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Let L be a finite dimensional simple Lie algebra of absolute toral rank 2 over an
algebraically closed field of characteristic p > 3 and T a 2-dimensional torus in the
semisimple p-envelope of L. Suppose that L is not isomorphic to a Melikian
algebra. It is proved in this paper that, for every root « € I'(L, T'), the subalgebra
K'(a) generated by LicrsKiq (where K;,={xeL;, | a(x,L_;,]) =0} acts
triangulably on L. In partlcular this |mpI|es that in the termlnology of R. E. Block
and R. L. Wilson (1988, J. Algebra 114, 115-259), all roots of I'(L,T) are
nonexceptional.  © 1999 Academic Press

1. INTRODUCTION AND PRELIMINARIES

Let L be a finite dimensional simple Lie algebra over an algebraically
closed field F of characteristic p > 3, and let L, denote the p-envelope of
L inDer L. Let T be a torus of maximal dimension in L, and H = C,(T).
Recall that in this case dim 7' = TR(L) is the absolute toral rank of L [25].
Since H == c, (T) is a Cartan subalgebra of L,, H = H N L is a nilpotent
subalgebra of L.

In this note, we continue our investigation of the simple Lie algebras of
absolute toral rank 2 started in [18]. Here we deal with the so-called
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exceptional roots of L relative to 7. This notion was introduced by Block
and Wilson in [4]. In [4, Sect. 5], Block and Wilson established that, for
certain 2-dimensional tori in L ,, there are no more that 4 exceptional
roots. Their arguments relied very heavily on the assumption that p > 7
(which was the general assumption on F imposed in [4]). The necessity to
take the exceptional roots into account worsens almost all dimension
estimates arising in the course of studying finite-dimensional simple Lie
algebras. It appears that these roots constitute the main technical obstacle
in constructing a sufficiently good maximal subalgebra of L. Certainly
large parts of the whole classification picture would look much nicer if the
exceptional roots did not occur at the absolute toral rank 2 level.

The main goal of this note is to show that, indeed, exceptional roots do
not occur in T'(L,T) provided that L is not isomorphic to a Melikian
algebra. We also obtain some results towards a final attack on simple Lie
algebras of absolute toral rank 2 (see, e.g., Sections 4 and 7), classify the
Z-gradings in Hamiltonian algebras (Section 3), and prove a general result
on tori in graded Lie algebras (Theorem 2.6).

We say that a subalgebra A < Der L acts triangulably on L or is a
triangulable subalgebra of L if A® acts nilpotently on L. Given a T-in-
variant subalgebra Q C L, we say that T is standard with respect to Q if
the subalgebra C,(T) = C (T) N Q is triangulable.

Given a subspace V of L'set n,(VV) ={x € L | [x,V]C V).

Throughout this note we assume that dim 7 = 2. By [17, Theorem 1],
this ensures that either L is isomorphic to the restricted Melikian algebra
or any torus of maximal dimension in L is standard with respect to L (the
case p > 7 is handled in [37]). We always assume that 7' is standard with
respect to L. As H Is arestricted nilpotent subalgebra of L ,, T is the only
maximal torus of H and coincides with the set of sem|5|mple elements
of H.

The action of 7" on L and L, gives rise to the root space decomposi-
tions:

L=He Y L,

vE T*

SetI' = {y € T*\{0} | L, # (0)}. We treat I" as a set of functions on H by
setting a(h?’) = a(h)?" (cf. [25]). Since H® acts nilpotently on L, each
y € T vanishes on H¥ and so may be viewed as a linear function on H. It
is straightforward that, for any & H, a(h) is the only eigenvalue of ad &
on L, where o« €T
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Given [ -independent «, g € ' put

nil H = {h € H | ad h is nilpotent},
H,={heH|a(h) =0},
K,={xeL,|[x,L_,]CcH,},
RK,={xeK,|[x K_,] cnil H},
MEP={xeL,|[x,L_,]CH,},
R,={xeL,|[x,L_,]cnil H}.

We also set

n,=dmK,_/RK,, n(a)= ) n;,.

fe %
tEIFp

Aroot y € I' is called exceptional if n, # 0. The Block-Wilson inequality
n(a) < 2 holds if p = char(F) > 7 [4, (56.5)]. It is much harder to establish
this important inequality for p  {5,7}. We shall prove in this note that
n(a) =0 for all roots o € T' unless L is isomorphic to the restricted
Melikian algebra, in which case n(«) < 2 (we suspect that n(a) = 0in all
cases). In other words, we refine the Block—Wilson inequality and gener-
alize it to a wider range of primes. This result will be crucial in our third
paper devoted to classifying the simple Lie algebras of absolute toral rank
2 (for p > 3) and proving the original Kostrikin—Shafarevich conjecture
(in the generality stated, that is, for p > 5).
Set

K(a) :=Ha® Z Kivz'
ieky

M@® =K(a)® Y M,
vEF,a

K(a)=H +K(a),
M@ = K(a) + M@,

R=nilH+ Y R,
yEF

K'(a) = Z K.+ Z [Kio K 0]

; ES ; ES
zeIFp ze[Fp
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Sometimes we include L and T in the above notation and then write
R(L,T), K(L,T, a), etc. It is immediate from the Engel—Jacobson theo-
rem that K(«) is a nilpotent subalgebra of L. Moreover, K(«) is solvable
and K(a) is an ideal of codimension < 1in K(a) (see [4, p. 157]). Also,
M is a subalgebra of L and M is an ideal of codimension <1
in M, Obviously, all subspaces K, RK,, MP, R_ are T-invariant.

A subalgebra Q c L is called a 1-section of L with respect to T if there is
a € I such that

Q=[—I69 ZLia'

ieky
In this case we arrange
0=L(a), Q/radQ = L[ «a].

Given y € I" one of the following occurs:

Lly] = (0);
Lly]l = 512,
Lly] = W(1;);

H(Q;D® c LIyl c H(2; )

(see [4, 25, 17]. In all cases, L[vy] is restrictable (i.e., admits a unique
p-structure). If L[y] = (0) we call y solvable; if L[y] = 3((2) we call y
classical; if L[y] = W(1;1) we call y Witt;and if H(2;1)® c L[y] c H(2;1)
we call v Hamiltonian. Accordingly, we call the 1-section solvable, classical,
Witt, or Hamiltonian.

By Kreknin [11] each L(y) contains a unique maximal subalgebra Q(y)
of codimension < 2 such that Q(y)/rad Q(y) € {(0), 3[(2)}. In [4], this
subalgebra is called the maximal compositionally classical subalgebra of
L(y). We say that

v € I' is proper, if Q(y) is T-invariant.

This definition modifies slightly that given in [4]. Such a modification helps
us to deal with Hamiltonian roots in the case where p = 5. If v is proper
we call L(y) a proper 1-section. Solvable and classical roots are always
proper since for such roots we have Q(y)= L(y). If vy is Witt or
Hamiltonian, then Q(y) is the preimage of the standard maximal subalge-
bra of the Cartan type Lie algebra L[vy].

We now explain briefly that the new definition of a root being proper
agrees with the old one (cf. [4]). The proof of [26, (1.8)] works for p = 5,7
as well, showing that, for every y € T', the radical of L(y) is T-invariant,
that is, [T, rad L(y)] < rad L(y). If y is nonsolvable, then H # H., . In this
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case there is a Lie algebra homomorphism

m,: T+ L(y) > (T + L(y))/(Tnkery+rad L(y)) = L[v].

Therefore, 7(T') is a maximal torus in L[y] (recall that y is nonsolvable).
Any maximal torus of a Witt 1-section L[vy] is (Aut L[y])-conjugate either
to Fxd/dx or to F(1 + x)d /dx [7]. If y is Hamiltonian, then any maximal
torus of L[y] is (Aut L[y]D-conjugate either to F(x,d, — x,d,) or to
F(W1 + x,)d, — x,3,) [8]. Now if y is proper in the sense of [4], then, up to
conjugacy, m(T) = Fxd/dx and 7 (T) = F(x,d, — x,d,), in the respective
cases. If y is improper in the sense of [4], then, up to conjugacy, m.(T) =
F(1 +x)d/dx and m(T) = F((1 + x;)d; — x,d,), in the respective cases.
So it is immediate that a root vy is proper in the sense of [4] if and only if
wy(T) belongs to the unique maximal compositionally classical subalgebra
of L[y]. The latter is true if and only if T normalizes Q(vy).

Remark 1.1. It is not hard to see that L, N rad L(y) C K,, for all
yelandalli €[, and H N rad L(y) c K(y) if y is nonsolvable. Thus
to determine K(y) one has to deal with L[y]. The following is proved in
[4, (5.2.1)].

(a) If y is classical, then K(y) = rad L(y).

(b) If y is proper Witt, m(T) = Fxd/dx, and y € T* is defined by
y(xd/dx) = 1, then K, =L, Nnrad L(y) for i= +1and K, =L, for
i#0, +1

(c) If y is improper Witt, then K(y) = rad L(vy).
(d) If y is proper Hamiltonian, 7 (T) = F(x,d, — x,d,),and y € T*
is defined by y(x,9, — x,4d,) = 1, then

K

+y W;l(H(Z;l)(Z)) mLiy’
Kin = W;I(H(Z;l)(l)) n LiZ'y’

K, =L, fori#0,+1, +2.

(e) If y is improper Hamiltonian, m.(7T) = F(1 + x,)d, — x,d,), and
v € T* is defined by y((1 + x,)d, — x,4d,) = 1, then

l‘y’

p—1
- . -1 . i -
Kiy=m ' X F((+) (1 +x)" " xfa, —j(1+x) xb o) | NL,
j=3

forall i [F;,".
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LEMMA 1.1 [4, (5.3.4); 18, (1.3)]. Let y € I. One of the following occurs:

(1) vy is solvable and K, = L, for all i € F;

(2) v is classical and there is | € [F;,k such that, for i e [F¥,
dmL, /K, =1ifi=tjanddimL, /K, =0 ifi# £j;

(3) vy is proper Witt and there is j € ¥ such that, for i € F},
dmL, /K, =1ifi=tjanddimL, /K, =0 ifi# +J;

(4) v is improper Witt and dim L, /K, =1 foralli € F;

(5) vy is proper Hamiltonian and there is j € F such that

2 ifi = +j,
dimL, /K, = {1 ifi = +2j,
0 ifi# +j, +2j;
(6) vy is improper Hamiltonian and dim L, /K, = 3 foralli € F.
Following [26] we put

(v.8) e*|H, g Hyand ). [Ly .y, L_(500] € H,

i€f,

LEMMA 1.2 [18, (1.5)]. Let a, BT be [ -independent.

Q) If (e, B) € Q, then Lg,,, # Mg, for somei €[,
@ Ifn,#0,then L, # M forsomey ¢ F,a.
3 Ifn,#0,then (a,jB) € Q forsomej € [F.

(4 If n,# 0 then T is contained in the p-envelope of H in L,. In
particular, H, H,,, Hy are pairwise different.

The major result on the n,, valid in our setting is the following

PropPosITION 1.3 [18]. For any a €T one has n, < 3. Moreover, if
=3, thenn;, <2 fori ¢ {—1,0,1}, and [K,, K] contains nonnilpotent
elements of L,. If n(a) > 2, then each composition factor of the K(a)-mod-
ule L/L(a) has dimension p?, that is, for every j € F, the K(a)-module
LicvLipria/Mfpyiq I cither (0), or irreducible of dimension p2.

Proof. The first two statements are proved in [18, (4.3)]. Suppose
n(a) > 2. Then [18, (1.5)] shows that there is g € I'\F,a such that
Lg # Mg. Now [18, (1.8)] implies that any composition factor of the
K(a) module LiceLipria/Mfpyio has dimension p?. Therefore [18, (5.1)]
yields the same estimate for any composition factor of the K(a)-module

L/L(a). 1
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LeEmmA 14, If a,u €T are I]:p-independent, then
dim L,/M; < dim L,/R, < 2dim L,/K,+n, < 9.

Proof. 1t follows from the definitions, the proof of [4, (5.4.2)], and
L_emma 1.1 that I_%M cM;, dmL,/R, <dimL, /K, +dimK, /RK, +
dimRK,/R, <2dimL, /K, +n, <6+n, <09

LEMMA 1.5. (D) n(y) <2pforall y €T,
(2) dimL/M <8p? —3p —3 < 2p°.
Proof. By Proposition 1.3, n(y) <6 + 2(p — 3) =2p for all yeTT.
This establishes the first statement. By Lemma 1.4,

dimL/M*= Y Y dim Ligijar/Mi(gsjay T Y. dim L, /K,

i€l jeF, i#0
< ), Y 2dim Ligsjay/Kicg+je
JEF, ieFy
+ Y n(B+ja)+ Y dimL, /K,,.
jeF, i#0

According to Lemma 1.1, dim L /K < 3 for all y € I. Combining this
observation with the first part of this lemma finishes the proof. ||

In what follows we shall frequently use divided power algebras and
truncated polynomial rings. Let A(m) denote the commutative algebra
with 1 over F defined by the generators x{”, 1 <i <m, r > 0, and the
relations

(r+s)! )
=L O = T, 1sismirns 20
Put
x; = x®, x@ = x{a .. x) g e (N U {0})",
and

A(m)j = span{x® ||a| = j}.

