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Abstract. An inner ideal of a Lie algebra L over a commutative ring fc is a

fc-submodule B of L such that [B [BL]] C B. This paper investigates proper-

ties of inner ideals and obtains results relating ad-nilpotent elements and

inner ideals. For example, let L be a simple Lie algebra in which D2 — 0

implies v = 0, where Dy denotes the adjoint mapping determined byy. If L

satisfies the descending chain condition on inner ideals and has proper inner

ideals, then L contains a subalgebra S1 = <e, /, A>, isomorphic to the split

3-dimensional simple Lie algebra, such that Z),3 = Df = 0. Lie algebras

having such 3-dimensional subalgebras decompose into the direct sum of

two copies of a Jordan algebra, two copies of a special Jordan module, and

a Lie subalgebra of transformations of the Jordan algebra and module. The

main feature of this decomposition is the correspondence between the Lie

and the Jordan structures. In the special case when L is a finite dimensional,

simple Lie algebra over an algebraically closed field of characteristic p > 5

this decomposition yields: Theorem. L is classical if and only if there is an

x *= 0 in L such that D¡~1 = 0 and if £>/ = 0 implies y = 0. The proof
involves actually constructing a Cartan subalgebra which has 1-dimensional

root spaces for nonzero roots and then using the Block axioms.

Introduction. One of the most productive concepts in the theory of associa-

tive algebras is the notion of an algebra satisfying the descending chain

condition on its left or right ideals. Jacobson and McCrimmon have success-

fully paralleled the Artinian structure theory in their study of Jordan algebras

which satisfy the minimum condition on Jordan inner ideals. This paper

presents a systematic investigation of inner ideals and ad-nilpotent elements

of Lie algebras. It is hoped that inner ideals will play a role analogous to

Jordan inner ideals in the development of an Artinian theory for Lie algebras.

Many of the definitions used have been coined to imitate the terminology of
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62 GEORGIA BENKART

the Jordan theory. Certain Jordan concepts will come into play in the Lie

theory in such a way that there will be meaningful relationships between Lie

and Jordan structures bearing the same name.

The preliminary results on inner ideals in the first section yield a classifica-

tion of minimal inner ideals. The classification gives relations between the

ad-nilpotent elements of a Lie algebra and its inner ideals. The focus shifts to

Lie algebras which satisfy the minimum condition on inner ideals with the

added hypothesis that they contain nonzero ad-nilpotent elements. Suppose

such an algebra L has no nonzero ad-nilpotent elements of index less than

three. Then:

There is an element e ^ 0 in L such that e E D2(L) and

(*)        z)e3 = o, where De denotes the adjoint mapping determined

by e.

The second section investigates properties of Lie algebras satisfying the

(*)-condition. Such a Lie algebra contains a copy of the split, 3-dimensional

simple Lie algebra. The adjoint action of the 3-dimensional subalgebra

decomposes the Lie algebra into the direct sum of copies of a Jordan algebra,

copies of a Jordan module, and a Lie subalgebra of derivations of the Jordan

algebra and module. The main feature of this decomposition is the correspon-

dence between the Lie and Jordan structures. As a consequence of the Jordan

structure theory necessary and sufficient conditions are given for the Lie

algebra to be the direct sum of a finite number of simple Lie algebras which

satisfy the minimum condition on inner ideals.

In the final part the results on Lie algebras which satisfy the (*)-condition

are employed to give a simplified criterion using ad-nilpotent elements for

distinguishing the nonclassical from the classical Lie algebras over algebrai-

cally closed fields of characteristic p > 5.

1. Inner ideals and ad-nilpotent elements. Throughout this paper the term

commutative ring will mean an associative, commutative ring with multiplica-

tive unit. Let k be a commutative ring and assume L is a Lie algebra over k.

A &-submodule B of L is an inner ideal of L if [B [BL]] C B. Every ideal is an

inner ideal, but simple Lie algebras can have nontrivial inner ideals. For

example, consider the Lie algebra si (2, F) of 2 X 2 matrices of trace zero over

a field F of characteristic not 2. Then

"(S  Ir M?  2) - *"(i   -°.)
form a basis, and the subspaces Fe and Ff are inner ideals.

Let Da denote the adjoint mapping determined by a. For additive sub-

groups A, B, C of L let AB = [A, B] and ABC = [A, BC]. Define Ax • • • Ar
inductively by Ax - - • Ar = [Ax,A2- • • Ar\. In this notation the lower central
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INNER IDEALS OF LIE ALGEBRAS 63

series of A is given by A1 = A, A2 - AA, and Ar = AAr~l. In the new

notation a fc-submodule B of L is an inner ideal of L provided BBL C B.

Lemma 1.1. Assume B is an inner ideal of L.

(1) BBL is an inner ideal and subalgebra of Las well as an ideal of B.

(2)LB" QB"-xforn > 2.

(3) IfB2 = B, then B is an ideal of L.

(4) For every k-submodule V of B with VVB ç V, V3 is an inner ideal of L.

(5) For every additive subgroup V of B, V2V2L Q VVB.

Proof. (1) Since BBL Ç B,

[BBL[BBL,L]] ç[B[BL]] = BBL,

and

[BBL, BBL] C[B,BBL] =[B[B,BL]] Q BBL.

The proof of (2) follows by induction on n, and these standard results for

additive subgroups U, V, W, X of L:

UVW ç VWU + WUV,   and   [ UV, WX] Q UVWX + VUWX.

Part (3) is a consequence of (2) with n — 2. To prove (4) it suffices to look at

the mapping D[u,lu,uX]D[o.[v,vX] applied to L for h's, v's in V. But this mapping

is the sum of terms of the form DaDbDcDdDeDf where a,... ,f E V. Now

DeDf(L) Ç B, DcDd(B) Ç V, and DaDb(V) ç V3. A similar argument gives

(5).   D
This lemma shows that for each inner ideal B of L there is a descending

chain of inner ideals given by B0 = B, Bx = BBL, B2 = BXBXL,_More-

over (4) applied to V = B shows B3 is an inner ideal whenever B is. Still

another way of manufacturing inner ideals is to begin with an arbitrary

additive subgroup A of L and to define T(A) to be {t E L\[A[tL]] Ç A}.

Lemma 1.2. T(A) is an inner ideal and subalgebra of L which contains A if A

is an inner ideal of L.

