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1. INTRODUCTION

Let R be an associative ring. Let S be a subset of R which is closed
Žunder multiplication and which consists of regular elements not zero

. Ž .divisors . An overring R � Q is called a right ring of fractions of R with
Ž . Ž .respect to S if 1 all elements from S are invertible in Q, 2 an arbitrary

�1 Želement q � Q can be represented as as , where a � R, s � S. Ore see
� �.8 found a necessary and sufficient condition for a right ring of fractions
to exist:

The Ore Condition. For arbitrary elements a � R, s � S there exist
elements a� � R, s� � S such that as� � sa�.

� �Jacobson et al. 2 proved the existence of rings of fractions of Jordan
domains satisfying some Ore-type conditions. In this paper we derive a
necessary and sufficient Ore-type condition for an arbitrary Jordan algebra

Žto have a ring of fractions. Goldie’s theorems in Jordan algebras an
. � �important application of Ore localization have been studied in 11, 12 .

Throughout the paper we will consider algebras over a field F, char F
� 2, 3.

1 Partially supported by DGES PB97-1291-C03-01, FICYT PGI-PB99-04.
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Ž .A linear Jordan algebra is a vector space J with a binary operation
Ž .x, y � xy satisfying the following identities:

Ž .J1 xy � yx,
Ž . Ž 2 . 2Ž .J2 x y x � x yx .

Ž . Ž .For an element s � J let R x denote the right multiplication R x : a
� ax in J.

Ž .The linearization of J2 can be written in terms of operators as

R xy z 	 R x R z R y 	 R y R z R xŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
� R xy R z 	 R xz R y 	 R yz R xŽ . Ž . Ž . Ž . Ž . Ž .
� R z R xy 	 R y R xz 	 R x R yz .Ž . Ž . Ž . Ž . Ž . Ž .

We will refer to it as the Jordan identity.
� 4For elements x, y, z in J, by x, y, z we denote their Jordan triple

� 4 Ž . Ž . Ž .product, x, y, z � xy z 	 x yz � xz y.
Ž . Ž Ž .. Ž . �By U x, y resp. V x, y we will denote the operators zU x, y � x,

4 Ž Ž . � 4.z, y resp. zV x, y � x, y, z .
Ž . Ž . Ž .For arbitrary elements x, y � J the operator D x, y � R x R y �

Ž . Ž . Ž � �.R y R x is known to be a derivation of J see 1 .
Ž . Ž .We denote U x � U x, x . An element a of a Jordan algebra J is

Ž .called regular if the operator U a is injective.

Ž � �. ŽDEFINITION 1.1 compare to the definition in 2 . An Ore monad or
.simply a monad, by short S of J is a nonempty subset of J, consisting of

regular elements such that for arbitrary elements s, s� � S

Ž . 2 Ž �.i s , sU s � S,
Ž . Ž . Ž �.ii SU s 
 SU s � �.

DEFINITION 1.2. Let J be a Jordan algebra. A Jordan algebra Q, J � Q
is said to be a ring of fractions of J with respect to a monad S if

Ž .i an arbitrary element of S is invertible in Q,
Ž .ii for an arbitrary element q � Q there exists an element s � S

such that q � s � J, q � s2 � J.

² :For a Jordan algebra J let R J denote its multiplication algebra, i.e.,
Ž . Ž .the subalgebra of End J generated by all multiplications R a , a � J.F

DEFINITION 1.3. Let S � J be a monad of a Jordan algebra J. We say
that J satisfies the Ore condition with respect to S if for an arbitrary

² :element s � S and for an arbitrary operator W � R J there exist an
� � ² : � Ž . Ž � .element s � S and an operator W � R J such that W U s � U s W.
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The main theorem of this paper is

THEOREM 1.1. Let J be a Jordan algebra and let S be a monad in J. Then
J has a ring of fractions with respect to S if and only if J satisfies the Ore
condition with respect to S.

Ž .We construct a ring of fractions Q J inside the ring of partially defined
Ž .derivations of the Tits�Kantor�Koecher Lie algebra L J following the

Ž � �.idea of Johnson, Utumi, and Lambek see 6, 8 .
Ž . 2For an element s � S denote K � JU s 	 Fs 	 Fs , which is an inners

² : ² :ideal of J. Let R K denote the subalgebra of R J generated by alls
Ž .multiplications R a , a � K .s

2. NECESSITY OF THE ORE CONDITION

We will start this section with some equivalent characterizations of the
Ore condition.