Then {x” |a € (N U {0)™"} is a basis of A(m), and (A(m););., is a
descending chain of ideals of A(m). For any m-tuple n = (n,,...,n,,) €
N™ we set

A(m;n) = span{x'“ | 0 < a;, < p"}.
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Due to the defining relations above A(m; n) is a filtered subalgebra of
A(m). The algebra A(m;1) = F[X,,..., X,,1/(X},..., X?) is called the
truncated polynomial ring in m generators. Considered just as an algebra
A(m; n) is a truncated polynomial ring in n, + --- +n,, variables. We also
write (with the ordinary product in A(m; 1))

x4 = xfr e xpm fora=(a,,...,a,),0<a,<p-—1
For each i denote by D, the derivation of A(m) defined by

Dy(x{") = 8,;x"" V.
Let W(m;n) = X", A(m; n)D, denote the Lie algebra of special deriva-
tions of A(m;n). The filtration of A(m) gives rise to a filtration of
W(m; n) by setting

W(m;n)g = 2 A(m;n) ;. D;.
i=1
A subalgebra Q of W(m;n) is called transitive if Q + W(m;n)g =
W(m; n).
The following theorem in the version involving truncated polynomial
algebras is due to R. E. Block [3].

THEOREM 1.6 [33, Sect. 5.3]. Let G be a finite dimensional Lie algebra
and I a minimal ideal. Suppose IV # (0). Then there are a simple Lie algebra
S and a divided power algebra A(m;n) such that I = 8§ ® A(m;n). The
ad -representation gives rise to inclusions

S®A(m;n) c G/anng(I)
C ((DerS) ® A(m;n)) ® (FId ® W(m;n)).
Moreover, the canonical projection
m, : ((DerS) ® A(m;n)) ® (F1d ® W(m;n)) » W(m;n)
maps G onto a transitive subalgebra of W(m; n).
If G is restricted, then n = 1.

In the sequel we shall need a powerful result on representations of
semisimple restricted Lie algebras.

THeorReM 1.7 (cf. [31, Sect. 2.3]). Let G b a finite dimensional semisimple
restricted Lie algebra and I a minimal ideal of G. Suppose that W is a finite
dimensional restricted irreducible G-module with representation p and assume
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that p(I) # (0). Then there are a simple Lie algebra S, m € N, and a
S-module U with representation p : S — g(U) such that

1) I=S ® A(m;1) under an algebra isomorphism s,
(2) W= U ® A(m; 1) under a vector space isomorphism i,,

B P(([(pogpy Dy @ N, " (u ® g)) = p(yXu) ® fg forally € S,
ueUl, f geAlm;).

Moreover, , induces a restricted Lie algebra homomorphism

~

¢, :G > ((DerS) ® A(m;1)) & (F1d ® W(m;1)),
lZl(D) =y o(ad; D)o y;t.

Let w, :G = W(m; 1) denote the canonical projection. Then w,(G) is a
transitive subalgebra of W(m; 1).
The action of G on W has the property

(2o p(D)oth*)(u®f)
= (1d & f)((#°p(D)ey;")(u® 1)) +u® m(D)(f) (1)
forallD € G, u € U, f € A(m; ).
Remark 1.2. For future applications we need more information on U.

(a) Suppose that ; (S ® F) is a restricted subalgebra of G. Then S
carries a p-mapping via

yirne 1= lpl((lp{l(y ® 1))[p]) forall y € S,

and hence

((pevi)(y® 1) = p(vi'(y ® 1)) = p(ug (¥ © 1)),
PN (W) ® 1= y(((pevit)(y @ 1) (v; (u © 1))
= do((po v ) ® 1)(u; ' (u ® 1))
=p(y'"N(u) ® 1.
Thus U is a restricted S-module in this case.

(b) Let G denote the universal p-envelope of G in U(G). Given a
restricted Lie algebra .Z, let u(.%#) denote its restricted universal envelop-
ing algebra. It has been proved in [33, Sect. 5.3] that for suitable restricted
subalgebras K, c K of G containing I, a maximal I-submodule V;, of V,
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and some ¢ > 0, one has

U = Hom,,(u(K), ® V/Vy)-

t times
Note that the rank of u(K) over u(K,) is a p-power. In particular, if
dimU < p-d, where d is the minimum of the dimensions of the com-
position factors of the I-module V, then K = K. In this case, U =
D, imes V/ Vo is @ semisimple isogenic /-module.

(¢) Suppose G =1 + C5;(S ® F). Then, in_the notation of (b), K =
T+KN(CaS®F).AsS®FcIcK, and I K, the S-module U is

semisimple and isogenic, that is,
U= eatp"'m K/K1 times V/Ve.

For future references we need a generalization of [4, (3.1.2)].

LEmMMA 18. Let G be a finite dimensional Lie algebra and I = § ®
A(m; n) a minimal ideal of G, where S is a simple Lie algebra and m # 0.
Assume that G < (Der S) ® A(m; n)) & (Idg ® (Der A(m; n))). Let N
denote a nilpotent subalgebra of (Der S) ® A(m; n) satisfying [N,ad,G] C
ad, G, and V the Fitting nilspace of N in ad,G.

If [V,V n (ad, )] consists of nilpotent transformations then so does V N
(ad,I).

Proof. Let J =8 ® A(m; g)(l) denote the unique maximal ideal of I,
and

J= Y Vi(J).

j=0
Since (Der S) ® A(m;n) is an ideal of ((DerS) ® A(m;n)) & (Idg ®
(Der A(m; n))) containing N, there is a decomposition
ad,G = (ad,G) N ((DerS) ® A(m;n)) + V.

Therefore J is an ideal of G, which is contained in I. The minimality of I
forces J = I.
Next we decompose

I=&®1,, J=Bini
“

u

into weights spaces with respect to N. As N acts nilpotently on 1/, each
weight space /, is invariant under V. In particular, we have

= Y Vi(Inl) clnly+V(I,).
j=0
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Clearly V(1,) c I, stabilizes J N I, so that (ad,(J N 1)) U (ad, V(1)) is a
weakly closed set. Since J is a nilpotent ideal of I, the first set consists of
nilpotent transformations. The second set (which coincides with [V, ad, I, ]
= [V, V' n (ad, D] has this property by our initial assumption. So the
Engel-Jacobson theorem shows that ad,; I, = V' N (ad, ) consists of nilpo-
tent transformations as well. ||

In [18, Lemma 8.1(2)], we have overlooked a case. The rest of this
section provides necessary corrections to [18, Sect. 8]. Lemma 8.1(2) of
[18] should read as follows:

LEMMA 8.1(2').  Suppose a € T is a Witt root. Then either « is improper,
K(a) = rad L(«a) is abelian and n(a) = 0, or « is proper, p = 5, rad L(«a)
= C(L(a)), and n(a) = 2.

Proof. We distinguish 3 cases:

(@ Suppose T + L(a)/C(T + L(«a)) is simple, « is proper, and the
central extension splits. This case is treated as in [18, p. 473].

(b) Suppose (T + L(«))/C(T + L(a)) is simple, « is proper, and
the central extension does not split. In [27, p. 79], it has been mentioned
that every faithful module over a nonsplit central extension of W(1;1) has
dimension > p»~¥/2  Since dim M < p? this implies that p = 5. But
then our central extension has basis (¢_,, ..., &3, z) such that z spans the
center of T + L(a) and

(J—1i)e., when -1 <i+j <3,
[g., _.] _ )z when (i, j) = (2,3),
o —z when (i, ) = (3,2),
0 otherwise

(see [2]). From this it is immediate that n(a) = 2.

(¢) Suppose (T + L(a))/C(T + L(a)) is not simple. This case is
treated as in [18, pp. 473-474]. |

Lemma 8.2, Theorem 8.3, and Corollary 8.4 of [18] are not at all affected
by this correction to Lemma 8.1. Recall that the notion of a torus being
rigid is introduced in [18, Sect. 8].

Corrected Proof of Theorem 8.5. Part (a). Suppose « is Witt. Applying
Winter’s conjugation process (if necessary) we can always find a torus in
L, with respect to which L has a proper Witt root. So no generality is lost
by assuming that « is proper Witt. By Lemma 8.1(2'), p = 5 and L(«) has
basis (¢_,, ..., &3, z) consisting of weight vectors relative to T with Lie
multiplication given as above. There is A € F such that é; + Az is p-
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nilpotent (in L ). Put w = Aé,. Then E, ,(€;) = &; + Az foreach ¢ € A,
(here E, , denotes the generalized Winter exponential corresponding to
w, see Section 2 for the notation related to toral switchings). Now inter-
change T by the torus 7,, < L,. By construction, «,, , € I'(L, T,) is proper
Witt. So [17, Sect. 2] implies that 7,, is standard with respect to L. By [18,
Theorem 6.3], L has (nonzero) homogenous sandwich elements with
respect to T,,. Also, n(a,, ;) =n(a) =2 (as [E, .(&,), E, (e))] = [e,, e;
+ Az] = z). So, in view of Lemma 8.1(1), we may assume that all roots in
I'(L,T) are solvable or classical. Moreover, dim L, =1 for any y€ I’
(Lemma 8.1(3)). Now proceed as in [18] to complete the proof. |

Corrected Proof of Corollary 8.6. We may assume that 7 is a rigid torus.
Suppose «a is Witt. By Lemma 8.1(2'), « is proper, p = 5, and rad L(«a) =
C(L(a)) (for n(a) #+ 0). As in the previous correction, there are a
Winter-conjugate standard torus 7" c L, and o' € I'(L,T') such that o'
is proper Witt, n(a’) = 2, and L has (nonzero) homogeneous sandwich
elements with respect to 7". Thus we may assume that « is either solvable
or classical and dim L, =1 for each y € I'. Now proceed as in [18] to
complete the proof. |

Corrected Proof of Corollary 8.7. Suppose a is Witt. As K'(a) acts
nontriangulably on L, Lemma 8.1(2') shows that n(a) = 2. So Corollary
8.6 yields the result.

Thus we may assume that « is not Witt. Now proceed as in the original
proof. 1

2. NORMALIZING AND SWITCHING TORI

Let M be a finite dimensional graded Lie algebra. Setting
End, M = {A € End M | A(M;) C M, ; Vj € Z}

gives End M a canonical structure of a graded associative algebra. With
this grading, g[(M) is a graded Lie algebra and Der M is a graded Lie
subalgebra of g{(M). The canonical p-structure of Der M is compatible
with the grading, i.e., (Der; M)? C Der;, M. Since every Lie algebra M
carries the trivial grading M = M,, our discussion in this section also
covers the case of an arbitrary (nongraded) Lie algebra.

We give M ® A(m; n) the grading

(M®A(m;n)), =M, ®A(m;n) Vi€l
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Suppose that g is a Lie algebra, and d € Der g satisfies d” = 0. In
order to conclude that exp(d) :== X2 }(1/i))d" is an automorphism of g it
suffices to know that

[di(u),d/(v)] =0 Vu,vegq,

whenever i +j > p.

Now set q =M ® A(m;n). If d =d, ®x with d, € DerM and
a#0, then d'=d) ® (x), and hence [d'(u ® f), d'(v ® g)] =
[di(w), di(0)] ® fg(x)*. As (x9)? =0 for a # 0, exp(d, ® x'¥) is an
automorphism of M ® A(m;n) whenever a # 0. It is easy to see that
(exp(d, ® x“) ™! = exp(—d, ® x).

If g is a graded Lie algebra, then we set

Aut, g = (Autg) N (End, g)

and call this the group of homogeneous automorphisms of g.
Let M be a graded Lie algebra and © a subalgebra of Der, M. Let

expo(D ® A(m:n))

denote the subgroup of Aut, (M ® A(m; n)) generated by the set {exp(d ®
)| de D, a0}
In what follows we order (N U {0})™ lexicographically:

a > b:e Jigsuch that a; = b; Vi < iy, a; > b, .
It is clear that the following implication holds:
a>b,c>d=a+c>b+d.
LEMMA 2.1.  Let M be a graded Lie algebra.
(1) An automorphism o € Aut,(M ® A(m; n)) satisfies the condition
o(udf)=(dy,®f)(o(ueol)) YueM,feA(m;n)

if and only if there are o, € (Auty M) ® Id and o, € exp,((Dery, M) ®
A(m; n)) such that

o= 0,°0;.
(2) A derivation D € Der (M ® A(m; n)) satisfies the condition
D(uef)=(ldy,®f)(D(u®1l)) YueM,feA(m;n)

if and only if D € (Der M) ® A(m; n).
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Proof. (1) Clearly, every element of (Aut, M) ® Id and exp,((Der, M)
® A(m; n)) satisfies the required equations. To prove the converse write

g(u®l)= Y A(u)®x9, ueM.

a=0

Then A ([u, v]) = [Ay(w), Ao(v)] for all u,v € M. Hence A, is an automor-
phism of M. Moreover, as o is homogeneous, all A, are homogeneous of
degree 0. Thus A, € Aut, M. Set o, == A, ® Id.

Interchanging o by o;'° o we may assume that A,(u) =u for all
u € M. We now assume inductively, that there is b > 0 such that

A(u)=0 forO0<a<b,andall u € M.
Then

o([u,v] ®1) =[u,v] @1+ Y A([u,v]) ®x2,

ax=b
[c(uel),oc(vel)]=[uelvel]+[usl rv)ex?]

+ () @ xP 0@ 1] + ¥ Xy(u,v) ® x@.
a>b

Comparing powers of x yields A, € Der, M. Therefore, exp(— A, ® x*)
€ exp,((Dery M) ® A(m; n)) and
(exp(—Ay ® xP) oo )(u ® f)
= ((idy ® f)eexp(—A, @ xP)e o )(u ® 1),
(exp(—A, ® xP) oo )(u ® 1)
=exp(—A, ® x(b))(u @1+ A(u)@x® + Y A (u) ®x@
a>b

=u®l+ Y N(u)®x
a>b

for all u € M, f € A(m; n). By the induction hypothesis, exp(—\, ® x(®)o
o € exp,((Der, M) ® A(m; n)), whence o € exp,((Dery, M) ® A(m; n)).

