Semiprime graded rings of finite support

by

N. CHIFAN, C.NASTASESCU AND B. TORRECILLAS To Professor Ion D. Ion on the occasion of his 70th Birthday

Abstract

The paper gives necessary and sufficient condition as a graded ring of finite support to be semiprime.

Key Words: Graded ring, semiprime, radical. **2000 Mathematics Subject Classification**: Primary: 13A02, Secondary 16N60.

1 Introduction.

Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a group graded ring. The graded ring R is said to be gr-semiprime if the intersection of all gr-prime ideals is zero, i.e. the graded prime radical, $rad_q(R)$, is zero. This is equivalent to the property that R has no nonzero nilpotent graded ideals. We are interested in the following general problem: When a gr-semiprime ring is semiprime? In [5] Fisher and Montgomery showed that if R is semiprime and it has no |G|-torsion then the skew group ring is semiprime. Lorenz and Passman (see [9], [10]) extended this result for crossed product S = R * G and they obtained a result on the radical prime of S for the case that R has |G| - torsion. For a finite group G and a ring R graded by G, it was shown in [13, Theorem 6.7], that if R has no n-torsion, where n = |G|, then $rad(R) = rad_q(R)$. In this paper, we will study the problem for G- graded rings of finite support, where G is an arbitrary group. The theory of graded rings of finite support has been investigated in several papers (cf. [2, 4, 12, 14]), where it has been shown that this theory does not coincide with the theory of finite group gradings. The main result (Theorem 7) extends the Lorenz and Passman's result to G-graded rings of finite support. Our proof uses different methods, in particular the graded Clifford theory is an essential ingredient, but the strategy is similar to the paper [9].

2 Preliminaries.

All rings considered in this paper will be unitary. If R is a ring, by an R module we will mean a left R - module, and we will denote the category of R - modules by R-Mod. Let G be a group with identity element $1, R=\bigoplus_{\sigma\in G}R_{\sigma}$ a G - graded ring. The category of graded R modules will be denoted by R-gr. It is well known that R-gr is a Grothendieck category. A graded ideal I is graded prime if whenever $JK\subseteq I$ for J, K graded ideals of R, then $J\subseteq I$ or $K\subseteq I$. The graded prime radical $rad_g(R)$ is the intersection of all graded prime ideals of R. We denote by rad(R) the prime radical of R, i.e. the intersection of all prime ideals of R. A graded ring R is gr-semiprime if and only if the intersection of all gr-prime ideals is zero, i.e. $rad_g(R)=0$. This is equivalent of the property that R has no nonzero niplotent graded ideals. If $M=\bigoplus_{\sigma\in G}M_{\sigma}$ is a left graded R module, we define the support of M by $supp(M)=\{\sigma\in G/M_{\sigma}\neq 0\}$. If a graded R module M has the property that supp(M) is a finite set, then we say that M is a graded module of finite support, and we write supp(M)<0. We refer to [15] for all the definitions and basic properties of graded rings and modules.

3 Graded semiprime rings.

Proposition 1. ([3,Proposition 1.2.]) Let R be a graded ring of finite support. Suppose that |supp(R)| = n.

- 1. If A is a subring of R with $A_1 = 0$, then $A^n = 0$.
- 2. If A is a left (or right) ideal of R_1 with $A^d = 0$, then $(RA)^{nd} = 0$.
- 3. If R is gr-semiprime, then R_1 is semiprime.

We denote by $J^g(R)$ the graded Jacobson radical and by J(R) the usual Jacobson radical.

Proposition 2. Let R be a graded ring of finite support and |supp(R)| = n. Then:

- 1. $J^g(R) \subseteq J(R)$.
- 2. $J(R)^n \subseteq J^g(R)$.

Proof: (1) By [12, Proposition 4.6].

(2) Follows from [12, Corollary 4.4].

Corollary 3. Let R be a gr-semiprime graded ring of finite support. If R_1 is semiprimitive, then R is gr-semiprimitive.

Proof: Indeed $J^g(R) \cap R_1 = J(R_1)$. Since $J(R_1) = 0$, then $J^g(R_l) = 0$. By Proposition 1, $J^g(R)^n = 0$. Hence $J^g(R) = 0$ since R is gr-semiprime. Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a G-graded ring. If we put $R[x]_{\sigma} = R_{\sigma}[x]$, we obtain that $R[x] = \bigoplus_{\sigma \in G} R_{\sigma}[x]$ is a G-graded ring. \square

Proposition 4. Let R be a G - graded ring. If R is gr-semiprime (resp. gr-prime), then R[x] is gr-semiprime (resp. gr-prime).