Proof. That T(A) contains A whenever A is an inner ideal follows

immediately from the definition of T(A). To show T(A) is itself an inner

ideal let s, t G T(A), x,y E L, a G A. Then

[«[[<[..*]]/]] -[«[*[[**]/]]] +[«[[»./][**]]]

=[a[[t,y][s,x]]]modA

=[[a[t,y]][s,x]]+[[t,y][a[s,x]]]modA

= Omod.4.
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64 GEORGIA BENKART

The arguments that T(A) is a subalgebra and a &-submodule are of a similar

nature. D

The inner ideals T(A) defined in this manner often enable us to reduce our

considerations to inner ideals which are also subalgebras for which more can

be said:

Lemma 1.3. Let T be an inner ideal and subalgebra of L. Then for all « > 1,

T" is an inner ideal of L and f] "_, T" is an ideal of L.

Proof. The lemma is a consequence of Lemma 1.1, part (2). D

An inner ideal B ¥= (0) is said to be minimal if there exists no inner ideal C

of L such that B d C d (0). Trivially, Fe and Ff are minimal inner ideals of

si (2, F), though it is not true in general that every minimal inner ideal is

1-dimensional. An element z is an absolute zero divisor of L if D2 = 0. An

absolute divisor generates an inner ideal which will be minimal if A: is a field.

Absolute zero divisors cannot exist in finite dimensional semisimple Lie

algebras over fields of characteristic 0 because every ad-nilpotent element can

be imbedded in a subalgebra isomorphic to si (2, k) as seen in Jacobson [10,

p. 100]. One can verify readily that sl(2, k) has no absolute zero divisors.

However, there do exist finite dimensional simple Lie algebras over algebrai-

cally closed fields of prime characteristic such as the Witt algebra having

absolute zero divisors. The role of absolute zero divisors has been explored

previously in the work of Kostrykin [14], [15]. They appear to distinguish the

classical Lie algebras from the nonclassical over algebraically closed fields of

characteristic p > 5. The final section of this paper will demonstrate further

results along these lines.

Theorem 1.4. Let B be a minimal inner ideal of a Lie algebra L over a

commutative ring k. Then either:

(1) B = kb where b is an absolute zero divisor of L, or

(2) B = BBL andB2 = (0), or

(3) B is a simple ideal of L and for every proper inner ideal V of B, V2 = (0).

Proof. If B contains a nonzero absolute zero divisor B, the minimality of B

gives B = kb. So we can assume B has no absolute zero divisors different

from zero. Since BBL is an inner ideal of L contained in B, BBL — B or

BBL = (0). But the last possibility can be excluded because B has no nonzero

absolute zero divisors. So B = BBL and by Lemma 1.1 B is a subalgebra of

L. By the remarks following Lemma 1.1, there are two possibilities: B3 = 0 or

B3 = B. In the first case Lemma 1.1(5) applied to B gives B2B2L G B3 = (0).

That is to say, every element of B 2 is an absolute zero divisor of L. Since B is

a subalgebra B2 G B, so B2 = (0) must necessarily hold. We may suppose

then that BBL = B and also B3 = B. Because B is a subalgebra B D B2 D
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INNER IDEALS OF LIE ALGEBRAS 65

B3 = B and B2 = B. According to Lemma 1.1(2), B is an ideal of L. Any

ideal of B is an inner ideal of L, so B is simple. For any inner ideal V of B

with V ¥= (0) or B we have

V2V2L C V2VB C VVVB C V2

showing V2 is an inner ideal of L contained in B. If V2 = B, then V2 D V

and V D V3 D V2 = B, contrary to assumption. So it must be for every

inner ideal V of B that V2 = (0).  D

For any inner ideal B of L such that B2 = (0), if b G B then Db3 = 0. If V

is an inner ideal of an ideal B with V2 = (0), then D¿ = 0 for v G K. Thus

Theorem 1.4 shows that the existence of minimal inner ideals implies the

existence of ad-nilpotent elements (of index < 4) except when every minimal

inner ideal is a simple ideal having no proper inner ideals. In particular, if a

simple Lie algebra has proper minimal inner ideals, it has ad-nilpotent

elements. On the other hand as we see next, the existence of ad-nilpotent

elements generally implies the existence of nontrivial inner ideals.

Let L be a Lie algebra over a commutative ring k and let n be an

integer > 2. We say L is n-torsion free if, for x G L, nx « 0 implies x = 0.

Kostrykin [12] has proved the following fundamental result concerning ad-

nilpotent elements in L.

Proposition 1.5. Suppose D™ = Ofor a =£ 0 and m > 3. If L is n-torsion

free for all n < m,then

(DDrHc))m~X = 0   for all c G L.

Corollary 1.6. If a and L are as in the preceding proposition, there is a

b j*0inL with Db3 = 0.

Lemma 1.7. Let L be a 3- torsion free Lie algebra and suppose a E L with

D3 = 0. Let A = Da and for x E L let X = Dx. Then:

(i) A2XA = AXA2,

(ü) A2XA2 = 0,

(iii) D22M - A2X2A2,

(iv) D3AHx) = 0.

Proof. Because A3(x) = 0 for all x G L, 0 = DA,{x) = [ylfyl[/!*]]]. From

this we see — 3A2XA + 3AXA2 = 0, and since L is 3-torsion free (i) follows.

Multiplying (i) on the right by A gives (ii). Now

D\i,x)= (A2X - 2AXA + XA2)2.

so (i) and (ii) can be used to prove (iii). Finally the last statement holds

because
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66 GEORGIA BENKART

Z)>,(J[)= DA2tx)&AHx)= (A2X - 2AXA + XA2)A2X2A2 - 0.   □

Lemma 1.8. Let L be 3-torsion free and a E L be such that D3 = 0. 77ie*«

D2(L) is an inner ideal of L, and D2(L) is abelian.

Proof. It suffices to show DxDy(L) G D2(L) for x = D2(b) and y -

D2(c). Let A - Da,B = Db, C = Dc. Then

DxDy = (A2B - 2ABA + BA2)(A2C - 2ACA + CA2).

Using (ii) above we eliminate the terms involving A2BA2 and A2CA2. Thus,

DxDy = -2(A2BA)CA + 2(ABA2)CA + A2BCA2

+ 2AB(A2CA) - AB(ACA2).

Equation (i) applied to this gives

(1.9) DXD= A2BCA2.

