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Let L be a finite dimensional simple Lie algebra over an algebraically closed
field of characteristic p > 3 of absolute toral rank 2, and 7' a 2-dimensional torus
in the semisimple p-envelope of L. It is proved that L is either classical or a Block
algebra or contains sandwich elements which are homogeneous with respect to T
or a conjugate to 7. In addition, several dimension estimates are given. © 1997
Academic Press

During recent years the problem of classifying simple Lie algebras over
an algebraically closed field F of characteristic p > 3 has shown remark-
able progress. As this problem has been solved for p > 7 [31], we are now
interested in characteristics 5 and 7, while it seems too early to attack this
problem for characteristics 2 and 3.

For p > 3, a version of the Recognition Theorem for filtered Lie
algebras has been announced (Benkart—Gregory—Premet). The question of
whether or not a nilpotent section with respect to a torus acts triangulably
on the algebra has been answered and the Lie algebras having a Cartan
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subalgebra of toral rank 1 are determined [20]. With this note we start an
investigation of semisimple Lie algebras of absolute toral rank 2.

Concerned with the restricted Burnside problem, A. I. Kostrikin in-
troduced the concept of sandwich elements in Lie algebras. Sandwich
elements describe important structural features of Lie algebras. As an
example the nonexistence of sandwich elements distinguishes classical Lie
algebras from the others [19]. Surprizingly enough this concept has not
been seriously used in the (p > 7)-theory. The first author showed its
importance for the small-characteristic-theory [20]. It is the content of this
note to clarify the question of the existence of homogeneous sandwich
elements in nonclassical semisimple Lie algebras of absolute toral rank 2
(Theorem 8.5). We introduce a new notion of a root being rigid and show
that the existence of a nonrigid root with respect to a 2-dimensional torus
T in the semisimple p-envelope of a simple Lie algebra L of absolute
toral rank 2 implies the existence of a T-invariant long filtration in L. We
start classifying simple Lie algebras without nonrigid roots. Apart from
that we obtain some dimension estimates both in the spirit of [6] and
beyond.

1. NOTATION AND PRELIMINARY RESULTS

Let L denote a finite dimensional simple Lie algebra over an alge-
braically closed field F of characteristic p > 3, and L, the p-envelope of
L in Der L. Let T be a torus of maximal dimension in L, and H == C,(T).
Since H = CLP(T) is a Cartan subalgebra of L, H = H N L is a nilpotent
subalgebra of L.

We say that a subalgebra A c Der L acts triangulably on L or is
triangulable if A acts nilpotently on L. Given a T-invariant subalgebra
Q cL, we say that T is standard with respect to Q if the subalgebra
Co(T) = CLp(T) N Q is triangulable. Even if T is standard with respect to
L, a priori it is not clear that it is so with respect to L.

Given a subalgebra 4 of L we denote by 4, the p-envelope of A in
L,. Given an F-space V, S € EndV, and A € F let V,(S) denote the
nilspace of § — A ld,,.

Throughout this note we assume that dim 7' = 2. By [20, Theorem 1],
this ensures that L is isomorphic to the restricted Melikian algebra or
any torus of maximal dimension in L is standard with respect to L (the
case p > 7 is handled in [34, 25]). We always assume that T is standard
with respect to L. As H is a restricted nilpotent subalgebra of L, T' is the
only maximal torus of H and coincides with the set of sem|S|mpIe ele-
ments of H.
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Consider the root space decompositions of L and L, relative to T

L-He Y L,
ye T*\(0)
L,=He Y L,
ye T*\(0)

Set I' = {y € T*\(0) | L, # (0)}. We treat T as a set of functions on H by
setting a(h) = a(AlP1)P" (cf. [25]). Since H® acts nilpotently on L, each
v € T vanishes on H® and so may be viewed as a linear function on H. It
is straightforward that, for any 4 € H, a(h) is the only eigenvalue of ad &
on L, where a €T.

Given [ -independent «, 8 € I' put

heHla(h) =0,
xeL,|[x,L_,]cH,},

Qmp

xeK,|[x, K ,]cH,NH}

Qm
Il

xeMP|[x,MP | cH, N H,}

= {
= {
{
(xeL,|[x.L_,]cH,},
{
= {

x€L,|[x,L_,] CH,N H}.

The following hexagon illustrates the inclusions between the subspaces
defined above:

L,
e
Mp K,
NB KB
N
R

Let a, g € I' be F,-independent and set
=dim K_/KP.

The Block—Wilson inequality ZzE[F*n < 2 holds for characteristic p > 7

[6, (5.5)]. However, it is much harder to prove this important inequality for
p < {5,7}. This will be done in a forthcoming paper by use of the results of

this note.
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We also set

K(a)=H,® ) K,,,

fe
zE[Fp

M@® =K(a)® Y, M2,
vEF,a

K(a) =H +K(a),
M@ =H + M®,

It is immediate from the Engel-Jacobson theorem that K(«a) is a nilpo-
tent subalgebra of L. Moreover, K(«) is solvable and K(«) is an ideal of
codimension < 1in K(a) (see [6, p. 167; 25]). Also M‘* is a subalgebra
of L and M is an ideal of codimension < 1 in M(®. Obviously, all
subspaces K, K?, MP, NP R_ are T-invariant.

LEMMA 1.1. Let o, B <€ I'. Then
@ (L. /K D) =L,/K,,
(2)  the subspace K§ /R, can be embedded into (L_,/K_5)*,
(3)  the subspace Ng' /R, can be embedded into (L_z/M*® p)*,
@ (L_g/M2p)* =Lg/Mg.
Proof. The first two claims are proved in [6, 26].
Since [Ng', L_gl c[Mg, L_gl c H,, the definition of N;* yields that
there is a linear mapping N;* — Hom(L_,/M®;, H,/H, N Hy) whose
kernel coincides with Rg. This proves (3).

To prove (4) observe that if H # H,, then the Lie multiplication in L
induces a nondegenerate pairing

(Lg/Mg) X (L_g/M®p) > H/H, =F.

Hence in this case we are done. If H = H,, then Mg = L, and M%, =
L_g, so the result follows as well. |

A subalgebra Q c L is called a I-section of L with respect to T if there is
a € I" such that

Q=I—I69 ZLia'

ieky
In this case we use the following notation:

Q0=L(a), Q/radQ = L[«a].
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LEMMA 1.2. Let y € I'. One of the following occurs:
(1) Llyl = (0) and L(y)® is nilpotent.
(2) Llyl= 30(2) and rad L(y) is nilpotent.
() Llyl=wW(; 1) and rad L(y) is nilpotent.
(4 H@2;D)?® c Lly]l c H(2;1) and rad (y) is nilpotent.

In each of these cases rad L(vy) is ad T-invariant and Ll vy] is restrictable (i.e.,
admits a unique | pl-structure).

Proof. The result is immediate from [6, (5.3); 25, (4.1), (4.2); 20,
Proposition 1.2]. 1

If L[y] = (0) we call y solvable; if L[y] = 3[(2) we call y classical; if
Lly]l = W(1;1) we call y Witt; and if H(2;1)® c L[y] c H(2;1) we call y
Hamiltonian. Accordingly, we call the 1-section solvable, classical, Witt, or
Hamiltonian.

LEMMA 1.3. Let y € I'. One of the following occurs:

(1) vy is solvable and K, = L,, for all i € F;
(2) v is classical and there is | € [F;k such that, for i€ [F;f,
dmL, /K, =1ifi= tjanddim L, /K, =0 ifi # £J;
" :(B)ij Zni; Iélflﬁuglsl/tf;rjf]oelf[zésicjlz, that, fori € F¥,dim L, /K, =1
(4) vy is Witt and dim L, /K, =1 foralli € F};
(5) vy is Hamiltonian and there is j € B such that

2 ifi= 4j,
dimL, /K, = {1 ifi = +2j,
0 ifi # tj, + 2j;

(6) vy is Hamiltonian and dim L, /K, = 3 forall i € F}.

Proof. Lemma 1.3 is a direct consequence of Lemma 1.2 and [6,
Lemma 5.3.4]. 1

Using Lemma 1.3(1) it is not hard to see that L,, N rad L(y) c K,, for
al yeland i€l

By Kreknin ([15], see also [6, Lemma 5.3.6]) each L(y) contains a
unique subalgebra Q(y) of minimal codimension < 2 such that
Q(y)/rad Q(y) € {(0), 3((2)}. In [6] this subalgebra is called the maximal
compositionally classical subalgebra of L(y). We say that y € T is proper,
if Q(y) is T-invariant. If y is proper we call L(y) a proper 1l-section.
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Solvable and classical roots are always proper since for such roots we have
Q(y) = L(vy). If y is Witt or Hamiltonian, then Q(y) is the preimage of
the standard maximal subalgebra of the Cartan type Lie algebra L[y]. Any
maximal torus of a Witt 1-section L[y] is conjugate to Fxd/dx or F(x +
1)d /dx. If y is Hamiltonian, then any maximal torus of L[y] is conjugate
to F(x, 0, —x,d,) of F((x; + 1)d, — x,4,) (cf. [8, 9D. Thus if vy is proper,
then, up to conjugacy, T is mapped onto Fxd /dx or F(x,d, — x,d,) in the
respective cases.

LEMMA 1.4. vy € T is proper if and only if L,, = K, for some i € [ or
if p =5, y is Hamiltonian, and dim L, /K, =1 for some i € [
Proof. The statement follows immediately from the preceding remark.

|
Following [26] we put

Q= {(7, 8) €T?|H, ¢ Hyand Y [Lsiiy L_(51i)] (ZHY}.

i€f,

Given [ -independent «, g € I' such that nP + 0 we are now going to
show that («,jB) € Q for some j € F*. Since dimT = 2, one has I' C
F,a®F,pB.
LEMMA 1.5. Let @, B € T be [ ,-independent. Then

() nf=n} foral B,y € '\F,a;

@ if (a,B) € Q, then Ly, # Mg, for somei €[,

) ifnf +0, then L,# M, forsomey & F,a;

@) ifnP+0, then (a,jB) € Q for somej € F*;

(5) if nP+0 then T c H,. In particular, H, H,, Hy are pairwise
different.

Proof. Parts (1) and (2) are immediate from the definitions.
(3) Suppose the contrary. By Schue’s lemma [6, (1.12)],

L= Y L+ ¥ [L, L]
yel” vy, 8el”

where L' = I'\F,a. As L, = M for each y € I, and M* is a subalge-
bra we obtain L = M. In particular, H = H, and L(«a) = K(«). Let ¢,
(resp. t5) denote the toral derivation of L acting on L,,,;; as the
homothety i Id (resp., jId). Clearly, T = Ft, & Ft;. By our preceding
remark, C,(t;) = K(a). We know that K(«) is nilpotent. Hence L(a) =
K(a) is a Cartan subalgebra of L of toral rank 1. Therefore [20, Theorem
1] applies to the simple Lie algebra L and the 1-dimensional torus Ft,.
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Hence K(a)® acts nilpotently on L. The assumption n’ # 0, however,
means B(K,, K__] # 0, a contradiction.

(4) According to (3), L, # M, for some y & F,a. Let y=ia+jB,
j#0.AsjpB(K,K__D+#0 H, ¢ H,,. 1t follows that (a,jB) € Q.

(5) As (a,jB) € Q one has H, ¢ H,. Then H, + Hy and H, # H.
Also there is i € F, such that [L;z,;,, L_(p+ia) € H,. Thus H, # H.
Choose x € H;\H,, y € H,\ Hy and denote by 7,7, the semisimple
parts of x,y in H, Then a(t) #0, B(t) =0, B(t,) #0, al(t,) =0.
Therefore T = Ft, © Ft, cH,. |

Lemma 1.5(1) allows the following simplification of notations. Set for
F,-independent &, B € T
ne=nf,  n(a)= ) nf.
ieky
In order to find some rough upper bounds for n, and dim L_/M?# we use

the following lemma proved in [6, (5.5.1); 26, Lemma 2.4]. The assumption
“p > 77 which is present in these papers is inessential for its proof.

LEMMA 16. Let a, B € T. Let W # (0) be a K(a)-module such that

(@ H, N Hy acts nilpotently on W,
(b) H,=Fh,® (H, N Hy) where h, acts invertibly on W.

Then dimW > p™ where m is the smallest natural number which exceeds
max{3n,, |i € F¥}. If Wis a (T + K(a))-module and n(a) > 2, then dim W
> p2.

We apply Lemma 1.6 to deduce the following

CoroOLLARY 1.7. (V) Ifp > 7, then n,, < 2.
2@ Ifpef5T7), thenn, <4
(® dim(L,/MF) <6 + r where r = max{n,, |y € T'.

Proof. We may assume that » # 0. Pick « € I" with n, = r. Lemma 1.5
(5) shows that no nonzero root vanishes on H. By Schue’s Lemma
H = Zﬂer\ﬁpa[Lﬂ, L_,1. Hence there is g€ I'\F,a such that
a(Lg, L_gD#0. Put We=1X,_¢ Lg,;,/Mg,.,. Clearly, L;# Mg and
hence W # (0). The argument used in the proof of [6], (5.5.2) and Lemma
1.6 now apply to the K(a)-module W and yield the inequality p™/? < p(6
+ r). For p > 7 one derives from this inequality that » < 2, while for p
{5, 7} this inequality forces r < 4.

Using the hexagon and Lemma 1.1 one readily observes that
dimL,/MP <dimL,/R,=dimL,/K,+dimK, /KP + dim KF/R, <
2dim L_/K_ + r. To complete the proof of (3) it suffices now to apply
Lemma 1.3. |
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CoROLLARY 1.8. Letn(a) > 2 and W = Z,-E[FP(LBM/M;HQ) # (0).

(1) Any composition factor of the K(a)-module W has dimension p*.
(2) Ifp =1, then W is an irreducible K(a)-module.

(3 Ifp = 5 and Wis reducible over K(a), then W has two K(a)-com-
position factors and n, = 4 for some A € T.

Proof. According to Lemma 1.5(4) there are k,/ € [FY such that
(ka,1B) € Q. Then H, & Hy. The assumption on W entails that (a, 8)
€ Q. By definition (o, 8 +ia) € Q for each i € F,. This implies that
dimLg,,,/Mg,,, <6 +r where r = max{n,|y € I'} (Corollary 1.7(3)).
By Corollary 1.7(2) we have r < 4. This yields dimW < 10p. Let I be a
composmon factor of the K(a)-module W. Then Lemma 1.6 enforces
d|m V > p% As K(a) is solvable, I has dimension a p-power (see [23]). As
p®> 10p, dimV = p proving ().

If p =7, then 2p? > 10p whence V. = W. If p =5, let k denote the
number of composition factors of the K(a)-module W and assume k > 1.
Then kp? < p(6 + r), whence k =2, r=4. |

2. COINDUCED MODULES

Our next goal is to obtain a better estimate for n,. Namely, we are
going to prove that n, < 3. To obtain this estimate one has to undertake a
rather detailed investigation of the structure of certain solvable Lie alge-
bras. For this purpose, it is convenient to realize such Lie algebras by
differential operators over appropriate divided power algebras. In this
section we collect some necessary facts from the theory of coinduced
modules and related topics. All proofs can be found in [17, 22, 5, 23].

Let % be a Lie algebra over F, U(%) the universal enveloping algebra
of &, and . the universal p-envelope of # in U(¥). If & is restricted
let u(%) stand for the restricted universal enveloping algebra of #. Since
Uz = u(Z), any Zmodule can be treated as a restricted module over
Z.

Let p be a restricted subalgebra of 2. Set AL, p) Homu(p)(u(:i”)
F). The standard comultiplication A:u(2) —» u(2) ® u(P), Au) =
Lol ® Uy, turns F(Z, p) into a commutative associative F-algebra
whose multiplication is given by

(fo)(u) = L f(uq)g(ug)  forall f,g e F(Z,p), u € u(Z).
(w)

The Lie algebra . acts on (%, p) by derivations as
(D.f)(u) =f(uD)  forall fe F(Z,p), D €Z, ucu(P).
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Let & =ZNp, m:=dim Z/Z,;, and assume that m < «. Clearly, the
restricted Lie algebra %, can be viewed in a canonical way as a restricted
subalgebra of . There exists a unique system of continuous divided
powers on the maximal ideal

(2, %) = {fes(2 %)) =0},

and the algebra (.7, §0) together with this additional structure is iso-
morphic to the topological divided power algebra A((m)). The above
action of Z on A Z, §0) preserves this divided power structure, i.e., &
acts on the topological divided power algebra F(%, %,) by continuous
special derivations. Now suppose that »n := dim %/p is finite. Then the
F-algebra A(Z, p) is isomorphic to the ring of truncated polynomials
A(n; D). It is necessary to specify this isomorphism by introducing the
additional divided power structure on F(Z, p).

Let A(r; s) denote the divided power algebra corresponding to the tuple
s = (sq,...,s,) (itis spanned by the set {x“ |0 <a, <p* — 1,1 <i <r}).
Let W(r; s) be the Lie algebra of all special derlvatlons of A(r; s) (see [30]
for more details). We identify U(Z) and u(2). It is immediate from
Jacobson’s formula that . = Yoo ZP. Set &, =%, and, for i > 0, define

g={xezx’ ep+z+ - +2r ).

n+1

Since dim §/p =n <o, for any x €%, the elements x,...,x?  are
linearly dependent modulo p. We obtain a flag of vector spaces

gp): LH=&c& c - Ccg =2
Let k;, =dim &,/&,_,, 1 <i < n, and set

Lz=(1,...,1,2,...,2,...,n,...,n).