PROPOSITION 2.1. Let J be a Jordan algebra and let S be a monad in J.
The following conditions are equi�alent:

Ž .1 J satisfies the Ore condition with respect to S. That is, for an
² :arbitrary element s � S, an arbitrary operator W � R J , there exist an

� � ² : � Ž . Ž �.element s � S and an operator W � R J such that W U s � U s W.
Ž . �2 For arbitrary elements s � S, a � J there exist an operator W �

² : � � Ž . Ž �. Ž .R J and an element s � S such that W U s � U s R a .
Ž . �3 For arbitrary elements a � J, s � S there exists an element s �

Ž .SU s which annihilates the element a modulo K , that is,s

Ž . �i a � s � K ands

Ž . Ž �. ² : Ž � �.ii D a, s � R K compare with 10 .s

Ž . Ž .Proof. Clearly 1 implies 2 .
Ž . Ž . ² :2 implies 1 . Let us show that the set of operators W � R J with the

property that for an arbitrary element s � S there exists an element
� Ž �. ² : Ž . ² :s � S such that U s W � R J U s is a subring of R J .

² :Suppose that the operators W , W � R J have this property and let s1 2
be an arbitrary element of S. Then there exist elements s , s � S such1 2

Ž . ² : Ž . Ž . ² : Ž .that U s W � R J U s and U s W � R J U s . By the definition of1 1 2 2
Ž . Ž . Ž . Ž .an Ore monad SU s 
 SU s � �. Let s � SU s 
 SU s . Then1 2 3 1 2

Ž .Ž . ² : Ž .U s W 	 W � R J U s .3 1 2
Ž . ² : Ž .There exists an element s � S such that U s W � R J U s . Then4 4 1 2

Ž . ² : Ž .U s W W � R J U s .4 1 2
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Ž . ² :Since this subring contains generators R a , a � J, of R J , it follows
² :that it is equal to R J .

Ž . Ž . Ž .2 implies 3 . Let’s assume that J satisfies 2 . Then given arbitrary
elements a � J, s � S there exist an element s � S and an operator1

� ² : Ž . Ž . � Ž .W � R J such that U s R a � W U s .1
Ž . Ž . � Ž . Ž . Ž .Since SU s 
 SU s � �, let s � s U s � SU s 
 SU s .1 2 1 1
� Ž . Ž . � Ž . Ž � 2 .Hence s � a � s U s R a � s W U s � K . Consequently, D a, s2 1 2 s

Ž � �. ² :� 2 D as , s � R K .s
� 2 Ž Ž ..2 2 Ž . Ž .On the other hand, s � s U s � s U s U s and so2 1 1 2 1

s� 2a � s2U s U s R a � s2U s W �U s � K .Ž . Ž . Ž . Ž . Ž .1 2 1 1 2 s

� 2 Ž .The element s � SU s annihilates a modulo K .s
Ž . Ž .3 implies 2 . Now we will assume that given arbitrary elements a � J

� Ž .and s � S there exists an element s � SU s that annihilates a mod-
ulo K .s

Ž �. Ž . Ž � � . Ž . Ž �.We have U s R a � 2U s , s a � R a U s .
� Ž . Ž �. Ž . Ž . Ž . �If s � s U s then U s � U s U s U s and besides s a � K . Hence2 2 s

Ž � � . ² : Ž .U s , s a � R J U s . This implies the assertion.

Remark 1. We can define in a similar way the ‘‘right Ore condition.’’
Ž . Ž . Ž .Proceeding as in the proof of 3 implies 2 above, we can prove that 3

implies that for arbitrary elements a � J, s � S there exist an element
� ² : Ž . Ž �. Ž .s � S and an operator W � R J such that R a U s � U s W. Conse-

quently, the ‘‘left Ore condition’’ implies ‘‘the right Ore condition.’’

LEMMA 2.1. Let S be a monad in a Jordan algebra J. Let Q be a Jordan
algebra that contains J. For an arbitrary element q � Q the condition that
there exists an element s � S such that qs � J, qs2 � J, is equi�alent to the
condition that there exists an element t � S such that qK � J.t

Proof. If qK � J then qt � J and qt 2 � J.t
Conversely, if s � S and qs, qs2 � J then qK � J, where t � s2. Indeed,t
Ž 2 . Ž 4. Ž Ž .2 Ž 2 . Ž . Ž 3. Ž 2 .2 .qR s � J and qR s � q �2 R s R s 	 2 R s R s 	 R s � J.

Moreover, for an arbitrary element b � J we have

qR bU s2 � 2 qs, bU s , s � qU s , b , s2 � J .� 4 � 4Ž . Ž . Ž .Ž .

The lemma is proved.

PROPOSITION 2.2. If a Jordan algebra J has a ring of fractions with respect
to a monad S � J, then J satisfies the Ore condition with respect to S.