Consequently, DxDy(L) G D2(L), and D2(L) is an inner ideal of L which is

abelian since

Dx(y) = (A2B- 2ABA + BA2)(A2(c)) = 0.   □

This lemma shows that the existence of an ad-nilpotent element a =h 0 of

index < 3 implies the existence of a proper inner ideal unless D2(L) = 0 or

D2(L) = L. The nilpotency of Da rules out the second case, and in the first

case ka is a proper inner ideal except when L = ka. To summarize:

Lemma 1.10. Let Lbe a 3-torsion free Lie algebra. If D3 = Ofor some a =£ 0

in L, then L has a proper inner ideal unless L = kz.

Corollary 1.11. Let L be a Lie algebra and 0 ^ a E L with D™ = 0. If L

is n-torsion free for n < m, then L has a proper inner ideal unless L = kz.

These considerations yield the following strengthening of the minimal inner

ideal theorem:

Theorem 1.12. Let B be a minimal inner ideal of a Lie algebra L which is 2

and 3-torsion free. Then either:

(\)' B — kb where b is an absolute zero divisor of L, or

(2)' B - D^(L)for allb^O in B, and B2 = (0), or
(3)' B is an ideal which is simple as a Lie algebra and which contains no

proper inner ideals.

Proof. Only (3)' needs some explanation. Recall (3) in the original theorem

is the case when B is a simple ideal of L such that V2 = (0) for every inner

ideal V ¥= B of B. For every v in such a V, P04 = 0, so that by Kostrykin's

result, for any x E L if u = D3(x), then D3 = 0. Since u E B, D2(L) is an

inner ideal of L contained in B, and hence must be (0) or B. Using D3 = 0
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and the fact that B is an ideal of L, we note that D2(L) = B implies

B = D2(L) = (0), a contradiction. The case D2(L) = 0 gives u = 0, and thus

D3 = 0. By the same reasoning applied to v we obtain V = (0).   □

We say a Lie algebra is Artinian if every descending chain of inner ideals

terminates. The term Artinian Lie algebra is well chosen for if R is a simple

Artinian ring of characteristic not 2 or 3 with center Z, then [RR]/[RR] n Z

is a simple Artinian Lie algebra. If R has an involution * and if Kis the set of

skew elements relative to *, then [KK]/[KK] n Zisa simple Artinian Lie

algebra provided the dimension of R over Z is greater than 16. (Proofs of

these statements appear in [2].) We shall call a Lie algebra L nondegenerate if

it contains no absolute zero divisors different from zero. One justification for

calling these algebras nondegenerate is the fact that if L is a finite dimen-

sional Lie algebra with nonzero absolute zero divisors, then the Killing form

is degenerate, as seen in Kostrykin [13]. The next result will not be used in the

remainder of the paper; however, it illustrates the way Lemma 1.2 can be

used to study arbitrary inner ideals.

Lemma 1.13. Let L be a nondegenerate, simple, Artinian Lie algebra. For

every inner ideal V + Lof L,V2 — (0).

Proof. Assume initially that V is also a subalgebra. By Lemma 1.3,

H ™_, V is an ideal of L which must then be (0). The subalgebras V = V1 D

V2 D ... form a descending chain of inner ideals. Therefore there is an

integer m such that Vm = n"_,Kn = (0). If m = 2, then V2 = (0), the

desired conclusion. If m > 2, then

ym-\ym-\j^ ç-  ym-\ym-2 q  ym _ /q\

Every element of Vm~l is an absolute zero divisor of L. Thus Vm~x = (0),

and an inductive argument shows V2 = (0). Now if V ^ L is an arbitrary

inner ideal, define T(V) as above. Since T(V) is an inner ideal and subalge-

bra of L containing V, T(V) = L or T(V)2 = (0). In the last case V2 = (0).

However, if T( V) « L, then VLL Q V. Because L is simple L = L2 and so

VL ç V. This says V is an ideal of L which is impossible. So only the case

V2 = (0) can occur.   □

The lemma can be applied to finite dimensional simple Lie algebras over

fields of characteristic 0 or to classical Lie algebras over fields of characteris-

ticp > 3 to show inner ideals of these algebras are necessarily abelian.

We now investigate nondegenerate, Artinian Lie algebras having ad-nilpo-

tent elements. Such Lie algebras will be shown to contain a copy of 5/(2, k).

Results derived from studying the adjoint representation of this subalgebra on

the Lie algebra will be the main topic of the next section.

Lemma 1.14. Let L be a nondegenerate, Artinian Lie algebra. Assume there is
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ana ¥=0 in L with D™ = Ofor some m > 3, and that for « < m, L is n-torsion

free. Then there is an e^Oin L with D3 = 0andeE D2(L). If \, \ Ek,

then L contains a copy of si (2, k).

Proof. By Kostrykin's result we can suppose that there is an element 0 ¥= b

in L with Z>¿ = 0. For such an element D¿(L) is an inner ideal of L which is

nonzero because L is nondegenerate. The collection of all such inner ideals is

nonempty, and so must possess a minimal element, say Dd(L). Let e ¥= 0 be

in Dd(L) and observe that from (iv) of Lemma 1.7, D3 = 0. From (hi) of that

lemma 0 ¥- D2(L) G D}(L). Minimality then implies e E Dj(L) = D2(L).

Assume now h E De(L) is chosen so that [he] = 2e. If \, \Ek, then

Seligman [14, p. 122] has shown there is an / E L with [hf] = -2/ and

[ef] = h. The subalgebra generated by e,f, h is isomorphic to si (2, k).   □

We will say a Lie algebra is a *-Lie algebra if it satisfies the following

condition:

(*) There is an e ¥= 0 in L with D3 = 0 and e E D2(L).

The preceding lemma shows every nondegenerate, Artinian Lie algebra which

has an ad-nilpotent element and which is suitably torsion-free is a *-Lie

algebra. In particular, every finite dimensional semisimple Lie algebra over a

field of characteristic 0 which has a nonzero ad-nilpotent element is a *-Lie

algebra.

2. *-Lie algebras. Throughout this section L will be a *-Lie algebra over a

commutative ring k such that ¿, j E k.

Lemma 2.1. There exist k-submodules V¡ such that

(i) L - v2 © vx © v0 © v_x © v_2,
(2) V0 decomposes as the sum of submodules V0= Z ® T,

(3) V2, V _2, T are isomorphic as k-submodules of Las are Vx, V_x, and Z is

a subalgebra of L.