NARRSARLS
ky k, k,
Since Yk; = m = dim %/ N p, then n = (n,,...,n,) where 1 <n, <

- <n, <n. There exists a continuous |somorph|sm of divided power
algebras o AL, ,CZO) 5 A((m)) which maps A(Z, p) onto A(m; n). As
< acts on AL, 30) via continuous special derivations, ¢ induces a
representation n:.# — W(m;n). It turns out that the image of n is a
transitive subalgebra of W(m; n) (i.e., n(2) + W(m; n),, = W(m; n)) and
ker n coincides with the maximal ideal of ¢ contained in ..

Next we consider representations of &, first assuming that & is
solvable. Let V' be an irreducible -#module of finite dimension. There
exist a restricted subalgebra a c.# of finite codimension in % and a
linear function A € a* satisfying A(a®) =0 and AM(x?) = Mx)? for all
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x € a such that
V = Hom, (u(£), F,),

where F, = F and x-1 = Mx)1 for each x € a.

Put 0‘(52” a) = coind(F), Homu(a)(u(jf) F,) = coind(F,). By the uni-
versal property of coinduced modules, the natural a-module homomor-
phism F ® F, — F, gives rise to an #*module homomorphism

coind( F) ® coind(F,) — coind( F,), f®g—fg.
Explicitly, fg¢ = (f ® g)o A. One can check that
D(fg) = (Df)g + f(Dg) (1)
(f1f2)8 = fi(f>8) (2)

for all f, f;, f, € coind(F), g € coind(F,), and D €.%. Thus the commuta-
tive ring coind(F) acts on coind(F,). Relative to this action, coind(F)) is a
free module of rank 1. Moreover,

coind( F,) = coind( F) - v (3)

for any v € coind(F,) satisfying v(1) # 0. Observe that A is defined in
such a way that one may consider it as an algebra homomorphism from
u(a) to F. Since u(2) is a free u(a)-module one may extend A to a
u(a)-module homomorphism from u(#) to F. After such identification we
may take v = A.

Let %, =ZNa, s =dim Z/%,, and r = (r,,...,r,) the s-tuple at-
tached to the flag &(a). Let ¢ and n denote the above mentioned
isomorphisms

o F(Z, a) S A(s;r), n:Z->W(s;r).

Observe that A(s; r) acts on coind(F,) by ordinary multiplication
a(f-v) = (e "(a)f) v forall a € A(s;r), f € coind(F). (4)
Also W(s; r) = Der(coind(F)) acts on coind(F,) by derivations stabilizing
v:

D(f-v) =D(f) v forall D e W(s;r), f€coind(F). (5)
Let

W(sir) = W(sir) XA(s;r),

where we regard A(s; r) as an abelian ideal of 28(s; r). We have obtained
a faithful representation

p:W(sir) = gl(V).
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It follows from (3) that, for any D €., there is a unique f, € A(r;s)
satisfying

D-v=9'fp) 0.
By (1), the rule D — (n(D), f5), where D €., defines a homomorphism
72> V(sir),  w(D) = (n(D).f).
The composition p o7 can be identified with the initial representation
Z - ql(V).

Let pr, (resp., pr,) denote the canonical projection 28(s;r) = W(s;r)
(resp., W(s; r) = A(s; r)). Summarizing we obtain

LEMMA 2.1. Let & be solvable, I a nilpotent ideal of &, and v an
irreducible representation of . in a finite dimensional vector space V. There
exist a restricted subalgebra a of finite codimension in Z, an s- tuple r =
(ry,....r,), and a linear function A € Hom (u(?), F) satisfying /\([a
a]) =0, Mx?) = Mx)?, and Mxu) = Xx)Mu) for each x € a,u € u(P)
such that

D) V= Hom,w(2), F) = A(s;r) - A,

) 7(2) is a subalgebra of p(W(s; r)),

3 7(Zn a) C p(W(s; 1) q) where W(s; 1)) = W(s; 1)) X ACs; 1),
@) (prie pt ot N) is a transitive subalgebra of W(s; r),

(5) (prie ,rfl o 7)(I) acts nilpotently on A(s; r) - \.

Proof. It remains to prove (5). Let G, = (p o pr(W(s; r)) where i =
1,2. Let G, be the p-envelope of G, in g[(V). By construction of p, G,
annihilates v in formula (5) and G,= G,. This implies that G, N G,= (0).
By Jacobson’s formula, the p-envelope of p(28(s;r)) in g((}) coincides
with G, @ G,.

Let xel. As ] is a nllpotent ideal of &, there is e € N such that
xP € C(Z). Hence 7(x)?" acts on V as a scalar operator. On the other
hand, 7(x)”" € G, & G, yielding 7(x)?" € G,.

Let y, = (pr; p’l or)(x), i =1,2. By Jacobson's formula

()" = (p(3) + p(¥2))" = p(y)" +z

for some z € G,. This yields p(y,)?" = 0. Now it is immediate from the
construction of p and ¢ that y, acts nilpotently on A(s;r)-A. This
completes the proof of the lemma. |

The constructions and results which we have explicitly presented here
for solvable Lie algebras, can be extended to arbitrary finite dimensional
Lie algebras. A proof of the following theorem (which goes back to
Blattner, Dixmier, Block, and Strade) can be found in [5].
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THEOREM 2.2. Let & be a Lie algebra, I an ideal of &, and p a finite
dimensional faithful irreducible representation of & in a vector space V over
F. Then, for every maximal I-submodule V', of V, there is a I-submodule W of
V such that, setting

a={DeZIDWcW), s:=dimZ/Zna,
r the s-tuple attached to the flag & (),

the following assertions are true:

L v/w= & V/Vy, t = 1, as I-modules,

t times

2 V=W/W)® A(s; r) as vector spaces,

(3) V/Wis an irreducible a-module,

@ p(L)c(Fldy,y, @ Wis;r) X (gl(V/W) ® A(s; r)),

(B p(I) cpla) c(FIdy,, @ Wis;r)g) X (gl(V/W) ® A(s; 1),
6) (prye p&Z) is a transitive subalgebra of W(s; r).

3. TRANSITIVE SUBALGEBRAS OF W(s;1)

Let m, denote the unique maximal ideal of A(s;1). Elements x,,...,
x, € m, generate A(s;1) as an algebra if and only if they are linearly
independent mod m?. For each f e A(s;1) there exists f(0) € F (the
constant term of f) such that f — f(0) € m,. Let &(s) :== Aut(A(s; 1)). By
[10], each automorphism of the Lie algebra W(s;1) is standard (i.e., is
induced by an element of m(s)). Clearly, &(s) preserves m, and o (f)0)
= f(0) for all o € &(s). Each o € G(s) is uniquely determined by its
values o(x,),..., o(x,) on any generating set x,,...,x, € m,. On the
other hand, any s-tuple (4,,..., hy), with h; € m, satisfying det(dh,/
dx;) & m, defines an element o € G(s) by setting o (x,) = h;, i <s.

Fix a generating set x,,..., x, € m, of A(s;1) and define, for m < s,

b(m) = Y Fx;0,+ Y. F[x;,...,x,_,]9;
i=1 i=1

It is easy to see that b(m) acts triangulably on A(s; 1). Clearly, b(m) is a
transitive subalgebra of X" ,Flx,, ..., x,,19, = W(m; D).

We mention that A(s;r) = A(X;_;r; 1) as algebras. The corresponding
embedding ¢ : W(s;r) = W(X_,r;1) yields a subalgebra which is no
longer transitive if r = 1. However, if g is a subalgebra of W(s; r) such
that A(s;r) is g-simple (in particular, if g is a transitive subalgebra of
W(s; 1)), then A(X:_ r; 1) is still o(g)-simple. Now suppose that A(s; 1) is
g-simple and let B be a g-invariant subalgebra of A(s;1). If I = (0) is a
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g-invariant ideal of B, then IA(s;1) is a nonzero g-invariant ideal of
A(s; 1). Hence it coincides with A(s, 1) proving that I contains invertible
elements of A(s;1). So I = B and B is g-simple itself.

LEMMA 3.1. Let g be a subalgebra of W(s; r) which is closed under pth
powers in Der A(s; r). Assume that A(s; r) is g-simple. Then r = 1 and g is
a transitive subalgebra of W(s; 1).

Proof. The Lie algebra W(s; r) carries a natural A(s; r)-module struc-
ture via (f, D) — fD where f € A(s;r) and D € W(s;r). Since A(s;r) is
g-simple, the Lie algebra § := A(s; r)g is a Tl-distribution over A(s; r) in
the terminology of [16].

Let n = X! ,r;. According to [16, Proposition 3.4], there is a tuple
d=(d,...,d) satisfying Xf d,=n and an algebra isomorphism
Wy A(s; r) > A(k; d)) such that ¢ oGoy~t = W(k; d). Therefore
$ogeoyt contains elements D, + E;, 1 <i <k, where E; € W(k; d),,,
As g is by assumption closed under associative p-powers then o qo !
contains the pth powers of these elements. Note that W(k; d),, is closed
under pth powers in Der A(k; d) [32]. Thus if some d; > 1 then W(k; d)
would contain an element D? + [;, with [, € W(k; d), which is not true.
Thus d, = 1 for all i and § = W(#n;1). On the other hand, § < W(s; r).
Counting dimensions gives s = n and r = 1. The result follows. |

THEOREM 3.2. Let g be a subalgebra of W(s; 1) such that
@ A(s; 1) is g-simple.

() q® acts nilpotently on A(s; 1).
Let T be a torus of W(s; 1) contained in §. There exists o € &(s) such that

(i) oogootcb(s),
(i) ogoToo *CcXi_F(x;,+ §)d,, for some §; € {0,1}.

Proof. We may assume that g is a restricted subalgebra of W(s; 1).
Suppose inductively that for r <s we have constructed x,,...,x, € m;,
linearly independent (mod n1?), linear forms A, ..., A, € g*, linear map-
pings ¢,,..., ¢, € Hom(q, Flx,,...,x,_;D, and §&;,...,8, {0,1} such
that

g(x;) = A(8)x; + $i(8)

1(x;) = ,(6)(x; + 6;)
forall ge g,t€T,i=1,...,r. For r = 0 this is a void assumption.
Since g acts triangulably on A(s; 1) and by induction hypothesis stabi-
lizes F[x,,...,x,], g has a common eigenvector in A(s;1)/Flx,,..., x,].
Thus there is

feA(s; 1), fEF[x,...,x,]



432 PREMET AND STRADE

such that
g(f) =nm(g)f+ ¢(8)

for some u € g*, ¢(g) € Flx,,..., x,]. Moreover, since T acts semisimply
on A(s; 1) and stabilizes F[x,, ..., x,] we may take f as an eigenvector for
T. So we may assume that ¢(f) = u(¢)f for any r € T and f(0) € {0, 1}.

Let # denote the algebra generated by x,,..., x, and f. Clearly % is
g-invariant. According to the remark preceding Lemma 3.1, % is g-simple.
Moreover, Flx,,...,x,] is properly contained in %. Hence by Block’s
theorem [4], & = A(k;1) for some k >r. Let m, and m, be the
respective maximal ideals. As m, and m are nilpotent, it is clear that
m, = mg N Flx,,..., x,] In addition,

dimm,/m? =r <k =dimm,/m?,.

We have f & m?% + Flx,,..., x,] for otherwise & = m%, + Flx,,..., x,]
whence m , = m?, + m,, a contradiction. Thus x,,..., x,, f — f(0) € m
are linearly independent (mod m?%,). Now g acts on % and so can be
considered as a restricted subalgebra of Der & = W(k;1). As % is g-sim-
ple, Lemma 3.1 shows that g is a transitive subalgebra of Der %.

We claim that x,,...,x,, f— f(0) are linearly independent (mod ni?).
Otherwise there is a nontrivial linear combination y = Ya;x; + B(f —
f(0)) € m?2 Note that y & m?2,. Since g acts transitively on %, there is
D € g such that D(y) is invertible. However, D(y) € D(m?) c m,, a
contradiction. This accomplishes the induction step. I

The Lie algebra 8(s; 1) = W(s; 1) X A(s; 1) carries a natural restricted
Lie algebra structure

D =pr,  fI=f0)" forall D € W(s;1), f€ A(s;1).
Note that there is a natural embedding of &(s) into Aut(8(s; 1)) given by
G(D+f)=0c°Deo ' +a(f) forall DeW(s;l),fe€A(s;1).
We are now going to determine the maximal tori in 28(s; 1).

THEOREM 3.3. Let I be a maximal torus in (s; 1). Then T = pr(9) is
a maximal torus in W(s; 1) and there exists f € m such that

(exp(ad f))(9) =T ® F1.

Proof.  Clearly, pr; i 28(s;1) - W(s; 1) is a restricted Lie algebra epi-
morphism. Hence T is a torus in W(s;1). Let inductively ' c.9 be a
proper subtorus of . satisfying 9" C pr(97) + F1. Let t e 9\9 be a
toral element. One has

t=1+¢(t), wheret =pr(t), ¢(1) =pry(t) €A(s;1).
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As t is toral,

o(1) = (ad )" (1)) + ¢(1)".
Take fe€ m, such that f=(adt)? 2(¢(t)) (mod F1). Since [pr, (9",
'] =0, [pry(7), '] = [F1,¢'] = (0), [ pry(97), (£)] = (0) then [pr(57),
@(t)] = (0). This means that ( pr,(7"))X(f) = 0. Recall that (ad f)*> = 0 and
therefore 7:= exp(ad f) = Id + ad f is an automorphism of 28(s; 1). By
construction,

()=t —t(f) =1+ o(t) — (ad ')’ *(@(1)) =1 + B1,

where B € F. Similarly, 7(x) =x for any x € 9. Put 9" =9 & Fr(¢).
Then 9" c pr(9”) + F1 and dim.9” > dim.Z”. Inductively it follows that
there exist f;,..., f, € m, such that

_]__[1 (exp(ad f;))(9) Cpr(T) + F1.
To complete the proof of the theorem it remains to note that pr,(9) & F1

is a torus of 2W(s;1) and TT/_,exp(ad f;) = expad(XZ;_, ). |

Let B(s) = b(s) X A(s;1). This is a restricted subalgebra of 8(s;1).
The following corollary is a direct consequence of Theorem 3.3 and
Theorem 3.2

CoROLLARY 3.4. Let T be a torus of B(s). There are o € &(s) and
f e my such that o b(s)e ' = b(s) and (exp(ad f)o 7 XT) C Xi_,F(x;
+ 8,9, ® F1 for some §; € {0, 1}.

4. AN UPPER BOUND FOR n,

In this section we specialize the results obtained in Section 3 to the case
s = 2.
PropPoSITION 4.1. Let T be a 1-dimensional torus in B(2).

(1) There exist o € &(2) and f € m, such that o - b(2)e =t = 0(2)
and either

(exp(ad f) e &)(T) = F((x; + 8,) 3y + v(x; + 8;,)d, + AL)
(exp(ad f)e o )(T) = F((x, + 6,)d, + A1)

for some §,,8, € {0,1}, A € F,v e F,.



434 PREMET AND STRADE

2 Put d = (x;+ 8D + v(x, +8,)9, + AL, d, = (x, + 8,)d,
+ AL, Let B,(d;) denote the eigenspace of d; in B(2) corresponding to the
eigenvalue k € F, i = 1,2. Then

@ B(dy) = Flxy + 8)" 9, + iy yick modpyFxq + 8)(x, +
8,) unless k € {0, —1};

(b)) B_y(d) =Foy + F(x; + 879, + Ly im -1 moanF (X1 +
) (x, + 8,);
(© B, (d,) = XPFxi(x, + 8,)" unless k € {0, —1};
(d) B_,(d,) =XPFxio, + TP Fxi(x, + §,)P L

Proof. Part (1) is a direct consequence of Corollary 3.4. Part (2) can be
obtained by direct computation. I

Let W(s; r);, be the jth component of the standard filtration of W(s; r).
For k € [ and any toral element d € ‘B, set

Bi(d) = {x € B (d)|[x,B_(d)] CW(2;1)g N )™ + m,},
n(d) == dim D ,(d) /P, (d).
To simplify notations arrange
B, =B, (d), B =B(d), n,=n,(d).

Observe that d € {d,, d,} preserves 0(2) as well as B, =0, ® A(2; 1),
where b, = B, N 0(2), A2; D, =B, NAQ2; 1), and k € [\

ProposiTION 4.2.  For k € ¥, d € {d,, d,}, the inequality

n, < dim(b,/(b, N W(2;1)y)) +dim(b_,/(b_, N W(2;1)q)) <3
holds. If n, = 3, then d = d,, 8, = 1, and k € {+1).

Proof. By definition,

(0 N W(2 D)) ® (Vi NA(2;1)) < T

Therefore,

n, = dim B, /%), < dim B,/((0, N W(2;1)0) & (B} NA(2;1)))

= dim(b,/ (b, N W(2; D)) + dim(A(2;1),/ (B} N A(2;1))).

In order to get an upper bound for the second summand we consider the
pairing

Wt A(2;1) X by = A(2;1) /m, = F
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defined by the Lie multiplication in ®B(2). Observe that
W, (A(2;1), b_, N W(2;1) ) = (0)
and
B NA2:1) = {x € 4(2;1), | Wi(x, b)) = (0)}.
This yields
dim A(2;1),/(Bx N A(2;1)) <dimb_,/(b_, N W(2:1))-
So we have obtained that

n, < dim(b,/(b, N W(2;1))) +dim(b_,/(b_, N W(2;1)))-

If d=d, or d =d, and k & {1}, it is immediate from Proposition 4.1
that

dim(b,/(0, N W(2;1)y)) +dim(b_,/(0_, N W(2;1))) < 2.
Let now d = d, and k = {+1}. Suppose that §, = 0. By Proposition 4.1,
b, =Fx{"%9,, b_,=Fj &Fx] %9,.