Proof. Let Q be a ring of fractions of J with respect to S. We need to
prove that for arbitrary elements a � J, s � S there exists an element
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² : Ž . Ž . Ž .s � S and an operator W � R J such that U s R a � WU s , or1 1
Ž . Ž . Ž �1 . ² :equivalently, U s R a U s � R J .1

Ž . Ž �1 . Ž �1 . Ž . Ž �1 �1.Since R a U s 	 U s R a � 2U s a, s we have

U s R a U s�1 � �U s U s�1 R a 	 2U s U s�1a, s�1 .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 1 1

Ž . Ž . Ž .2 Ž Ž ..Linearizing the identity U x U y � 4V x, y � 2V x, xU y we get

U x U y , z � 2V x , y V x , z 	 2V x , z V x , yŽ . Ž . Ž . Ž . Ž . Ž .
� 2V x , xU y , z .Ž .Ž .

In particular,

U s U s�1a, s�1 � 2V s , s�1 V s , s�1a 	 2V s , s�1a V s , s�1Ž . Ž . Ž . Ž . Ž . Ž .1 1 1 1 1

� 2V s , s U s�1 , s�1a .Ž .Ž .1 1

Denote q � s�1, q � s�1a. By Lemma 2.1 there exist elements t , t �1 2 1 2

Ž . Ž .S such that q K � J, i � 1, 2. Choose an element t � SU t 
 SU t 
i t 1 2i
Ž .SU s . Then K � K 
 K .t t t1 2

Ž 2 . Ž 2 . Ž 2 . ² : 2We have V q , K � D q , K 	 R q K � R J since q K � q Ki t i t i t i t i t
Ž 2 . Ž . ² :� J and D q , K � D q K , K � R J .i t i t t

Let s � t 2 � K 2. Then1 t

�1 �1 �1 �1 �1 ² :U s U s R a , V s , s V s , s a , V s , s a V s , s � R JŽ . Ž . Ž . Ž . Ž . Ž . Ž .1 1 1 1 1

Ž Ž �1 �1 .. ² :and it remains to show that V s , s U s , s a � R J .1 1
Ž Ž .. Ž Ž . .Linearizing the identity V x, xU y � V yU x , y we get the identity

Ž Ž .. Ž Ž . . Ž Ž . .V x, xU y, z � V yU x , z 	 V zU x , y . Hence

V s , s U s�1 , s�1a � V s�1U s , s�1a 	 V s�1a U s , s�1 .Ž . Ž . Ž . Ž .Ž .Ž . Ž .1 1 1 1

�1 Ž . �1 Ž . Ž . Ž �1 Ž . �1 .Now, s U s � s U t U t � K , and therefore V s U s , s a �1 t 1
² :R J .

Ž �1 . Ž . Ž . Ž . Ž .Similarly, s a U s � q U t U t � JU t � K , which implies1 2 t

�1 �1 ² :V s a U s , s � R J .Ž . Ž .Ž .1

The proposition is proved.

3. CONSTRUCTION OF THE RING OF QUOTIENTS

Throughout this section we will assume that a Jordan algebra J satisfies
the Ore condition with respect to a monad S � J.
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Let us show that to embed J in a ring of fractions it is sufficient to
˜embed J in a Jordan overring Q in which all elements from S are

invertible.

˜ ˜PROPOSITION 3.1. Let J � Q and all elements from S are in�ertible in Q.
�1 ˜² :Then the subalgebra Q � J, S of Q generated by J and by all in�erses

s�1, s � S, is a ring of fractions of J with respect to S.

˜ �Ž .Proof. Say that an element q � Q has property if for an arbitrary
element s� � S there exists an element s � S such that q � K � K � .s s

Ž� .From Lemma 2.1 it follows that elements of J have property .
�1 Ž� .Let us show that an arbitrary inverse t , t � S, has property .

Choose s� � S. There exists an element s � S such that tK � K � . Thens s
t�1 � K � K � t � K � .sUŽ t . s s

˜ �Ž .It is clear that if elements a, b � Q have property then their sum
Ž� .a 	 b has property .

˜ � 2Ž .Suppose that an element a � Q has property . We will show that a
Ž� .has property .

Let s� � S. There exists an element s � S such that a � K � K � .1 s s1

Similarly, there exists an element s � S such that a � K � K 
 K � . Wes s s1

can also assume that s � K � . We haves

a2R K 2 � aR a R K 2Ž .Ž . Ž .s s

� aR K R a � K 	 aR K R a R K 	 aR a � K 2 .Ž . Ž . Ž . Ž . Ž . Ž .s s s s s

Ž . Ž .� �Furthermore, a � K � K , aR K R a � K � a � K .s s s s s1

Hence, a2 � K 2 � K � and a2 � K 2 � K � .s s s s
From what we proved it follows that an arbitrary element from Q �

² �1: Ž� .J, S satisfies . By Lemma 2.1, Q is a ring of fractions of J. The
proposition is proved.