Proof. Suppose e i= 0 in L is such that D3 = 0 and e E D2(L). Let h,/be

chosen as in §1. Then H = Dh is algebraic over k with minimum polynomial

a factor of p(X) = (A - 2)(A - 1)A(A + 1)(A + 2) (see for example Jacobson

[8] or [9]). Let/?,(A) = p(X)/(X + t) and observe:

1 - ¿ ftW - \ *i(A) + \ Potto - I P-i<to + ¿ P-i<to-

As a consequence we can decompose L as a A:-module into eigenspaces

relative to H. Thus L = V2 © Vx © V0 © V_x © V_2 where Hv¡ = iv¡ for

v¡ E V¡. Because H is a derivation, [V¡, Vß G Vi+J where Vm = (0) if m > 2

or m < -2. Let E = De and F = D}. The mapping i£2: K_2-» V2 is a

¿-isomorphism with inverse \F2. Also V_x and K, are ¿-isomorphic under
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the map E which has inverse F. Define a map a on VQ by a(v) = v — EF(v).

One verifies readily that o2(v) = v for all v E V0. Let Z = {v E VQ\o(v) —

v} and T - {v E V0\o(v) = - v}. Then V0 = Z © T and the map £ is a

^-isomorphism sending T to F2. If a(t>) = v, then EF(v) = 0. This implies

0 = FEF(v) = - iiT(t>) = F(v). Similarly E(v) = 0, and from this it

follows that Z is just the centralizer of the subalgebra generated by e, f, h;

hence itself is a subalgebra.   □

Let us note that for v E V0, if E(v) = 0, then EF(v) « FE(v) + H(v) =

0 and v E Z. Similarly v E V0 and F(v) « 0 implies c6Z.

Adopt the notation A = V2, A = V_2, 5 = - \ F2(a) G A and a* =

- \F(a) E T for a E A. For a, b E A define a product on A hy a- b

= ¿[a[fb]], and for z E Z let z(a) = [z, a].

Lemma 2.2. A is a Jordan algebra relative to this product and Z acts as

derivations on A.

Proof. To begin let us observe that the product in A is commutative since

[a, b] = 0. Because |[a[/e]] — \[ha] = a, the element e acts as the identity in

A. What remains to be shown is the Jordan identity and the last assertion.

Since Z centralizes /, it is clear that [z, a*] « z(a)*, [z, a] =z(a), and

z(a • b) = z(a) • b + a • z(b). As a further consequence of the definition we

have [a*, b] = a- b = [b*, a]. The equation

[/.-■»]-J[W/,»]]]-i[WW] +[«.*[/[./*]]].
when rewritten in the above notation, gives an expression for [a, b], namely:

(2.3) [a,b]=2(a-b)* + 2[a*,b*].

Now [a*, b*] E V0 and [[a*, b*]e] = 0. So by the above remarks [a*,

b*] G Z. Applying Df to both sides of (2.3) shows [a*, b]= -a-b. Using

these results we calculate the Jacobi identity for a,b,c* and obtain

(2.4) [(a-b)*,c*] +[(b-c)*,a*] +[(c-a)*,b*] = 0.

The element a* acts as left multiplication by a on A. Therefore if a = b — c

in (2.4), [(a2)*, a*] = 0 and this shows A is a Jordan algebra.   □

As yet we have ignored the spaces Vx, V_, which may in fact be zero. This

particular case has been studied previously in the work of Tits [19] and

Hirzebruch [6] for fields, and for commutative rings in an unpublished work

of Jacobson. In the situation in which Vx occurs, let a - v = [a[fv]] and

z(v) = [z, v] for a G A, v E Vx, z G Z. In light of the isomorphism between

Vx and V_x let us adopt the notation v = [fv], V = Vx and V = K_,.

Lemma 2.5. V is a special unital A-module with skew bilinear mapping

V X V^ A
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and trilinear product

V XV X V -+   V

so that (A, V) is a J-ternary algebra in the sense of Allison [1].

Proof. From the definition of a • v it is clear that e • v = v and [a,

v\ = a • v. It is also immediate that [a*, v] = \ a • v, and applying Df to both

sides of this equation shows [S, v] =a ■ v. The effect of a* on v is given by

[a*,v] - H [a,f]v] - i[ [fl,ö]/]-i [a>v,f\ = - fFS.

We are now in a position to calculate the action of the product a • b on V.

For

(a-b)-v=[[a*,b]v-]=[[a*,v-]b]+[a*[b,v-]]

= \b- (a-v) + \a- (b-v).

That is, F is a special unital A -module. The commutator in L defines a skew

bilinear map < , > of V X V into A, and the Jacobi identity applied to a*,u,v

yields

a • <«, t>> = 2 <a * u, v) + y <«» a • t>>.

We define <h, u, w> to be [h[u, w]] E V, and compute [a*, <«, u, w>] to show

a • <w, ü, w> = <fl • u, v, w> + <«, a • v, w> — <w, ü, a • w>.

Now Axiom (Tl) in [1] is just the specialization of the Jacobi identity with

u, v, w. From the Jacobi identity with /, v, w we have — 2<u, w>* = [v,

w] - [w, v\. Taking the product of both sides with u shows (T2) holds.

Condition (T3) is a consequence of calculating [[u[v, w\]x]. Finally by

applying (T2) we see [e[w[x, y]]] = <w>, v, *>. Thus, [w[x, y]] = (w,y,x}.

Using this fact (T4) results from computing [[u[v, w]], [xy\]. (Compare

Theorem 1 in Allison [1] and results in Hein [5].)   □

Let us observe that Z acts as derivations on V in the sense that z(a • v) =

z(a) -v + a-z(v). The element D(u, v) = \{[uv] + [vu]} belongs to V0 and

commutes with e so it is in Z. Therefore the product [uv] is given by

[uv\ = D(u, v) - <w, ü>*. The elements D(u, v) will be useful later in

describing ideals in a *-Lie algebra.

To discuss the relationship between the Lie and Jordan structures in *-Lie

algebras some Jordan concepts are needed. Assume A is a Jordan algebra

over a commutative ring k. A ¿-submodule B of A is a Jordan inner ideal of

A if Ubi¡bi(a) E B for every bx, b2 E B, a E A, where

UblJbi(a) = (b2-a)-bx + (a- bx)b2 -a-(bx- b2).

If a* denotes left multiplication by a, then
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Ubl,bl(a)=[b*x,a*](b2) + (bx-a)*(b2).

An element b of A is an absolute zero divisor if Ubb = 0. Clearly an absolute

zero divisor generates a Jordan inner ideal which is minimal if A: is a field.