(2) Clearly, each element of (Der M) ® A(m;n) satisfies the re-
quired equation. To prove the converse, write

D(u®l)= Y wul(u)®x?, ueM.

a>0
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Then

Y w([u,v]) ®x =D([u,v] ® 1) =D([u® 1,0 1))

a=0

[D(u®l),v®1l] +[u®l D(vel)
[ ma(u). 0] @x @+ 3 [u, m,(0)] @,

a>0 a=0

whence u, € Der M for all a. Therefore D =X, o p, ® x> € (Der M)
® A(m; n) as claimed. |

We now consider the Lie subalgebra ((Der M) ® A(m;n)) @ (F Id ®
W(m; n)) of Der(M ® A(m; n)). Let

m,  ((DerM) ® A(m;n)) ® (Fld ® W(m;n)) — W(m;n)

denote the canonical projection.

LEMMA 2.2. Let M be a graded Lie algebra and D = ¥, o, ® x" +
Id ® 7,(D) € (Dery M) ® A(m; n)) & (F Id ® W(m; n)).

(1) Supposen = 1. For o' € Aut A(m;1) one has

(Id® d')oDo(1d ® o') ' & ((Dery M) ® A(m;n))
®(F1d ® W(m;n)),

772((|d ® d')eDo(ld® 0")_1) =o' omy(D)oa'
(2) For o € exp,((Der, M) ® A(m; n)) one has

ocoDog ! e ((Dery M) ® A(m;n)) ® (F1d ® W(m;n)),
m,(aeoDea ) = m,y(D).

Proof. (1) Letu € M, f € A(m;1). Then

(Id® g')oDe(ld® o) *)(u e f)

(198 o) T () @3V X(f) +u® m(D)o' (1)

b>0

= X m(u) ® o' (xP)f +u® (o emy(D)ea 1) (f).

b>0
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Thus
(Id® g )eDo(ld® o) " = ¥ p, ® o' (x®)
b>0
+ 1d ® (0" oqry(D)o 0"71).
Since n =1 one has o' omy(D)o o’ " € Der A(m;1) = W(m;1). This
proves (1).

(2) Since o commutes with the operators Id,, ® f and [D, Id,, ® f1]
= 1d,, ® 7,(D)(f), we get

[ceDoo™t1dy, ®f] =0 o(ldy ® my)(D)(f))e ot

Idy ® m,(D)(f) = [ldy ® m,(D),1dy ®f].

Then D' :==ce°Doc ' —1d, ® m,(D) is A(m; n)-linear. Applying
Lemma 2.1(2) this proves the lemma. |

Let Flx,,...,x,], x? =0, denote the truncated polynomial ring in m
indeterminates, m = F[x,,..., x,,],, the ideal of F[x,,..., x,]spanned by
the monomials of degree > 1. Note that m is the unique maximal ideal of
Fl[x,,...,x,] The automorphism group of F[x,,...,x,] is given as fol-
lows. Each automorphism ¢ induces an invertible linear endomorphism of
m/m?, ie, o(xy),...,o(x,) are linearly independent (mod m?). Con-
versely, if y,,...,y,, € m are linearly independent (mod m?) then the
linear mapping given by

m m
l_[x?[ e l_lyi”‘
i=1 i=1

is an automorphism of F[x,,..., x,,].

When we need to stress the dependence of our construction on a set of
generators x,,...,x,,, we write F[x,,...,x,] rather than A(m;1), and
similarly Der F[x, ..., x,,] rather than W(m; 1).

THEOREM 2.3. Let T € W(m;1) be a torus, and Ty =T N W(m;l)(o).
Let t,...,t, be toral elements of T linearly independent (mod T,). Then there
is o € Aut A(m; 1) such that

m
-1
goTyootc Y Fx;d;,
j=r+1

ooticot =(1+x)d, i=1..,r.
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Proof. We shall prove inductively that for all s =0,...,r there are
Vireeor Y € Alm; 1) and §,,..., 8, < {0,1} satisfying the following prop-
erties:

@ yy .oy, €m,

(® y,,...,y, are linearly independent (mod m?),

© 8, +y,...,8, +y, are weight vectors with respect to T,
d,) ti(éj +yj) = 81-_,-(8]- +y]-) forj=1,....mandi=1,...,s.

As T is a torus, it acts on Flx,,..., x,,] by semisimple endomorphisms.
Consequently, the latter is the direct sum of the eigenspaces with respect
to T. Let 7 : Flx,,...,x,,] = Flx,,...,x,]1/(m? + F1) = m/m? denote
the canonical epimorphism. Choose 7-weight vectors u,,...,u,, in
Flx,,...,x,] such that mw(u,),...,w(u,,) span m,/m?2 Set y, =u, — §,
where §, € F is chosen so that y, € m. Adjusting u; by a nonzero
scalar (if necessary) we may assume that &, € {0,1} for all i. Then
Vireeos Yo 01, -+, 8, satisfy (@)—(c) and (d).

We now proceed by induction on s. Suppose yi,...,Y, 01,..., 9,
satisfy (a)-(c) and (d,_,) for some s < r. Define «; € T* by setting for
teT,

o (1)(8 +y;) =1t(5 +y), i=1,...,m.
If t €T is toral, then a,(t) € F,. As t,,...,t, are linearly independent

(mod T,) there is | < m such that (¢, — - 1a,(¢)1,)(§; + y,) & m. Since,
by assumption (d,_,),

s—1
(ts = X a(t)](8 +y) =0
i=1

for j=1,...,s — 1, this implies / > s. Interchanging y, and y, does
not affect (d,_,). Hence we may assume [ =s. Then ¢(5, +y,) =
a(t)(8, +y,) & m, that is,

8 =1, ayt,) L.

Set

Q
[

a,(t,) " € FE,

yi=(1+y)" -1,

yi = (1 +ys)’““"(’3)( 6 +y)—86  fori+s.
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Then y!,...,y,, € m and
yi=ay, #0, y =y, — &aa/t,)y, fori#s(modm?).

Moreover, as T acts by derivations on F[x,,...,x,,], 8, +¥},..., 95, + Yy,
are weight vectors with respect to 7. Thus yi,...,y,,, 6,..., 6, satisfy
(a)—(c). An easy computation yields

a(l+y)" (1 +y,)
aa,(1,)(1+y,)" =1+y,
_aaj(ts)(l +ys)7aaj(%)7l(6j +yj) 'ts(l +ys)

+(1+y,) (8 +y)=0 forj+s,

t(1+y))

tS(aj +y1,')

(1+y)=a(l+y)" 't(1+y)=0 fori<s,
' —aa;(t)—
ti(aj +Yj) _aaj(ts)(l + ) i 1(3,' +y]') “1;(1 +yy)

+(1+y,) (s +y)

= 5ij(5]. +y]',) fori <s,j #s.

Thus (d,) holds. Inductively, we construct y;,...,%,, 8,..., 5, satisfying
(@—(c), (d,). Since t,,...,t, are linearly independent (mod T,) one has
8 = - =8 =1 As T, € W(m; 1), one concludes that

T,(1+%)cF(1+y)nm=(0) forj=1,...,r.
Now let o denote the automorphism of A(m; 1) given by
a(j‘)})=xj, j=1,...,m.
Then
(0ot,007)(x) = o (6:(F)) = 8,;0(1 +5;) = 8;(1 +x;)
fori=1,...,r,j=1,...,m, and
(gotoea)(x)) = O'(t()“/})) =0

for t € Ty, j < r. In addition, for t € T, and j > r one has t(Bj +’y“j) S
F(8, +¥) N m, whence either () = 0 or & = 0. In both cases #(3,) €
ijj, whence

(cotoo™)(x) eFy; forteTy,j>r.



208 PREMET AND STRADE
Thus
Uo[i0071:(1+xi)(9i, i=l,...,r,

m
goTyootc Y Fx; ;.
j=r+1

This theorem generalizes Lemma 6 of [7], where the result is proved for
T, = (0) and r = 1, and [28, (IX.1)]. It also provides a non-computational
proof for all results of [7, Sect. 3].

We shall consider tori T of Der (M ® A(m; 1)) contained in ((Der M) ®
A(m; 1)) & (F Id ® W(m;1)). Note that the latter algebra is a restricted
subalgebra of Der(M ® A(m;1)). If M is simple and the ground field is
algebraically closed, then a result of R. E. Block [3] shows that these
algebras coincide. Let

7, ((DerM) ® A(m;1)) ® (F1d ® W(m;1)) - W(m;1)

denote the canonical projection.
We shall often identify M ® F[x,,...,x,,]and M ® F[x,,,,...,x,]®
Flx,...,x,](for 0 <r < m).

LEMMA 2.4. Let M be a finite dimensional graded Lie algebra and
T c (Dery M) ® A(m; 1) & (F Id ® W(m; 1)) a torus. Set

T, = T N (((Der, M) ® A(m;1)) ® (F Id,, ® W(m;1))).

Let t,,...,t, be toral elements of T, and assume that

m
,(Ty) C Y Fx;d;,

j=r+1

m(t;) = (1L +x.)d, i=1,...,r.

Then there is o € exp,((Der, M) ® A(m; 1)) such that

m
goTyeot c(DeryM) ® F[x,,4,...,x,] + Y, Fld,, ®x,0,

77!
j=r+1

ogoticat=1d,® (1+x)d, i=1...,r.
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Proof. (a) We set
T,= Y Ft;, M=M®F[x,...,x,],

M =M®F[x,.1,..., X, ]

and identify M with M’ ® Flx,,...,x,] We may also assume (by shrink-
ing T)that T=T, & T,.
Define ¢,,..., ¢, € T* by setting

&(To) =0,  &(1) = §;.

Given a € (N U {0D™, b € (N U {0})" we set
= [ xu, zi=(1+x)(1l<i<r), zb =Tzl
i=1 i=1

Decompose M into weight spaces with respect to 7. If u = £, qu, ® x*
€ M,, u, € M, is a weight vector of weight u, then =, _ ju, ® (x‘z") is a
welght vector of weight u + X7_,b;e;. As z/ =1 the mapping Id, ®

‘M, - M b, 1S Dijective with inverse Id ® zP~b For u € T* let
nE T* be such that

mTo = I“LITO’ TL(Tl) = 0.
Then ]\ZL =(d, ® H;sz“(tf))(]\'/[vﬁ). Consequently, dim MM = dim Mﬁ for
all w e T, and in addition, w is a weight if and only if u + Xi_,F ¢
consists of weights with respect to 7.
Now Cy(T,) = L, .y« M, is a subalgebra of M. The above yields

dmM= ) dimM,=p’ Y dim M, | = p"dim C;5(Ty).
neT* weT*, u(T)=0
Therefore,
dim Cy(T,) = dim M'.

Consider the mapping
0:Ci(Ty) ® Flxsoox 1= M, (Zu,0x) o~ Tu, ® ().

Clearly, ¢ is a Lie algebra homomorphism. We have proved earlier that ¢
is surjective. The dimension formula above shows that ¢ is bijective.
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(b) Set N; = Cyz(T) ® Flxy,...,x,]q), Ny==M"® Flx,,..., x,]s,
Since ¢(N;) C N,, and ¢ is an isomorphism, a dimension argument yields
©(N;) = N,. Thus the sequence of Lie algebra homomorphisms

Ca(Ty) - Ca(Ty) ®FSM o Flxy,....x,]
> M ®F[x,,...,x,]/N, > M’

gives rise to a Lie algebra isomorphism  : C;7(T,) — M'. Now s trans-
forms an element ¥, ju, ® x* € Cg(T,), u, € M, as

m
Zua®x“'—>(2ua®x“)®l'—> Z(ua@) IT x#

a>0 a>0 a>0 i=r+1

.
® [[x#
i=1

— Y ou, ®x“

ay= - =a,=0

Next let X, ou, ® x* € C7(T)) and g € Flx, 4,...,x,]. Then X, . ou,
® x’g € Ci7(T,) and

411( Y u, ®x”)

a>=0

o Tuors)- T wove-tiep

ax=0 a;= =0

Thus ! transforms an element u ® g € M', u € M as follows. Given
u € M, there is a uniquely determined family (u,),. , with u, € M such
that ug =u, X,. qu, ® x* € Cy(T)), and ¢(X,. u, ® x*) =u ® 1. Then

ylueg)= Yu,®xg VgEF[x, y....x,]

a>0
(c) Set
o= (y®ld) ¢ e AutM,
so that the following diagram commutes:
Ci(T,) ® Flx,,..., x,] — M
l[/®|dl o
M' ® Flx,,..., x,] canomeal, 7.
Note that M’ and Cz(T,) are invariant under the multiplication with
elements of Fl[x,,,,..., x,,]. Therefore the identification
Flxy,...,x, | =F[x,50,.-,x,,] ® F[x{,...,x,],

m r
o= | 1) o 11|
i i=1

i=r+1

®
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imposes a Flx,, q,...,x,]-module structure on M' ® F[x,,...,x,] and
Ci7(T) ® Flx,,...,x,] It is immediate from the definitions and the last
equation in (b) that ¢, ¢ ® Id and the canonical identification are
Flxy,...,x,]-linear. Since T, is homogeneous of degree 0, C;7(T)) is a
graded subalgebra of M. As ¢, ¢y ® Id and the canonical identification are
homogeneous mappings, then o is a homogeneous automorphism of M.