If ve&{-1,0}, then b, cW(2;1),. If ve{-1,0}, then x4, e
W(2; 1), So in either case

dim(bk/(bk N W(2il)(1))) + d'm( /(b (2 1)(0))) <2

To finish the proof of the proposition it suffices now to note that, for
d=d, 6 =1,

dimb_, +dimb, = 3. |

ProrosiTION 4.3. (1) n, < 3.

2 Ifn,=3, then n,, <2 for i &{-1,0,1}. Moreover, [K,, K,]
contains nonnilpotent elements of L.

Proof.  Suppose that n, > 3 for some « € T'. By Lemma 1.5(4) there is
B € I such that («, B) € Q. Let ¢, (resp. ¢;) denote the toral derivation
in T acting on L,,,;, by multiplying each vector by i (resp. by 7).

Set W=2%, ¢ (LB+M/Mg+la) and let IV be a composition factor of the
K(a)-module w. By Corollary 1.8, dim I = p2. As the action of K(«) on
V' is induced by the adjoint action of L, on L, it can be uniquely extended
to a restricted representation

£:K(a), - al(V).
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Lemma 1.5(5) says that T c K(a) It follows from the construction of &
that (ker £) N K, c K/, for each i € F*. So

dim K,,/Kf = dim(£(K,,)/£(KE))

for any i€ [ . By Jacobson’s formula, K(a) - (Hn K(a) ) @
2,-6[F;K, Put r = §(K(a)) r; = ¢&(K;,), and 1) = §(KB) for j aéO
Clearly, v is a restricted solvable Lie algebra and I:=¢&(K(a)) is a
nilpotent ideal of r. By Section 2, there exists a restricted subalgebra
p CT such that dimT/p =2 and V' = Hom,,,,,(u(?), F,) for some A €
Hom . (u(T), F) satisfying A(p®) = 0, AM(x?) = Mx)? for all x € p. More-
over, there is s € N and an s-tuple r such that v c 28(s; r) (we identify
A(s;r) - A with 7 and 2(s; r) with p((s; r)) where p is the natural
action of (s;r) on A(s;r) - A defined in Section 2). By Lemma 2.1(4),
pri(v) is a transitive subalgebra of W(s; r). Since v is restricted, pr,(1) is
closed under associative pth powers in Der A(s; r). Lemma 3.1 yields
r =1 Asdim A(s;1) = dimV = p?, we have s = 2. By Lemma 2.1, pr,(I)
acts nilpotently on A(2;1)- A. As K(a)(l’ = K(a)® c K(a), we have
r® c 1. Hence pry(r) acts triangulably on A(2;1) - A. So Theorem 3.2
applies yielding that there is a generating set {x,, x,} in nt, such that

pri(r) € b(2) = Fx,d, ® Fx,d, ® Fd, + F[x,]d,.

This means that v € B(2) = b(2) & A(2; D).

Let r = £(z,). According to Proposition 4.1 there exist f € n1,, o € &(2)
such that o (b(2)) = b(2) and, with 7= exp(ad f)- &, 7(BQ2)) = B(2),
and either

T(Ft) = F((x, + 8,)d; + v(x, + 8,)d, + M) = Fd
or
T(Ft) = F((x, + 8,)d, + A1) = Fd,
where §;,8, €{0,1}, A € F, v € F,. It is not hard to see that
T(W(Z;l)“’) nb2)" + 1”2) = W(2;1)) N 0(2)Y + m,.

As t is toral, there is u € ) satisfying 7(¢) = ud, where i € {1,2}.
Consequently,

T(Be(1)) = Buld),  7(Bi(1)) = Blu(dy)

and n,(t) = n,(d,). 1t follows from above that r, c ®8,(¢). Since both
W(2; D, N b@)P and m, act nilpotently on A(2;1), their sum acts
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nilpotently as well. So it is now immediate from the definition of r) that
rNYB(t) cry, foral k e F).
This gives n,, < n,(¢) = n,,(d,) < 3 (see Proposition 4.2) proving (1).

Let now n, = 3. Then n,(d,) = 3. Applying Proposition 4.2 shows that
d=d,, 6, =1,and u € {£1}. Therefore, n,, < 2 provided i & {—1,0,1}.

Thus it remains to show that at least orlfé “element of [K,, K,] acts
nonnilpotently on L. Since the automorphism 7 preserves both the ideal
A(2; 1) < W(2;1) and m,, it suffices to show that [7(1,), 7(r,)] N A4(2; 1)
Z m,.
Let us again consider the pairing
Wi A(2i1) X b > A2 L) /m, = F
defined by the Lie multiplication in 8(2). Put
b ={x €A(2;1), [ ¥ (x,0_;) = (0)},
Clearly, dim b_, > dim A4(2;1), /b *, . Since
[04, nr(ry), 7(vo )] € [02,, B ] C[b2u b, cmy,
then b=, N7(xr,) < 7(r}). Therefore, in the case under consideration
3 =dimr(r,)/7(x}) < dim(r(ry) +02,)/b%, <dimB,/b*,
=dimb, +dim 4(2;1),/b*, <dimb, +dimb_ = 3.
So we obtain

(1) + bt =9,

First suppose u = —1. By the previous equation and Proposition 4.1(2)
there are u € 7(x,)) € B_,, f; € bt € A(2;1)_, such that

u=(x,+1)"" 19, +f,

and, as dim 7(v,)/7(x}) = 3, there is f, € 7(x,;) N A(2;1)_, such that
[(x1 + 1)””02,]‘0] & m,.

Now one gets

[u, fo] = (%1 + 1)1}71072(](0) = (x, + 1)P72(x1 + 1)V+1‘92(f0) & m,.
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Finally, suppose u = 1. A similar reasoning shows that there are v € 7(t,),
g, €bt cA@; 1), and g, € 7(x,) N A(2; 1), such that

v=(xl+1)"“(92+g1, [(x1+1)”71(92,g0] & m,.

As above, [v, g,] & m,. This completes the proof of the proposition. |

5. DIMENSIONS OF ROOT SPACES

Next we are going to derive some important results on dimensions of
root spaces.

LEMMA 5.1. Let R be a (ad T)-invariant subalgebra of a l-section L(a).
Suppose (R + T)Y is a nilpotent algebra which acts nonnilpotently on L.
Then there exists d, = p' € N such that, for every composition factor W of
the (R + T)-module L /L(«) one has

dimW, ., =dimW =d, foralli € T,, whenever W, # (0).
=dim L, forall ye '\F,a and alli € F,.

Proof. (a) Let p denote the restricted representation of R = (R + D),
in g((W) and set t == p((R + T)P). Clearly, r is nilpotent.

If R c H then (H + T)® c HY acts nilpotently. Hence there is i # 0
with R;, # (0). Let B be a T-weight of W. First suppose that there is
x € U]#O R;, such that p(x) is non-nilpotent. As x[*I" € T for suffi-
ciently large ¢ and [x, x[PT'] = 0, one has a(x[?1) = 0. But then B(x[P1)l/»
is the only eigenvalue of p(x). Hence y(xP1)/? # 0 and p(x) is invert-
ible. In this case dim W, = dim W, ;, for all j € [ ,. Therefore we assume
that U 1, consists of nilpotent endomorphisms. Agaln since (R + T)®
acts non-nilpotently on L, the Engel-Jacobson theorem shows that
Uj.olt;,, r_;,] contains a non-nilpotent endomorphism. In particular,
r? # (0).

Consider the descending central series r 2 12 2 - 21 2(0). Set
C = 1!, by definition [C,r] = (0). All t* and W decompose into root
spaces with respect to p(T)

Y, C= Y} C, W=} W, forsomegeT'\F,a.

zE[Fp ZEFFP IE[FP

Moreover, dim L., ;,

Clearly, [vy, r,] € p(H®) acts nilpotently on W. If each x
Uicer [ri> Y v_, ]acts nilpotently on W, so does C. Since C is an ideal of
the irreducible subalgebra p(R + T) of gl(W) we have C = (0), a contra-
diction. Therefore, there are

x i yer where i # 0,

—ia?
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such that x, y,[x, y] form a 3-dimensional Heisenberg algebra, and [x, y]
acts invertibly on W. The representation theory of this algebra again yields
that dim W, = dimW,_,, forany i € [F,.

(b) Let W' = Lice Wiptia (k # 0) be another composition factor of
the R-module L /L(a) with representation p': R — q[(W’). We intend to
prove that dimW = dimW’ where W denotes the above composition
factor with k = 1 and representation p. We are going to use the represen-
tation theory of solvable Lie algebras as exposed in [23]. By [23, Satz 3],
there exist A, X' € R*, restricted subalgebras P, P’ in R and 1-dimen-
sional modules Fu and Fu' over P and P’, respectively, such that

W= u(ﬁ) ®,p Fu, W' = u(ﬁ) ®,prFu'.

Since RW s nilpotent, (ad P)® and (ad P))® both act nilpotently on
u(R). Therefore P (respectively, P') is a subalgebra in R of maximal
dimension subject to the condition that p(P) (respectively, p(P’')) acts
triangulably on W (respectively, on W’) (this is immediate from the
irreducibility of the above induced modules).

As (R + T)®), is a nilpotent ideal of R there are eigenvalue functions
AMANC((R + T)(l)) — F such that for any x € ((R+ T)®),, the en-
domorphisms p(x) — Mx)Idy,, p'(x) — X(x)Idy,., are nilpotent. We have
MxtP) = Mx)?, since p is a restricted representation, and A(x +y) =
AMx) + My) provided the Lie algebra generated by x, y acts triangulably
on W. In particular, A is linear on C(((R + T)™),). Given x € (R +
T)®), choose r > 1 such that xI” € C((R + T)®),), and write

= Z v wec((R+1)?),) L,

Hence

M) =2y = X Ay = X B

iel, ielfp
Similarly,

X x)P Z k,B( [p])l/Pl

iel,

This proves that X' = k.

Clearly, MP®) = X(P'Y)=0. Suppose dim P > dim P’. We have
N(P®D) = 0. Now it follows from the definition of X' and Engel’s theorem
that P acts nilpotently on W’. Hence P acts triangulably on W’ yielding
dim P < dim P’, a contradiction. As k # 0 we may interchange P and P’
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and obtain dim P = dim P’, dim W = dim W’. In combination with (a) this
gives

dimW/,,,, =p tdimW' = p~tdimW = dim .

In other words, d, == dim W, is a p-power independent of i, k.
(C) Let ZIGIF Ly+la

of the R-module Licg, L
=td,=dmL, . 1

N; 2 -+ 2N, 2(0) be a composition series
We concluded from (a), (b) that dim L

y+ia® y+ia

PropPoSITION 5.2.  Assume n, # 0.

(1) There exists d,, € {1, p} and, for every composition factor W of the
K(a)-module L /L), a root y € I'\F, @ such that

W= Y W, dimW

y+ia
tEIF

=d,VieF,.

(2) dimL = dim L, Vy e F\U:pa, Vi e [Fp.

Proof. Set in Lemma 5.1, R == K(a). Clearly, R is T-invariant and
(R+ T cy,, K, + HY c K(a) is nilpotent. In addition, n,, # 0 im-
plies that R™® acts nonnilpotently on L. Thus Lemma 5.1 applies. So it
remains to prove that d, € {1, p}. There is k > 0 such that (a,k8) € Q
(Lemma 1.5(4)). Then Z,E b Lipria/ Mipria * (0). Choose W as a compo-

sition factor of this K(a) -module. Accordmg to Proposition 4.3 and
Corollary 1.7, one has d,, = d|m Wig<9 <p? Thusd, {1, p} 1

y+ia

We need a description of the central extensions of W(1;1) and H(2; D)®.
Recall [30] that there is a mapping Dy, : AQ2r; 1) — W(2r; 1) defined by

r
DH(Hxiai) = Z ( ]._.[‘xa _8 , Jj+r - aj+r ]._.[xiai_Si'Hy&j)'
j=1

Then HQ2r; D® = D,(AQr; D). Also H(2;1)® admits an invariant sym-
metric bilinear form given by

A(DH(xZIL‘xg)’ DH(x{”xg)) = 6r,pflfmlss,pfil.fn

forall 0 <r,s,m,n <p — 1.

PROPOSITION 5.3.  Let G have a 1-dimensional center C(G) and G /C(G)
e {W(1; 1), H2; 1)®}. Assume that the extension is nonsplit.
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1) IfG/C(G) = W(L; 1), then G has a basis{e_q,..., €, 2 z} such
that the Lie multiplication | , 1; is given by

[2.G]c = (0),
(j—i)eiﬂ» if —1<i+j<p-—2

[ei el = jt;z ifi+j=p,2<i,j<p—2
0 otherwise.

(2 IfG/C(G) = H(2;1)® then G has a basis
{Dy(xix})|0<i+j<2p—2,0<i,j<p}u{z)

and there exists D € Der H(2; 1)® such that the Lie multiplication [ , 1, is
given by

[ Dy (xix]) + az, Dy(xkxh) + Bz],
= (il = jk) Dy (xi"* 23" ) + A([ D, Dy (xix])], Dy (xFx}))z.
Here D can be chosen from the subspace
Fx!™%9, + Fx{~ 9, + FDy(x{~ x5 )
or, alternatively, from the subspace
F(1+x,)" "0, + Fx§ %9, + FDy (1 +x7)" 'xf71).

Proof. Part (1) has been proved in [3].

(2) It is well known that the central extensions of H(2;1)® are ruled by
the second cohomology group H?(H(2;1)®, F). Also, since A is nonde-
generate, there is an isomorphism

H*(H(2;1)?,F) = (Der,H(2;1)?)/H(2;1)?,

where Der, H(2;1)® is the set of those derivations which are skew with
respect to A [21]. It is immediate from the knowledge of Der H(2; 1)® that
the latter quotient space is represented by either of the 3-dimensional
spaces mentioned in the proposition. The second statement then is a
consequence of the involved constructions. |

Remark. Consider for a moment the case G/C(G) = H(2;1)® and
suppose that the central extension is given by

D =r(1+x)" "0, +sxf 79, + Dy (1 +x)" "xp7h).
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We construct a Heisenberg algebra /#7 in G as

t#0: Z=Fz®FDy(1+x,) ®FDy(x,),
t=0,s#0: #=Fz®FDy(1+x) ®FD,((1+x)" "),
t=s5=0,r+0: #=Fz®FDy(x,) ®FDy(x{7").
The main result of this section is the following theorem.

THEOREM 5.4.  Let L be a simple Lie algebra of absolute toral rank 2 over
an algebraically closed field F of characteristic p = 5 and T a 2-dimensional
torus in the semisimple p-envelope of L. Suppose that C,(T) acts triangulably
on L. Let a, B €T be [,-independent and assume n(a) > 2.

(1) Each composition factor of the I?(a)-module L/L(a) has dimen-
sion p®. In particular, for every j € F*, the K(a)-module LierLipria/

M., is either (0) or irreducible of dimension p2.

(2)  There exists d > p such that dim L., =d forall y € T.
Proof. (1) From Lemma 1.5(3) and Corollary 1.8(1) it follows that
there is a root y € F\[Fpa such that ¥, ¢ L, ,;, has a K(a)-composition

factor of dimension p?. Proposition 5.2 yields that every such composition
factor of L /L(a) has this dimension. Also, for j # 0, dim L, ./ M3,
< 9 < 2p. So there is no room in ZIE[FL ‘pria/ M1, TOr more than one

nontrivial K(a)-composition factor. This proves (1).

(2)(@) According to Lemma 1.5(3), there is § = ka + I T, #0,
with Ly # My To simplify notation write B8 in place of 6 and adjust « in
such a way that

Ly# Mg,  n,+0.
Now the first part of this theorem in combination with Proposition 5.2(1)
yields
dim Lg,;./Mgy;, = dim L,/Mg = p forany i € .

(b) Proposition 5.2(2) shows that
dmL,,,=dimL, VyeTl\Fua. (6)
Assume that there is y € I'\F, « such that

dmL,,,;,=dimL,  Vij#0. (7)

Now let (k, 1) # (0,0) be arbitrary. If k # 0 then (7) and (6) yield
dmL,,=dimZL,, ., =dmL,, , =dmL, =dmL_,
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while for k =0,/ # 0, (6) yields dim L,, = dim L Thus in order to
prove part (2) it suffices to establish Eq. (7).

(c) Ifatleast one root y = B + ia € I'\F,« is solvable, classical,

Witt, or proper Hamiltonian, then, due to the results of Section 1 and (a),
we have

a+ly*

p=dmL /M?<2dmL, /K +n,<4+n,

whence n,, # 0. Then Proposition 5.2(2) implies (7).

(d) Thus in what follows we may assume that every root y e
I'\F, « is Hamiltonian improper. Let x € L, , k # 0, and set

R = Fx + rad L(y)®.

As y(x[P]) = 0, we have that ad x is nilpotent. Therefore R is a nilpotent
Lie algebra. By construction, R is (ad T)-invariant. If (R + T)® = R® +
Y. oR;, acts nonnilpotently on L, then Lemma 5.1 shows that (7) is valid.
Thus we may assume that R + ¥, ,R;, acts nilpotently on L. Since this
is true for all x € U, ., Ly,, the Engel-Jacobson theorem implies that
[L(y)®, rad L(y)®] acts nilpotently on L.

(e) Let
m:L(y)™ = L(y)?/rad L(y)™ = H(2;1)?

denote the canonical epimorphism. Since vy is improper, the torus T acts
on H(2; D)@ as F((1 + x,)d; — x,d,). Let ./ denote the maximal ideal of
L(y)® acting nilpotently on L. It follows from (d) that L(y)®™ /7 is a
central extension of H(2; 1)®. If this extension does not split then, by the
remark preceding this theorem, L(y)®* contains a (ad T)-invariant subal-
gebra Z’ >.# such that #’ /#" is a 3-dimensional Heisenberg algebra. It is
not hard to deduce from the representation theory of this algebra that in
this case

dim L,

ia+jy

—dimL,, Vi#0,Vj.

