: C — D is any chain map, so is g + (sd + ds) for any choice of
maps s,. However, g 4 (sd + ds) is not very different from g, in a sense that
we shall now explain.

Definition 1.4.4 We say that two chain maps f and g from C to D are chain
homotopic if their difference f — g is null homotopic, that is, if

f—g=sd+ds.

The maps {s,} are called a chain homotopy from f to g. Finally, we say that
f:C — D is a chain homotopy equivalence (Bourbaki uses homotopism) if
there is a map g: D — C such that gf and fg are chain homotopic to the
respective identity maps of C and D.

Remark This terminology comes from topology via the following observa-
tion. A map f between two topological spaces X and Y induces a map
f«:S(X) = S(Y) between the corresponding singular chain complexes. It
turns out that if f is topologically null homotopic (resp. a homotopy equiv-
alence), then the chain map f, is null homotopic (resp. a chain homotopy
equivalence), and if two maps f and g are topologically homotopic, then f,
and g, are chain homotopic.

Lemma 1.4.5 If f: C — D is null homotopic, then every map fy: H,(C) —
Hy(D) is zero. If f and g are chain homotopic, then they induce the same
maps H,(C) - H,(D).

Proof It is enough to prove the first assertion, so suppose that f =ds + sd.
Every element of H,(C) is represented by an n-cycle x. But then f(x) =
d(sx). That is, f(x) is an n-boundary in D. As such, f(x) represents O in
H,(D). <&



18 Chain Complexes

Exercise 1.4.4 Consider the homology H,(C) of C as a chain complex with
zero differentials. Show that if the complex C is split, then there is a chain
homotopy equivalence between C and H,(C). Give an example in which the
converse fails.

Exercise 1.4.5 In this exercise we shall show that the chain homotopy classes
of maps form a quotient category K of the category Ch of all chain complexes.
The homology functors H, on Ch will factor through the quotient functor
Ch —» K.

1. Show that chain homotopy equivalence is an equivalence relation on
the set of all chain maps from C to D. Let Homk(C, D) denote the
equivalence classes of such maps. Show that Homg (C, D) is an abelian
group.

2. Let f and g be chain homotopic maps from C to D. If u: B — C and
v: D — E are chain maps, show that vfu and vgu are chain homotopic.
Deduce that there is a category K whose objects are chain complexes and
whose morphisms are given in (1).

3. Let fo, f1. go. and g be chain maps from C to D such that f; is chain
homotopic to g; ({ = 1,2). Show that fy + f1 is chain homotopic to
go + g1. Deduce that K is an additive category, and that Ch — K is an
additive functor.

4. Is K an abelian category? Explain.

1.5 Mapping Cones and Cylinders

1.5.1 Let f: B.— C. be a map of chain complexes. The mapping cone of
f is the chain complex cone(f) whose degree n partis B,_; & C,. In order
to match other sign conventions, the differential in cone(f) is given by the
formula

d(b,c)=(=d(b),d(c) — f(b)), (b€ By, celCy).

That is, the differential is given by the matrix

Bn—l —:“) Bn—2

-dg 0 §. _
[—f +dc]' ® N @
C, — Cu

+
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Here is the dual notion for a map f: B — C° of cochain complexes. The
mapping cone, cone( f), is a cochain complex whose degree n part is B*t! @
C". The differential is given by the same formula as above with the same signs.

Exercise 1.5.1 Let cone(C) denote the mapping cone of the identity map id¢
of C; it has C,,_1 @ C, in degree n. Show that cone(C) is split exact, with
s(b, ¢) = (—c, 0) defining the splitting map.

Exercise 1.5.2 Let f:C — D be a map of complexes. Show that f is null
homotopic if and only if f extends to a map (—s, f):cone(C) — D.

1.5.2 Any map fi: H.(B) — H.(C) can be fit into a long exact sequence
of homology groups by use of the following device. There is a short exact
sequence

0 — C — cone(f) LN B[-1]—>0

of chain complexes, where the left map sends ¢ to (0, ¢), and the right map
sends (b, ¢) to —b. Recalling (1.2.8) that H,1(B[—1]) = H,(B), the homol-
ogy long exact sequence (with connecting homomorphism d) becomes

= Hypr(cone()) = Ho(B) —> Hy(C) = Hp(cone(f)) —> Hy_((B) —> ---.

The following lemma shows that 9 = f,, fitting f, into a long exact sequence.
Lemma 1.5.3 The map 3 in the above sequence is f.

Proof 1f b € B, is a cycle, the element (—b, 0) in the cone complex lifts b via
8. Applying the differential we get (db, fb) = (0, fb). This shows that

3[b] = [fb] = f:[D]. <&

Corollary 1.5.4 A map f: B — C is a quasi-isomorphism if and only if the
mapping cone complex cone( f) is exact. This device reduces questions about
quasi-isomorphisms to the study of split complexes.

Topological Remark Let K be a simplicial complex (or more generally a cell
complex). The topological cone CK of K is obtained by adding a new vertex
s to K and “coning off” the simplices (cells) to get a new (n + 1)-simplex
for every old n-simplex of K. (See Figure 1.1.) The simplicial (cellular) chain
complex C (s) of the one-point space {s} is R in degree 0 and zero elsewhere.
C (s) is a subcomplex of the simplicial (cellular) chain complex C (CK) of
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CK CK

cone Cf

K ///4,(/./, /// -

Figure 1.1. The topological cone C K and mapping cone Cf.

the topological cone CK. The quotient C (CK)/C (s) is the chain complex
cone(C K) of the identity map of C (K). The algebraic fact that cone(C K) is
split exact (null homotepic) reflects the fact that the topological cone CK is
contractible.

More generally, if f: K — L is a simplicial map (or a cellular map), the
topological mapping cone Cf of f is obtained by glueing CK and L together,
identifying the subcomplex K of CK with its image in L (Figure 1.1). This is
a cellular complex, which is simplicial if f is an inclusion of simplicial com-
plexes. Write C (Cf) for the cellular chain complex of the topological map-
ping cone Cf. The quotient chain complex C (Cf)/C (s) may be identified
with cone( f,.), the mapping cone of the chain map fi: C.(K) — C(L).

1.5.5 A related construction is that of the mapping cylinder cyl( f) of a chain
complex map f: B. — C. The degree n part of cyl( f) is B, ® B,_1 & Cp,, and
the differential is

d(b,b',c) = (d®) + b, —d®),d(c) — f(b)).

That is, the differential is given by the matrix

B, — B,
i dg idy O | ® 4 @
0 —dy O B,, ——— B,,
0 o dc ® N ®
B ) +