The results for minimal Jordan inner ideals (Jacobson [11, p. 154]) bear a

striking resemblance to the theorem on minimal Lie inner ideals in the first

section.

Suppose now that L-A®V®Z®A*®V®A is a *-Lie algebra,

and let B he an inner ideal of L contained in A. Such inner ideals exist since

A itself is an inner ideal of L. For bx,b2E B,a E A, [[bx, 5\b2] E B, but

[[bx, 5]b2] = 2[bt, a*](b2) - 2(6, • a)*(b2) = 2UbiJ>i(a)

according to (2.3). Thus B is a Jordan inner ideal of A, and conversely any

Jordan inner ideal of A is an inner ideal of L.

Lemma 2.6. LetL = A®V@A*@Z®V@Äbea *-Lie algebra.

(1) If L is Artinian, then A satisfies the minimum condition on Jordan inner

ideals.

(2) If Lis nondegenerate, then A has no absolute zero divisors.

(3) If L is nondegenerate and Artinian, then A is the direct sum of a finite

number of simple ideals which satisfy the minimum condition on Jordan inner

ideals, and for each a E A, a E D2(L) and D3 = 0.

Proof. Only (3) needs discussion. One knows from McCrimmon [16] that

under the assumption of the minimum condition for Jordan inner ideals the

condition "no absolute zero divisors" is equivalent to the Jordan algebra

being regular. That is, A is regular if for each a E A there is a b in A with

Ua,a(b) — o. Regularity and the minimum condition imply the Jordan algebra

is the direct sum of simple ideals which then must also satisfy the minimum

condition. The last assertions follow from the regularity of A_and from the

fact that [V„ Vj\ ç Vi+J. A similar result holds for each ö E A.   □

Lemma 2.7. Let L = A@V@A*®Z®V@Ibe a nondegenerate,

Artinian *-Lie algebra such that the k-submodule generated by h = 2e* is a

maximal split torus of L, then A is a Jordan division algebra.

Proof._Fot 0 =é a_E A since D3 = 0 and a E D2(L), then there is ab E A

with [a, b] = A', [h'b] = -2b, and [h'a] = 2a. This implies Dh. is a semisim-

ple transformation with eigenvalues among ±2, ± 1, 0. Because h! centralizes

h, the maximality of the torus forces h' to be a nonzero multiple of h. That is,

h'=[a,b]= 2[a*, b*] + 2(a ■ b)* = 2ae*.

Therefore [a*, b*] = 0 and a ■ b = ae. But 2a = [[ab]a] = 2aa so that a = 1

and a- b = e. Then
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2a = [[ab]a] = 2[a*, b*](a) + 2(a • b)*(ä)

= 2(a - b • a2 + a),

giving a = b- a2. These two conditions say A is a Jordan division algebra.

D
In general it is not true that for a nondegenerate, Artinian *-Lie algebra

that the Jordan algebra is necessarily a division algebra. However, as we see

in the next lemma, there is some decomposition of the Lie algebra so that the

Jordan algebra is a division algebra.

Lemma 2.8. Let L be a nondegenerate, Artinian *-Lie algebra. Then L = A'

© V © A'* © Z' © V' © I' where A' is a Jordan division algebra.

Proof. Consider the collection of all inner ideals of the form D2(L) where

D3 = 0. It is nonempty and so possesses a minimal element, say A'. By the

same argument used in the proof of Lemma 1.14, there is an e' E A' with

e' E D2.(L) = A' and D3. - 0. Then L - A' © V © A'* © Z' © V' © Ä'

and for each a E A', D2(L) = A'. Because A' is a minimal inner ideal of L,

A' is a Jordan algebra without proper Jordan inner ideals. One can see from

the Jordan minimal inner ideal theorem that A' must be a division algebra.

D
The Lie and Jordan correspondence can be further evidenced in the study

of ideals of a *-Lie algebra.

Lemma 2.9. Let L be an arbitrary *-Lie algebra andJ be an ideal of L. Then

J = I®W®Y®I*®W@ Ï where:

(i) / is an ideal of A such that Z(I) G I;

(ii) W is an A-submodule of V with Z(W) GW and IV GW G [v E V\
<v, V} G /};

(iii) Y is an ideal of Z and

D(V, W) +[A*,I*] G Y G {z E Z\z(A) G I,z(V) G W}.

Any k-submodule formed by I, W, Y satisfying these properties is an ideal of

L.

Proof. Since J is stable under the action of the subalgebra generated by e,

f = ë, h = 2e*, J decomposes into submodules as claimed. The remaining

assertions can be verified using results derived in the proof of Lemmas 2.2

and 2.5. Let us note that in (ii) we may choose W = IV or W = [v E V\(v,

V} G I}. Likewise in (iii) Y may be taken to be either extreme. In particular,

if R « {© 6 V\(v, V) = 0}, then R + Y + R is an ideal where Y is any
ideal of Z which satisfies

D(V,R)GY G{zE Z\z(A) = (0),z(V) G R).
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R is just the radical of the bilinear form < , >. Also

Zo={zEZ\z(A) = 0,z(V) = 0}

and

A © V® D(V, V)+[A*,A*]®A*® V®A

are ideals of L.

Lemma 2.10. Let L be a 5 and 7 torsion-free "-Lie algebra such that R = (0)

and Z0 = (0). Then L has absolute zero divisors if and only if A does.

Proof. Every absolute zero divisor of A is an absolute zero divisor of L.

For the other direction let fi be the set of absolute zero divisors of L and

assume fi ¥= (0). The projection of an element of fi onto A is an absolute zero

divisor of A, and likewise for A. So suppose Sic V ® A* ® Z ® V, and

observe that Lie automorphisms of L leave the set fi invariant. The element

x = v + z + d* + wEQif and only if exp De(x) = v + z + d*-d+w

+ w G fi. So by the above remarks we can assume d — 0 and fi C V ® Z ®

V. For each t/ G F the projection of exp Du(x) E fi on A* is <«, w) which

must be zero. But the nondegeneracy of the form then implies w = 0, and

similarly v = 0. The only remaining possibility is fi C Z. Applying exp Da

and exp Du for a E A, u E V to z E Q Ç Z shows z E Z0. So it must be

fi ^ 0 forces A to have nonzero absolute zero divisors.   □

Lemma 2.11. Assume L is a *-Lie algebra.