Thus we may assume that the extension splits. But then L(y)™ /7 is
centerless. Consequently, we may assume that rad L(y)®™ acts nilpotently
on L and 7 (L(y)®) = H(2; 1)®.

(f) Set

U=at ¥ FDy((1+x)'x})|.
O<i<p-1
l<j<p-1
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This is an (ad T)-invariant subalgebra of L(y). Also,

radU=at ¥ FD,((1+x)'x})
O<i<p-1
2<j<p-1

is (ad T)-invariant, and

p—1
U/radU = Y FD,((1+x,)'x,) = W(1;1).
i=0

Since U is contained in a 1-section of L, then TR(U) < 1[25, (2.6)]. As U
is nonnilpotent, this implies TR(U) = 1, and therefore rad U is nilpotent
[25, (4.2)]. Let x € U, k # 0, and set

R:=Fx +radU.

As y(x!P1) = 0, ad, x is nilpotent. Therefore R is a nilpotent Lie algebra.
By construction, R is (ad T)-invariant. If (R + T)® =R® + ¥, (R,
acts nonnilpotently on L, then Lemma 5.1 shows that (7) is valid.

Thus we may assume that R + ¥, (R,, acts nilpotently on L. Since
this is true for all x € U, ., U,,, the Engel-Jacobson theorem implies
that [U, rad U] acts nilpotently on L. It is easy to check that [U,rad U] +
rad L(y)® = rad U. By the assumption made in (e), rad U acts nilpotently
on L.

(@ We now specialize y. As n, # 0, Lemma 1.5(5) yields a(H) #
0. By Schue’s lemma, one can find y € T'\F, « such that «((L,, L _, ] # 0.
By (d), y is Hamiltonian improper. Let U be as in (f). We may assume that
rad U acts nilpotently on L. Obviously [L , L_ ] c L(y)®™. Put H = H
NL(y)®, H, = H, nrad U. It is easy to see that w(H,) is spanned by
D, (1 +x)'x}), 2<i<p—2 As H, acts nilpotently on L, we have
8(H,) =0forall §T.Also, w(H,) = FD,((1 + x,)x,) + 7 (H,). Let h
denote a preimage of D,((1 + x,)x,).

Pick k € T and let W be a composition factor of the U-module
LjctLiarjy Let p:U— a (W) stand for the associated representation.
Then U := p(U) = W(1;1). The elements (ka + jy)(h) are pairwise dif-
ferent. So one can write W =X, _ Wkatjy-

Suppose dim W = 1. Then W is the trivial W(1; 1)-module. Hence (ka +
Jy)Xh) = 0 whenever W, ;. + (0).

Suppose 1 < dimW < p. Then W is the restricted W(1;1)-module
AQ;D/F [7]. So W, ., is 1-dimensional provided (ka + ly)(h) # 0.

If dim W > p then dimW < p” for some r > 0 and W is induced from a
W(1; D, submodule W, [7]. As p(h) & W(1; 1), and p(h)? — p(h) = A 1d
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for some A € F, the p(h)-module W is isomorphic to a direct sum of
dim W, copies of the F[X]-module F[X]/(X? — X — A). This implies
dimW,,.;, = dimW,, forall j.

As a(H;) # 0, we have ka(h) # 0. Therefore dimW,, ., =dimW,,
provided (ka + jy)(h) # 0. Since this is true for all composition factors of
LictLiariy: We obtain

dmL,,,, =dmL,, (8)

forall k € [, j € [, satisfying (ke + jy)(h) # 0.
Now pick i, j € F. As [F¥| > 4, there exist r, s € [f such that 5(h) # 0
for each 6 € {ra + sy,ia + sy, ra + jy}. By (),

dimL; ., =dimL, ..

As (ra + jy)(h) # 0 and (ra + sy)(h) # 0, (8) shows that

dmL,, ;, =dmL, =dmL,., ..
By (6),
dmZL,, .., =dmZL;, ..
Since (ia + sy)(h) # 0, (8) yields
dmZL,, ., =dmL,, . =dmL,,,

proving (7). The proof of the theorem is now complete. |

6. SANDWICH ELEMENTS

In determining the structure of L it is important to know that the
filtration of L defined by a maximal subalgebra containing M(®, « € T, is
long. In this section we investigate this problem.

Let nil H denote the maximal ideal of H acting nilpotently on L.
Clearly, nil H = H, N Hy provided « and g are [,-independent in T*.
Define

R(T)=nilH® ) R,.
y#0
It is not difficult to verify that R(T) = N, . M. In particular, R(T) is
an (ad H)-invariant subalgebra of L.

An element ¢ € L is called a sandwich of L if (ad ¢)*> = 0. We denote
by # the set of all sandwiches in L. Set

e(T) = U (%OLV).
yeT U{0}
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For x € L, denote the adjoint endomorphism ad x by X. For x,,..., x,
€ L, arrange [x;...x,]:=ad x;° -~ cad x,_,(x,). By [14], for all a €
Z,x,y €L,

AXA =0, AXYA = AYXA, (9)

ad[ax3a] = 2A4X°%4 — 3( XAX°A + AX?4X), (10)
AX?AX?4 = 0, (11)
(ad[axsa])2 =0, (12)
[[ax®a], [ay®a]] = 0. (13)

Since A[X,[X,[X,[Y, AllllA = 0, then AX?[Y, A1XA = AX[Y, A1X?A.
So

AXPAXYA = —AXYAX’A (14)
for all x,y € L. A similar argument shows that
AX2AY?A + AY?AX?A + AAXYAXYA = 0 (15)
(see [19]). Using (9), (10), and (13) one obtains that
AXZAXYAY?A = AY2AXYAX?A. (16)
Combining (15) and (14) yields
4AXYAXYAXYA

—(AX?AYAXYA + AY’AX?AXYA)
= AX2AXYAY?A + AY?AXYAX?A.
Therefore (14) and (16) give
AXYAXYAXYA = — JAXPAY?AXYA = — 1AY?AX?AXYA  (17)

forall x,y € L.

Lemma 6.1. (1) &(T) c R(T).
(2 [&(T), L] c R(T).

Proof. Let ac®NL, x€L_,. By [14], @dla,x]D® =0. As H is
triangulable, nil H coincides with the set of all ad-nilpotent elements of H.
But then [a, L ] € nil H proving ().

Letnows € I'\{—v}, x € Ls,and y € L _, . 5). We need to prove that
[[a, x], y] € nil H. Suppose the contrary. Set

= (we T a(lla x],5]) = 0).
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By assumption, I" # . Since L is simple, Schue’s lemma implies that

L= Y L,+ Y [L.L,]
rer’ A pel”

Since a & C(L), there is B € I such that [a, Lz] # (0). Pick z € L, with

[a,z] # 0. As [[[a, x], y],a]l = 0 by (9), we have y([[a, x], yD = 0, hence
(B + y)Xla, x], yD = r # 0. But then

(ad[[a, x], y])pg([a, z]) =rFa, z],
for a sufficiently large e € N. It follows from (9) that
(ad[[a, x],y])" ([a, z]) = (AXY)" A(z).
Therefore, by (17) and (11)
rPAX2A(z) = AX2(AXY)" A(z2)

= AX2AXYAXYAXYAXY( AXY)" " A(2)

= —1AXAX2AY2(AXY)" "?A(z) = 0.
This forces AX?24(z) = 0. Now by (17), (14), and (9),

rP[a, z] = (AXY )" "° AXYAXYAXYA( z)

—3(AXY )" AY2AX2AXYA( 2)

= 1(AXY)" "2 AY?AX%4(z) = 0.
Thus [a, z] = 0 contrary to our choice of z. Hence [a, L;] € R(T) for each
serl. 1

Let L, (y) = H + L(y) be the y-section in L,. By Jacobson’s formula,
L,,(y) is a restricted subalgebra of L,. Our next result is crucial for the
rest of this section.

PROPOSITION 6.2.  Suppose that there exist o € ' U {0} and a nonzero
a € L,(a) such that

(@ (@a)’(L(a)cTNH,
(b) [T,a] c Fa,
(c) (ada)? =0.

Then there exist 8 € T and w € L5\(0) such that (ad w)® = 0.
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Proof. (a) Choose B € I'\F,a and let ¢,,t, in T be as above
a(t,) =1, a(tﬁ) =0, B(t,) =0, ,B(IB) =1.

If xe Hu U,er L, we say that x is homogeneous. Following [20, 19],
our first goal is to find a nonzero homogeneous element y € L, for which
(ad y)?~ (L) = (0). If a itself enjoys this property, we are done. So from
now on we assume that (ad a)?~*(L) = (0).

Let n := (kerad a) N (ad a)?~2(L). Clearly, n is an (ad T')-stable subal-
gebra of L and (ad @)?~*(L) is a nonzero (ad T)-stable ideal of n. By [19],
n is nilpotent and hence C(11) N ((ad @)?~*(L)) is a nonzero (ad T)-stable
subalgebra of L contained in ¥, .~ L, where

I' =T\F,a.

So there is u € Lg with § € I for which (ad a)?~*(u) € C(1)\(0).
Let y == (ad a)?~ *(w). By [19], if p > 5, then (ad y)?~ (L) = 0. There-
fore, in this case y suits us well.

(b) The remaining case p = 5 is more complicated. As before, we
arrange A = ada. We also set L, = L(a) and L, = LiceLipija for
i # 0. By the initial supposition, there is a linear function € L such
that 4%(v) = y(v)t, for any v € L. If ¢ = 0, one can argue as in [19] to
check that (ad y)?~*(L) = (0). So we may additionally suppose that = 0.
Define for i # 0,

L, = {xeL,|A*x) € C(n)}

and set
m:=Fr, ® ), A3(L)).
i#0

By [20, Lemma 3.4], m is a subalgebra of L and [m, n] c n.

If [A3(L), A3(L'_))] = (0) for each i+ 0, then the Engel-Jacobson
theorem yields that

m' = Y A3L))
i#0
is a nilpotent subalgebra of m. Since the subspaces L; are (ad T)-
invariant, so is m’. Since A*(L) is an ideal of m’, it intersects
C(m) nontrivially. Pick u; € L; with 8, € I for which A*(u;) € (C(m)
Nm’)\ (0 and put y, = A“(ul). Repeating verbatim the argument
in [20, Proposition 3] one can verify that (ad y,)*(L) = (0).
(c) Since such y, is a good choice for us, we may additionally

suppose that [A%(L)), A%(L'"_))] # (0) for some i € F. But then m is a
Yermolaev algebra (i.e., nmt contains a Cartan subalgebra spanned by a
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toral derivation and m® = m) (see also [2]), this forces (rad m)® = (0)
and

m/rad m = $[(2) or m/rad m = W(1;1).

By [20, Lemma 3.4 ()], ¢ # O implies (ker A) N X, L, = A*(L). Since
A(L,) c L; by definition of L, n=A*L)cm. As [m,n]lcn and
nc,.,L,; the Engel-Jacobson theorem shows that n C rad m. But
then n = C(n) whence L, = L; for each i # 0. As rad m is (ad #,)-stable,
we also have rad m C ¥, L, (otherwise ; € rad m contrary to the
perfectness of n).

Let m, =X, (ad T)/(rad m). Clearly, m, is the minimal (ad 7)-in-
variant ideal of m containing rad n. It is immediate from our preceding
remark that m, C ¥, ,L,. Now the Engel-Jacobson theorem yields that
nt, = rad m. In other words, [T, rad m] c rad m.

If rad m # A*(L), one can find u, € L; with §, € T for which A*(u,)
€ rad m and A*(u,) # 0. Put y := A*(u,). Arguing as in [20, Proposition
3], one obtains that (ad y,)*(L) = (0). Since such y, is a good choice for
us, we may additionally suppose that

rad m = A*(L).
We can also assume that
L; # (0) foreachi € I,

for otherwise (ad L;)* = 0 for j # 0 and we are done.

(d) These suppositions impose severe restrictions on the structure of
L. Indeed,

dim(m/rad m) = 1 + ) dim(A%(L,)/A*(L;)) = 5 =dimW(1;1),
i#0
whence m/rad m = W(1;1) and dim(A%(L)/A*(L,) = 1 for any i € F¥.
Now the short exact sequence

A
0> AYL,) »>A%(L;) > A(L;) >0
ensures that dim 4*(L,) = 1 for any i € F¥. But then dim L, =5 for
i # 0 (as (ker A) N L; = A*(L,) for i # 0 by [20, Lemma 3.4 (i)]).
The adjoint action of L, on L induces a restricted representation
7 - L(a) > gl(L,), k€ Ff. Set Ly =L,(a). Choose a homogeneous
vy € L, for which y(v,) # 0 and let § = Fa + Ftg + Fla,v,]. Clearly, §

is a 3-dimensional Heisenberg algebra. As dimL, =5, L, is an irre-
ducible h-module and so 7, is an irreducible representation.
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If a € H, then tg € H®. 1t follows that H acts irreducibly on L, for
each k£ # 0. On the other hand, H preserves all root spaces L., y €T.
But then, for each k €[, there is y, €I such that L, =L, =
Z oLkpg+ja- Therefore, [L,,L.]=(0) if k+# 0 whence [L,, L ]— (O)
whenever v € I'". This, however, contradicts the simplicity of L (by Schue S
lemma). Thus,

ael for some s € FZ¥.

sa

As 7,(a)* # 0, each L, has at least 5 distinct weights relative to 7,(T). It
follows that

dmL, =1foreachyel” and " =F;a + FipB.

Letr € T N kerr,. Then kB(t) = (kB + a)t) = 0, giving ¢ = 0. As ker 7,
is a restricted ideal of L, and T is a maximal torus of L, it follows that
(ker7,) N H and all (ker 7,) N L,, consist of nilpotent derivation of L. So
the Engel-Jacobson theorem applies proving that ker v, acts nilpotently
on L. If kerr, # (0), it has a nonzero center V,. As V} is an (ad T)-in-
variant p-nilpotent subalgebra of L, one can find a nonzero homogeneous
a, € V, such that (ad a,)° = 0. Since (ad a,*(L,(a)) C [ay, ker 7,] = (0),
one can argue as in [19] to obtain that either (ad a,)* = 0 or there is a
homogeneous u, € L such that y, := (ad a,)*(u;) # 0 and (ad y,)*(L) =
(0).

(e) Thus in what follows we assume that the 7, are faithful represen-
tations. We specify our choice of

Vg €L 5,

by letting (v,) = —1. The 3-dimensional Heisenberg algebra f) = Fa +
Ftg + Fla,v,] now acts faithfully on L,. It can be easily derived from
Lemma 2.1 that

L= A1),  m(h) CA(L;1) @ W(1;1)
and, moreover
m([a,vg]) =Al + 9, forsome A € F,  7(a) =x, 7(t5) =1

Here we identify A(1;1) (resp., L o) With its image in the regular represen-
tation A(1;1) — End(A(1;1) (resp with 7,(L,)). Clearly,

End A(1;1) = @  Fx#/,
0<i,j<p-1
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Since [x, x9/] = —jx7/~* for all 0 <i, j <p — 1, and 7/(a,[a, L,]) =
m(Ftg) = F1, we have

Ly CcA(1;1) @ A(1;1)0 @ Fo*?

and v, = — 292 — \d + g for some g € A(1; D). Let L, ==L, N (A(1;1)
® A(1; 1)) so that L, = L'y & Fu,. Since
k-1

[0%, x%7] = Y x[a%, x]xk" 170/

i=0
=2 ) x'ox* 19l = 2k It + k(k — 1) xF %
i=0

forall 0 <k, j <p -1, and [v,y, L] € L,, the following inclusion can be
obtained by letting j = 1 and using the preceding inclusion:

L'y cA(1;1) ® Fo © FxJ.
Now substituting j = 0 in the above formula yields

L, cspan(l, x, x%,d,xd,d%).

Since [¢,, a] = sa, a direct computation shows that ¢, = sxd + f(x). By the
above inclusion, deg f(x) < 2. The equation [7,,[a,v,]l = —sla, v,] now
reads [sxd + f(x), A + d] = —s(A + 9). Hence f(x) =sAx + u,u € F.
But then

1
vy = —Z[ta,uo] =5 sxd+ sAx + pu, ——d*—Ad+g
1&2 /\& 1 5 /\0_' A2
B A R Sy
whence g = — 2xd(g) — A?/2. It follows that g = —A%/2. Now it is

straightforward that [v,, [a, v,]] = 0.

Given k € F¥ choose w, € L, such that w, & [a, L,] and [z,,w,] =
row, for some r, € . It is easy to see that L, = @®_ FA'(w,) and there
exists w;, € L, for which w;, —w, € [a, L,]and [[a,v,],w,] = v,w,, v, €
F.

First suppose that [w_,, A*(w)l € L. As a € L,,[L_,, A*(w)] C L,,.
Since A*(w,) = A*(w}) and [a,v,] € L, then [L_,,L,]1c L, But
[L_,,L,] is an ideal of L,. It follows that [39° — Ad,[L_,, L]l C
[L_,,L,Jwhence[L_,, L,]cspan(l,x,d)=F1+ Fla,v,] + Fa.

Now suppose that [w_,, A*(w,)] & L. It is immediate from our re-
marks above that L_, , = Fv, [T, L,] c L,, and v, &€ L,. As
[w_,, A*(w,)]is a root vector relative to T, we must have [w_,, A*(w,)] =
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wv, where w # 0. Therefore, [L_,, A*(w)] € F1 + Fla,v,] + Fv,. As
A*(wy) = A*(w)) and [vgyla, v,]l =0, then [L_,, L, ] C F1 + Fla,v,] +
Fu,.