Now Lemma 2.1 shows that o = o, ° o;, where o, € (Aut, M) ® Id,
o, € exp,((Der, M) ® A(m;1)). Note, that by definition o(u ® 1) =
u ® 1 (mod M ® A(m; 1) ). It is also clear from the above constructions
that o(u ® 1) =u ® 1 (mod M ® A(m;1),). Therefore, o, = Id, and
o € exp,((Der, M) ® A(m; 1)).

(d) We now compute o cT oo L. Fori=1,...,r, one has

(0°ti°0'71)(”0®f) (U°ti)(2“a®xaf)

a>0

(o

ti( Y u, ®x“)f)

a=0

v o L u, exmn)(r)]

a=0

—ofo+ Eu, o1 +x)5(1)]

a>0
=ug® (1 +x;)9,(f).
Thus
ogoticat=1d,® (1L+x)d, i=1...,r.
Next let ¢t € T,. According to Lemma 2.2(2) one has

goteg ' € ((Dery M) ® A(m;1)) & (F1d ® W(m;1)),
m
m(oetea ) =m,(t) € ), Fx;d,
j=r+1
Write
gotoot =Y w, ®x"+1d, ® m,(t), u, € Dery M.
b>0

As [t;,t]=0 for i {l,...,r} one has 0 =[got,co ',ogotoo ] =
Ypooty ® (1 + x)3(x"), whence Y,.,u, ® x? € (Dery M) ®
F[x,,1,...,x,] This proves the lemma. |
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LEMMA 2.5.  Let M be a graded Lie algebra and T c (Der, M) ® A(m;1)
+ Y7L F Idy ® x;0; a torus. Then there is o € exp,(Dery M) ® A(m; 1))
such that

m
ocoToo ' c(Der, M) ® F+ ) Fld, ®x;d,
j=1

Proof. We proceed by induction on dim 7. So assume that

m
T=T ®Fd, T c(DeryM)®F+ ) Fld,®x;d, d’=d.
j=1
Set
d=d,®1= ), d,®x"+1d,®d,
azap>0
where d,, d, € Der, M, d' € 17" | Fx;d;, and
d=dy,®1—1d, ®d.
Fori=t,®1+ Y 1dy ® a;x;d, € T' one has
0=1[t,d] =[ty,dy] ®1
m
+ Y [td]ex+ Y d,® Zajaj)x“.
a>ay>0 a>ag>0 j=1

Comparing powers of x gives

[t,d, ®x"] = [ty,d,] ® x°

+d, ®

f‘, ozjaj)x"=0 Ya € (N U{0})",

where t € T'. Applying Jacobson’s formula on pth powers yields

p
d+ Y da®x”=d=d1’=(d~+ Y da®x“)

azap>0 a=ap>0

= +( Y da®x“)p

a>ay>0

m
df®1+ ) 1dy ® afx;d,
j=1
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where sj(d”, Yisap>0d, ®x“) is alinear combination of p-fold Lie prod-
ucts in which d occurs j times and Lisag>0d, ®x* occurs (p —j) times
(for more details see [34, Sect. 2.1]). The only property of the s;’s we
require is that

~ ~ p—1
spl(d, Y d, ®x“) = (add)” ( Y d, ®x“).
a=ap>0 a=ap>0
Observe that [d, d, ® x*] € (Der, M) ® x“. Moreover, as a, > 0, the ele-
ments (X, . »0d, ® x)?, EI72s(d, X, ,,~0d, ®x") are contained in

L) o (Derg M) ® x”. Thus

(do® 1 +d, ®x%)— (dg’ ® 1+ (ad cT)"_l(daO ®x"°))

m m
=—- Y d,®x"— Y ld, ®ax;d,+ ) 1d, ® afx;9,

a>ag j=1 j=1
poopP-2
+( Y d, ®x“) + ) sj(d, Y. d, ®x“)
a>ay>0 j=1 a>ag>0

€ ((DerM) ® (F1 + Fx“))

m( Y. (DerM) ® x” +1d ® W(m;l))

b>ag,

= (0).
Consequently, d, = df, d,, ® x* = (ad c?)f’*l(daD ® x“). Set

(ad d~)p_l(da0 ® x%) = D ® x“, D € DerM.
Since all d, (a € (N U {0)™) are homogeneous of degree 0, so is D. Thus

o' =exp(D ® x») € expy((Dery M) ® A(m;1)).
We have mentioned above that [T",d, ® x“] = 0 for all a € (N U {0})™.
Then [T',d] = [T’, d] = (0). Therefore [T', D ® x“] = 0 whence [¢’, t] =
Oforall t e T

We now compute o' od o o'~ '. Recall that o'~ * = exp(—D ® x%) and
observe that

o'(uexb),dluext), o (uext)e Y Mext

c=b
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for all u € M,b € (N U {0})™. Therefore a computation (mod X
x¢) yields

M®
0

c>a

(0'odoad’ Y u®l)=(o'od)(u®l—D(u)®x™)

a’(c?(u ® 1) —d(D(u) ® x®) +d,(u) ®x“°)

d(u ® 1) — d(D(u) ® x“) +d,(u) ®x

+(D ®x%)(d(u ® 1))

(d-[d.D&x®] +d, ®x*)(us1)

(u®1).

Since by Lemma 2.2(2),

o'odod’ ' —d=0codoo' " - (do ®1+1d,® ’772(0"°d°0'/71))
€ (Dery M) ® A(m; 1),

the above computation shows that

o'odod P —d= Y om ®x€
c>aq

with u, € Dery M. Induction on a, gives the existence of o, €
exp,((Dery, M) ® A(m; 1)) such that

ooteoyt =t forteT,
~ m
giedoo;t =d=d,® 1+ ZIdM®ajsz9j.
j=1
This completes the induction on dim 7. 1

The proof of Lemma 2.5 is modelled after [17, (2.5)]. We combine the
preceding results.

THEOREM 2.6. Let M be a finite dimensional graded Lie algebra, and T a
torus in (Dery M) ® A(m; 1) @ (F Id,; ® W(m; 1)). Set

T, =T (((Dery, M) ® A(m;1)) @ (F1dy, ® W(m;1)q)),
r=dmT/T,,

and let t,,. .., t, be nonzero total elements such that

,
T=T,® @D Fr,.
i=1
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Then there are o, € 1d,, ® (Aut A(m; 1)), o, € exp,((Der, M) ® A(m; 1))

and linear mappings
AT, — Derg M,

m
ATy = ) Fx;d,
j=r+1

such that, setting o = o, ° 0y,
t=1d,®((1+x)d, i=1,...,r,
gotoa t=1(1)®1+1dy, ® A\(t), teT,.

Proof. Note that m,(T) is a torus in W(m; 1), 7,(T) N W(m; 1), =
7,(Ty), and m,(t)),...,m,(¢,) are toral elements linearly independent
(mod 7,(T,)). According to Theorem 2.3, there is ¢’ € Aut A(m; 1) such

that

gotioa

m
o' omy(Ty)ea' e ¥ Fx;a;,
j=r+1
o omy(t)eo =1 +x)d, i=1,...,r.
Set o, ==1d,, ® 0'. As g,°T oo, c(Dery, M) ® A(m;1) & (F Id,, ®
W(m;1) and o' om,(t1)o 't = m(o,oto0;") for all t € T (Lemma
2.2(1)), one has
m
772(0'1°T000'1’1) c Y Fx;d;,
j=r+1

my(oyetieort) = (1+x,)d,, i=1,...,r.

So Lemma 2.4 applies to o, °Too;t, ooTyeo;t=(oeTeoa;)N

((Der, M) ® A(m; 1) @ (F Id,, ® W(m; 1)) and oyot00;t, ..,
a,ot, o oyt Thus there is 7 € exp,((Der, M) ® A(m; 1)) such that

(reoy)eTyo(ogteor t) c(Derg M) ® F[x,,4,...,%,]
m
+ ), Fldy, ®x;0,
j=r+1

(tooy)etio(orter ) =1dy, ® (1+x,)d, i=1,...,r.

Now consider Tj:=(re0)eTye(o;te7 ') as a torus in Der(M ®
Flx,,q,...,x,]. Lemma 2.5 yields the existence of 7' € exp,((Der, M) ®

Flx,, ..., x,] such that
m
T eTgor ' C(Der, M) ® F+ Y, Fld, ®x;d,

j=r+1
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Set o= (7" ® I,
the equation

+p°Te oy, and define linear mappings A, A, by

.....

gotoo t=N(1)®141d,, ® A\,(1) VieT,.

Remark 2.1. Several normalization theorems for tori are used in the
Classification Theory. Setting M = F yields ((Der M) ® A(m;1)) &
(FId,, ® W(m;1) = A(m;1) ® W(m;1). The latter algebra is denoted by
W(m; 1) in [18]. Reference [18, Theorem 3.3] is now a direct consequence
of Theorem 2.6. Also [17, (2.5)] follows from Theorem 2.6.

A version of [28, (IV.2)] is crucial for the Classification Theory (see [28,
(IV.3); 29, (3.9), (3.10); 30, (1.8)]). Unfortunately, [28, (IV.2)] is stated
improperly. The present Theorem 2.6 yields a correction sufficient for the
applications in the Classification Theory. Namely, if M is simple and the
ground field is algebraically closed, then Der(M ® A(m;1)) = (Der M) ®
A(m; D) @ (FId,, ® W(m;1). Now if M ® A(m;1) is T-simple then
we have r = m in Theorem 2.6. In this case o cTeo ' =X" , Fld, ®
1+ x)9,

Remark 2.2. Given a Lie algebra g and a representation p: g — gl(}),
the direct sum @ := g @ V carries a graded Lie algebra structure given by

Go=¢g, T =V, [x+o,x+0]=[xx]+p(x)(v) = p(x)(v)

for all x,x' €gq, v,v'  €V. If g is restricted, and V' is a restricted
g-module, then § carries a p-structure which extends the p-structure of g
and satisfies the relation 1171 = 0 (cf. [34, (2.2.5)]). We apply this observa-
tion to give another interpretation of Theorem 1.7. With the assumptions
and notation of that theorem, I @ W and (S @ U) ® A(m; 1) are graded
Lie algebras via the construction just described. Theorem 1.7(3) now says
that the mapping

ey, IeW—->(SeU)®A(m;l), x +w— (x) + (w),

is a Lie algebra isomorphism. Note that 7 and § ® A(m;1) are the
O-terms, and W and U ® A(m; 1) are the (—1)-terms of the respective
graded Lie algebras. Also, ¢, @ ¢, is a graded isomorphism.

It is straightforward that the mapping

G-gl(IeW), D~ (ad, D)@ p(D),
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is a restricted Lie algebra homomorphism from G into Der,(I & W). It
induces a restricted Lie algebra homomorphism

V:G - Dery((S @ U) ® A(m; 1)),
where
V(D) :(‘!’1°(ad1D)°¢’Il)EB(¢2°P(D)°¢’51)’ DeG.
Equation (1) in Theorem 1.7 says that
gre(ad; D)oyt = Dy + 1dg ® m,(D),
Y0 p(D)e Yt =D_; + Id, ® 7,(D),

where D, € (DerS) ® A(m;1),and D_,(u ® f) = (Id,;, ® fFD_(u ® 1))
for all u € U, f € A(m;1). Since ¥(D) and Id ® 7,(D) are homogene-
ous derivations of (S @ U) ® A(m;1) of degree 0, the same is true for
D, ® D_,. Moreover, one has fory € S, u € U, f, g € A(m; 1),

(DyeD_)(yef+tu®g)=Dy(y®f)+D_(u®g)

= (ldg ® f)(Do(y ® 1))
+(ldy ® g)(D_y(u ® 1)),

(Do@D_)(weh)=(ldgey ® h)(Dy® D_;)(w® 1)

forall we S ® U, h € A(m;1). Lemma 2.1(2) yields that D, ® D_, €
(Dery(S @ U)) ® A(m; 1) and

V(D) =(Dy®D_;) + ldgey ® m,(D)
€ ((Der(S @ U)) ® A(m;1)) @ (F ldgey ® W(m;1))

for all D € G. The following corollary is now a consequence of Theorems
1.7 and 2.6.

COROLLARY 2.7. Let G, I, S, U, W, and m be as in Theorem 1.7, and let
T be a torus of G. Then there is a graded Lie algebra isomorphism

pileW->(SeU)®A(m;l),
and an induced restricted Lie algebra homomorphism

V:G — ((Dery(S® U)) ® A(m;1)) & (F Idg, , ® W(m; 1)),
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such that, for some r > 0,

V(T) = ( iF ldsey ® (1 +x]-)(9j)

j=1

(Derg(S® U)) ® F+ ), Fldge, ®x;0,

j=r+1

®Y(T)N

Proof. For W(T) = ¢oT o' choose o€ Auty((S ® U) ® A(m; 1))
according to Theorem 2.6. Being homogeneous of degree 0, o induces a
Lie algebra automorphism of S ® A(m;1) and a module isomorphism of
the (S ® A(m; 1))-module U ® A(m; 1). Now substitute o, ¥, by o ¢,
gogp,and VbyocoVeog i |

We now describe in detail the process of toral switchings based on the
ideas of [40, 39, 15]. Let g be an arbitrary finite dimensional restricted Lie
algebra over F. A Cartan subalgebra §) in g is called regular if ) is the
centralizer of a torus of maximal dimension in g.