Ž . Ž .A Jordan algebra J gives rise to a �-graded Lie algebra K J � K J �1
Ž . Ž .	 K J 	 K J , which is known as the Tits�Kantor�Koecher construc-0 1
Ž � �. � 4 Ž . Ž . Ž .tion see 3, 4, 9 . Let a, b, c � ab c 	 a bc � b ac denote the so-

called Jordan triple product of elements a, b, c � J. Consider two copies
J�, J	 of the vector space J. We identify an element a � J with elements
a� in J� and a	 in J	. For arbitrary elements a�� J�, b	� J	 we

Ž � 	. � 	define a linear operator � a , b � End J � End J viaF F

�� � 4c � a, b , c� 	� a , b :Ž . 		½ � 4c � � b , a, c .
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Jordan identities imply that for arbitrary elements a, b, c, d � J we have

� 	 � 	 � 	 � 	 � � 	 	� a , b , � c , d � � � a , b c , d 	 � c , � a , b d ,Ž . Ž . Ž . Ž .Ž . Ž .
Ž � 	. Ž � 	.so the linear space � J , J of all operators � a , b ; a, b � J, is a Lie

algebra.
Now consider the direct sum of vector spaces

K J � J�� � J�, J	 J .Ž . Ž .
� � Ž . � � �� � 	 	� Ž .Define a bracket , on K J via J , J � J , J � 0 ; for arbi-

� � 	 	 � � 	� � 	 �� Ž � 	.trary elements a � J , b � J , a , b � � b , a � � a , b ; for
� 	 Ž � 	.� �an arbitrary element x � J 	 J and for an operator � � � J , J � , x

Ž . � � Ž � 	.� � x � � x, � ; elements from � J , J are commutated as linear
Ž .operators. A straightforward verification shows that K J is a Lie algebra.

Ž . � � � 	� 	Denote L , L � K K � K 	 K , K 	 K , a Lie subalgebra ofs s s s s s s
Ž .L � K J .

Ž .� �PROPOSITION 3.2. Let K � K and so L � L and let D : L � L bes s s s s
a deri�ation such that D � 0. Then D � 0.�� Ls

Before proving Proposition 3.2 we need some preliminary lemmas.

LEMMA 3.1. The centralizer of L in L is zero.s

Proof. Let us show that no nonzero element from J� commutes with
� � 	� � � � � � � 	�� Ž . � 4 Ž .K , K . If a � J and a , K , K � 0 then a, K , K � 0 .s s s s s s

� 4 2 � 2 24 4Therefore a, s, s � a � s � 0 and a, s , s � a � s � 0. This implies that
4 � � 4s lies in the annihilator Ann a in the sense of 10 . Since s is a regularJ

element it follows that a � 0.
	 � � 	�Similarly, no nonzero element from J commutes with K , K . Nows s

0 � � 	� � � 0 � � 	 0 � Ž .let a � J , J lie in the centralizer of L . If J , a � J , a � 0s
0 � � 0 � � �then a � 0. Let us assume that 0 � b , a for some element b � J .

� � 4 � �By Proposition 2.1 there exists an element s � s, S, s such that b ,
� 	 ��� �

� �K , K � K .s s s

�� � 0 � � 	 ��� �� � � 	 ��� 0 � � � 0 � Ž .� � � �Hence, b , a , K , K � b , K , K , a � K , a � 0 ,s s s s s
which contradicts what was proved above.

Since the centralizer of L is a graded algebra we conclude that it iss
Ž .equal to 0 . The lemma is proved.

LEMMA 3.2. For arbitrary elements a � L, s � S there exists an element
� � ��s � S such that a, L � L .s s

Proof. Let’s assume that for given elements a, b � L there exist ele-
� � � � � �� �ments s , s � S such that a, L � L and b, L � L . Choose ans s s s

� � � � �� � � � �element s such that L � L 
 L . Then a 	 b, L � a, L 	s s s s s
� � � � � �� � �b, L � a, L 	 b, L � L .s s s s
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� � � 	� 	Hence we can assume that a � J � J , J � J . It is sufficient to
assume that a � J�� J	. Indeed, suppose that for elements from J�� J	

the assertion of the lemma is valid. Let a�� J�, a	� J	, s � S. Then
� � � � � 	 �� �there exists an element s � S such that a , L � L , b , L � L .s s s s

� � � � � 	
� �Similarly, there exists an element s � S such that a , L � L , b ,s s

�� �L � L . Thens s

� 	 � 	 	 �
� � �� �a , b , L � a , b , L 	 b , a , Ls s s

� 	
� �� a , L 	 b , L � L .s s s

So let a�� J�, s � S. We need to prove the existence of an element
� � � 	� � � 	� � � � � 	�� �

� � �s � S such that a , K � K , K and a , K , K � K .s s s s s s
By Proposition 2.1 there exists an element s� � K that annihilates as

modulo K . Hences

� 	 � 	 � 	 � 	 	 �
� � � � � �a , K , K , K � a , K , K , K � K , K � L .s s s s s s s s s

� 3 Ž �. �� 3 � �Since s � SU s also annihilates a modulo K and K � K , K ,s s s s
4 � � �� � 3K , it follows that a , L � L . The lemma is proved.s s s

Proof of Proposition 3.2. Let L � � L and let D : L � L be a deriva-s s s
Ž .�tion such that D L � 0. Let us assume that there exists an elements
Ž .a � L such that D a � 0.s

� � �� �By Lemma 3.2 there exists an element s � S such that a, L � Ls s
and we can assume without loss of generality that L � � L � .s s

Ž . Ž . � Ž . � � Ž .� Ž� �. Ž .� � � � �Then D L � 0 and D a , L � a, D L 	 D a, L � D Ls s s s s
Ž . � Ž . � Ž .�� 0 . Hence D a , L � 0 , which contradicts Lemma 3.1. The propo-s

sition is proved.