(1) IfZ=*D(V,V) + [A*,A*] and Z0 = R = (0), then A a simple Jordan
algebra implies L is a simple Lie algebra.

(2) If L is simple and Artinian then A is a simple Jordan algebra, or

A = S <8> k[xx,..., x„] where S is a simple Jordan algebra of prime

characteristic and k[xx, .. ., x„] is a ring of truncated polynomials.

(3) If Lis simple, nondegenerate, and Artinian, then A is simple.

Proof. According to Lemma 2.9 A is derivation simple if L is simple, and

A possesses a minimal ideal if L is Artinian. So, in (2) A is asserted by a result

of Block [4]. Now A has absolute zero divisors in (2) unless A is simple, so (3)

follows, and (1) is just a direct consequence of Lemma 2.9.   □

Theorem 2.12. Let L be a nondegenerate, Artinian *-Lie algebra. Suppose

L = A®V®A*®Z®V ®Awhere Z = D(V, V) + [A*, A*] and(,>

is nondegenerate. Then L is the direct sum of a finite number of simple Lie

algebras which satisfy these hypotheses; and the converse holds also.

Proof. We know from Lemma 2.6(3) that we can write A = /,©•• • © /,

where Ij are simple ideals of A. It is easy to verify that the Ij are left invariant

by derivations of A ; hence by Z. We show L = ©2L, where
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Lj = Ij © IjV ®D(V, IjV) + [A*, If] © If © IjV+ïj.

Because each 7, is a simple Jordan algebra satisfying the minimum condition,

it has a multiplicative identity e,. Now for any representation p of A one has

from Jacobson [11, p. 96] that

[a", (b • c)p] + [b», (c • a)p] + [c», (a • bf] = 0.

This identity with the specialization a = a¡ E I¡, b = a} E IJt and c = t?7

shows Ij(I¡V) = (0) for i j>j. This in turn leads to I}V n I¡V = (0) for i +j,

and, consequently, L = ©2L,. To argue each Lj is simple we need only

invoke Lemma 2.10. The rest is straightforward to verify.   □

Theorem 2.12 says that in many instances the study of nondegenerate,

Artinian *-Lie algebras can be reduced to considering simple algebras. One

place to begin is with finite dimensional simple Lie algebras over algebraically

closed fields. The characteristic 0 case has been studied extensively, so the

next section investigates nondegenerate finite dimensional simple *-Lie alge-

bras over algebraically closed fields of prime characteristic.

3. Ad-nilpotent elements and classical Lie algebras. It has been the goal of

work of Kostrykin and Jacobs to determine whether the existence of nonzero

absolute zero divisors is a necessary and sufficient condition for distinguish-

ing the nonclassical from the classical simple Lie algebras over algebraically

closed fields of prime characteristic. To this end Kostrykin [15] proved

Theorem 3.1. In a finite dimensional simple Lie algebra over an algebraically

closed field F of characteristic p > 5, assume the following conditions are

satisfied:
(i) There is a Carton decomposition L = H © 2„^0^a relative to a Carian

subalgebra H of L such that Dp~x = Ofor some a =£ 0 in H or La.

(ii) L is nondegenerate.

(iii) L is a p-Lie algebra.

Then L is classical.

Later in [7] Jacobs was able to remove hypothesis (iii). We will replace (i)

with the assumption that L contain an x i= 0 with Dp~x =0 and omit (iii) as

well. This is advantageous for condition (i) is not an invariant of the Lie

algebra, and hence, necessitates making a judicious choice of the Cartan

subalgebra. This result was originally proved using Jacobs' theorem by the

author in her doctoral dissertation and, independently, by Strade [18].

However, the investigations of *-Lie algebras in the preceding section give us

a means of attacking the problem directly, thereby eliminating or simplifying

many of calculations in Kostrykin's and Jacobs' papers. In addition to results

on *-Lie algebras our approach will use a theorem due to Block [3] to prove a

sequence of steps which lead to
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Theorem 3.2. Let L be a finite dimensional simple Lie algebra over an

algebraically closed field F of characteristic p > 5. Assume:

(i) there is an x ^ 0 in L such that DP~l = 0;

(ii) L is nondegenerate.

Then L is classical.

Step 1. Under the hypotheses of the theorem L is a *-Lie algebra and there

is a decomposition L = V2 ® Vx © V0 © V_x © V_2 such that V2, V_2 are

1-dimensional.

Proof. By Proposition 1.5 there is a c ^ 0 such that D3 = 0 and D2(L) is

an inner ideal. Using the same argument as in the proof of Lemma 2.8, we see

L is a *-Lie algebra, and, moreover, there are elements e, f, h in L with

e G D2(L) = V2 and D3 = 0 such that the decomposition of L into eigen-

spaces relative to Dh is given by L = V2 © Vx © V0 © V_x © K_2 where V2

is a Jordan division algebra. But then V2 = Fe and V_2 = Fe~ for e~ = f since

i7 is algebraically closed.   □

Now let H he a Cartan subalgebra of V0. The element h centralizes V0, so it

must belong to H. Therefore H is in fact a Cartan subalgebra of L which

leaves each Vt invariant, and accordingly each V¡ decomposes into root

spaces relative to H. The space V2 corresponds to a root which we will denote

by a, and V_2 belongs to the root - a. Our next objective will be to show that

the root spaces of Vx and K_, are also 1-dimensional. The steps will follow

the general outline used by Kostrykin [15].

For u, v E Vx we will write [u, v] = {u, v)e so that if ü, v E V_x, then [w,

ü] = — <h, v)e~. The symbol ViS will denote the root space of V¡ correspond-

ing to the root 8. On numerous occasions we will be concerned with an

element s with the property that D2(L) = Fs. In this situation there is a t

such that D2(t) = —2s and D[sl] is a semisimple transformation with eigen-

values among ±2, ± 1, 0. The decomposition of L relative to [s, t] will be

given by

L = V2(s) © Vx(s) © V0(s) © V_x(s) ® V_2(s)

where V2(s) = Fs, V_2(s) = Ft, and V0(s) = Z(s)® F[s, t]. We will make

use of the following result of Kostrykin [15]:

Proposition 3.3. IfuE Vx and D'u(e) = 0/or / = 3 or 4, then D'u = 0.

Step 2.\f0¥=uE VUy and D2(e) = 0, then VXy is 1-dimensional.

