Relación 5 Sección semifinal

- **1-.** Calcula las raíces de $p(x) = 1 + x + x^2 + x^3 + x^4 \in \mathbb{Z}_5[X]$.
- **2-.** Demuestra que $x^3 + x + 1$ es un polinomio irreducible de $\mathbb{Z}_2[X]$.
- **3-.** ¿Existe algún cuerpo con 8 elementos? Si la respuesta es afirmativa, da las tablas de multiplicación.
- **4-.** Sea \mathbb{F} un cuerpo. Sea $p(x) = a_0 + a_1 x + \cdots + a_n x^n \in \mathbb{F}[X]$. Demuestra que si $0 \neq a \in \mathbb{F}$ es raíz p(x), entonces a^{-1} es raíz de $a_n + a_{n-1}x + \cdots + a_1x^{n-1} + a_0x^n$
- 5-. Sea $p(x)=1+2x+3x^2+4x^3+5x^4\in\mathbb{Z}_p[X]$. Calcula p para que 1 sea raíz de p(x).
- **6-.** Sea $p(x) = 1 + 2x + 3x^2 + 4x^3 + ax^4 \in \mathbb{R}[X]$. Calcula a para que p(x) sea divisible por x-2.
- 7-. Sea \mathbb{F} un cuerpo. Demuestra que si $p(x) \in \mathbb{F}[X]$ es una unidad, $p(x) = a_0$ (es decir deg(p(x)) = 0) con $a_0 \neq 0$.
 - **8-.** Demuestra que en $\mathbb{Z}_4[X]$ hay infinitos elementos inversibles.
- **9-.** ¿Existe un cuerpo \mathbb{F} y un polinomio $p(x) \in \mathbb{F}[X]$ tal que p(a) = 0 para todo $a \in \mathbb{F}$?.
- **10-.** Sea $p(x) \in \mathbb{R}[X]$. Demuestra que si $c \in \mathbb{C}$ es raíz de p(x) entonces \bar{c} , el conjugado de c también es raíz. Es mas, $h(x) = (X c)(X \bar{c}) \in \mathbb{R}[X]$ y p(x) es divisible por h(x).
- 11-. Si dos polinomios $p(x), q(x) \in \mathbb{F}[X]$ tienes las mismas raíces, ¿Son asociados?
- **12-.** Determina si los siguientes polinomios son irreducibles en $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ o \mathbb{Z}_2 : $p_1(x) = X^2 + 1, p_2(x) = x^4 + x^2 + 1, p_3(x) = 15 + 3X + 6X^2 + 8X^20$

Calcula el máximo común divisor y el mínimo común múltiplo de $p_2(x)$ y $p_1(3)$ sobre \mathbb{R} .

- 13-. Encuentra un cuerpo con 81 elementos.
- **14-.** Sea \mathbb{F} un cuerpo y sea $p(x) \in \mathbb{F}[X]$. Encuentra un cuerpo \mathbb{F}' extensión de \mathbb{F} tal que p(x) tenga una raíz. Concluir que dado un polinomio $p(x) \in \mathbb{F}[X]$ siempre existe un cuerpo en donde p(x) factoriza.
 - **15-.** ¿un ideal I de $\mathbb{F}[X]$, con \mathbb{F} un cuerpo, es primo si y sólo si es maximal?

4 horas