Let A, ={&e Hom; (F F)| & —¢é=1d). As F is algebralcally
closed, A, # J. Let T be a torus of maximal dlmen5|on ing, I'(q,T) =
the set of roots of g with respect to 7', and let

g=he )} g,

ISHE

be the corresponding root space decomposition of g. Given v € I" and
w e g, let m = m(w) denote the minimal integer for which wl*I" & T.
Set

m—1

wlp! if m>1,
q(w) = E‘l

0 if m=1.

Fix ¢ € Ay and define the generalized Winter exponential E,, . € End g by
setting

Ey 9=~ 2 H (Ceop) (W) —ad g(w) +j)(adw)’,

where g € " U {0} (we arrange g, = f).
The following has been proved in [15, Proposition 1]:

(i) E, .(b)is aregular Cartan subalgebra of g, and

q =Ew,§(b) ® Z Ew,g(ga)

serl
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is the root space decomposition of g with respect to E,, .(0). In particu-
lar, this means that E, . € GL(g). The unique maximal torus 7, con-
tained in E, () has the form

T,={t,lteT}, wheret,=1t—y(t)(w+q(w)).

(i) Forevery x € g5,
[t Ey ()] = (8(1) = (£28)(W)y(1))E, ().
Therefore, the root system I'(g, T,,) of g with respect to T,, is
I'(g,T,) ={5, 16T} T},
8, ¢ (1,) = 8(t) = (&= 8)(wW)y(1).

The formulas above generalize those found in [39] for restricted Lie
algebras containing a toral Cartan subalgebra. Namely, if § = T then
m(w) = 1,50 g(w) = 0.

Following [16] define D,, , € End g by setting
D, ¢la,=(&8)(wr)id, —ad g(w), 6T U{0}.

One can prove (see [16]) that D, . belongs to the p-envelope of adw in
adg. As D!, — D, = (adw)?, D, , in fact belongs to the p-envelope of
(adw)?, i.e., there is a polynomlal P(X) € F[X] without constant term,
such that D, , = P((adw)?). Let

r-11 .
e, = Yy —(adw)".
i—o i
Then there exists a polynomial Q,, .(X) € F[X]divisible by X, such that
E,.=e,+0, (adw).

Let §’ be another regular Cartan subalgebra of g. If §" =E, (§) for
some x € Uscr G5 and p € A, we say that §)y’ is obtained from §) by an
elementary switching. By [16], every two regular Cartan subalgebras of g
can be obtained from each other by a finite chain of elementary switch-
ings. In particular, they have the same dimension (equal to the minimal
dimension of the nilspaces of endomorphisms ad x, x € g).

We now show that toral switchings “respect” some subalgebras M (®).

PrROPOSITION 2.8. Let L be a centerless Lie algebra of absolute toral rank
2, T a 2-dimensional torus in the p-envelope L, of L (= ad L) in Der L, and
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a €T :=T(L,T). Suppose that T is standard with respect to L. Choose an
element u in the set

(UkJu[ U ]

i#0 yeI\F,a

such that T, is standard with respect toL. IfuelL,, where p € '\F,a,
suppose in addltlon that U, . o M}, consists of p-mlpotent elements of L,. Let
&€ Ag. Then

E, (§1) c Mo,

Proof. Identify L with a subalgebra of L. By our assumption, a:(u!?!")

= 0 where m = m(u). We mentioned that there is f € F[X] such that
=f(ad u). Let x denote the characteristic polynomial of E,

As E ¢ Is invertible, then x has constant term x(0) = +detE, a& O
Choose g € F[X] such that y(X) = Xg(X) + x(0). Then E
—x(0)~'g(E, ,). Therefore, there is ¢ € F[X]such that E,} = go(ad u)

Now, let @ € M}, b € L__. Considering root spaces with respect to T,
gives

[E..c(a). E, ((b)] = E, ¢(h)
for some h € H == C,(T). Hence
h=E % ([E,e(a). E, (b)]) = e(adu)([f(ad u)(a), f(ad u)(b)])
e H n span{[(ad w)'(a), (ad w)’ ()] 14, = 0
= span{[(ad u)'(a), (ad u)’(b)] 1§ +j = 0 (mod p)}.
Since u,a € M®, then h € [M'“),L]NH c H,. Let .#(«a; u) denote

the p-envelope of M(a; pn) =H, & Liep Mg in L. As M(a; p) is a
subalgebra of L, Jacobson’s formula gives

./%(a,/*‘l’) = Z(Ha)[p]j—i- Z Z(M;L)[P]j.

j=0 ieF} j=0
Therefore the set
( U@ ul U U (g )‘”’)
o [m
j=0 ieFy j>0
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spans .Z(a; u) N C; (T). If we '\F,a then, by our assumption, every
element of U,E[F*M is p-nilpotent. If u € F¥a, then (M“)[P] acts
nilpotently on L, whenever i€lyandj>0. Therefore each eIement of
the above set acts nilpotently on L The set is weakly closed. Thus the
Engel-Jacobson theorem applies and gives

TN#(a;n) TN (kera).

Choose r € N such that E, ,(h)!?" € T, and write for a suitable 1 € T,

E, (M) =1, =t = u(t)(u+ q(u)).
Observe that u, h €.#(a; w). Then E, .(h) €#(a; w). Therefore,
m(u)—1

Y et

i=0

E, (" + u(1) e TN#(a;p) TN (kera).

Consequently, «(z) = 0. But then

a,  (t,) = a(t) = (€oa)(u?)u(t) = —&(a(ul?"™))u(t) =0,

by our assumption on u. This, in turn, means that

auvé([Euvét(a)’Eu,E(b)]) = au,f(Eu,.f(h)) =0

yielding a, (E, (M), L_, 1) =0.Thus

Yu, ¢

E,  (My)cMpwe forallyeT,

as claimed. |

COROLLARY 2.9. Under the assumptions of Proposition 2.8, if u € K, ,
i #0, then M9 = E, (M) and K(a, ;) = K(a).

Proof. As u = ug(u)eK e by the preceding proposition, and
(T)_, =T, then E, (M(“)) c M{*«¢). Applying the proposition with 7,
—u, ¢ instead of T, u & gives E_, (M(“u 9) c M@, So the first result
follows from the fact that det(E vt E, §) # 0. As a further conse-
quence, K(au ) =E, §(K(oz)) Since u € K(a) the latter coincides with
K(a). 1

CoOROLLARY 2.10. Let T,, T, be two tori of maximal dimension in a finite
dimensional restricted Lie algebra g, V a finite dimensional restricted g-mod-
ule, A; (resp., A,) the set of weights of V with respect to T, (resp., T,). Let
O(A)) denote the F,-span of A, in T*, i = 1,2. There exists an isomorphism
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of F,-spaces m:Q(A;) > Q(A,) such that
7(A) =A, and  dim,V, =dim,V,

()
for every u € A,.

Proof. By [16], C,(T,) can be obtained from C (T,) by a finite chain of
elementary switchings. Thus in order to prove the corollary it suffices to
assume that there is a root vector x € g, for some a € T'(g, T,) such that
T,={t, 1t €T} Fix £€ A, and let E, , be the generalized Winter
exponential associated with x and ¢&. Give @ :=q @ IV a restricted Lie
algebra structure by letting [V, V'] = V1?1 = (0). It is well known (and easy
to see) that 7, is a torus of maximal dimension in §. Obviously, the ideal
V' cgis E, stable.

Define 7 : Ty — T by the rule w(¢) = ¢, , for all ¢ € T}, where
0. (1) = @(t) — (&0 Q)P a(t). As & if F-linear, sois 7. If f, , = 0
for some f € T¥, then f= Aa where A = £(f(xP1"")). But a(x!?1"") =
0, yielding f=0. As A;, A, are finite sets (and hence Q(A,), Q(A,) are
finite dimensional over ), 7 is a [ -linear bijection. As E, . is invertible,
dimV, =dim E_,(V,) for every u € A,. Also, E, (V) cV,_ . The re-
sult follows. |

The following is a trivial but useful consequence.
CoROLLARY 2.11. (D0 A, © 0€A,.
(@) IfdimV, =tforall u € Ay, then dimV, =t forall X € A,.

3. HAMILTONIAN LIE ALGEBRAS

In what follows we shall rely on detailed information on the representa-
tions and gradings of H(2;1)® and its derivation algebra. As usual define
Dy : A(2;1) > W(2;1) by setting Dy (xfx3) = ax{~ x5, — bxix5™%,.
Then

H(2;)? = Dy (A(2;2)”,
Der H(2;1)? = D, (A(2;1)) + Fx[ "9, + Fx§ =9, + F(x,0, + x,,)
[34]. Set
H(2:1)?;, = H(2:1)? 0 W(2; 1))

THEOREM 3.1.  Let M be a restricted Lie algebra satisfying H(2;1)® ¢ M
c Der H(2; 1), and let W denote an irreducible restricted M-module. Then
W = u(M) &, Wy, where G > H(2;1)? is a restricted subalgebra of M,
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and Wy is an irreducible G-module. As a H(2; 1)®-module, Wy = @, , ..V
is a direct sum of irreducible H(2; 1)®-modules isomorphic to V. The irre-

ducible H(2; 1)®-module V is isomorphic to one of the following:

(1) 1-dimensional,
(2) H(2; 1)@ with the ad-representation,

Q) u(H2; DP) 8,y 10, Voo where Vy is an irreducible restricted
H(2; D@ -module.

Let T be a torus of M. One of the following occurs.

(A H2; D@ -w=(0),
(B) ann,(T) # (0),
(C©) dimT = 2, and W is the natural M-module

span{xix} | (i,/) < (p —1.p = 1}/F
or its dual.

Proof. Setting in [33, Corollary 5.5] L = M, I = H(2;1)® one obtains

W=u(M) @ Wo,  Wo= & eV,

where M is the universal p-envelope of M in U(M), t is a suitable natural
number, V' is an irreducible H(2; 1)®-module, and K is the stabilizer of
W, in M. Since M is restricted, M =M + C(M). Since W is an irre-
ducible M-module, Cc(M) acts on W by scalar multiplications. Hence
C(M) c K, and therefore u(M) ®uxy Wo = ulM) ®, k) Wo. Set G =
K N M. By construction, H(2; D)® c G.

The irreducible H(2; 1)®-module V is restricted (as so is W). Now [10,
p. 34 of the English translation] establishes the claim on V.

It remains to prove the statement on T.

(a) Suppose dimV = 1. Since H(2;1D)® is an ideal of M it follows
that {w € W H@2;1)®-w =0} is a M-submodule of W. It contains
F ® W,. Then H(?2; )® - W = (0).

(b) We now assume that dim}” > 1. Note that every torus in

Der H(2;1)® has dimension at most 2 [5]. At first we prove the theorem
under the assumption that

T Cc G, dimT = 2.

According to [5, (1.18.4)] there is an automorphism o of H(2;1)® such
that the induced automorphism & of Der H(2;1)®, G(D) = o0 Do o™},
maps T onto Fz,d, ® Fz,d,, where z; stands for x; or 1 + x;. We identify
H(2;D® and ad H(2; ). Then & preserves H(2;1)® and H(2; 1)® .
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(c) Suppose V = u(H(2; D) ®, H@2,1)?,) Vo- BY the above there is a
basis (¢,,t,) of T and g,, g, € H(2; )®, such that 5(t,) = z,4,, 5(g,) = J..
Pick u € V,\(0). The description of V" shows that g/ g/ * ® u # 0. Let
1®u = Yu,, where all u, are weight vectors with respect to T Clearly,
there is a weight vector u,, such that gf~*gf~*-u, # 0, which implies that

gigl-u,#0 for0O<i,j<p-1

Since g,, g, are root vectors for 7' corresponding to linearly independent
roots, the above shows that 1V has p? distinct weights. Since the represen-
tation is restricted, all 7-weights are contained in a 2-dimensional [F,-sub-
space of T*. So 0 is a T-weight of V.

(d) Suppose V = H(2;1)®. Note that W is a &(M)-module if one
defines the action of & (m) via

og(m)(w)=m-w forallmeMweWw.

Since d,,d, € H2;1D)®, T' :== Fx,d, ® Fx,d, is a 2-dimensional torus in
G(M). As &(T), T' are tori of maximal dimension in Der H(2; 1)®,
Corollary 2.11 shows that

anny, (T) # (0) e anny (o (T)) # (0) « ann, (T") # (0).

Next we set M' :== (M), G’ == 5(G), assume that ann,(T’) = (0), and
prove the theorem in this setting.

Put ¢, :==x,d, — x,d,, t; = x,0; + x,d,, and let
M =H(2;1)? e N,
where
N CFx{™%9, ® Fx§~9, ® F(x{"?x§™ 9, — x{~'x{"%,) ® F1,

is a subalgebra containing Ft,. Since (x/~%9,)? = (x§"%9)F =
(xf~%xp7 %9, — xP " 'xy~%)? =0, one has N” C Ft; & [t;,, N] C N.
Therefore N is a restricted subalgebra of Der H(2; 1)®. Since
xP~%9,, x87 %, xP~2xf %9, — xP~'xf %), are eigenvectors of ¢, belonging
to eigenvalues —2, —2, —4, respectively, N = Ft;, ® [¢;, N], and

[6, N]=N® cFx{™%, ® Fx§~ 9, ® F(x{"°x{ ™9, — x[ " *x{"%,).

(e) Supposethat G # M. Then M’ = G’ @ N’ where N’ is a nonzero
T’-invariant subspace of N. Recall that V = H(2;1)®; let v € V be the
vector which is mapped onto ¢, under this isomorphism. Then ¢,-v =0
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whence Wj:={w € W, |t,-w = 0} is nonzero. Obviously, W] is t;-in-
variant. So there is w, € Wy\(0) such that ¢, - w, = aw, for some a € [.
As ¢, acts invertibly on N, there is n € N’\(0) such that [¢,, n] = bn for
some b € [. Therefore there is s € {1,..., p — 1} such that n’ ® w, is
annihilated by T = Fr, + Ft,. Since this contradicts our assumption on
ann,, (T') we derive that G = M. It follows that W is a semisimple isogenic
H(2; )®-module.

