Citations

From References: 0 From Reviews: 0

MR2349889 (Review) 16S90 (16D50 16D70 16D80)

Charalambides, Stelios; Clark, John (NZ-OTG)

CS modules relative to a torsion theory. (English summary)

Mediterr. J. Math. 4 (2007), no. 3, 291–308.

The goal of this article is to get a torsion-theoretic analogue of CS modules. The authors introduce two new concepts, τ -CS modules and strongly τ -CS modules (s- τ -CS): Let $\tau = (\mathfrak{T}, \mathfrak{F})$ denote a hereditary torsion theory on R-Mod, where \mathfrak{T} and \mathfrak{F} denote the classes of all τ -torsion and τ -torsionfree modules respectively. A submodule N of M is called τ -dense if M/N is τ -torsion and it is called τ -essential in M if it is τ -dense and essential in M. If N has no proper (τ -)essential extensions in M, then N is said to be (τ -)essentially closed in M. A module M is called τ -CS if one of the following equivalent conditions holds:

- (1) Every τ -dense submodule of M is essential in a direct summand of M.
- (2) Every τ -dense submodule of M is τ -essential in a direct summand of M.
- (3) Every τ -dense, τ -essentially closed submodule of M is a direct summand of M.
- (4) Every τ -dense, essentially closed submodule of M is a direct summand of M.

Note that every CS module is τ -CS.

A module M is strongly τ -CS if one of the following equivalent conditions holds:

- (1) Every submodule of M is τ -essential in a direct summand of M.
- (2) Every τ -essentially closed submodule of M is a direct summand of M.

The authors investigate the relations between these concepts and the notions of τ -injective, τ -simple and τ -uniform modules, and compare them with τ -complemented (τ -injective) modules. They obtain a refinement of a theorem by Masaike and Horigome which characterizes rings with ACC on their τ -dense ideals. Moreover, they establish conditions under which a finite direct sum of s- τ -CS modules is s- τ -CS, and they study the relationship between τ -complemented modules and s- τ -CS modules.

Reviewed by Miguel A. Gómez Lozano

© Copyright American Mathematical Society 2008