(f) Summarizing we obtain that, for each k € F&, [L_,, L,] is con-
tained in the subalgebra 11 generated by a and v,. Since L is simple, this
yields L, c lI. But then L, is a nontriangulable Cartan subalgebra of L.
Clearly, [[[[ Ly, Ly], Lyl, Lol, L] = (0). By Jacobson’s formula, LF! = Fal!
+FuBl + Fla,v,J® + Fty. Sincea € L,,,, v, € L_,,,,[a,v,] € L_, with
s # 0 the 5th powers of these elements are contained in ker a. So L, has
toral rank 1 in L, contrary to the fact that all toral rank 1 Cartan
subalgebras of L are triangulable (see [20, Theorem 1]).

This contradiction proves that one can always find a homogeneous
element y € L, for which y # 0 and (ad y)P~1 = 0. Applying Kostrikin’s
result [14] we now obtain that L contains a nonzero homogeneous element
w for which (adw)® = 0. |

In order to prove the main result of this section we will apply some
results on Jordan algebras and inner ideals. Given a Jordan algebra J and
by, b, €J define V, , € EndJ by V, ,(a)=(b,-a) b, + (a-by)-b,
—a-(b;-b,). An element b eJ is called an absolute zero divisor if
V, , = 0. We say that J is nondegenerate if it contains no absolute zero
divisors =+ 0. By [11, Chap. V], any finite dimensional simple Jordan
algebra is nondegenerate. A subspace B of J is a Jordan inner ideal if
V,..»(a) € B for every by, b, € B,a € J. A subspace B of a Lie algebra L
is called an inner ideal of L if [B,[B, L]] € B. We say that such an inner
ideal has zero multiplication if [B, B] = (0). Observe that if (ad a)® = 0,
then (ad a)?(L) is an inner ideal of L with zero multiplication (cf. [1]).

N

THEOREM 6.3.  Let L be a simple Lie algebra of absolute toral rank 2 over
an algebraically closed field of characteristic p > 5 and T a 2-dimensional
torus in the semisimple p-envelope of L such that C,(T) acts triangulably on
L. Suppose there exist a« € T' U {0} and a nonzero a € Lp(a) such that

(O (ad D*(L(«) € TN H,,
(2) [T,a] C Fa,
(3 (ada)? =0.
Then €(T) + (0).
Proof. (a) According to the previous proposition there is a nonzero
homogeneous element w satisfying (ad w)® = 0. Suppose that Z(T") = (0).
Set

g,={xeL,|x+0,(adx)’=0}, &= U &.
’u,EFU{O}
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Our strategy is to show that L contains an 3[(2)-triple (e, f, k) such that
for some toral element ¢ € T\ (0),

[t,e]=2e, [t.f]=—2f, (ade)’(L) C Fe.

Note that in general the subspaces Fe and Ff will not be (ad T')-stable, but
will be contained in a 1-section. From now on we assume that no such
3 [(2)-triple exists. Take any w € &. Then (ad w)?(L) is a nonzero (ad T)-
stable inner ideal with zero multiplication in L.

(b) Let B denote a minimal nonzero (ad T)-stable inner ideal with
zero multiplication. Then [B,[B, L]] is nonzero (as we assume that #(T)
= (0)), and is an inner ideal contained in B. The minimality of B implies
[B,[B,LIl=B. If BCH, then [B,[B, LIl =[B,[B,HlgB as H is
nilpotent. Hence B, := B N L, # (0) for some y # 0.

If u€ B, then [u,[u, L]l = B as B is minimal. Reasoning as in [19,
Lemma 3] one obtains dim B N L, < 1foreach y € I'. If e, € B N H\(0),
then [e,, [ey, L]l = B by the minimality of B. But then [¢,,[e,, H]] = B N
H whence ¢, € [eg,[ey, H]l. This, however, contradicts the nilpotency of
H. Thus, B N H = (0).

Let

I,={6Tl|B;+ (0)}.

Arguing as in [20, Proposition 3] it is easy to see that for each & € T,
there are e; € By, hy € H, f5 € L_; such that (e;, hy, f5) is an 3[(2)-triple
in L and

(ad hy — 2)(ad hy; — 1)(ad hy)(ad hy + 1)(ad hy + 2) = 0. (18)

(c) We will make use of some results established in [1]. Pick v € T},
the element /s, from the corresponding s((2)-triple and decompose L,
into eigenspaces relative to ad #,,. By (18),

L,=V,eV,elV,elV_ eV, (19)

where [h,,v;] = iv;, for v, € V.. Let E, =ade,, F, = ad f,. Define a map
o onV, by o(v) =v—E, o F(v). It is proved in [1] that the mapping
3E2V_, > V, is an F-isomorphism with inverse ;F?. Also V_, and V,
are F-isomorphic under E, :VV_, — V, which has inverse F,. From this it
is immediate that o2 = Id. Let Z = {v € V| o(v) =v}and R = {v € I,
|o(v) = —v}. Then V,=Z ® R. By [1], Z is the centralizer of the
subalgebra generated by e,, &, f, and E, : R — V, is an F-isomorphism.
For a, b € V,, define a product on V, by setting

a-b=j3[a[f, b]l. (20)
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By [1, Lemma 2.2], V, is a Jordan algebra relative to this product and
(ad 2) |y, acts as derivations of this Jordan algebra.

If p > 5, then a direct checking shows that (19) defines a Z-grading of
L. If p=5, then E(V))CV_,. As E?:V_, >V, is one-to-one and
E? =0, this yields E (J,) = (0). Now it is straightforward, that in either
case B =E*(L) =V,.

Thus ad &, acts on B by multiplying each vector by 2. By (18), &, is a
toral derivation of L. Hence h, € T and we get 6(h,) =2 for each
5eT,. But then (6 — & )h,) =0 for any (8,8") €Ty X T,. As h, is
toral, there are m, n € [F, such that &, = mt, + nt,. Therefore, § — &'
[Fp(na —mp) for all §,8 €T,, whence I'ycC v+ [Fp(na —m§pB). So
dim B < p.

(d) It follows from the above that [V, V,] = [V,,V,] = (0) if p > 5,
and [V,,V,1cV_,nkerE, =(0), [V, V,] c[B,B]l=(0)if p=5.

First suppose that the Jordan algebra V, has a nontrivial ideal B;, such
that [Z, B;] € B,. Then

[Bll[BllL]] = [Bll[BllV—z]] = [Bll [317 [FVZ(Vz)]”
< [B [E(B). E(X)]] + [Bi [F2(B). V]
< [Bl'BlaFu(Vz)] + [Fv(Bl)rBl‘Vz]
+[[E(By), E(B)]. V2]
+[FV(B1-Bl),V2] CcB,-V,CB,

by the definition of our Jordan product.
Note that, by definition, T €V, and o(¢) = ¢ if t € kerv. Thus T C
Fh, + Z, and hence

[T.B,]<[h, B,]+[Z B,]Ce, B, +B; =B,.

In other words, B, is an (ad T)-stable inner ideal with zero multiplication
in L contrary to the minimality of B.

(e) Thus the Jordan algebra V, is derivation simple. By Block’s
theorem [4] there exist a simple Jordan algebra S and m € N such that
V, =S ® A(m;1). First suppose that m = 0, i.e., V/, is simple. Let B’ be a
minimal Jordan inner ideal contained in V,. By [1], dim B’ = 1. Let
e € B'\(0), x € V,. By [1], (ad €)*(F*(x)) = 2V, ,(x). The simplicity of V,
implies V, , # 0. This means that (ad ¢)*(V'_,) = Fe. Pick y € V_, with
[le, v], e] = 2e and put [e, y] = h. The standard proof of the
Jacobson—Morozov theorem (see [12, p. 99]) shows that one can find
f e V_, such that (e, f, h) is an 3[(2)-triple of L. Clearly, it satisfies all
our requirements.
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Thus in what follows we may assume that m > 0. As dimV, < p, we
obtain V, = A(1; 1). In particular, V, is associative. Let a, b, x € V,. Then
4a-(b-x) =la,[f, [b,[f,, x]ll whereas 4b-(a-x) = [b,[f,,[a,[f,, x]ll
Thus we get

[[[a. £1.[6.£,1].V2] = (0). (21)

(f)  Our next goal is to show that V, is a faithful (ad ;)-module. Put
I ={x e V,|lx,V,] = (0)}. Clearly, I is a restricted ideal of V. If INT
# (0), there is a nonzero toral element ¢, € T acting trivially on B. This
means that y(¢,) = 0 for each y € I,. Since [[)| = p, I' lies in the [ -span
of I';. But then y(#,) = 0 for each y € I contrary to our choice of ¢,.

Thus I N T =(0). It follows that / N H and all subspaces I N L,
consist of nilpotent derivations of L. Now the Engel-Jacobson theorem
implies that 7 acts nilpotently on L,. Since the map E2:V_,>V, is
one-to-one and [e,, I] = (0), we also have [1,V_,] = (0).

As L is simple, the normalizer an(I) is a proper subalgebra of L ,. By
our remarks above, V_, @ V, @V, C uLp(I). Let M be a maximal subal-
gebra of L, containing n, (I). As Tc M, we have M = ®_,_,_, M,
where M, = M N V,. Since

[V, + V)V +V]CcV_ ,+V,+V,CM,

the maximality of M implies that L,/M = (V_,/M_,) & (V;/M,) is an
irreducible M-module. Let p denote the corresponding representation
M — gl(L,/M). Obviously, M_, & M, C ker p. Thus p remains irre-
ducible when restricted to uLp(I). As I consists of nilpotent derivations of
L, I C ker p necessarily holds.

We consider the filtration of L, defined by M. Set

Ley=L,  Lo=M,  Ley={xelyl[xL,]cLgy}forizo0.

Let r denote the largest integer in the set {i | L ;) # (0)}. As L + “L,,(I) =
L, then L ¢ M whence r < «. As[T,M] c M, all L are (ad T)-stable.

We have already shown that M_; + 1+ M; ckerp C L,,. As I C V, we
obtain

[L, I] [V + Vi, Il +1CM | +M, +1CLy,.

Therefore I C L, whence r > 2. Thus any homogeneous element a € L,
enjoys the property (ad a)?(L) = (0) contrary to our supposition. Hence
we may conclude that 1/, acts faithfully on V.

(@ Note that ¥, = B is not dependent on v. Thus we may switch
from v to any other root & € I’y and obtain that A4 acts as 21d on V.
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Then h, — h; acts trivially on V,, whence &, = h;. Consequently, there is
h, = h, € H such that

[V,,V_,] N H = Fh,.
In addition, all V; have the following invariant description:
Vi={xeL|[h,x] =&}, ie{£2 +1,0}.

Next we recall that dim}, , <1 for all y< T So nil H annihilates v,
whence nil H = (0) (see (f)). Therefore,

H=T.
As a consequence of (21) we obtain (by use of the symmetry of T'))
[[f. V2] [ £ Va]] = (0)  forall weT,. (22)
(h)  We are now purposed to show that
[x,[x,fu]] 0 forall ueT,

and for every root vector x € y\(0). Thus suppose on the contrary that
[u,[u, f,]] = 0 for some u € V; \(0),v € I;. Let a,b € V,. By (22) (as
[u, b] € [V]_l Vz] = (0)),

([ [w E2(a)]]. 6] = [, [w, [E2(a), B]]] = [u [w. [ £, [F(@). B]]]]
= [[u[u, £, [[f, al,b]] =o.

As the action of ¥, on V, is faithful, [u,[u, F?(a)]] = 0. Then
(ad u)*(V_,) = (0) necessarily holds. Also

(adu)’(V_y) = (ad u)*(F,(Vy))
c [(adu)*(£,). (ad u)(V))] + [[u. £,]. (ad u)* (V)]
= (0).
Therefore (ad u)® = 0, whence u € &. Next
(ad u)*(E,(V,)) = [(ad w)’(£,).V,] = (0).

Let z € Z;. Then

0= (adu)’([2.£,]) = 3[(ad u)*(2).[u. £,]]. (23)
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Observe that (ad u)*(z) € V, ,,, 5 = Fe,,, 5. Thus

(adu)’(z) = Aeryss
for some A € F. Recall that, according to (a) and the symmetry of T,
ade,,,;:V_1 =V,

is bijective (provided 2y + & € Ty). As, similarly, ad f, : /; = V_, is bijec-
tive, we obtain [e,,, 5,[u, f,]1 # 0. Now (23) shows that A = 0, thereby
proving that (ad u)*(z) = 0. Since V, = Z & F,(V,) we have

(adu)® =0, (adu)’(Vy,+V, +V,+V_,) =(0).

Then (ad w)?(L) = (ad w)*(V_,) is an (ad T)-stable inner ideal of L. Let
B’ c (ad u)*(L) be a minimal (ad 7)-stable inner ideal of L. We proved
above that

B c (adu)’(L) = (ad u)’(V_,) C V.

According to (b), choosing an s[(2)-triple (u',v', ') with u' € B, v
V _s» W € H. Applying the results of (c) to the inner ideal B’ glves

—{xelL [[#, x] = 2x}. According to (f), H acts faithfully on B’. Since
h/ — 2h, annihilates B’ C I, we obtain 4’ = 2h,. Hence B’ = V. It fol-
lows from (g) that

[Vl,V,l] NH=Fh=Fh, = [VZ,V,Z] NH.
Set
V! = {xEL|[h',x] =ix}.

1

Then V, =V}, for all i, and the “'-analogues of (a)-(g) imply that
V! =(0) for i €{+2,4+ 1,0} and [V}, V/]1=(0). If p > 5, this implies

V; = (0) contradicting the assumption that u € V, . If p =5, then
[V, il =V vi] = (0).

This contradicts the fact that ad f,: 1, — VV_, is an isomorphism. Thus
the claim (h) is proved.

(i) We now determine dimensions. Choose any v € Iy and let V, =

Z & R where R =[f,,V,]and Z = {x € V,|[e,, x] = 0} be the decompo-

sition mentioned in (c). As dimV, = p, then dim R = p and dimV_, = p.

Pick & € '\(0) with 8(hy) = 0. Then V, =L, (). Clearly, TN Z =

kerv and 8(TNZ)+# 0. As Z acts as derivations on V, = A(1;1), it
embeds into W(1; 1). So

dmZ,<1 Vi=0,...,p-1.
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We now arrive at a point where one has to know that ¥, # (0). Suppose
the contrary. Then V; = VV_, = (0) and (ad V', ,)”(L) = (0). Moreover, the
simplicity of L yields Vo "L =[V,,V_,]1=X%,.,L;s + Fhy. This implies
that
Tc Y (L;)*" + Fh, Ckers,
i,j#0

a contradiction. Thus V; # (0).

Choose y € T with I, # (0), and x € V; ,\(0). Recall that y = v +
iod for some iy, and V_, _ s =[f,[f, V2,451l # (0) for all j. Due to
(), [x,V_, _ ;5] # (0) whence

Vias2weje = [ew [x, sz,—zvﬂ'a” # (0) forall j.
Since dim Z;; < 1, (h) also shows that the mapping
Vl,(l/Z)V+j6_)Zj8’ x = [x‘[x’fv]]
is induced by a quadratic form without nontrivial zeros. Thus
dimVy 12,155 = dimZ; =1 for all ;.

As a result, dimV, = p for all i # 0, dimV;, = 2p, and

dimL, = 6p, dim L, (p) =6forall u € T.
Next take x € V} 4 5, \(0), set y :=[x, f,] # 0, and recall from (h) that
z =[x, y] # 0 is contained in Z N T = kerv. Thus y(z) # 0 for all y
I'\F,» and [z, L(»)] = (0). Therefore /7= Fx + Fy + Fz constitutes a
Heisenberg algebra, and every composition factor of the Zmodule

L,/L,(v) is p-dimensional. Thus we obtain that p divides 6p — 6, a
contradiction. Therefore our assumption in (a) is not true.

() We have now proved that L contains an 3[(2)-triple (e, f, k) such
that

(ad e)’(L) = Fe, [¢,e] = 2e, [t,f]=—-2f forsomereT.
By [1],
L=L ,oL ®L,®L, ®L,, (24)

where L, = {x € L|[h, x] = ix}. Moreover, L, = Fe, L_, = Ff and the
map (ad e): L_; — L, is bijective with the inverse ad f (see [1, 19]). We
also have

[L,, L] =[L, L,]=[L_,,L_,]= (0).

Then (ad L,)* =0 foreach i #0and L,=L ,0L 6L, ®L, ®L,
where L, is the p-envelope of L, in L,.
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By [1], L, = Z & Fh where Z is the centralizer of the 3[(2)-triple
(e, f, h). Clearly, L, = Z & Fh, where Z is the p-envelope of Z in L,.
This shows Z = {x € L,|[x,el =[x, f]1=0}. By our choice of ¢, either
t—h=0or t—h is a nonzero toral element of Z. In any event L,

contains a 2-dimensional torus 7, with & € T,.

(k) We first suppose that [L_,, L_,] = (0). In this case (24) defines
a Z-grading of L. It follows that (ad x)* = 0 for each x € L _, whence
exp(Aad x) € Aut L for all A€ F. Let LY ={x e L;|[t,x] = y()x for
every t € T,} where y € T}. Let 5 denote the unique T,-weight of L,. We
claim that (ad u)* = 0 for any u € L} U L”,. By symmetry, it suffices to
prove the claim for u € L. Obviously, (ad u)*(L) = (ad w)*(L_,) C L,.
This implies (ad u)* = 0 unless n = 2vy. Suppose (ad u)*(L) # (0) and
consider the 1-section L(y) with respect to T,. Let &, &, f,u denote the
images of e, &, f,u under the canonical epimorphism L(y) — L[y]. Then

Feo Fh® Ff=3((2), [a@,e]=0, and (adi)'(f)=c¢.