Proof: Let $f = a_0^\sigma + a_1^\sigma x + ... + a_n^\sigma x^n \in R_\sigma[x]$ a nonzero homogeneous element. It is necessary to show that $(a_0^\sigma + a_1^\sigma x + ... + a_n^\sigma x^n) R[x] (a_0^\sigma + a_1^\sigma x + ... + a_n^\sigma x^n) \neq 0$. If it is zero then $a_0^\sigma R a_0^\sigma = 0$ and $a_0^\sigma = 0$. Since x is a nonzero divizor on R[x] we obtain that $(a_1^\sigma + ... + a_n^\sigma x^{n-1}) R[x] (a_1^\sigma + ... + a_n^\sigma x^{n-1}) \neq 0$. From this $a_1^\sigma R a_1^\sigma = 0$ and $a_1^\sigma = 0$. Continuing in this manner we obtain that the homogeneous element f is zero. Analogously we prove the case when R is gr-prime.

Recall that a graded ideal I of a graded ring R is called gr-nil if every homogeneous element of I is nilpotent.

Lemma 5. Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a graded ring of finite support. If I is nonzero graded ideal of R such that is gr-nil ideal of bounded index, then R contains a nonzero nilpotent graded ideal $J \subset I$.

Proof: Let I be a gr-nil ideal of R. If $I_1 = 0$, then I is nilpotent by Proposition 1. Otherwise, I_1 is a nil ideal of R_1 of bounded index and by a theorem of Levitzki [8] there exists a nonzero nilpotent left ideal $A \subseteq I_1$. By Proposition 1, RA is a nonzero nilpotent graded left ideal.

Let R be a graded ring of finite support. We denote $\widehat{R} = \prod_N R / \sum_N R$. Since R has finite support then \widehat{R} is a G-graded ring of finite support with the grading $\widehat{R}_{\sigma} = \prod_N R_{\sigma} / \sum_N R_{\sigma}$, for every $\sigma \in G$.

Proposition 6. Let R be a graded ring of finite support. The following statement are equivalent:

- i) R is gr-semiprime
- ii) \widehat{R} has no nonzero gr-nil graded ideals
- iii) \widehat{R} is gr-semiprime.

Proof: (This is a graded version of [9, Lemma 5])

 $i) \Rightarrow ii)$ Assume H to be a nonzero gr-nil graded ideal in R. Take an homogeneous element $0 \neq x \in H$. We write $x = (x_i) + \bigoplus R_i$, where the x_i 's are homogeneous of the same degree as x ($deg \ x = deg \ x_i$) when $x_i \neq 0$. Since x

is nonzero, the set $A=\{i\in I/x_i\neq 0\}$ is infinite. Suppose now that for any $i\in A,\ Rx_i$ is not a gr-nil graded ideal of bounded index. We find an homogenous element r_i such that $(r_ix_i)^i\neq 0$. Since R is finite support, there exists an infinite set of homogeneous element r_i of the same degree such that $(r_ix_i)^i\neq 0$. We take the element in \widehat{R} , $y=(y_i)+\bigoplus R_i$, where $y_i=r_i$ and zero elsewhere. The element $yx\in H$ is homogeneous and not nilpotent. This is a contradiction. Hence there exists an i such that Rx_i is a gr-nil graded ideal of bounded order. By Lemma 5, R is not gr-semiprime.

- $ii) \Rightarrow iii)$ This is clear because if $rad_q(\widehat{R}) \neq 0$, this is a gr-nil graded ideal.
- $(iii) \Rightarrow i$) If H is a nonzero nilpotent graded ideal of R, then

$$\hat{H} = \prod_{N} H / \sum_{N} H$$

is a nilpotent graded ideal of \widehat{R} , contradiction.

Theorem 7. Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a graded ring of finite support with n = |supp(R)|. Assume that R is gr-semiprime.

- (1) If for any finite subgroup H of G with $|H| \leq n$, R is |H|- torsionfree group, then R is semiprime.
 - (2) In any case R has a unique maximal nilpotent ideal N such that $N^n = 0$.

Proof: In the hypothesis of (1) we can assume that every |H| with $|H| \le n$ is invertible in R (passing to certain ring of fractions).

We consider first the case when R_1 is gr-semiprimitive. By Proposition 2 and Corollary 3 we have $J(R)^n = 0$. In the hypothesis of (1), let \sum be a gr-simple left R-module, then we have an epimorphism

$$R(\sigma) \to \sum \to 0$$

for some $\sigma \in G$. Hence $|supp(\sum)| \leq |supp(R)| = n$. If we denote by $G(\sum) = \{\sigma \in G/\sum \cong \sum(\sigma)\}$ the inertia group of \sum , it follows that $|G(\sum)|$ divides $|supp(\sum)|$. Therefore $|G(\sum)| \leq n$ and by the first argument $|G(\sum)|$ is invertible in R. Hence \sum is semisimple by Clifford theory [6, Theorem 3.2.v.]. Every greenisimple graded left R module is semisimple and in this case J(R) = 0 since $J(R) = J^g(R)$. Hence R is semiprimitive and therefore semiprime.

