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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 63, Number 1, March 1977 

ON THE EXISTENCE OF AD-NILPOTENT ELEMENTS 

G. M. BENKART1 AND I. M. ISAACS2 

ABSTRACT. A condition sufficient to guarantee the nilpotence of a derivation 
of a Lie algebra is given. It is used to obtain an elementary proof that a 
finite dimensional Lie algebra over an algebraically closed field of arbitrary 
characteristic necessarily contains an ad-nilpotent element. 

In recent papers [1], [2] and [3], ad-nilpotent elements have provided an 
effective means of characterizing certain simple Lie algebras in prime char- 
acteristic. An algebraic geometry argument can be used to prove the existence 
of ad-nilpotent elements in finite dimensional Lie algebras over algebraically 
closed fields; and in characteristic zero, existence also follows from the 
classical theory. In this paper we give an easy, elementary proof which works 
for algebraically closed fields of arbitrary characteristic. In fact, we prove 
slightly more. 

If L is a Lie algebra and x C L, let E (x) denote the span of the set of 
eigenvectors of ad x in L. If y, z c L are eigenvectors of ad x, then [y z] is 
either zero or is itself an eigenvector. It follows that E(x) is a subalgebra of 
L. 

LEMMA. Let L be a finite dimensional Lie algebra over an algebraically closed 
field F and let D be a derivation of L. Suppose x C L and that D n(E (x)) = 0 

for some integer n. Then D is nilpotent on L. 

PROOF. For X C F, let L. denote the maximal subspace of L on which 
D - X is nilpotent. As is well known, [L. Lill C L ,+,, Now x C E(x) C Lo 
and so [x L.] C L. for all X. If L, # 0, then ad x has an eigenvector in L. 
and so 0 # L, nE(x) C L*, n LO and thus X = 0. Since L L,,, we have 
L = Lo, 

We now prove our theorem. It is slightly stronger than the assertion in the 
abstract which is obtained from it by taking X to be L - {0}. The option of 
taking smaller sets X, however, is occasionally useful [2]. 

THEOREM. Let L be a finite dimensional Lie algebra over F where F is 

algebraically closed. Let X C L be a nonempty subset such that for every 
x C X, all eigenvectors of ad x lie in X. Then ad y is nilpotent for some y C X. 
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PROOF. Use induction on dim L. Let x E X. Suppose E(x) < L. Now 
E (x) n X is nonempty (since it contains x) and satisfies the hypotheses of 
the theorem in the algebra E (x). By the inductive hypothesis, there exists 
y E E(x) n X such that ady is nilpotent on E(x). By the Lemma, ady is 
nilpotent on L. 

We may suppose then that E(x) = L for all x E X. Let x E X. If ad x is 
not nilpotent, it has some eigenvector y with [x y] = Xy and X # 0. Then 
(ad y)2(x) = 0. However, y E X and so E (y) = L and ad y is semisimple on 
L. Thus (ad y)(x) = 0. This contradicts [y x] = -y # 0 and proves the 
result. 
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