Moreover, the eigenvalues +2 of the endomorphism ad % both have
multiplicity 1. Since % is a toral element of L[y]*®, Demuskin’s result [9]
says that L[y]® = H(2;1)®. Now it is immediate from Lemma 1.3 that
LIyl = wW(1;1) and p = 5. There is an isomorphism ¥ : L[y] —» W(1;1)
such that either W(h) = xd or W(h) = (1 +x)d. As [u, e] = 0, we have
W(h) = x4. The only subalgebra of W(1;1) isomorphic to $((2) containing
xd is Fo + Fxd + Fx%. As [u,e] = 0 we have W(¢) € Fx%, ¢(f) € Fo
and V(i) € Fx%. Then (ad @)*(f) = 0, a contradiction.

Thus, (ad x)* = 0 for every weight vector x € L, U L _,. The argument
presented in [19] shows now that exp(tad x) € Aut L whenever x €
U, L%, and ¢t € F. Now reasoning as in [19] one can note that the
connected algebraic group G = (Aut L)° is simple and ad L is a simple
ideal of Lie(G). In particular, this means that L, = L. It is well known
that dim Lie(G)/ad L < 1 (see, for example, [13]). Hence Lie(G) has no
tori of dimension > 3. But then rk(G) < 3. As p > 3, it follows that
Lie(G) is a simple Lie algebra. Therefore Lie(G) is of toral rank 2, whence
G isof type 4,, B,, or G,,and so is L. So it is not difficult to observe that
all 2-dimensional tori in L, are G-conjugate. Hence H = H = T = Lie(9)
where  is a maximal torus of G. But then L(a) =L, (a) = gl(2).
Consequently, (ad @)*(L(«)) € T N H, implies a € T WhICh is impossible
as(ad a)? = 0 and T is a torus.

(D Thus[L_,,L_,]=+ (0). Clearly, this forces p = 5. Let v = Fe &
Fh & Ff. It is proved in [19] that [L_,, L_,] # (0) implies that L is not
semisimple as an (ad r)-module. Let S(L) denote the socle of the (ad 1)-
module L. By [19], S(L) is a subalgebra of codimension 2 in L, L_, &
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L,® L, cS(L), and t acts irreducibly on L /S(L). We consider the fil-
tration of L defined by S(L). So we set

L_y=L, Lg=3S(L),

Liyy=f{xeLyl|[x, L] cL,)}fori>0.

Let r be the largest integer in the set {i | L, # (0)}.

The Lie algebra S(L) actson V' =L _, /L, Let ®:S(L) - gl(}/) be
the corresponding representation. As dim ¥V = 2, we have ®(v) = 3[(V)
whence 3((}J) c ®(S(L)) c gl(V).

Suppose that ®(Z) c (V). As [Z,r] = (0) and ®(v) is irreducible,
®(Z) acts on V' by scalar multiplications. But then ®(Z) c 3[(}V) en-
forces ®(Z) = (0). It follows that Z c L;,. As L, acts nilpotently on L
so does Z. But then Z must act nilpotently on L contrary to the fact
T, N Z #(0). Thus, L, /Ly, = ®(S(L) = gl(2).

By Wilson’s theorem [33], L is isomorphic (as a filtered Lie algebra) to a
classical or Cartan type Lie algebra with its standard filtration. Arguing as
before shows that L cannot be classical.

Thus L is of Cartan type. As dim L/L, =2 and L, /L, = gl(2),
then L = W(2; n). This yields r > 2p — 4 = 6. As t € S(L), the subspace
L, is (ad t)-stable. Pick v € L, \(0) such that [¢,v] € Fv. Pick a toral
element s € T such that T = Fr + Fs. Let N = ©}_ F(ad s)'(v). Clearly
[T,N]c N and N C L,,. It follows that L ,, contains a nonzero weight
vector relative to ad 7. Let m > 2 be the largest integer for which L,
contains a nonzero weight vector relative to ad 7. Pick u € L,,,\(0)
satisfying [T, u] c Fu. Since (ad u)>(L) is an (ad T)-invariant subspace
contained in L,,, ,), our choice of m forces (ad u)*(L) = (0). Hence u is
a homogeneous sandwich of L.

This contradiction completes the proof of the theorem. |

7. RIGID ROOTS

We retain the assumptions of Section 1. Our next goal is to gain some
information about those L],(a) which have no element satisfying the
conditions (1), (2), (3) of Theorem 6.3. We say that « € T is rigid if for any
nonzero homogeneous element a € L («) the inclusion (ad a)*(L(a)) C
T n H, implies (ad a)?(L) # (0). Let Z(a) denote the p-envelope of
L(a)in L, and L () the a-section of L,.

LEMMA 7.1. Let o € T be a rigid root.

(1) Let A be a (L(«) + T)-invariant subalgebra of L ,(a) such that
AV cTnkera.ThenA N HCTnNkeraanddim ANL,, <1 foreach
ielFr

p
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(2 Let GcL(a) be a subalgebra containing L(a) + T. Then
L /L(«) considered as a G-module has a faithful composition factor. If « is
solvable, then every composition factor of L /L(«) is faithful.

(3) If rad L(a) & H then there is w € U, cyx Ly, such that y(w!?!)
# 0 forall y € T\F,a.

Proof. (1) Let A be a (L(a) + T)-invariant subalgebra of L ()
with AD c TN ker a. Let a € A N H. Denote by (Fa), the p- envelope

of Fa in L,. It is straightforward that, for each u € (Fa) (ad w)*(L(a))
CTNkera. As a is rigid we have ul?1+#0 whence (Fa), has no
p-nilpotent element +# 0. In particular, this means that a is sem|5|mple
But then A N H c TN kera. Let now x,y €4 N L,;,\(0). Then, for
each A € F, (ad(Ax + y)*(L(a)) € T N ker a. Moreover, (Ax + y)?l =
APxIP) 4y Since x1P) ylPle AN H =T N kera = Fr and « is rigid,
there are £, &, € F* such that x[?! = & ¢, yIP) = £,¢. Now it is clear that
(Agx + YP1 = 0 for some A, € F*. As « is rigid, y = —Ayx.

(2) Assume that the statement is not true. Let M be a composition
factor of the G-module L/L(«). Let p:G — gl(M) denote the corre-
sponding representation and B := ker p. By assumption B = (0).

Suppose B contains a nilpotent subalgebra I # (0) which is stable under
L(a) + T. Then A4 := C(I) # 0 is abelian and stable under L(a) + T.
Decompose A = Z,em*A +ANH into root spaces, and let x €

Uicer Aig U (AN H). 'Since « is a root and (ad x)*(L(a)) = (0) we have

a(x[”]) = 0 Moreover, p(x) acts trivially on M = ¥, . .M, . Thus there
is a root y € I'\F, a satisfying y(x!”)) = 0. As «,y span T* this means
that §(x[?1) =0 for all & e T, ie., x is p-nilpotent. As « is rigid, x = 0.
Therefore (0) is the only nilpotent subalgebra which is stable under
L(a)+ T. _

Suppose that BN X, . ,L;, = (0). Then B C H is nilpotent contrary to
the preceding step. Therefore, B N (L(a) + T)® is a nonzero ideal of
L(a) + T, that contains no nonzero nilpotent ideal of L(«a) + T.

Suppose « is solvable. Then (L(a) + T)® c K(«) is nilpotent. This
contradicts the preceding result proving the statement of Lemma 7.1(2) for
solvable roots.

Now let « be nonsolvable. Then L(a) has a unique ideal S containing
rad L(«) and such that S/rad L(«) is simple. In addition, L(«)/S and
rad L(«) are nilpotent (cf. Lemma 1.2). As B N L(a) # (0) is not nil-
potent, we have S C B + rad L(«). In this case N, L(a)™ # (0) annih-
ilates M. Since M has been chosen arbitrary, and N, L(a)™ is perfect
then N, L(a)™ annihilates L/L(«). Clearly, N, L(a)"™ annihilates
L(a)/N, L(a)™, hence also L/ N, L(a)™. Consequently, N, L(a)™ is
a nonzero ideal of L, contradicting the simplicity of L.
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(3) By assumption, rad L(«)/(T N ker a N rad L(a)) # (0). Let A
# (0) be a minimal (L(«) + T)-invariant subalgebra of rad L(a)/(T N
ker a N rad L(«a)), and denote by A4 the inverse image of A in rad L(«).
The minimality of A4 and the solvability of rad L(«) imply that A® c T N
ker a. If A C H then the first part of this lemma shows that 4 C T N
ker a, whence A = (0), a contradiction. Thus there is k € F¥ such that
AnNL,, #(0). Let w be a nonzero element of A NL,, Then
(@dw)*(L(a)) c TN H,. As « is rigid we get y(wl!) = 0 for all y €

I\F,e. 1
We now study rigid roots in more detail.

LEMMA 7.2, Suppose a is solvable and rigid. Then there is k # 0 such
that dim L, < 3(p — 1). If a composition factor of L /L(a) as a L(a)-
module has dimension < p?, then there is k # 0 such that dim L, , < 1.

Proof. Recall that K(a)=H, + LicerLi, is a nilpotent ideal of
L(a) + T. Let A CcK(a)+ TN kera denote an ideal of L(a) + T
maximal subject to the condition that A® c T N ker a. According to
Lemma 7.1 we have

ANHCTN kera, dmA,, <1Viel,

Set I ={x € K(a)|[x, Al € T N ker a}.

Suppose I = A. Then K(a)/A maps injectively into g((A4/T N ker a).
Moreover, as K(«) is nilpotent, K(«) /A acts nilpotently on A /T N ker «.
Therefore, one can simultaneously represent these endomorphisms by
strictly upper triangular matrices. Thus

dim K(a) /A4 < 3(dim A/T N ker a)(dim A/T N ker a — 1)
<z (p—1(p-2).
Take k # 0 with dim K(«), /A, minimal. Then
(p = D)(dim K(a)e, — 1) < dim K(a)/4 < 2(p — D(p - 2),

whence dim L,, = dim K,, < 3p. Thus we have even more dim L,
<i(p-0D.

Now let I # A. Since (L(a) + T)/A acts triangulably on A4/T N ker «
there is an (ad 7)-invariant ideal I, c I of L(«a) with dim I,/A4 = 1. Set
I, = Fx + A. By definition of I, one has I{Y c[I, A] c T N ker a. This
contradicts the maximality of A.

Suppose L /L(a) has a L(a)-composition factor of dimension < p?2.
Due to Lemma 7.1 this is a faithful L(«)-module. Now [27, III, Theorem
3)] shows that dim L(a) < p + 1. Then dim L, , < 1 for some k = 0. |
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LEMMA 7.3.  Suppose « is classical and rigid. Then

Q) (rad Z(a)® c TN kera,

) if rad Aa) ¢ Tnkera, then (rad (a) + T Nkera)/T N
ker « is an irreducible L[ o l-module.

(3) dim(L;, nrad L(a)) <1 and dimL,, < 2 foreachi € F¥,
@) dim(H nA(a)) < 2.

Proof. To simplify notation we set v = rad Z(«), d = min{j > 0|v/ C
T N ker a}. Obviously, rad L(a) = r N L(a). As Z(a) /1 is the uniquely
determined semisimple p-envelope of L[«], we have Z(a)/r = 3((2) as
restricted algebras. Clearly, every ideal of #(«) is T-invariant.

Fork € N, put V, = t* + T N ker o, V, = V, /V,,,. The adjoint action
of L, induces restricted representations 7, : Lla] - gl(V}), k=1,...,
d — 1. If d =1, then by definition, v = T N ker « and we are done.

Now suppose that d > 1. For d/2 < k < d — 1 one has by definition

[Z,V,{]CZCTﬁkera, [L(a),f/vk]cf/lk.
Lemma 7.1 therefore shows that

V.nHcTnkera, dimV,NL, <1foralli=#0.

We now consider the L[a]-module V,. There exist s € F¥, h € 7,(H),
eer(L,) and fe 7,(L_,,) such that (e, f,h) is a 3[(2)-triple. The
above shows that 0 is not an eigenvalue of 4 on V.. Then h has eigenvalue
1 in every composition factor of the L[ «]-module V. Since the eigenspaces
of h on V, are 1-dimensional this means that V), is an irreducible
L[a]-module. If d > 4, then the above applies to the modules V, ; # (0)
and V,_, # (0). Thus V,_, has a T-weight of multiplicity 2, a contradic-
tion.

Suppose d = 2. The above shows that V, = (v + T N ker a) /(T N
ker «) is irreducible over L[«], dimrNL;, <1 forall i# 0 and r N
H < T N ker a. This proves the lemma in case d = 2.

Suppose d = 3. Let I c V, be an irreducible 3[(2)-module. By con-
struction this is a restricted module. The Lie multiplication in L induces a
3[(2)-module homomorphism ¢ : 1 ® I - V,. Due to [35], I ® I is gener-
ated by its component of the 0-weight. However, 0 is not a weight of 1,.
Therefore ¢ = 0. Let I be the inverse image of I in_rad Z(«). Then
I® c T N ker a. By Lemma 7.1, every root space of T is 1-dimensional
and 0 is not a weight of I/T N ker a. Therefore I/T N ker a is irre-
ducible, a contradiction. |
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In order to handle rigid Witt roots we need the following special result
on the representations of the Witt algebra.

LEMMA 7.4. (1) Let V be a p-dimensional restricted indecomposable
W(1; 1)-module with 1-dimensional submodule F, such that F ¢ W({; D, V.
Then V = A(1; D).

(2) Let W be a p-dimensional irreducible restricted W(1; 1)-module.
Suppose there is a nonzero W(1; D-invariant mapping

U /Z\WﬁA(l;l)-

Then there are weight vectors vy, 0,, Wy, w, with respect to (1 + x)d corre-
sponding to pairwise different weights such that (v, w,) € F*1 fori = 1,2.

Proof. (1) Let V=V/F. Then VV is a (p — 1)-dimensional nontrivial
W(1; 1)-module. Hence VV = A(1; 1) /F (this is the only nontrivial W(1; 1)-
module of dimension < p [7]). Let v € V' be the unique eigenvector with
respect to xd such that o =x?~! + F. Then (x%)-v € F for each i > 2.
By our assumption, (x%)-v = 0 for each i > 2. Hence V' = ¥, (Fd' - v is
a W(1; 1)-submodule of V. If I is a proper submodule then dimV’' =p —
land V=V'@® F is split. As this is wrong by our assumption, V"' = 1",
Since 1/ is a restricted module, ¢ - 1V = (0). Hence

p—-1
V= ) Fi-v, 97=0,
i=0
and so V is induced from the uniquely determined 1-dimensional
W(1; 1) o,-module. Therefore V' = A(1; 1).

(2) Letz=1+x. AsdimW =p then W = {fu|f € A(1; 1)} and the
action of W(1;1) on W is given by

(29)(fu) = (29(f) + Asz* " f )u (25)

for some A € [ ([7]). We remark that all eigenspaces of W with respect
to zod are 1-dimensional.

(@ Put 3:=F9® Fzd ® Fz%. Then 3 = 3((2). Let W, be an
irreducible 3-submodule of W. According to [35] the 3((2)-submodule
Y(A?W,) in A(1;1) is generated by the 0-eigenspace of zd. Therefore
y(AN*W,) CF.

Suppose y(A?W,) =(0). Then  induces an &-invariant mapping
W W X W/W, — AL D). If jis a weight of W, so is —j. But then j is
not a weight of W/W,. Therefore

Fyg'(Wy X W/Wy) = (0).
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Since each nonzero 3-submodule of A(1;1) contains F, we must have
' = 0. In other words, (W, A W) = (0). As {w € W|y(w A W) = (0)}
is a W(1,; l)—submodule of W, this gives s = 0. As this is false we obtain
Y(N2 W) =

(b) As W, is s-irreducible, |y, , y, is a nondegenerate skewsym-
metric $-invariant bilinear form on W,. In particular, dim W, is even. If
dim W, > 2 then W, has at least 4 different weights +i, +j. So one can
select weight vectors v;, v;,w_;,w_; such that ¢ (v;,w_,) = 1 = ¢(v;,w_)).
Thus in what follows we may assume that dim W, = 2.

It is immediate from (25) that each 3-submodule of W contains wu.
Hence W, = Fu & Fzu. By (25), (zd)(u) = Au,(z9)(zu) = (A + 1)zu. Since
try(zd) = 0, we have A = —1/2.

(c) Let a,b,c € F,. Comparing eigenvalues gives (z°u, z buy =
v(a, b)z* =1 where v(a, b) e F. Since  is W(1; D)-invariant (25) yields

(a +b—-1)v(a,b)=(a—-s/2)v(a+s—1,b)
+(b—-s/2)v(a,b+s—1).
Suppose b = s = 0. Then
(a —1)v(a,0) =av(a — 1,0). (26)
Suppose a =p —1,b = 0,5 = 3. Then
—2v(p—-1,0)=(-1-3/2)v(1,0) + (=3/2)v(p — 1,2). (27)
It follows from (26) that

2

p=l p=? - Tv(1,0) = ~»(L,0).

v(p ) =2 =3

N| W

Now (27) gives

(=3/2)v(p—1,2) = ((=2)(=1) + (1 +3/2))»(1,0),

whence v(p — 1,2) = —3wv(1,0). We have proved in (a) that |y, ., is
nonzero. As W, = Fu & Fzu, we must have (zu,u) = v(1,0)1 # 0. Set-
ting v, = z? 'u, v, = zu, w, = z%u, w, = u finishes the proof. |
LEMMA 7.5. Suppose « is Witt and rigid. Then dim L,

i € F,. One of the following holds.

(i) dmL;, <2 foralli €T,

(i) dimL, > p?® forall y € I\F, a.

(iii) o is improper, n;, < 2 foralli € F,, and n(a) = 4.