For an element s � S let DD
� denote the set of all derivations d : L �s s

L. Let DD
� � � DD

�.s� S s
For derivations d, d� � DD

� , d � d� if and only if there exists an element
s � S such that d, d� are both defined on L and d � d� .s � L � Ls s

Clearly, this is an equivalence relation. Consider the quotient set DD �
DD

��� . Abusing notation we will denote the class of a derivation d � DD
�

as d.
Let’s define a structure of a vector space on DD. Consider elements of DD

represented by derivations d : L � L, d� : L � � L. Let � , � � F. Theres s
exists an element s� � S such that L � � L 
 L � . Define � d 	 �d� : L �s s s s

� Ž . �Ž .� L, � d 	 �d : a � � d a 	 �d a .
For an arbitrary s � S the algebras L and L are �-graded. We say thats

� ŽŽ . .a derivation d � DD has degree i if d L � L for k � �1, 0, 1.s k k	i
� 2 Ž � .Clearly, DD � Ý DD .i��2 i

This �-gradation induces a �-gradation on DD, DD � Ý2 DD .i��2 i
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Ž .LEMMA 3.3. DD � 0 � DD .�2 2

Proof. Let d : L � L be a derivation of degree 2. Then d : K� � J	,s s
� � 	� Ž . 	 Ž .d : K , K � 0 and d : K � 0 .s s s
We will define a linear mapping � : K � J via a� � b if and only ifs

a�d � b	.
For arbitrary elements a, a�, a� � K we haves

�	 �� �	 ��� �� � � �a , a , a d � a , a , a d

� � �	 ��� � � �	 ��� � � �	 �� �� a d , a , a 	 a , a d , a 	 a , a , a d
	�	 ��� � a , a , a� ,Ž .

� � �	� �	since a d, a � 0 and a d � 0.
� � �4 � � � 4Hence, a, a , a � � � a , a, a� .

� � �	 ��� � �� �	 ��On the other hand, a , a , a � a , a , a and so

� � � 4 � � � 4 � � � 4 � � � 4a, a , a � � � a , a, a� � � a , a , a� � � a� , a , a .

In particular

5 � 3 4 3 4a � � a , a, a � � � a, a , a� � � a� R a� 4 Ž . Ž .
3 � 4 2 2� � a � , a, a � a� , a, a a, a � a� R a R a .� 4� 4 Ž . Ž . Ž .

Ž Ž 4. Ž 2 . Ž 2 ..Therefore b R a 	 R a R a � 0 for b � a�.
Similarly

7 � 3 34 3 3 2 4a� � a , a, a � � � a � , a , a � a� R a R a� 4 Ž . Ž . Ž .

� 3 34 3 3 6� a, a , a � � � a� , a , a � � a� R a� 4 Ž . Ž .

Ž Ž 6. Ž 2 . Ž 4..and so b R a 	 R a R a � 0.
Ž 6. Ž 2 .3 Ž 2 . Ž 4.But by the Jordan identity R a 	 2 R a � 3R a R a . So

32 4 2 6 2 4b R a R a 	 R a � 0 � b R a 	 R a R aŽ . Ž . Ž . Ž . Ž . Ž .Ž .ž /
32 2 4� b �2 R a 	 4R a R a .Ž . Ž . Ž .ž /

Ž 2 .3 Ž 6. Ž 2 . Ž 4.This implies that bR a � 0 � bR a � bR a R a .
Ž .If a is a regular element for example, an element from S , then

Ž 2 . Ž 2 . Ž 2 . Ž 4. Ž 6.bR a U a � 0 implies that bR a � 0 and bR a � bR a � 0.
4 Ž � �.Consequently the element a annihilates b in the sense of 10 , which

implies b � 0.
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Ž . �We have proved that S� � 0 , which implies that s d � 0. We have
� � Ž 2 .� � � 	 �� � Ž .L � Fs 	 F s 	 s , J , s . This implies that L d � 0 .s s

Ž .In the same way we can prove that DD � 0 . The lemma is proved.�2

Our next aim is to define a Lie bracket on DD.

