A module M has Goldie dimension n (written $G \dim M = n$) if it contains an essential submodule which is a direct sum of n uniform submodules (where a submodule N of M is uniform if it is nonzero and for any nonzero submodules N_1 and N_2 of N, $N_1 \cap N_2 \neq 0$). In these conditions, any direct sum of nonzero submodules of M contains at most n summands. Following the notions of right global dimension or right weak dimension of a ring, the authors introduce the notion of strong Goldie dimension of a module: A module M is said to have strong Goldie dimension equal to n ($SG \dim M = n$) if $\sup \{G \dim M/N \mid N \leq M\} = n$. In this case M is called strongly finite dimensional. A ring R is called right (left) strongly finite dimensional if it is strongly finite dimensional as a right (left) R-module.

In the paper under review the authors characterize the strong Goldie dimension of a module M as

$$SG \dim M = \sup \{\text{codim } N, N \leq M\}$$

and prove that strong finite dimensionality is a Morita invariant property: If R is a unital ring and $S = M_n(R)$, then

$$G \dim S = nG \dim R.$$

Moreover, they characterize some classes of strongly finite dimensional modules: The modules with strong Goldie dimension equal to 1 are the uniserial modules (a module M is uniserial if the lattice of its submodules is totally ordered by inclusion). The right (left) Artinian rings are the right (left) semi-Artinian rings with right (left) strongly finite dimension (where a ring R is right (left) semi-Artinian if every right (left) R-module has an essential right (left) socle). As a consequence, strong finite dimensionality is not a left-right symmetric property.

Reviewed by Miguel A. Gómez Lozano

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© *Copyright American Mathematical Society 2008*