(f) Set A = EndW, and let B be the associative subalgebra of A4
generated by {p, (f)|f <€ H(2;D®}, where p, : M — gl(W) denotes
the representation. Since W is a semisimple isogenic H(2; 1)®-module,
B = EndV is a central simple associative algebra. A classical theorem now
shows that setting C :={a € 4 | [a, B] = (0)}, A = B ®& C and C is cen-
tral simple. In particular, this implies

A = BC, BNnC=Fld,.
Since H(2; D@ is an ideal in M’, the mappings

B—B, b~ [py(f).b](fEN)

are well-defined derivations of B. All derivations of a central simple
associative algebra are inner. Therefore there is a linear mapping

AN—->B
such that [ p,, (f) — A(f), Bl = (0) for all f € N.
Suppose X' : N — B is another linear mapping with this property. Then

Mf) = X(f) €BNC=FIld,

for all f € N.

(@ We now adjust A by adding suitable scalar multiples of Idy,.
Recall that VV = H(2; D® as a H(2; 1)®-module. Set

Vi = span{Dy (xix}) li +j — 2 = k}.
Then V = @,V is a graded H(2;1)®-module, and
NG
Vap-s = annV(H(Z,l) 2(1))-

Observe, that for fe N

[0 (£) = M) pw(H@DP)] < [ow(F) = MF). B] = (0).



226 PREMET AND STRADE

In particular,

(M) o (H@DP6)| = [ ow (). ow(H(2:)))]
- PW(H(Z;l)(z)(l))-
But then
Mf)Vaps) CVsps  VfEN.
Moreover, as V,,_s is an irreducible H(2; 1) ,,-module, one obtains
M) 1 Vo5 = ‘l’(f)ldvzp,5 VfEN,

for some (f) € F. Set

X(t) = Mty) — (5 + ¢(11))ldy,
N(f)=Mf) —¢(f)ldy  VfeND.

It is now easy to see that for each f € N the endomorphism X(f) € EndV
coincides with the derivation f € Der H(2; 1)® (recall that V = H(2; 1)®).
As a consequence, X is a restricted Lie algebra homomorphism from N
into q((V). Define

e:N—->C, o(f)=pw(f) —X(f).

As [o(f), N(g)] = 0 for all f, g N, one can check that ¢ is a restricted
Lie algebra homomorphism, where we view C as a restricted subalgebra of
al(V). In particular, ¢(N®) consists of nilpotent endomorphisms (see
also (d)).

(h) Recall that C is a central simple associative algebra, whence has
a unique irreducible module U. It is well known that the M’-modules W
and V' ®; U are isomorphic. Since ¢ is a restricted homomorphism, each
irreducible ¢(N)-submodule of U is 1-dimensional and affords a represen-
tation F, given by

F\(e(NW)) =0,  Fy(e(t))=Ald,

where A € F,. Let U; = Fu, be a 1-dimensional module which affords the
representation Fj.
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Let v, € VV denote the image of D, (xix}) under a fixed isomorphism
w:HQ2,D® >V (i=1,...,p—2).Then
to (v; ® uy) = /u([to,DH(xixg)]) ® uy, =0,

M([Il, DH(xixé)]) ® uy +v; ® (ty-up)

(2i — 2+ A)v, ® u,.

ty - (U ® uy)

If A+#24, thereisie{l,...,p— 2} such that 2i — 2 + A = 0. In this
case ann, (T") # 0.

(i) As a consequence of our previous discussion, there are at most 2
irreducible M-modules W satisfying H(2; 1)® - W = (0), ann,(T) = (0).
Indeed, our discussion in (c)—(h) shows that W=V ® U,, where VV =
H(2; 1)@ is a natural M’-module and U, is a 1-dimensional M’-module
with the trivial action of the ideal H(2;1)® and the action of N given by
the representation F, where A € {2,4}. Now pairwise non-equivalent
representations p,, p,, p; of M would give rise to the pairwise non-equiv-
alent representations p, o & ', p,od % pyed ' of M =G (M).

It is easily seen that the modules from case (C) of the theorem have the
properties in question. Now W = span{xixj|(,j)<(p —1,p— D}/F
has a unique minimal H(2; 1) 2)(0)-submodule W, = Fx{~ xg’*z ®
FxP~?x§~' and a unique maximal H(2; 1) 2)(0)-submodule W,
span{x1x§ | (G, j)<(p—1,p—1),i+j> 2} Then the dual module W’
has a unigue minimal H(2;1)®-submodule isomorphic to (W/W,)*.
Observe that #, has the unique eigenvalue —3 on W, and the unique
eigenvalue —1 on (W/W,)*. Therefore these two M-modules are noniso-
morphic. This proves the theorem under the additional assumption that
TcG,dimT = 2.

(j) Next we assume that T c G, dimT = 1.

Suppose that 7 is a maximal torus of G. Then H(2; 1) is F,-graded by
the action of T. According to [26, (1.5)] the zero component of this grading
cannot act nilpotently on H(2;1)® (since otherwise H(2;1)® would be
solvable). Therefore it contains a toral element ¢, yielding T c H(2; 1)®.
If V= H(2;1)?, let Fv be the image of T under this isomorphism. Then
1 ® v € anny, (7).

Suppose V = u(H(2; D?) &, . 1@, Vo- Due to [8], T is conjugate to
either F(x, B; —x,4d,) or F((1 +xl)al x,d,) under an automorphlsm
of H(2; D)®. By [11] any automorphism of H(2;1)® preserves H(2; D),
Thus there are g€ H(2; D@\ H(@2; )P, and « € T*\(0) such that
[t,g] = a(t)g for all 1 € T. Pick u € V,;\(0). The description of IV shows
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that g7 ' (1 ® u) =g” ' ® u # 0. Write 1 ® u = Lu, as a sum of weight
vectors with respect to 7. Clearly, there is a weight vector u, such that
g?~'-u, # 0, which implies that

glru,#0 for0<j<p-1

Then V carries p distinct weights with respect to 7, and, as T acts
restrictedly on V, 0 is a T-weight.

Suppose that 7" is not a maximal torus of G. Choose a maximal torus
T'>T of G (recall that it is 2-dimensional). By our preceding result,
either ann, (T’) # (0) or W is as in case (C). In the first case ann,,(T") C
ann,(T). In the second case, the present assumption entails that W is the
natural G-module equal to span{xix} | (i, j) <(p —1,p — D}/F or its
dual. We now regard G as a subalgebra of W(2;1) which acts naturally on
A(2;1). Then W is a G-submodule of A(2;1)/F or its dual. Asdim7 = 1,
all weight spaces of A4(2;1) relative to T are p-dimensional (see Theorem
2.3). Hence the zero weight of W has multiplicity at least p — 2. Then
ann, (T) =+ (0).

In the general case set T =T, ® Ft, ® Ft,, where T, =T N G and
t;,t, are 0 or toral elements of 7. Then (tf =% — 1(¢{~* — 1) ® ann, (T;)
canny(T). If Ty=T then T c G, and we are done. If T, # T then
dim 7, < 1. By our previous result, ann, (T,) # (0). Then ann,(T') # (0).
This proves the theorem. |

The following theorem will be extensively used in the sequel.

THEOREM 3.2. Let G be a semisimple restricted Lie algebra with TR(G)
= 2 and with a unique minimal ideal I, and T C G a 2-dimensional torus
of G. Suppose TR(I) = 1. Let W be an irreducible restricted G-module such
that I-W # (0). Regard I & W as a restricted Lie algebra according to
Remark 2.2. Then the following are true.

(1) There exist S € {3((2), W(1;1), H2; D)}, m > 0, a S-module U,
a homogeneous Lie algebra isomorphism of degree 0

piloW- (SeU) ®A(m;l),
and an induced restricted Lie algebra homomorphism
V:G - ((Derg(S @ U)) ® A(m;1)) ® (F ldgey ® W(m;1)),
such that

W(T) =F(hy®1) @ F(d ® 1 + ldg,y ® 1),
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where hy € S, d € Dery(S ® U),t, € W(m;1). I is a restricted ideal of G,
and U is a restricted S-module. If ty & W(m; 1), then ¥ may be chosen so
thatd = 0,ty = (1 + x,)d,.
(2) One of the following occurs:
(@ 0 is a T-weight of W;
() () S=H2ZD?,
(i) m=0ort,=0,
(iii) the (S + Fd)-module U is as in case (C) of Theorem 3.1;
© M S§e{sl2, WD},
(i) m>0,¢+0,
(iii) every x € I is either p-nilpotent or acts invertibly on W,
(iv) if y is a T-weight of W then so is —v.

Proof. (1) Let .# denote the p-envelope of I in G. Suppose T C.7.
Then G =1 + C,(T) and TR(I) = dim T = 2, a contradiction. Thus T ¢
. Suppose T N.#=(0). As .# is a restricted ideal of G, G /7 carries
a natural p-mapping. By assumption, the image of 7 in G /7 is a 2-di-
mensional torus. Let 7, denote a 1-dimensional torus of 7. As .7 is an
ideal of G, G =7+ C,(T)). Let T, denote a maximal torus in C;(T)),
which is mapped onto T +.7/¥ under the homomorphism = :
C(T) - C(T)/C(T) NrF= G /7 [34, (2.4.5)]. Clearly, dim 7 (T,) =
dim(T +.7) /7= 2. As [T,,T,] = (0), then T, C T, N ker . But then
TR(G) > 2, a contradiction. Thus T N.7 = (0).

We now normalize T according to Corollary 2.7. There is a graded Lie
algebra isomorphism

pleW—-(SeU)e®A(m;l),
and an induced restricted Lie algebra homomorphism
V:G — ((Der(S @ U)) ® A(m;1)) & (F ldgey ® W(m;1)),
such that, for some r > 0,

W(T) = (iF ldgey ® (1 +xj)&j)

(Derg(S@ U)) ® F+ ), Fldgoy ®x;5;].

j=r+1

® ¥(T) N

Since TR(S) = 1, we have S € {3((2), W(1; 1), H(2; 1)®} [38, 25, 17]. Then
S is restricted. Let [ p]’ denote the p-mapping on S. As the rule (u ® f)I*V
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=uylPl ® fr for u € S, f € A(m;1) defines a p-mapping on () and
C,(I) = (0), it is easy to see that M = ¢y (S ® F) is a restricted subalge-
bra of G. Therefore the S-module U is restricted (cf. Remark 2.2).
Similarly, I is a restricted subalgebra of G whence . = I.

Recall that 7' N I =: Fh for some toral element 4. Then W(h) = h, ® 1
for some toral element iy € S. Thus W(T) =F(h,® 1) @ F(d® 1 +
Idgey ® ty) where d € Dery(S @ U). If t, & W(m; 1), then the descrip-
tion of W(T) gives r = 1. In this case, W(T) = F(h, ® 1) & F(ldg,, ®
@ +xdp).

(2) (a) Suppose that m # 0, t, # 0, and
Uy ={ucUlhy u=0}+(0).

Observe that U, ® A(m;1) = ann,(h, ® 1) is T-invariant. So there is a
weight vector u = X, ju, ® x“ relative to 7 with u, € U, for all a, and
u, # 0. Note that

(del+1de®ty)(lu, ®xf) =((d®1+1d®1y)(u))f+ uty(f)

for all fe A(m;1). Since t, has p distinct weights on A(m;1), U, ®
A(m; 1) carries p distinct weights with respect to 7, and they all vanish on
h, ® 1. But then W has weight 0 with respect to T. This is case (a).

(b) Suppose m =0ort,=0.If T":= Fhy + Fd | 5 is 1-dimensional,
then TN C;(I) # (0). As I is the unique minimal ideal of G and G is
semisimple, this is impossible. Therefore, Fh, + Fd | ; is a 2-dimensional
torus in Der S. Consequently, S = H(2; 1)®. Moreover, Theorem 3.1 ap-
pliesto M =S + T and W= U. If ann,(T") # (0) then (0) # ann, (T")
® F c ann,(T). Then we are in case (a) of the present theorem, while
otherwise we are in case (b) according to Theorem 3.1.

(c) Finally suppose that m # 0, ¢, + 0, and U, = (0). We intend to
show that this is case (c) of the present theorem. Applying Theorem 3.1 to
M =S, T = Fh, gives S £ H(2; 1)®. Hence S € {3[(2), W(1; D)}.

Suppose there is x € I which is not p-nilpotent, and let x =x, + x,,
where x, and x, are the semisimple and p-nilpotent parts of x in 1. Since
[x,,x,] =0 and x, acts nilpotently on W (by the restrictedness of the
representation), we need to show that x, acts invertibly on W.

As [ is an ideal of G, one has G = I + C;(Fx ). If C;(Fx,)/Cs;(Fx,) N
I is p-nilpotent, then T C I, a contradiction. Thus there is a torus 7' C G
such that Fx, c 7" N I ¢ T'. But then dim 7" > 2, whence dim 7" = 2 (as
TR(G) = 2). This yields Fx, = T' N 1. As U, = (0), 0 is not a T-weight of
W. Now Corollary 2.11 shows that 0 is not a 7’-weight of W. We now
substitute T by 7" and apply the former results. We obtain that U =
{u e Ul Hy-u =0} =(0). This means that x, acts invertibly on W.
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Let y be a T-weight of W and y(h, ® 1) =i. For j € F, set U, =
{u € Ul hy-u = ju}. According to our assumption, U; # (0). But then the
representation theory of 3[(2) and W(Z;1) shows that U_; # (0). Now
proceed as in (a) to show that —y is a T-weight on W. |

Now we are going to determine the Z-gradings of Hamiltonian algebras.