PROPOSITION 3.3. For an arbitrary deri�ation d : L � L there exists ans
Ž .element s � SU s such that L d � L .1 s s1

Let us show that it it sufficient to prove the proposition for homoge-
neous derivations d. Indeed, let d : L � L be a derivation, d � d 	 ds �1 0
	 d , where the d ’s are homogeneous derivations. Suppose that there1 i

Ž . �exist elements s � SU s , �1 
 i 
 1, such that L d � L . If s �i s i si
Ž . �� SU s , then L d � L .�1 
 i
1 i s s

LEMMA 3.4. Let d : L � L be a homogeneous deri�ation of degree 0.s
� Ž . �Then there exists an element s � SU s such that L d � L .s s

Proof. Let s	d � a	, s�d � b�; a, b � J. There exists an element
Ž . � Ž .t � SU s which annihilates both elements a, b modulo K. Let s � tU s .

Ž �. Ž . Ž .We have JU s � JU t U s . Hence,

� �	� 	 	 	 	JU s d � JU t d , s , s 	 JU t , s d , sŽ . Ž . Ž .Ž . Ž .Ž .
� 	 		 JU t , s , s dŽ .Ž .

	 	 	� JU s 	 a, JU t , s � K ,� 4Ž . Ž .Ž . s

�	 Ž � 2 .	and s d � K , s d � K .s s
Similarly K�

� d � K� . This implies L � d � L . The lemma is proved.s s s s

� Ž .LEMMA 3.5. Let b � J, s � S. Then there exists an element s � SU s
Ž �.�such that L ad b � L .s s

� 	 ��Proof. Let’s consider an element of degree zero, d � s , b . By0
Ž . � � � Ž .Lemma 3.4 there exists t � SU s such that L , d � L . Let s � tU s .t 0 s

� 	 � � 	 	 ��We need to prove that J , t , t , s , s , b � L .s
� 	 � � � 	 �� 	� � 	 � � � 	 � 	 ����This reduces to J , t , t , s , b , s 	 J , t , t , s , s , b � L .s

� 	 � � � �But J , t , t , d � K by the choice of t. Then0 s

	 � � 	 � 	J , t , t , d , s � K , K � L .0 s s s

� 	 � �� � � 	 � 	 ��� 	As for the second summand, J , t , t � K and s , s , b � K .s s
� 	 � � � 	 � 	 ����Hence J , t , t , s , s , b � L .s

On the other hand,

	 � � 	 	 � � 	 	 � � 	J , t , t , s , d � J , t , t , d , s � J , t , t , s d � L0 0 0 s
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� 	 � � 	 � �� 	 � �� � 	 � 	 ���� � � 	�since J , t , t , s d � J , t , t , s , s , b � K , K � L . The0 s s s
lemma is proved.

LEMMA 3.6. Let d be a deri�ation of degree 1. Then there exists an
� Ž . �element s � SU s such that L d � L .s s

� � � � �Proof. Let b � s , s d . By Lemma 3.4 there exists an element
Ž . � � �t � SU s such that L , s d � L .t s

Ž . � ��By Lemma 3.5 there exists an element u � SU s such that L , b �u
� Ž . Ž .L . Let s � SU t 
 SU u . Thens

� � �	 �	 � � � � � �	 �	 � ��J , s , s , s , s , d � J , s , s , s , d , s

� � �	 �	 � ��	 J , s , s , d , s , s
�	 �	� � �� �	 J , s , s , s , s , d .

But

� � �	 �	 ��J , s , s , b � L and2

�	 �	 �	 �	� � � � � �� � � �J , s , s , s , d , s � J , s , s , s , d , s � L ,s

� Ž . �since s � SU t . Consequently L d � L . The lemma is proved.s s

We can prove in a similar way the corresponding result for a derivation
of degree �1.

This finishes the proof of Proposition 3.3.

Now we can define a Lie bracket on DD. Let d� � DD
�
� , d� � DD

�
� . Chooses s

Ž �. Ž � .an element s � SU s 
 SU s . By Proposition 3.3 there exists an ele-
Ž . � �ment t � SU s such that L d � L and L d � L .t s t s

Define the derivation d : L � L viat

xd � xd� d� � xd� d� , x � L .Ž . Ž . t

� � � �Define d �� , d �� � d�� .
It is easy to see that with the thus defined bracket DD becomes a graded

Lie algebra, DD � DD 	 DD 	 DD .�1 0 1
Ž .Since char F � 2, 3 the pair of spaces PP � DD , DD is a Jordan pair�1 1

Ž � �.see 7 with respect to operations

� �� � � �� �d , d , d � d , d , d � DD , � � �1.� 41 2 3 1 2 3 �

Ž � 	.We will prove that the Jordan pair J , J associated to J can be
embedded into PP.
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Define

� : J�, J	 � PP � DD , DD viaŽ . Ž .�1 1

� a� � ad a� , � � �, a � J .Ž . Ž .