Proof. In order to obtain a decomposition as above we first show D2(L) =

Fu. We need only consider D2 on V0 = Z © Fh and on V_, because it is

zero everywhere else. Now D2(h) = — Du(u) = 0, and for every z E Z,
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0= D3([z,ë]) = 3[D2(z),3[D2(z),Du(ë)]] = -3(z(u),u)u.

Therefore

<z(w), w> = 0   and   D2 (z) = (z(u), u)e = 0

for every z E Z. For v E V_,,

A?(*) - A?(|>~ «]) = 2[Du(ë), Du(v)] = 2<«, v>u.

Consequently, D2(L) G Fu, and since L is nondegenerate, D2(L) = F« nec-

essarily holds. We can take w E V_x_y so that D2(w) = —2u and D[uii] is

semisimple with eigenvalues among ±2, ± 1, 0. The element [u, w\ belongs to

H and y([u, w]) = 2. From this it follows that VXy G V2(u) = Fu.   O

Step 3. Assume there is some 0 ¥= u E VXy with D3 = 0. Then VXy is

1-dimensional.

Proof. We suppose D2(e) = b =£ 0 and proceed to show Db2(L) = Fb. The

element b belongs to V0, and according to Lemma 1.7, Db3 = 0, Db =

D2D¡D2. Therefore

D2(L)GD2(L)QFe®Vx®V0   _

so that b must belong to Z. Now b\e) = b2(e~) = 0 and b2(v) = b2(v) = 0.

This shows that Db2(L) = Db2(Z). For z E Z,

D2(z) = D2D¡D2(z) = D2D¡({z(u), u)e)

= -2(z(u),u)D2(ê)= -2<z(u),u}b.

Thus Z)62(L) = FA. The element b belongs to V0y_2a so there exists ana E Z

with a E V0_y+2a such that Db(a) — —2b and Z>[/(a] is semisimple with

eigenvalues among ±2, ±1, 0. Since [A, a] E H and y — 2a ([A, a]) = 2,

^o.y-2« £ V2Íb) = *&• For every °> w e Fi,y ¿>.^(*) e ^wy-«» so

¿»„¿„.(e) is a scalar multiple of A. If VXy is more than 1-dimensional there

would be an x ¥= 0 in F, with Z)^(ê) = 0. Step 1 would give the contradic-

tion that Vx is 1-dimensional. So we are forced to conclude VXy is 1-dimen-

sional.   □

Step 4. VXy is 1-dimensional for each root y of Vx.

Proof. In view of the previous steps and Kostrykin's result we can suppose

D?(ë) ^ 0 f°r every t E VXy. Let us assume initially that there is some

v E VXy with Z>„4 = 0. Now u = D3(ê) is ad-nilpotent of index 3 so the root

space ^i,3Y_a to which it belongs is 1-dimensional. If Vx is more than

1-dimensional there is an x =£ 0 in VXy with D3(e~) = 0. Thus we would

contradict the assumption that D3(é~) *£ 0 for any t E Vx, unless Vx is

1-dimensional. It is sufficient to suppose then that for every v E VlyD* ^ 0.

By Kostrykin's result 0 ^ D*(ê) E V2 = Fe. If Vx   has two independent
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elements we can find an x ^ 0 in Vhy with Dx(e) = 0. Consequently, in this

case also, VXy is 1-dimensional.   □

Step 5 (Corollary). Each root space of V_, is l-dimensional.

Step 6 (Corollary). For every root y of Vx and every u E VXy, D* = 0.

Proof. By Kostrykin's result we can assume 0 ¥= Df(e~) = £e. Then 2y = a

and D3(ê~) G VXy. Hence D3(e~) - Xu by the 1-dimensionality of VXy. But

then D*(e~) = Du(Xu) = 0, contrary to assumption.   □

Next we specialize to the case V0 = [V2, V_2] + [Vx, V_x]. This is always

true if L is simple for V2 © Vx ®[V2, V_2] + [Vx, V_x] © V_x © V_2 is an

ideal of L. We have not as yet used the hypothesis of simplicity, and indeed

all we will use to prove Theorem 3.2 will be the weaker assumption that V0

has this form and the next theorem due to Block.

Theorem 3.4 (Block [3]). Assume L is a finite dimensional Lie algebra over

an algebraically closed field F of characteristic p > 5, and suppose H is a

Cartan subalgebra of L such that:

(i)L2=L.
(ii) The center of L is (0).

(iii) For every nonzero root ß of L relative to H, Lß is \-dimensional and

ß<lLp, L_ß]) * 0.
Then L is the direct sum of simple classical algebras or Albert-Zassenhaus

algebras.

Under assumptions (i) and (ii) of Theorem 3.2 and the hypothesis V0 =

[V2, V_2] + [Vx, V_x], it is clear that (i) and (ii) of Block's theorem are

satisfied. Moreover, we have shown thus far that the root spaces of V2, V_2,

Vx, V_x are l-dimensional and, for the root a, (iii) holds.

Step 7. For every root y of Vx, - y is a root of V_, and

y{[VUy,V_u_y])*0.

Proof. If 0 & u G VUy and D2(ê) « 0, then as was observed in the proof

of Step 2, there is a w G V_x_y so that [u, w] G H and D[u^ is semisimple

with eigenvalues ±2, ± 1, 0. Also <m, w> = -1 and y([u, w\) « 2 in this case.

If 0 *= u E K, and D3 - 0, but D2(e) = b¥=0, then from Step 3 there is

an a E Z with Db2(a) = -2b. In addition, [b, a] EH and Z)[M is semisimple

with eigenvalues ±2, ±1, 0. Now since « is a root vector [[b, a]u] is a

multiple of u. The fact that u commutes with b implies that u G Vx(b) or

u E Z(b). We note from Step 3 that Db\a) = -2{a(u), u)b - -2b, so

a(u) ^fj_and (a(u), u) « 1. Thus u £ Z(b) and u E Vx(b). The element

0 7e a(u) belongs to V_x _y and we proceed to show y([u, a(u)]) i= 0. A

computation of [b, a] yields:
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[A, a] =[a(u),u] +[u,a(u)] =2D(u,a(u)).

From §2,

[u, a(u) ] = D(u, a(u)) - (u, a(«)>* = \ [A, a] + \h.

Thus

[[«, ~äjuj]u] =[\[b,a]+\h,u] = u,

showing y([u, a(u)]) ^ 0.

In light of these reductions we can suppose u E VXy and D3(e~) = s ¥=0

where s belongs to VX3y_a. From Step 6 and Kostrykin's result mentioned in

§1 it follows that D3 = 0 so that s is as in the first or second paragraph.