The assertion 2) follows immediately. Indeed, if I is a nilpotent ideal of R, then $I \subseteq J(R)$ and thus $I^n = 0$. Therefore there exists a unique maximal ideal N such that $N^n = 0$.

Assume that R_1 has no nonzero nil ideals. Then by a result of Amitsur [7, Theorem 6.1.1] $R_1[x]$ is semiprimitive. Also by Proposition 4, R[x] is gr-semiprime. The preceding argument give us that in the case (1) R[x] is semiprime and therefore R is semiprime. In the general case, if I is a nilpotent ideal of R, then $I[x]^n$ is a nilpotent ideal of R[x] and the preceding argument tell us that $I[x]^n = 0$ and $I^n = 0$. So by Proposition 1, R_1 is semiprime.

Finally assume that R is gr-semiprime, then R_1 is semiprime by Proposition 1. By the Proposition 6 \hat{R} is gr-semiprime and \hat{R}_1 has no nonzero nil ideals. The

last paragraph tell us that \widehat{R} is semiprime. Thus by [9, Lemma 5] R is semiprime. Finally if I is a nilpotent ideal of R, then is nilpotent and then $\widehat{I}^n = 0$. Hence $I^n = 0$.

Corollary 8. Let R be a G-graded ring with G finite and let n = |G|. Assume that R is gr-semiprime.

i) If R has no n-torsion then R is semiprime.

ii) In any case, R has a unique maximal nilpotent ideal N and $N^n = 0$.

Corollary 9. Let R be a G-graded ring of finite support with G torsionfree. Then R is gr-semiprime if and only if R is semiprime.

References

- [1] ABRAMS G. HAEFNER J., Primeness conditions for group graded rings. Rings theory (Granville, OH, 1992), 1-19, World Sci.Publishing, River Edge, NJ, 1993.
- [2] COHEN M. AND ROWEN L., Group graded rings, Comn. Algebra 11 (1983), 1253-1270.
- [3] COHEN M. AND MONTGOMERY S., Group graded rings, smash products, and group actions, Trans. AMS 282 (1984), 237-258.
- [4] DASCALESCU S., NASTASESCU C., DEL RIO A., VAN OYSTAEYEN F., Gradings of finite support. Application to injective objects. Contact Franco-Belge en Algbre (Diepenbeek, 1993). J.Pure Appl.Algebra 107 (1996), 193-206.
- [5] FISHER J. W., MONTGOMERY S., Semiprime skew group rings. J. Algebra 52 (1978), 241-247.
- [6] GMEZ PARDO J.L. AND NASTASESCU C., Relative projective, graded Clifford theory and applications, J.Algebra 141 (1991), 484-504.
- [7] HERSTEIN I.N., Noncommutative rings, Carus Mathematical Monograph, MAA, 1968.
- [8] Levitzki, J., A theorem of polynomial identities, Proc. AMS 1 (1950), 334-341.
- [9] LORENZ M. AND PASSMAN D., Two applications of Maschkes theorem, Comm.Algebra 8 (1980), 1853-1866.
- [10] LORENZ M. AND PASSMAN, D.S., Prime ideals n crossed products of finite group. Israel J.Math. 33 (1979), 89-132.

- [11] Menini C. and Nastasescu C., Gr-simple modules and gr-Jacobson radical. Aplication (I). Bull.Math. de la Soc.Sci.Math de Roumanie 34 (1990), 25-36.
- [12] Menini C. and Nastasescu C., Gr-simple modules and gr-Jacobson radical. Aplications (II). Bull.Math. de la Soc.Sci.Math de Roumanie 34 (1990), 125-133.
- [13] NASTASESCU C., Group rings of graded rings. Application, J. Pure and Appl. Algebra 33 (1984), 313-335.
- [14] NASTASESCU C., Some constructions over graded rings. Applications, J. Algebra 120 (1989), 119-138.
- [15] NASTASESCU C. AND VAN OYSTAEYEN F., Graded Ring Theory, Mathematical Library 28 (North Holland, Amsterdam, 1982).

Received: 5.12.2005

University of Galaţi, str. Domnească 47, RO 800008, Galaţi, Romania E-mail: nchifan@ugal.ro

Faculty of Mathematics, University of Bucharest, Str. Academiei 14, Bucharest, RO-010014, Romania E-mail: cnastase@al.math.unibuc.ro

Departamento de Algebra y Anlisis, Universidad de Almeria, Spain, 04071 Almeria, Spain, E-mail: btorreci@ual.es