DerFINITION 1. A Z-grading of W(2;1) is said to be of type (a,, a,) with
respect to generators x,, x, of A(2;1) (contained in A(2;1),,) if

deg(xix}d,) = ia, +ja, —a, forall0<i,j<p-1k=1.2

THEOREM 3.3. For a Z-grading of a subalgebra M of Der H(2;1)®
containing H(2;1)® there are o € Aut A(2;1) and a,,a, € Z such that
oo HQ2,1)Po0 ! =H2;1)? and the grading of M is induced by a
(ay, a,)-grading of W(2; 1) with respect to a(x,), o(x,).

Proof. (a) First suppose that M = H(2;1)®. Let H = Aut M and let
Lie H be the Lie algebra of the algebraic group H. By [9], Lie H is a
restricted subalgebra of Der M. As Der M can be identified with a re-
stricted subalgebra of W(2; 1) (see [34]), the Lie algebra Lie H has no tori
of dimension > 2 (cf. [7] or Theorem 2.3). Now let T be a maximal
algebraic torus in H. Then Lie T C Lie H is a toral subalgebra of Lie H.
This yields dim T = dim(Lie T) < 2. By [9], all maximal algebraic tori in H
are H-conjugate. In particular, they have the same dimension. We claim
that dimT = 2. To prove the claim it suffices to produce a 2-dimensional
algebraic torus in H.

Let G2 = {(¢,,1,) | t;,t, € F*} be the direct product of two copies of
F*. This is an algebraic torus of dimension 2. Let X* denote the group of
rational characters of GZ. Define &,, e, € X* by setting &,(¢,,t,) = ¢,
i = 1,2 Itis well known (and easy to see) that X* = Z&, & Z¢,. Define a
rational homomorphism

AGE > GL(W(2;1))
by the rule
Mty tp) (%1344, ) = it xixha,

forall0<i,j<p—1 k=12 and ¢,t, € F*. Itis not hard to see that
MG2) c Aut W(2;1) and, moreover, AG2) preserves D,(A(2;1)) C
W(2; 1). From this it follows that A(G?2) acts on H(2; )® = D, (A(2; 1)V
as a 2-dimensional algebraic torus of automorphisms. This establishes the
claim, thereby proving that A(GZ) is a maximal torus of H. Clearly,
A:G2 > Aut H(2; D® is a rational representation of G2. Also, A(t,,t,)
acts on the line F(xix}d,) via the character ie, + je, — &, where k = 1,2.
It follows that — &, and — &, are weights of the G2-module H(2; 1)® (one
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should take into account that d,, d, € H(2; 1)®). Therefore, the weights
of A span the whole lattice X* (over Z). From this it is immediate that

MGh) = &,(GE) X £,(Gh) = G3.
We identify A(G2) and the restriction of AM(G?%) to H(2; 1)®. Now let

M= @M, [M,M]|cM,VijeZ

ieZ

be a Z-gradation of M. Associated with this grading there is a 1-dimen-
sional algebraic torus A = {A(¢) |t € F*] c H such that A(1)(m,) = t'm;,
forall m; € M,, t € F*, i € Z. As A is contained in a maximal algebraic
torus of H, there is g € H such that

A=gAgtc MGP).
By [11, 13], there is o € Aut A(2;1) such that
o leDeog=g(D) e H(2;1)?

for all D € H(2;1)®. Therefore we may view g as an automorphism of
w(2; D).

The restriction_g, |z, i = 1,2, defines a rational character of the 1-di-
mensional torus A. Hence, there are a,, a, € Z such that

e(A(1)) =1, 1,2,

for every ¢t € F*. But then
: . ~ N ~ oV Tt
(iey +je, = &) (A1) = e(A(1)) - &2(A(1)) - & (A(1))
= platjaz—a,
forall i,j € Z, k €{1,2}, t € F*. It follows that
A(t)(xix}a,) = tiaria=axix] g, .

Thus

A1) (0 o xixfa, o ot) = g ighg~} (xixfa,) = i titeg=} (xix]d,)

K

1

— flatia =t o xixig o gt

We now observe that o ¢ xix}d. o o™t = a(x)) o (x,)d/do(x)).
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(b) Next we treat the general case. Observe that M® = H(2; 1)®, so
that H(2; 1)® is a graded ideal of M. By (a) there are o € Aut 4(2;1) and
a,,a, € Z such that o - H(2; )@+ ¢~ = H(2; 1)®, and the present grad-
ing of H(2; 1) is induced by a (a,, a,)-grading of W(2;1) with respect to
a(x,), a(x,). We now use the automorphism D — ¢~ Do o of W(2; ).
By this automorphism the present grading of W(2;1) is transformed into
the (a,, a,)-grading with respect to x,, x,. By substituting M by o' e M o o
we are reduced to prove the claim for o = Id.

Denote the homogeneous components of M by M, ;,, j € Z. Let W(2;1)
= EBjEzW(Z; 1), be the (ay, a,)-grading of W(2;1) with respect to x,, x,.
Then by the assumption on the grading
L@ _ NG . _. NG :
Let D =Xi_ Y, .00 ,x", + ad, + Bd, be an element of M. As
X9, —x,0, € H(2; 1)@, one has x,d, — x,d, € M. Therefore

2
k
[x10; = x,0,, D] = 2 X ak,b(bl —b,+(-1) )xbak — ad; + B,
k=1b#0

eH(2,1)? N M, =H2:)? cw(21),. (2

Similarly, 9, € H2; D)®_, c M for [ = 1,2, so that

(—ap)

2
[0, D]= % X a;,bx" %9,

k=1b+0

ceH2:)? M, , =H2D? , cW(21);,.,. (3)

As all summands in the right-hand side of Eq. (2) are homogeneous with
respect to the grading of W(2;1), it follows that the degree of each of
these summands is j. In particular, ad,, Bd, € W(2;1);. Similarly (3)
implies that b,a, ,x"~ 9, € W(2;1);_, forall k,/=1,2 and all b # 0.
Suppose «, , = 0 for some k and b ae 0. There is [ with b, # 0. We
conclude x%, € W(2; 1);. Consequently, D € W(2;1), for all D € M,

i
yielding M, ;, € W(2;1),. The result follows. [

We note that, while one can describe W(2;1) be means of any set of
generators, the subalgebra H(2; 1)® is defined by use of the mapping D,,,
in which a fixed set {x,, x,} is involved. Using different sets {u,, u,} gives
different mappings D{* and isomorphic but not necessarily identical
subalgebras of W(2;1). Now let o € Aut 4(2;1) be such that
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oo HR2; )P0 ' = HQ;D?. Put u; = o(x,) (i = 1,2). Then {uy, u,} is
a set of generators of A(2;1). Set

W (i J\ — 5yi=1,,] — gyl 1
Dy (uiub) = iuy™‘uja,, — juiub™ 9,

with g, = d/4d,. It is easily seen that o o Dy(xjx})o o™ = Di(ujub).
The assumption on o yields that H(2; 1)® = D(“)(A(Z )Y, So we may
use the mapping D¢ for the definition of H(2; 1)(2) as well.

It is also clear that Der H(2; D® = D{’(A(2; D) + Fu{™ %9, + Fu}~%,,
+ F(uyo,, + u,9,,).

CoRrOLLARY 34. Let M = @,_, M; be a Z-graded Lie algebra such
that H(2;1)® c M c Der H(2;1)®. Then there are o € Aut A(2;1) and
a,,a, € Z such that o - H2;1)® o o~ ' = H(2; 1)® and the grading of M is
induced by a (ay, a,)-grading of W(2;1) with respect to u, = o(x;) and
u, = a(x,). One of the following occurs.

D a,=a,=0.Then M = M,.
(2 a, =0, a, # 0 (the case a, # 0, a, = 0 is symmetric). Then
@ M= @ _ M, withk>p-—2,
(b) XP-PFGui™'ub ™9, +uiub™%,) c M
o FGiud™ 1up 1(9 + ul up 2(9 Bl
© Xxr- F(lu1 uzr? —uyd,) © My € EP7F(iuy *u,d,, — uyd,)
® F(uy9, + uzﬁuz) M, = W11 @ C(M)
(d) TP 'Fuis,, cM_, < TP Fuid,,
() Ifa, =a, # 0 then
@ M= @ _ M, withk=>2p-S5,
(b My, s, F(u" 2uf =%, — 2uf " tub =%, ) + FQu{ " *uf™ 9,
—uf " *uf"%,),
(© XioFlui ‘u;™9, —Q—Dujuy™ 9, ) cMycXf_ F(iui™ 'u3™ 4,
—Q2 = Duiuz™9,) ® F(u,d, +u,d,), My = s1(2) & C(M,),
(d M_, =Fj, +Fj,.
4 If 0+ a #a,+#0 then M, C Fu,9, + Fu,d, +
Tivjs o Fluytuba, — juiuy™9,) + Fuf =%, + Fub™%9 and hence M(l)

ll’

acts nilpotently on M. Moreover, there are at least 2 indices i i, i, <0,i; #1,
with M; # (0), M, # (0).

(5) Suppose M C H(2;1), and the grading is as in (2) or (3). Then
C(M,) = (0). Any torus Fhy C M, is proper in M, if and only if it is proper
in M.

(p-2)a, &
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Proof. (1-4). In case (2) one has
deg(iuf i, — juus 9,) = (j — Day,  deguf ¥, = —ay,

deguy~%9, = (p —1)a,,  degu,d, =degu,dq, =0.

An easy computation gives the result.
In case (3) one has

deg(iuj_lué d,, — juiuy” 107u1) =(i+j—2)a,,
deguf~ %, =deguy™%, = (p — 2)a,,
deg u,d, = degu,q, = 0.

An easy computation gives the result.
In case (4) set g = a,/a, and observe that ¢ # 0, 1. Note that

deg(iui‘uia,, — juiui™9,) = ((i = 1) +q(j — 1))ay,
degul~9,,=(p —1-q)a,
deguf 4, = (=1+4q(p—1)a,
deg u,4, = degu,d, =0.

Thus deg(iui ™ ‘u}d,, — jujus™%,) + 0for (i, j) € {(1 0),(2,0),(0,1),(0,2)},
and hence M, C Fu,d, + Fu2(7 + Xiyjs o Fliui uba, — juiu}™9,) +
Fuf=%, + Fup 119
Smce (Zulu2 —uid,) € M, and Buiu,d, —uid,) € M,,, the final
claim follows if a1 < 0 As the case a, <0is symmetric we then assume
a,,a, > E);:\nd a, # a,. Then 9, e M_, , 4, € M_,, whence M_, + (0),
., * (0.

(5) The statement on C(M,) is trivial. Let Fh, C M, be any 1-di-
mensional torus, and let M, be the maximal compositionally classical
subalgebra of codimension 2 in M. It follows from our discussions preced-
ing Remark 1.1 that Fh, is proper in M if and only if Fh, C M(O). If the
grading of M is as in case (3), then M, = ¥,. M, . SO Fh is proper in
both M and M,. Now assume that the gradlng of M is as in case (2). Then

(0) Zl>0Mta2 + Z F(iuiilMZ(?L Ll (9 ) + Z Ful Z"1>0 ia,
+ My 0 Mg, + M_,, N M, Observe that Z F(lu 2(9 —uyd,) =
M, N My, is the unlque subalgebra of codimensmn 1in M0 = W(l;l).
Again, Fh, is proper in M, if and only if Fh, is contained in this maximal
subalgebra of M. The result follows. 1

—ayp
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We apply the latter result to filtered Lie algebras. Let K denote an
arbitrary Lie algebra and let R ¢ Der K be a torus. Suppose

K=K

(csp 2 - DKg D ... DK, D(0)

©

is a filtration of K such that R(K;)) € K;, for all i. Let

S2
grK = ) ©® ar; K, or; K == K /Kg1

i=—s5

be the corresponding graded Lie algebra. There exists a canonical injection
R = Dergr K. Suppose Q is a subalgebra of K and J is an ideal of Q.
Clearly,

S2
grQ = __6_9 (O N Ky + Kiiy)/Kisy
is a subalgebra of gr K, and
dimgr K/gr Q = dim K/Q.

Also, grJ is an ideal of gr Q with dimgr Q/grJ = dim Q/J, and grJ is
solvable or nilpotent if J is so. This implies

gr(rad Q) c rad(gr Q).

THEOREM 3.5. Let K be a Lie algebra of absolute toral rank 1 and R
a maximal torus in a p-envelope of K such that H = Cy(R) acts triangulably
on K. Let

K=K_,,>...2K,,>2(0)
be an R-invariant filtration of K,
[R, K(l-)] cK, foralli,
and gr K the associated graded Lie algebra. Let
m:grK — grK/rad(grK) =M

denote the canonical epimorphism. Assume that H(2;1)® c M c H(2;1).
Then the following are true:

(1) K/rad K is of Hamiltonian type, i.e.,

H(2;1)? cK/rad K € H(2;1).
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(2) The mapping
T:R—->DergM,  T(t)(m(w+Kj i) =m([t,w] +K;iy)

Jorw € K ;)\ K1, is a well-defined restricted Lie algebra homomorphism.
There is t, € M N w(gr H) N M, such that (R) = ad,, Ft,.