By Lemma 3.1 the linear transformation � is injective. Since Jordan
Ž � 	.products in J , J and PP are defined via Lie brackets, it follows that �

is a homomorphism of Jordan pairs.
Ž Ž �. Ž 	..Let us show that for an arbitrary element s � S the pair � s , � s

is invertible.
˜ ˜ �̃ �̃ 	̃ 	̃Ž . � �Let K � JU s , L � K 	 K , K 	 K . For an arbitrary elements s s s s s

� ˜ ˜Ž . � �s � SU s we have K � K , L � L . We will construct two derivationss s s s
� ˜ 	 ˜q : L � L, q : L � L of degrees �1, 1, respectively. Their restrictionss s

Ž Ž �. Ž 	..�to L will define the inverse of � s , � s .s
�̃ � 	 	 	 �Ž . Ž Ž .. Ž Ž ..Let K q � 0 . For an element aU s � K we let aU s q �s s

� 	 � 	 �̃ 	̃� � � Ž Ž .. � � �a , s . Consider an element x � Ý k , a U s � K , K ; let0 i i s s
� � � 	�� � � 	 ��x q � Ý k , a , s � �Ý k , s , a .0 i i i i i i

� ˜We need to verify that q is well defined. An element from K can bes
� 	̃Ž .expressed in the form aU s uniquely. Hence q is well defined in K .s

� � Ž Ž ..	� � � 	However, we need to verify that Ý k , a U s � 0 implies Ý k , s ,i i i i i
��a � 0.i

�Ž Ž ..	 �� � � 	 	 �� � � 	 	 �If �Ý a U s , k � Ý a , s , s , k � 0 then Ý a , s , s , k ,i i i i i i i i i
	�s � 0.

Ž Ž 	..3Since ad s � 0 and the characteristic is � 3, it follows that for an
arbitrary element b�� L we have�1

2 2	 � 	 	 � 	ad s ad b ad s � ad s ad b ad s �Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Ž � �.see 5 .
� � 	 � 	 	�Hence Ý a , s , k , s , s � 0. Since s is a regular element, it impliesi i i

� � 	 ��that Ý a , s , k � 0.i i i
The linear mapping q� has been well defined. Similarly, we can define a

	 ˜mapping q : L � L of degree 1.s
� Ž 	.Let’s prove now that q resp. q is a derivation.

0 0 � � 	� � � 	 	 	 	Let e , a � K , K , e � K , e , a , b � K .s s s s
� 0 �� � � 0 � �� � 0 � ��Since we know that e , e q � 0 � e q , e � e , e q , we only

need to check:

Ž . � 	 	� � � 	 � 	� � 	 	 ��i a , b q � 0 � a , q , b 	 a , b q ,
Ž . � 0 	� � � 0 � 	� � 0 	 ��ii e , e q � 0 � e q , e 	 e , e q ,
Ž . � 0 0 � � � 0 � 0 � � 0 0 ��iii e , a q � e q , a 	 e , a q .
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	 � 	 � 	4 	 � 	 � 	4Let a � s , � , s , b � s , � , s . Then
	 � 	 	 	 � � 	 	 	 � 	� � � � � � � �a q , b 	 a , b q � � , s , b 	 a , � , s

� 	 � 	 	� �� � � , s , � , s , s
� 	 � 	 	� �	 � , s , � , s , s

� 	 	 � 	 � 	 	 � 	� � � �� � , s , s , � , s � � , s , s , � , s
� 	 � 	 	� �� � , s , � , s , s

� � 	 � 	 	� � � 	 	 � 	�� � � , s , � , s , s 	 � , s , s , � , s 0 � 0

Ž . Ž .by � . This proves i .
Ž . 0 � � 	�In order to prove ii , let’s assume, by linearity, that e � k , k ,

	 � 	 � 	4 	 � 	 � 	4k � s , c , s , and e � s , b , s .
Then

� 0 	� � 	 � 	� 	 � 	 � 	 � 	� 4 � 4e , e � � k , k , e � � s , c , s , k , s , b , s� 4
	 � � 	 � 	4 � 	� � s , c , s , k , s , b s .� 4� 4

By definition of q�,
0 	 � � 	 � 	 � 	 � 	 � 	 � 	� � � �� 4e , e q � � c , s , k , s b , s � � c , s , k , s , b , s .� 4
On the other hand,

� � � 	 � 	 � 	 � � 	� � � �� 4e q � k , c , s � � k , s , c and e q � b , s .0

So we have to prove
� 	 � 	 � 	 � 	 � 	 � 	� � � � � �c , s , k , s , b , s � k , s , c , s , b , s

� 	 � 	 � 	� � � �� k , s , c , s , b , s .
But

� 	 � 	 � 	 � 	 � 	 	 �� � � � � �c , s , k , s � c , s , k , s � c , s , s , k
� 	 � 	 � 	 � 	� � � �� k , s , c , s 	 c , s , k , s

� � 	� � � 	 � 	� � � 	 	 ��� x , s 	 c , s , k , s � c , s , s , k

� � 	� � 	 ��� 2 x , s 	 k , k ,
� 4where x � k, s, c .