When DD*^ = 0 is applied to ë, one obtains DuD¿D3(e) = 0. Expanding Ds

in terms of Du, £>- and using this result, one can show that D2(ë) = 0.

Therefore, according to the first paragraph, there is a t E V_x_3y+a with [s,

t] E H, D[sjx semisimple with eigenvalues ±2, ± 1, 0, (s, r) = — 1, and

3y - a([s, t]) = 2. We will prove that 0 ¥=D2(t)E V_x_y and that

y([u,D2(i)])^0.

To begin, observe that [[s, t]e] = -(s, t}e = e so that e E Vx(s) and

y([s> t]) — 1 and, as a further consequence, y ([s, t]) = 1. For each root

ß ¥= 3y — a, Vlß is orthogonal to Vx _3y+2a relative to < , >. Therefore [u,

t] = <m, t}e = 0 provided y ¥= 3y - a. However, it is true that y ¥= 3y — a

in this case since y([s, t]) = 1 = a([5, r]). Because [u, t] = 0 the mappings Z>„

and Z>, commute. This gives

0 * (s, »e = [Z)a3(ê), /] = D,D3(ë) = -D3D,(ë) =[u, D2(t')].

Thus D2 (i) ¥= 0, and y([u, D2 (t)]) ^ 0 will follow from this calculation:

[s, t] ={Du3(ë), t] = (3DUD¿D2 - D¿D3)(i)

= 3[u, DÏ(tj] - D¿D3(i) = 3[u, ART)] - D¿([D3(e),t])

= 3fu,D2(i)]-h.

Therefore [m, D2(t)] - ([5, r] + A)/3 and y([M, D„2(/)]) = 2/3.   D

It remains to be shown that the nonzero root spaces of V0 are 1-dimen-

sional, and for every root space Vos of V0, V0_s is also a root space with

8([V0S, V0_s]) ¥= 0. Under the assumption thatV0 = [V2, V_2] + [Vx, V_x],

the elements [u, v] for u E VXy and v E V_x_ß with ß ¥= y generate these

root spaces. It suffices to show that there exist root vectors q, r with

D2(L) = Fq and [q, r] E H such that [u, v] E V¡(q) for some i = ± 1 or ±2.

For if 5 = y - ß, then S([q, r]) = i implies Vos G V¡(q). All our previous
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considerations applied to the decomposition

L = Fq © Vx(q) © V0(q) ® V_x(q) © Fr

instead of to the one determined by e, f, h yield V0 s is l-dimensional and

Step 8. Each nonzero root of V0 satisfies hypothesis (iii) of Block's theorem.

Proof. Let 0 ¥= [u, v\ E Vos where u E VXy, v E V_x_ß and y =h ß. The

first observation to make is that [u, v] = 0. Indeed if [u, v] =£ 0, then

y — ß + a = a and y = ß contrary to assumption. Thus the product [u, v] is

symmetric in u and v because [u,v\ = D (u, v) = [v, «].

Let us restrict first to the case D2(e) = 0. Then there is iv G V_x _y such

that

L « Fu © Vx (u) © V0(u) ® V_x(u) © Fw.

Relative to this decomposition v E Vx(u), V0(u) or F_ x(u). Now v E Vx(u)

can be ruled out since [u, v~\ =£ 0. If v E V0(u) then [u, v] E V2(u) — Fu Ç

Vx which contradicts [u, u] G V0. So tJ G V_ x(u) necessarily holds and [a,

v] E Vx(u) in this instance.

Because of the symmetry of [u, v] we can assume D2(e) =£ 0, D2(e~) =£ 0.

Let us suppose D3 = 0 so that b = D2(è~) G Z leads to the decomposition

L = Fb®Vx(b) ® V0(b) ® V_x(b) © Fa.

Recall that u E Vx(b) and e, ë, h G Z(b) in this situation so that tJ must be in

Vx(b), V0(b) or V_x(b). In case v E V0(b), then [u, «] G Vx(b) as desired. On

the other hand if v E Vx(b), then [u, v] E V2(b). Lastly in the event v E

V_x{b), v E V_x(b) also, and 0 ¥= D2(è~) E V_2{b). But this says —2/3 + a

= — 2y + a, and ß = y contrary to assumption.

In the final consideration D3 ^ 0 and D3 ^ 0. The element s = D3(è~)

gives the decomposition

L = Fs © Vx (s) © V0(s) ® V_x (s) © Ft

where both u, e are in Vx(s) and ë E V_ x(s). Now v belongs to some V¡(s)

but not to V2(s) = Fs since D3 = 0. Also v £ Ft since they are different

eigenspaces relative to h. If v G F,(í), then ü G F0(5) and [wt3] G Vx(s). If

« G V_x(s), then t; G F_2(í) and [u, v\ G F_,(j). The final case is v G

V0(s). But then Z)03(ë) G V_x(s) and soO^ [j, D3(ê)] = <5, £>c3(ë)>e. This

leads to 3y - a - 3ß + 2a = a. That is, ß = y, contrary to assumption.

Thus, in all possible situations the nonzero root spaces satisfy Block's

assumptions.   □

To conclude the proof of Theorem 3.2, we need only eliminate the

possibility of having Albert-Zassenhaus algebras. However, by the proof of

Step 7, H has a basis of elements whose adjoint mappings are semisimple with
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eigenvalues ±2, ±1,0. The proof of Block's theorem shows that if the

algebra is not classical then there is a root a ¥= 0 such that a, 2a,...,

(p — \)a are all roots. But then, since p > 5, <x(g) = 0 for every g E H,

contradicting the fact that H is self-normalizing. So it must be that algebras

satisfying the hypotheses of Theorem 3.2 are classical, and each classical

algebra satisfies these hypotheses.   □

Kostrykin [14] has been concerned with conditions under which the degen-

eracy of the Killing form implies the algebra has nonzero absolute zero

divisors. In light of Theorem 3.2 we have the following:

Theorem 3.5. Let L be a finite dimensional simple Lie algebra over an

algebraically closed field of characteristic p > 5. Assume:

(i) there is an x =/= 0 such that D£ ~x = 0; and

(ii) the Killing form of L is degenerate.

Then L has nonzero absolute zero divisors unless L is classical of type An or Cn

for p dividing « + 1, of type Bn for p dividing 2« — 1 or of type Dn for p

dividing « — 1.
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