<p+1 forall

ia =
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Proof. At first we proceed as in the proof of Lemma 7.3. We adopt the
notion of v, d, V,,V,, observe that #(a)/r = Lla] = W(1;1) as restricted
Lie algebras, and handle the case d = 1 as in that lemma.

For d/2 < k < d — 1 one has by definition

[I’};{,V]{]CI’ZICTﬁkera, [L(a),I;;(]CVk.
Lemma 7.1 shows that

f/"kaCkaera, dikamLmsl forall i # 0.

We now consider the L[«a]-module V,. The above shows that 0 is not a
weight of V. Since the T-weight spaces of V), are 1-dimensional this
means that ¥V, is the (p — 1)-dimensional irreducible module for W(1; 1).

If d > 4, then the above applies to the modules V,_, # (0) and V,_, #
(0). Thus Vd,z has a T-weight of multiplicity 2, a contradiction.

Suppose d = 2. Then V, = (v + T N ker a) /(T N ker «) is irreducible
over L[a], dimrnL, <1 forall i+#0and v nHcTn kera. This
proves the lemma in case d = 2. _

Suppose d = 3. Given a € v, one has [a,[a, Z(a), ]l €V, 214 jyar
and [a,[a, v, ]l € T N ker @ = Ft. Thus a defines (p — 1) linear map-

pings
‘lj(a) :f(a)ja/rm = Vi ek+yar j # —2k mod(p).

Since these spaces are at most 1-dimensional, one obtains (p — 1) homo-
geneous forms on v, of degree 2. As T N ker a« = Ft is 1-dimensional
there is a homogeneous form A of degree p on 1, defined by a” = Ma)t.
Standard algebraic geometry shows now that, if dimv,, > p + 1, then
there is a € v, ,\(0) such that g;(a) =0 for all j # —2k mod(p) and
Ma) = 0. The element a satisfies (ad @)>(Z(a)) € T N ker a, al?l = 0.
This contradicts the rigidity of «. Consequently, dimr,, < p, whence
dmL,,<p+1lforall keF,

Let M be a composition factor of L /L(«) as a #(«)-module. Suppose
dim M > p® Since V, ¢ H, Lemma 7.1 yields the existence of w e
Ui ez Lio with y(w!?)) 0 for all y € T'\F, . Then w acts invertibly on

M. This yields
pdim M, = dim M > p?

for any v € T" such that M # (0). If this is true for any composition factor
M we have d|m L, > p? for all y € I'\F,a. So from now on we assume
that dim M < p2.
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Since V, is irreducible and r is nilpotent we have [r, Vz] C Ft. Thus
there is a bilinear mapping ¢ : r X V, — F such that

[x,y] = ¢(x,y)t Vxer,yef};.

Set J = {x € | ¢(x,V,) = 0}. Then J is a nilpotent ideal of Z(a).

Suppose that (,,V,) # 0. The irreducibility of V, implies J NV, =
Ft, v =J + V,. There exists an_ideal J, cJ of #(a) such that J{"’ c Fr,
Jy # Ft. Then, with A =J, + V2 in Lemma 7.1, one obtains dlm(JO + Vz)
NAa),,=1=dm V2 NA(a),, for all i whence J, C I,. This is false.
As a consequence, [/, V,] = (0).

Next assume i # 0. Then there is a nondegenerate pairing (v/J) X V,
— F induced by ¢. Thus for any basis (¢,e;,...,e,_,) of V, there are
elements f,..., f,_, C v such that [e;, f;] = §; ;z. Now the representation
theory of solvable Lle algebras [30] ylelds that every composmon factor M’
of M as a r-module has dimension > p?~!. Then dim M > p3, a contra-
diction. _

Consequently, ¢ = 0. Then [, V/,] = (0). Theorem 2.2 applies and yields
(with I ==V, and a as in Section 2)

rca, M=M®A(s;r), s=dmZ(a)/Z(a)Na,

where M is an irreducible a-module. If ) t@® acts nilpotently on M then o
it does on M. Recall that t® + Fr = I/, ¢ Fr. Thus every w € Uices v,

. has the property that y(w!?)) = 0 whenever M, # (0). Then « is
not rlgld Thus t acts nontriangulably on M. Then dlm M > p. Conse-
quently, s < 1. Set G :=Z(a) N a. Then G is a subalgebra of #(«) of
codimension < 1 which contains r. Therefore, G contains the inverse
image of W(1;1),,, i.e.,

Go{xeZ(a)|x+reW(ll)y)

Theorem 2.2 shows that M is the direct sum of irreducible V2 -modules,
which are all isomorphic. Since V2 is abelian there is_A € I;* such that
every v € V acts as A(v)ld on M. _Therefore [G, V] annlhllates M,
whence /\([G VD = 0. Therefore, [G, V,] acts nilpotently on M.

If T G, then [T, V,] acts nilpotently on M, which is false. This means
that « is an improper root.

Next we are going to prove that n(a) > 4. We intend to apply Lemma
7.4. Suppose 172 is W(1; 1)-decomposable. As dimI72 = p, we must have
V, =V, & Ft,where V, = A(1; 1) /F. From this it follows that I, = [G, V]
acts nllpotently on M. But V; is an ideal of #(«), which acts nontr|V|aIIy
on M (as a is rigid). This contradlctlon shows that 17, is W(1; 1)-indecom-
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posable. Since G /v D W(1; 1), we are in the situation of Lemma 7.4(1).
So V, = A(1; D).

Since V], #+ (0) it contains an irreducible W(1;1)-module W. It was
mentioned above that V; is a restricted module. Hence so is W. The Lie
multiplication defines a W(1; 1)-invariant mappmg b NPW > V2 If
y(A2W) C Ft then the preimage W of W in V, is an ideal of ()
satisfying W® c Fr. This, however, contradicts the rigidity of «. Thus
Y(A2W) ¢ Ft. In particular, dimW > 1. If dimW =p — 1, then W re-
mains irreducible when restricted to any 3[(2)-triple in W(1;1). But then
Y (A? W) is isomorphic to an &[(2)-submodule of A(1;1) generated by the
0-weight subspace [35]. This means (A2 W) C Ft, which is false. There-
fore dim W = p [7]. Now Lemma 7.4(2) applies and gives n(a) > 4.

Finally suppose that n,;, > 3 for some i € [;’. Theorem 5.4 ensures the
existence of a constant d > p such that dim L =d for all y € T\(0). If
d > p?, then we are in case (ii) of this lemma.

Suppose d < p?. Then dim ZLE[FL,/M < p? for every y € I'\F,a. Ac-
cording to Lemma 1.5 there is y & [, a such that W:= %, _¢ Lyiia/ yﬂa
#(0). As n,, >3, W is an wreduuble K(a)-module of dimension p?
(Lemma 1.6, Theorem 5.4). We now consider ¥, £, Ly+ia @ @ module for
r and K(a). Since « is improper one has K(a) = rad L(a) C r. As t is
nilpotent and, for x € v, the only eigenvalue of ad x on X, Lyiia i is
given by y(x[?)/? there is an eigenvalue function A: v — F such that, for
any u € v, ad u — AMw)ld is nilpotent on LictLysio- The representation
theory of nilpotent Lie algebras [38] yields that all composition factors of
this K(a)-module have the same dimension. We have seen above that
T ¢ G. Therefore M + M whence all composition factors of the K(a)-
module M are of dimension < p2. On the other hand, the K(a)-module
W has dimension p?. This contradiction proves that we are in case (iii) of
the lemma. |

LEMMA 7.6. Suppose « is Hamiltonian and rigid. Then

1) Aa)/C(A@) = HZ;D?,

(2) a is improper,

3) p=5,

4 n(a)=0.

(5) dim L, > p? whenever y € T\F,a.

Proof. (a) As before, let T N ker o = Ft with some toral element ¢.
Suppose rad #(a) # Ft. Let I be an ideal of #( ) minimal subject to the
condition Ft ¢ I c rad #(a). Then IV c [I,rad Z(«)] C Ft. Lemma 7.1
shows that dim I/Ft < p — 1. Since dim g((I/Ft) < (p — 1)?* <
dim H(2; D)® and rad #(«) annihilates I/Ft, we have [Z(a)®, I] C Ft.
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Then IcH. Lemma 7.1 yields I c Ft, a contradiction. Therefore,
rad #(a) = Ft.

(b) Note that Z(a)/rad Z(a) is semisimple, and, by construction,
is a p-envelope of L[a] Now all semisimple p-envelopes of L[«] are
isomorphic as restricted Lie algebras [30]. Thus #(«)/rad X(a) = Ll a].
Let ¢: Z(a) — L[a] be the canonical epimorphism. The torus T acts on
Lla] as a 1-dimensional maximal torus. Therefore H(2;1)® c L[a] C
H(2;1) (cf. [6]). Due to [9] we may assume that T acts as Fh where
h = Dy(x,x,) or h = D, ((1 + x,)x,). First suppose that & = D (x,x,).
Then [, Dy (xf~?x2~*)] = 0 and (ad D, (x{~2x§~?))*(L[a]) = (0). Pick
w, € HNZ(a) with e(w,) = D, (xF~2xF~?). Interchanging w, by w, +
At with a suitable A € F if necessary we may assume that wi?! = 0. But
then (ad w,)*(L(@)) C Ft and (ad w,)”(L) = (0) contradicting the rigidity
of a. Thus h = D,((1 +x,)x,). This means that « is improper. Pick
w, € H N Z(a) for which e(w,) = D, (1 + x,)?"2x§~2). If p > 5, then
(ad e(w,)*(L[a] = (0). Arguing as before one now obtains p = 5.

(c) Note that H(2;1) = H2;D® @ FD,((1 + x,)*x%) & Fxt9,
F(1 +x)%,. Set 7, == X, _;_3FD,((1 + x,)'x}) and 7= e(H N Aa)).
Then

Hy CHCHy + FDy (1 +x,)"x3) + Fxjo, + F(1 +x,)"d,.

Suppose a nonzero element E = AyD,((1 + x,)*x3) + Ax5d, + A,(1 +
x,)%, is contained in 7 If A, # 0, then [E, D, (1 + x,)*x5)] = 24, D, ((1
+ x)x,) €Y, whence H NZ(a) acts nontriangulably on Z(«). On the
other hand, (Z(«) + Ft)/Ft = L[] (as rad #(«) C Ft). This means that
HNZ(a) C H+ Ft. But then (H NZ(a))® c HY acts nilpotently on
L. Thus A, =0.

A direct computation then shows that (ad E)*(L[a]) = (0). Choose an
inverse image w, € H N (). There is A € F such that wi?! = A?z. Then
v == w, — At has the property that (ad v)*(L(a)) C Ft and v!?! = 0. Thus
the rigidity of « yields v = 0 thereby proving that .7 =.%,. This gives
Llal = H2;D®?.

(d) Set

L(a)g =& (span{Dy, (xixi) i +j=1+2}), [= -1
We obtain a filtration
Z(a) =%(a)-y>D = DTN kera>d(0).

Now Z(«) is a central extension of H(2;1)® and hence is given by an
outer derivation D = r,x}d, + r,x;d, + r;Dy,(xx3) and the associative
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form A (see Proposition 5.3). Counting degrees one immediately concludes
that

[D, Z(a)w] cZL(a)w, AL (a)w, ZL(a)y) =0.

Thus the extension splits when restricted to Z(«),,,. Since « is improper
one has K(a) c e '(span{D,((1 +x,)'xj|j > 3}. So K(a) cZ(a)y,.
Counting degrees of x, and taking into account the splitting of the
extension we obtain that [K,,, K_,,] = (0) for each i € . This means
n;, = 0forall i # 0.

(e) Set
Sy = s‘l(span{DH((l +x1)ix£) lj=1+ 1}) > -1

We obtain a filtration
Z(a) =F_1)D " DFy DT Nkera>(0).

Now Z(«) is a central extension of H(2;1)® and hence is given by an
outer derivation D = r,(1 + x,)9, + r,x3d, + ryD; (1 + x,)*x3) and the
associative form A (see Proposition 5.3). We claim that r; = 0. Indeed, if
this is not the case, then A(D, D, ((1 + x,)*x3)], D, (1 + x,)?x3)) # 0
yielding that + € H®. This contradicts our assumption that T is standard
with respect to L. Thus r, = 0. It follows that [D,ZO)] CHs. SO the
extension splits when restricted to 4. In particular, [.%];), %3] = (0).

Fix y € I'\F,a. Let M be a composition factor of the #(«)-module
Yicr, L, i Let p stand for the corresponding representation of A(a)in
g{(M). Obviously, ¢ acts on M as a nonzero scalar operator. Since %,
acts nilpoently on Z(a) there exists an eigenvalue function y on S
such that p(x) — x(x)Id is nilpotent for any x €.%;,. Also x is linear on
Fa) Since F, is abelian.

Let e,, f,, f; be the unique elements in U, ., L,, satisfying

e(e;) =Dy ((1+x)°x,),  &(f) = Dy((1 +x,)°x3),
&(fs) = Dy ((1 +x1)°x3).
Pick an arbitrary e¢; € T with e(e;) = D, ((1 + x;)x,). We obtain
[er fol =2f,,  lenfsl =fsr lea il =fs [eaf5] =0.

An easy calculation shows, as p = 5, that (ad f)?(L[«]) C ker ¢ for i =
2,3. As « is rigid this forces f171, fI*! € F*t, whence x(f,) # 0, x(f;) # 0.
Then the 2 X 2-matrix (X([ei,f4,j])) is lower triangular with nonzero
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elements on the diagonal. Therefore [28, Theorem 2.4(2)] applies and gives

the estimate dim M > 5°dim M,,), where M, is an arbitrary .%, -submod-

ule of M. However, [D,(x3), D,((1 + x,)%x3)] = D, (1 + x,)*x3) and

hence f, € [4y), %)l In other words, the nllpotent algebra 7, acts

nontrlangulably on M. By [38], this yields dim M, > 5, whence dim M
> p*. Since f, acts invertibly we obtain dim L,>dimM, =p “tdim M >
2

This completes the proof of the lemma. |

8. RIGID TORI

Let 7' be a 2-dimensional torus of L, which is standard. We say that T
is a rigid torus if all roots of L with respect to T are rigid.

LEmMmA 8.1.  Suppose that T is a rigid torus.

(1) No root in T is Hamiltonian.

(2) Suppose o €T is a Witt root. Then « is improper, K(a) = rad
L(a) is abelian, and n(a) = 0.

(3) Eitherdim L, =1 forall y €T, orelsedim L, =2 forall y € T
and every root in T is Witt.

@ n(y)<?2forall yeT.

(5) HcT.

Proof. (1) Suppose that « is Hamiltonian. Then dim L;, = p for all
i #0. Accordmg to Lemma 7.6 the root spaces L, for y € F\[F a are at
least p2-dimensional. We conclude from Lemmas 7 2-7.6 that thls is false.

(3 If rad L(y) cH for all yeT then dim L, = 1. In order to
prove (3) we now may assume that there is « € T such that rad L(«a) ¢ H.
According to Lemma 7.1 there is w € U, ., L,, such that g(wl?!) + 0 for
all B € I'\F,a. Then

dim L =dimL;;, Viel, jel;. (28)

ia+jpB

We intend to prove that all root spaces have the same dimension. If there
exist F,-independent roots «, B € T satisfying rad L(«) ¢ H, rad L(B) ¢
H then we conclude that d = d(y) := dim L., is independent of .

Now assume that there is a root o« such that rad L(a) ¢ H, and,
moreover, every root g € I'\F,« satisfies the conditions rad L(B8) c H.
Note that in this case dim L = 1. We have to prove that dim L;, < 1 for
all i # 0.

Suppose a(H) =0. Then L(a) = K(a) is a nilpotent section and
hence it is a triangulable Cartan subalgebra of L of toral rank 1 [20,
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Theorem 1]. If L(a)® # (0), then A = C(L(a)?) is a nonzero abelian
ideal of (L(a) + T) which acts nilpotently on L. In this case « is not
rigid. Thus L(a)® = (0). Now we set 4 = L(«) and apply Lemma 7.1.
We get dim L;, < 1 for all i # 0.

Suppose a(H) # 0. Since L is simple we have

H= Y [L, L]
vEF,a

Choose g € I'\F,a with a([Lg, L_,] # 0. Recall that g is either classi-
cal or Witt, and rad L(B8) C H.

If B is classical, then L(B) = L_, + H + Lg, and (28) now shows that
rc(-g+ [Fpa) UF,aU (B + [Fpa). There exist x € L;, y €L _g,
h =[x, y]so that (x, y, h) is a 3[(2)-triple. Consider the 3[(2)-module

LygiatLigtL_giiu i#0,

Note that x annihilates L,z ;, and y annihilates L_,,,,. Since every
composition factor of Lg,,, +L;, +L_z;, is at most 3-dimensional
there is v € [ such that, forany i € [,

(B+ia)(h) €{2v,v,0}.

As a(h) # 0 this is impossible.

Therefore B is Witt. Let y be a p-nilpotent element of CLP(T). Since
dim L, = 1 for every y € I'\F,«, y annihilates X, c r\¢ . L,. The latter
subspace generates L. Therefore y = 0 yielding H < T. Now it is clear
that L(B) is a central extension of W(1;1).

Pick i € F} with L;, # (0) and put L/® = Ljcr,Liasip- By Schue’s
lemma, L, =X, cr\rolLy Lia—y] As IT\F,al <p?—p, we obtain
dim L,, < p? — p, and therefore dim LY® <dimL,, +p—1<p?—1.
If the central extension is not split, then there are root vectors ¢, f € L(B)
such that [e, f] = ¢ where Ft = T N ker 8. The representation theory of
the Heisenberg algebra yields that dim L;, = dim L,,, , for all i +# 0.
Therefore we may assume that the extension splits.