Hence,
� 	 � 	 � 	 � 	 � 	 	 � � 	� � � � � �c , s , k , s , b , s � 2 x , s , b , s 	 k , k , b , s .

On the other hand
� 	 � 	 � 	 � 	 � 	� � � � � �k , s , c , s , b , s � k , k , b , s

� 	 � 	 � 	 � 	� � � �� x , s , b , s � k , k , b , s .



RINGS OF FRACTIONS 811

So we need to prove that

� 	 � 	 � 	 	 � � 	 � 	� � � � � �2 x , s , b , s � k , k , s , b � x , s , b , s ,

which reduces to

� � 	 	 �� � � 	 	 ��k , k , s , b � x , s , s , b .

� � 	 	� � � 	 	�It is sufficient to prove that k , k , s � x , s , s .
Ž . � � 	 	� � Ž 	. Ž �. Ž 	. 2But, using � , we have x , s , s � c ad s ad k ad s �

� Ž 	. 2 Ž �. Ž 	. 	 Ž �. Ž 	. � � 	 	�c ad s ad k ad s � �k ad k ad s � k , k , s .
Ž .Finally, let’s prove iii .

0 � � 	� 0 � � 	� � 0 0 � �� � 0 �Let e � k , k as above and a � c , d . So e , a � k , a ,
	� � � � 	 0 �� Ž .k 	 k , k , a . Using ii we have

0 0 � 	 � � 0 	 0 � �� � � � � �e , a q � � k q , k , a � k , a q , k

	 � � 0 	 � 0 � 	 � 0 �� � k q , k , a 	 k q , a , k � k q , a , k

0 � 	 �	 a q , k , k

� 	 � 0 0 � � 	� � � �� k , k q , a � a q , k , k

0 � 0 0 � 0� e q , a � a q , e .

So we have proved that q� is a derivation.
Ž Ž �. Ž 	.. Ž � 	.Finally we will prove that the pairs � s , � s and q , q are

mutually inverse.
� 	 ˜� Ž .� Ž .Denote l � q , � s . For an arbitrary element a � bU s � K wes

have

	 	 � 	 	 � 	 	 � 	 	� � � �a , l � a , q , � s � s , b , � s � s , b , s � a .Ž . Ž .
� Ž .Furthermore, for arbitrary elements x � J, s � SU s

�	 �	 �	 �	 �	 �	 �	 �	� � � �� � � � � � � �x , s , s , l � x , l , s , s 	 2 x , s , s � x , s , s ,

�� � � � �	 �	� � � � �which implies x , l 	 x , s , s � 0. Hence x , l � �x .
� 	 � 	Similarly we conclude that x , l � x .

Ž . Ž .Now let d be a derivation of degree 1 defined on L � L 	 L1 t t �1 t 0
Ž . Ž .	 L , t � S. For an arbitrary element b � L we havet 1 i t i

� � � � � � � � � �b , d , l � b , d , l � b , l , d � i 	 1 b , d � i b , dŽ .i 1 i 1 i 1 i 1 i 1

� �� b , d .i 1

� � � � Ž . � �Hence L , d , l � d � 0 . By Lemma 3.1, d , l � d .t 1 1 1 1
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� �Similarly d , l � �d for a derivation of degree �1.�1 �1
� � 	 Ž �.��Arguing as above one can show that d , q , � s � �id for d � DD ,i i i i

i � �1, 0, 1.
Ž Ž �. Ž 	.. Ž � 	.Since char F � 2 it implies that the pairs � s , � s and q , q

are mutually inverse.
Now we can finish the proof of Theorem 1.1. Without loss of generality

we will assume that the algebra J is unital. If not consider the unital hull
ˆ ˆ ˆJ � J 	 F1 of J with the same monad S � J. It is easy to see that J still
satisfies the Ore condition with respect to S.

Ž Ž �. Ž 	..Let us show that � 1 , � 1 is an identity of the Jordan pair
Ž . Ž � �.PP � DD , DD see 7 .�1 1

Ž Ž �. Ž 	..Clearly, e � � 1 , � 1 is an idempotent of PP.
� Ž � . Ž � .4If s � S then we showed above that DD � � s , DD , � s , � � �1,� ��

which implies that the whole PP lies in the 1-Peirce component of e.
Hence e is an identity of PP.

˜Let J be the Jordan algebra on DD with the multiplication x � y�1 �1 �1
	 ˜ �� Ž . 4 Ž .� x , � 1 , y . Then the mapping J � J, a � � a is an embed-�1 �1

Ž �.ding and for an arbitrary element s � S its image � s has the inverse
� ˜q � J.
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