Let M be a nontrivial composition factor of the L(8)-module L‘%).
Since dim M < p?, [24] yields dim M € {p — 1, p}. Take h € [Lg, L_,]
with a(h) # 0 and identify L(B)® = W(1:1) with its image in g((M).
Suppose dim M = p. Then M is induced from a 1-dimensional W(1; 1)
module M, ¢ M [24]. If h € W(1; 1)y, then h(M,) C M, and hence & has
p distinct eigenvalues. If 7 & W(1;1),, then one can argue as in case ()
of Theorem 5.4 to obtain the same result. If dim M =p — 1, then M =
A(1;1)/F, hence h has p — 1 distinct nonzero eigenvalues.
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Let y € (ia + F,B) N T be such that y(h) # 0. It is immediate from
the above consideration that dim L_, coincides with the number of nontriv-
ial composition factors of the L( 8)®-module LY®. Also, ia(h) # 0 and
there exists j, € I with ia(h) + j,B(h) # 0. Then dim L,,
dimL;,,;s=1

Thus we conclude that there is d € N such that all roots spaces have
dimension d. We also have an estimate of d: If rad L(y) c H for some
v e T then, as Ly +# (0) by assumption, y is not solvable. Thus vy is
classical or Witt, whence d = 1. Thus we may assume that rad L(y) ¢ H
forall yeT. Let «, B be [, -independent roots.

Suppose « € I' is not Witt. If « is solvable, then Lemma 7.2 implies
that d < p. Then d|m(Zl€[FLB+M) < p? and a second application of
Lemma 7.2 yields d = 1.

If « is classical, then there is i = 0 with L;, = (rad L(«)),,. Then
Lemma 7.3 yields d = 1.

It remains to prove that if « is Witt, then dim L, < 2. This is done
below.

(4) Suppose that n(y) > 2 for some y € I'. According to Lemma 1.5
there is 6 € I'\F,y such that &, ¢ L;,;, /My, is a nonzero K(y)-mod-
ule, which accordlng to Corollary 1.8, has dimension > p?. Then
dim Ly;/M7? > p. Consequently,

5<p=<dmLg/M} <dimL;/R; < 2dim L;/K; + ng;.

Since no root is Hamiltonian, we have dim L;/K; < 1, whence ng; > 3.
However, as d > p in this case, all roots are Witt (see part (3) of this
lemma). As p < d < p + 1 this contradicts Lemma 7.5.

We now prove the remaining part of (3). Suppose « is Witt. Case (ii) in
Lemma 7.5 is impossible, since d < p + 1. Case (iii) does not occur, as
according to part (4) of this lemma n(a) < 2. Thus we have dim L, < 2.

(2) Let a be Witt. We have proved that d < 2. Let M = LicrMyiia
be a faithful composition factor of the (T + L(«))-module L/L(a) (see
Lemma 7.1). Then dim M < p?.

Suppose (T + L(«))/C(T + L(a)) is simple and so isomorphic to
W(1; 1. If « is proper, let u be the root vector with respect to 7, whose
image in W(1;1) equals x”~'d/dx. Then (ad u)>(L(a)) € T N kera. As
dim M < p?, the representation theory of W(1;1) yields that u acts nilpo-
tently on M [24]. But then u acts nilpotently on L. This contradicts the
rigidity of a.

Next assume that (T + L(«))/C(T + L(«)) is not simple. Then [27,
(111, Corollary of Theorem 1)] shows that [27, (11l, Theorem 3)] applies.
Thus T + L(a) = W(1;1) @ A(1; 1) is the split extension of W(1; 1) by the
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abelian ideal A(1;1). Also, [27, (lll, Proposition 2)] yields that
[W(1; 1), A(L; D] acts nilpotently on M. If « is proper, then T = Fxd /dx
® F1 and so every root vector x* € A(1;1), k +# 0, acts nilpotently on L.
This contradicts the rigidity of «. Thus no Witt root can be proper.

Since « is improper, then K(«a) c rad L(a). In both of the above cases
rad L(«) is abelian. Then n(a) = 0.

(5) Supposedim L, = 1forall y € T. If x € H is [ p]-nilpotent then
ad x annihilates all L., and hence L. Thus x = 0, yielding H c T
Suppose dim L, = 2 for all y € I'. Then vy is Witt, and in the course of
the proof of (2) we have shown that 7 + L(y) = W(1;1 & A(1;1). From
this it follows that H =T7T. 1

We remind the reader of Winter’s conjugation process. Let T denote a
torus of maximal dimension in a restricted Lie algebra L and x € L, a
root vector. Then {t + a(t)x|t € T} is an abelian subalgebra of L and
therefore its p-envelope contains the unique maximal torus 7, which is
the set of all semisimple elements of the latter. It turns out that 7" also
has maximal dimension and 7 can be obtained from 7’ by a similar
construction involving —x instead of x. So one defines an equivalence
relation on the set of tori of maximal dimension by setting that T, is
conjugate to 7, if T, can be obtained from T, by a finite number of the
above switchings.

Although in the classification theory one has to start with an arbitrary
torus of maximal dimension in the semisimple p-envelope of a simple Lie
algebra, one immediately switches to a conjugate torus which has a
maximal number of proper roots. Also, given a root «, one can switch to a
conjugate torus which has the same a-section and for which this a-section
is proper [6, (1.9)].

Now let again L be a simple Lie algebra of absolute toral rank 2 and L,
its semisimple p-envelope. We start with an arbitrary torus T of dimension
2 and then switch to a 2-dimensional torus 7; which has at least one
proper 1-section. Due to [20], C,(T;) is triangulable. We assume in
addition that all roots with respect to 7, are rigid. Then Lemma 8.1 shows
that every root space with respect to 7, is 1-dimensional and every Witt
root is improper.

We are going to determine those simple Lie algebras L of absolute toral
rank 2 for which a given torus in L, and all its conjugates are rigid.

LEMMA 8.2.  Let T be a 2-dimensional torus in L,. Suppose that all root
spaces of L with respect to T are 1-dimensional, and each u € T is solvable
or classical. If there is a root a €T with a(C,(T)) =0, then L =
H(2; L; (7).

Proof. Note that H = C;(T) acts triangulably on L since dim L, =1
for all roots. Hence H = (I' N L) @ I where I is the set of p-nilpotent
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elements of H. Since dim L, = 1 we have [/, L,] = (0) for any u € I'\(0).
Hence I is an ideal of L, whence I = (0),and H c T.

The assumption implies that L(«) is nilpotent. Then it is a Cartan
subalgebra of toral rank 1 in L. Now the results of [35, 20] yield L is one
of 3((2), W(1; n), H2; n; ¥)®. Since TR(L) = 2 we have

L e {W(1;2), H(2:(2,1)% H(2: 1 ®(7))", H(2:1;A) }.

Every 2-dimensional torus of W(1;2), has a 1-section which is Witt [29] o)
L, is not of this type. Since H ¢ T We have dim H < 2 and dim L < p® +
1. Thus L cannot be of type H(2;(2,1))®. Finally, as all roots with respect
to T are solvable or classical, T is an optimal torus for L. Those tori for
H(2;1; A), have been described in [6, (11.1.3)] (and for that description
only the assumption p > 3 is needed). It has been established in [6,
(11.1.3)] that H(2;1;A), has at least one Witt root with respect to any
optimal torus in H(2; 1 A),, proving that L is not of this type. Thus
L = H2;1; ®(7)® in the present case. 1

Our next result is of some independent interest. It indicates the impor-
tance of the Block—Wilson inequality.

THEOREM 8.3.  Let L be a simple Lie algebra of absolute toral rank 2, T a
2-dimensional torus in L,. Suppose that T is standard with respect to L and
n(y) < 2 forall y € T. If all 1-sections with respect to T are solvable, then
L = H(2;1; d(r)®.

Proof. (@) By our assumption, H := C,(T) acts triangulably on L. We
first assume that B(H) # 0 for some root B. As L is simple there is
a € T such that B(L,,L_,]D # 0. As B is solvable, « € '\F, B so that
I'cF,a + [, B. Following [6, (5.6)] define I'; :=={y € I'| L, # R }. Since
all roots in I are solvable Lemma 1.1 says that

I ={yeTl|n, 0}
We also have, as n, =n__, and n(y) < 2,

dmL /R, =n,<1 forall y e T

By construction, n, # 0. Therefore L;+ Mg for some s €'\ [, «
(Lemma 1.5). Thus the (T + K(a))-module W = TictLsiia/Msiia i
nonzero, and (a) shows that its dimension is bounded from above by p.
Applying Proposition 5.2 we now obtain that dim Ly, ;,/M;s" ;, = 1 for any
i€l Therefore(8+[F a) U (— 8+ F, a) C Ty. But [T ﬂFylstor
each y € I'. This forces

Ip={ta}U(6+Fa)u(-8+F,a).
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Since & € I';, we may interchange « and é. There is v = ka such that
IR ={£8}U(v+F,8) U(—v»+F,3). As p > 3this is impossible.

(b) Thus y(H) = 0 for any y € I". This means that each 1-section
L(y) is a triangulable Cartan subalgebra (L(y) cannot act nilpotently on
L by [26, Theorem 1.5]). By [20, Theorem 1], L is one of 3[(2), W(1; n),
H@2;n,¥)?, As TR(L) =12 then L is one W(1;2), H(2;(2,1)?,
H(2;1; ®(r)®, or H(2;1; A). In any case, T is an optimal torus. Suppose
L = W(1;2) or H(2;1; A). By [29, Chap. V] and [6, (11.1.3)] L, has a Witt
root. Suppose L = H(2;(2,1))®. By [29, Chap. V1.4(3)] there exists B € T’
such that each solvable root is contained in F,B3. But then I'CF,B
whence L has absolute toral rank 1. This contradiction shows that L =
H(2;1; (). 1

COROLLARY 8.4. Let T be a 2-dimensional torus in L ,. Suppose that all

1-sections with respect to T are solvable and all root spaces are 1-dimensional.
Then L = H(2;1; ®(r)®.

Proof. Arguing as in Lemma 8.2 one obtains C,(T) cT. So T is
standard with respect to L. Let o € T'. Since dim L /L(a) < p? — p < p?,
Theorem 5.4(1) yields n(a) < 2. Thus Theorem 8.3 applies to L complet-
ing the proof of the corollary. 1

We are now ready to prove our main theorems.

THEOREM 8.5.  Let L be a simple Lie algebra of absolute toral rank 2 over
an algebraically closed field of characteristic p > 5 and T a 2-dimensional
torus in the semisimple p-envelope of L. Then L is either classical or
isomorphic to H(2; 1; ®(r)V or there is a 2-dimensional torus T' conjugate
to T such that C,(T') acts triangulably on L and L has homogeneous
sandwiches with respect to T

Proof. (a) We assume that, for every torus 7" in L, which is conjugate
to T and has a proper root, all roots are rigid. Combining [20, Theorem 2]
with the description of nontriangulable Cartan subalgebras in the re-
stricted Melikian algebra (cf. [20, Sect. 4]) it is easy to see that C,(T") acts
triangulably on L. If a root of L with respect to T is Witt, then it is
improper (Lemma 8.1). Applying Winter’s conjugacy process we find a
conjugate torus in L, which has a proper Witt root. This root then is no
longer rigid. Thus by our assumption all roots are either solvable or
classical. Moreover, dim L, = 1 for all y € I' (Lemma 8.1).

(b) Suppose « is a classical root of L and let M be a faithful
irreducible composition factor of the L(a)-module L/L(«a) (cf. Lemma
7.1). Then there is B € I'\F,a such that M = ¥, ; M. In particular,
dim M < p. Then [27] yields that L(«) is classical reductive, an extension
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of 3((2) by a 3-dimensional Heisenberg algebra or isomorphic to 3((2) &
AL D).

In the second case we may switch the torus T inside L («) to find a
root vector x € rad L(«) such that (ad x)*(L(a)) € T N ker «, (ad x)? =
0. Then this will no longer be a rigid section.

In the third case we have dim L(a) = p + 3, dim H = 2 contradicting
the fact that dim L,, < 1 for all i # 0.

Thus every classical 1-section is classical reductive.

(c) If all roots in T are solvable or if a root o € I" vanishes on H
then Lemma 8.2 and Corollary 8.4 yield the result. Thus we may assume
that T contains a classical root «, and w(H) # 0 forall u € T.

Suppose that there are 2 independent solvable roots B,y. Then there
are x € Lg, y €L, with y(x!?)) =1, pg(y!*)) =1 (Lemma 7.1). Then
I'=F,B + F,y. Therefore no root can be classical reductive. Thus all
roots would be solvable, contradicting our present assumption.

(d) Suppose that there are 2 independent roots 3,y such that g8 is
classical and all g + iy, i € [, are roots.

If some B + kv is solvable, then 8 + (8 + kvy) is a root. Indeed, there
is jEFY and y € Lj g4, With B(y!?)) # 0 (as k #0 and B + ka is
rigid). Hence B + sj(B + ka) € T' for each s € T,

As B + (k/2)y € T by assumption, it cannot be classical. Thus 238 + kvy
and B8 + kvy are independent solvable roots. This contradicts (c).

Therefore, all B + iy are classical. Consequently,

L= ZLﬁ+iy+L('Y)+ ZL—B+iy'

lEIFp le":p

As L is simple we have H =% ¢ [L,, L_,]
Since y(H) # 0 there is a root u & F L,y with y((L,, L_,D # 0. Inter-

changing B by +u if necessary we may assume that y([Lg, L_gD # 0.
Consider the L( 8)-modules

LO =L, ,g+L,+L, g
These modules are at most 3-dimensional, and [Lg, L,,, ;] = (0). Choose

a ¢[(2)-triple (e, f, h) with e € L,, f € L_ 4. Then either (iy + B)(h) =0
or (iy — B)h) =0o0r LD is |rredu0|ble In any case

iy(h) € {=B(h), B(h),2 = B(h)} ~ VieF,

This implies y(h) = 0 whence y([Lg, L_z]) =0 (as dim L, ; = 1). This
contradiction shows that not all g + iy,i € [, are roots.
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(e) Let now B be any classical root. If y is a solvable root, then
B + F,y c T'. This contradiction shows that all roots are classical reduc-
tive, L(u) = 301(2) & (T N ker w) for all w € I'\(0). Also, for any u
I'\(0) not all w + ky, k € [, are roots. We have now checked that the
Mills—Seligman axioms [18] hold for L. Thus L is classical. 1

For further references we deduce the following corollaries.

COROLLARY 8.6. Let L be a simple Lie algebra of absolute toral rank 2
over an algebraically closed field of characteristic p > 5 and T a 2-dimen-
sional torus in the semisimple p-envelope L, of L, which is standard with
respect to L. Suppose there is a € I' such that n, # 0. Then there is a
2-dimensional torus T' in L, conjugate to T and such that C,(T") acts
triangulably on L, L has homogeneous sandwiches with respect to T', and
there is o' with respect to T' for which n # 0.

Proof. 'We may assume that 7 is a rigid torus. As n, # 0, Lemma 8.1
shows that « is either classical or solvable, and dim L, = 1 for all y € T..

Suppose « is classical. As we have seen in the previous proof L(a) is
classical reductive or isomorphic to a split extension of 3((2) by a 3-dimen-
sional Heisenberg algebra. The assumption n, # 0 yields that rad L(«)
acts nontriangulably on L. Thus we are in the second case and one can
switch the torus T inside L ,(a) to find a nonzero root vector x € rad L(«)
such that (ad x)*(L(a)) € T N ker a and (ad x)? = 0. Then the new torus
is no longer rigid. Clearly, rad L(«) remains stable under this switching,
and still acts nontriangulably on L. Therefore n_ # 0 for some roots o'
with respect to the new torus.

Suppose « is solvable. Recall that there is a faithful irreducible compo-
sition factor M of the #(a)-module L /L(a). As all root spaces of L with
respect to 7 are 1-dimensional, dim M < p. Now [27, (Ill, Theorem 3)]
shows that #(«) has the form

k
.,S/(a)=Fh€9Fx€9_€_BOFyi, l<k=<p-1,

[A,x] = —x, [A,y,] =iy, [x,y:]=yi 1 [yi'yj] =0.

Moreover, p(y,) is nilpotent for all 1 <i < k. Here Fh + Fy, is a torus
possibly different from 7. However, in solvable Lie algebras all maximal
tori are conjugate [36]. Thus one can switch T inside L (a) to Fh + Fy,.
Now y, has the properties [y,,[y,, L(a)]] = (0), (ad y,)? = 0. Thus the
new torus has a solvable root which is nonrigid. Moreover, [y,, x] acts
nonnilpotently on L (otherwise L(a) contains a nonzero ideal acting
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nilpotently on the faithful irreducible module M which is impossible).
Then n, # 0 for a suitable root o’ with respect to the torus Fh + Fy,. |

Set K’(Ol) = Zi#OKia + Zi#O[Kia’ K*ia]'

COROLLARY 8.7. Let L be a simple Lie algebra of absolute toral rank 2
over an algebraically closed field of characteristic p > 5 and T a 2-dimen-
sional torus in the semisimple p-envelope L, of L, which is standard with
respect to L. Suppose there is a € T such that K'(a) acts nontriangulably on
L. Then there is a 2-dimensional torus T" in L, conjugate to T and such that
C,(T") acts triangulably on L, L has homogeneous sandwiches with respect to
T', and there is ' with respect to T’ for which K'(a') acts nontriangulably
on L.

Proof. We may assume that T is a rigid torus. Suppose « is Witt. We
have proved in Lemma 8.1 (2) that K(a) = rad L(«a) is abelian. Thus « is
not Witt.

We now follow verbatim the proof of the previous corollary, but substi-
tute “n, # 0” by “K'(a) acts nontriangulably on L” and “n’, # 0” by
“K'(a') acts nontriangulably on L.” 1
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