(3)  Suppose H C K. If the grading of M is as in cases (2) or (3) of
Corollary 3.4, then a, > 0.

(4) Let Q C K denote the inverse image of H(2;1), under the ca-
nonical epimorphism K — K/rad K. If H C Q, then Ft, is conjugate to
F(uyd, — u,d,,) under an automorphism of H(2; 1)®.

(5)  Suppose H C K ). If the grading of M is as in case (2) of Corollary
3.4, and Ft, is conjugate to F(u,d, — u,d, ) under an automorphism of
H(2; 1)@, or if the grading is as in case (3) of Corollary 3.4, then H C Q.

Proof. (1) Since K has absolute toral rank 1 and Cx(R) is triangula-
ble, K/rad K is one of (0), 3[((2), W(1;1), or it is of Hamiltonian type
[25, (4.1)]. As we have mentioned above

p? — 2 < dim M = dimgr K/rad(gr K) < dimgr K/gr(rad K)
= dim K/rad K.
Therefore the first 3 cases are impossible.

(2) As K has absolute toral rank 1 there is y € R* such that
K = K(y). We set w=w + K, € gr; K for w € K; \K;,,). Since R
preserves the filtration of K there is a restricted Lie algebra homomor-
phism

o R — Dery(grK), a(t)(w) =[t,w] + K
for w € K ;)\ K. Set R == a(R).

Note that I :=X,,,(grK),, + X,.,l(grK),,,(@grK)_, ] is an ideal of
grK, and grK=1+grH. Thus (gr K)* cI, whence Cg, xy(R) C
L. ollgr K)y,, (gr K)_,, 1. Now suppose that U, ,[(gr K),,,(gr K)_,, ] acts
nilpotently on gr K. Then C(ng)m(R) acts nilpotently on (gr K)® as well.
But then (gr K)™ is solvable [26, (1.5)], yielding that M is solvable. This
contradiction shows that there are root vectors u € K, , v € K_,, (i # 0)
such that y([z, 0]) # 0.

Let & = [u,v] € Cx(R), choose r € N such that AP’ € R, and set
t, = h!"Y € R. We may adjust u so that y(h) = 1.

As [u, 7] acts nonnilpotently on grK, one has i € K\ K, and
R = Fty ® CRr(K). Since y(h) = 1 then /! — 1, € Cr(K). Set

r

hi=h+Kg, = (adyh)" .



238 PREMET AND STRADE

Clearly,
to(w) = (adg h)p,(w) + Ky = [to,w] + K

forallw € K ;)\ K ;.1 j € Z. Therefore, t,+ 0 and R = Fi,. As rad(gr K)
is invariant under ad,, x 4, then rad(gr K) is invariant under R. Set

ho=m(h), Io=/(adyh)".
Then
to(m(W)) = m(i(W))  Vwegrk.
Now for each ¢t = at, + z, where a € F, z € Cx(K), the mapping
o :R — Dery M, 7 (t) = afy

satisfies

F(1)(m(W)) = do(7m(W)) = am(fo(W))
W([ato,W] +K(j+l)) = W([[,W] +K(]-+1))

for all w € K;)\K1) j € Z Therefore & is a restricted Lie algebra
homomorphism.

As [t,, 1] = it, [t,,0] = —iD, [u,0] = h, one has h € (gr K)*. Then
7 € M. Observe that M carries a unique p-structure (as it is centerless).
M, is a restricted subalgebra of M (as it is the set of all elements of M of
degree 0). Also M™ = H(2; 1)@ is a restricted ideal of M. Set ¢, = Al’V.
Then 1, e M® N M, and ad,, t; = 1,

Finally, we observe that there is a surjective Lie algebra homomorphism

7Kg = Koy /Kqy = 09rp K 5 M,,

which satisfies 7([t,w]) = ()7 (w)) for all t €R, w € K \ K. In
particular, as o (R)(¢;) = 0, there is h; € H N K, with 7(h,) = t,. Then
e 7w(gr H).
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(3) Suppose H c K. Part (2) of this theorem in combination with
the present assumption implies that

Cy(Ft)) =m(grH) C ), M,

i>0

(a) If the grading of M is as in case (2) of Corollary 3.4, then (as
M c H(2;1) one has M, = W(1;1). Now W := LP ' F(ui 'uy~%, +
2uiul ™% ) © M, _3),, is arestricted irreducible M;-module of dimension
p. Hence 0 is a weight of W with respect to Ft, [6]. The former
observation shows that (p — 3)a, > 0, whence a, > 0.

(b) If the grading of M is as in case (3) of Corollary 3.4, then we
conclude similarly to (a) that M, = ¥2_ 0F(zu1 1u§ 0,, — Q- Duuz"4,)
=35((2) and M, ¢, = Li_oF(G + Duf ™2 'ug” 3*’0” - @ —ul~ e
ub=4g, ) is an irreducible M;-module of dimension 3. Hence O is a weight
of this module yielding a, > O

(4) By construction,

dim K/Q = 2, Q/rad Q = 3((2).

This implies that dimgr K/gr Q = 2. As gr(rad Q) c rad(gr Q), one has
gr Q/rad(gr Q) € {(0), 3[(2)}. Set U := = (gr Q). Then dim M /U < 2 and
U/rad U € {(0), 1(2)}. But M N W(2; 1), is the unique subalgebra of M
with these properties, forcing

7(gr Q) = U =M 0 W(2 1),

Therefore dimgr K/gr Q = dim K/Q = 2 = dim M/U = dimgr K/
(gr Q + ker 7), whence

rad(grK) = kerm c gr Q.
If HcQ, then t; € w(grH) c w(gr Q) = M N W(2;1),,. Thus t; €
My N W(2; 1), Due to [8], Ft, is conjugate to F(u,d, — u,d,).

(5) Observe that Ft, is conjugate to F(u,d, — u,d, ) if and only if
t, € W(2; 1), Now suppose that H < Ky, that the grading of M is given
as in cases (2) or (3) of Corollary 3.4, and that ¢, € My, N W(2;1),,. We
summarize some of the results that have already been established.

(i) We have mentioned in the proof of (4) that
MnW(2;1)e =m(rQ), rad(gr K) = ker7 c gr Q.
(i) Due to (3) one has a, > 0. Then

LM, cMOW(2)g=m(rQ), XM=M,

izl i<0
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Let x € K;,\ K, for some i > 0. From (ii) we conclude that there is
Xe(@n K + K(l+1))\K(l+1) such that 7(x) = w(x'). Then ¥ —x'e
kermcgrQ,ie, X €gr; Q. Thusthereis x" € (Q N Ky + K, )\ K11
such that x = x". But then x € Q + K;..,,. Hence K; € O + K, ;. By
induction we conclude that

KycO+K,,11)=0.

Let x € (H N K;)\K,,, for some i. By assumption, i > 0. If i >0,
then the above shows that x € Q. So assume i = 0. Then 7 (%) € M, N
Cy(Ft). As t, € My N W(2; 1), by our assumption, it is easy to see that
M, 0 Cy(t) € My N W(2; D), € m(gr Q) (cf. (). Thus there is x' € (Q
N K, + Ky)\ K, such that 7(%) = 7(x)). Then ¥ — x'€ kerm c gr O,
whence X € gry Q. Choose x" € (Q N K, + K;)\ Ky, with X = X”. Then
x —x" € K4y € Q, yielding x € Q. Consequently, H c Q. |

COROLLARY 3.6. Let L be a finite dimensional simple Lie algebra of
absolute toral rank 2 and T a 2-dimensional standard torus in the semisimple
p-envelope of L. Suppose that

(—sp 2 - 2L, 2(0)

is a filtration of L such that C,(T) C Ly, and [T, L;]1 € L, for all i. For
vy eI set

L=L

S2

grL(y) = EB (L(V) NL; + L(i+1))/L(i+1)'

Suppose that
H(2;1)? cgr L(y)/rad(gr L(y)) < Der H(2;1)?,
gro L(y)/rad(gry L(v)) € {30(2), W(1;1)}.
Then

(1) v is a Hamiltonian root of L.

(2) vy is a proper root of L if and only if Ft, is a proper torus of
gro L(y)/rad(gry, L(y)), where t, is as in Theorem 3.5(2) with K = L(y).

Proof.  As L(y) is a 1-section of L one had TR(L(y)) < 1. As L(y) is
not nilpotent, one has TR(L(y)) = 1. The filtration of L gives rise to a
filtration of L(y). We set K = L(y) in Theorem 3.5 and define M :=
gr L(y)/rad(gr L(y)). Then H(2;1)® c M c Der H(2;1)® by assump-
tion. Due to a result of Skryabin [21, (5.1)], TR(M) < 1. Then a standard
argument yields M c H(2;1) (see [4, (3.1.1)]). Theorem 3.5(1) shows that
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H(2; 1)@ c L[y] € H(2;1). So vy is Hamiltonian. By our discussion preced-
ing Remark 1.1, y is a proper root of L if and only if H < Q(y). Note that
the assumption on gr, L(y) means that the grading of M is as in cases (2)
or (3) of Corollary 3.4. Therefore, parts (4) and (5) of Theorem 3.5 yield
that + is a proper root of L if and only if ¢, € M, N W(2;1),. Again the
discussing preceding Remark 1.1 shows that the latter is true if and only if
Ft, is a proper torus of M,/rad M,. |

We finally prove subsidiary results on Hamiltonian 1-sections.

LEMMA 3.7. Let L be a finite dimensional simple Lie algebra of absolute
toral rank 2 and T a 2-dimensional standard torus in the semisimple p-en-
velope of L. Suppose vy is a root with respect to T. If dim L /K, > 2, then
the subalgebra generated by L., acts nonnilpotently on L.

Proof. 1t follows from Lemma 1.1 that y is Hamiltonian. So we have
H(2;1)® c L[y] c H(2;1). To prove the lemma it suffices to show that
the subalgebra of H(2;1) generated by # (L)) = (L, +
rad L(y))/rad L(y) acts nonnilpotently on H(2;1)®. By [8] we may as-
sume that w(L,) is a root space of H(2;1)® relative to ad i, where
h € {Dy,((1 + x))x,), Dy(x,x,)}. First suppose that & = D,((1 + x;)x,).
Then there is a € [ such that

p-1 )
m(L,) = ¥ FDu((1 +x)""x}).
j=0
As

(ad Dy (1 +x1)"""x))(ad Dy (L +x1)"))"(Dp (L +x0)" x5 7Y))
e F*h

the result follows in this case.
Now suppose & = D, (x,x,). Using [4, (5.2.1)(d)] (cf. also Section 1) we
may assume that

p—2
7(L,) = ZO FDy (x{*'xy) + FDy(x§71).
i=

As
(ad Dy (xix,))(ad DH(xl))p_z(DH(xé’*l)) € F*h

the result follows in this case as well. |
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In what follows we need a special result on representations of central
extensions of Hamiltonian algebras. So let G be a Lie algebra satisfying

G/C(G) =H(2;1)?,  dimC(G) = 1.
According to [18, Proposition 5.3], G has a basis
{Dy(xix})10<i+j<2p—20<i,j<p-1}u{z},

and there exists D € Der H(2; 1)® such that the Lie multiplication in G is
given by

[ Dy (xix]) + az, Dy(xkxh) + Bz]
= (il — ) Dy (x4 11)
+ A([D, Dy (xixd)] Dy (xfxh)) 2.
Here A: H(2;1)® x H(2;1)® - F is given by
A(Dyy (x5x}), Dy (x5%5)) = 8 148, 11
and D can be chosen as
D = ayx{7 0, + a,x§7 9, + azDy(xf"x7Y),  ay,a,,a; €F.
For0 <r<2p— 2, set
G,y = span({D,, (xjx}) Ir+2 <i+j<2p—3,0<i,j<p—1} U{z}).

LEMMA 3.8. Let G be as above, and let p: G — g(V) be an irreducible
faithful representation of G. Suppose that every Cartan subalgebra of G acts
triangulably on V. Then D € FD,(x!~*x{~'). Moreover, if dimV < p*,
then the subalgebra [G(O), G(l)] + [G, G(z)] acts nilpotently on V.

Proof. (@) Suppose «; # 0. Then
A([D. Dy (1 +2)°x3)], Dy (1 +x1)"*x272)) # 0.

Thus, the Cartan subalgebra H = C;(Dy(1 + x,)x,)) has the property
that z € H®. But then H acts nontriangulably on V. This yields a; = 0,
and, by symmetry, o, = 0.

(b) Since G, acts nilpotently on G and V' is an irreducible G-mod-
ule, there is a mapping A:Gg, = F such that, for each E € G, the
endomorphism

p(E) = ME)Id,
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is nilpotent. Observe that
[D.H2:1)?| cH2:1)?,, 4 = (0).
Therefore A(D, H(2; D)® )], H(2; D®) = 0, whence
[Gay G| < span{Dy (xix}) 1i +j = 2}.

Now suppose that the subalgebra [G ), Gy)] + [G, G,)] € Gy, N [Gy), G]
acts nonnilpotently on 1. By Jacobson’s theorem on weakly closed nil sets
there is Dy (xix)) € G, such that A(Dy(x;x5)) # 0. Choose a, b such
that

O<ab<p-—-1, 3<a+bx<2p-3,
M Dy (xix3)) # 0,
MDy(xix}))=0 ifi+j>a+bori+j=a+b,i>a.

(¢c) Suppose a =p — 1. Then b <p — 1.

(c1) Suppose b <p — 2. Set in [22, Main Theorem], & == Gy, k =
Gpipap € = Dy (x,), f = Dy, (x?~*x5*1). This theorem shows that there
is an |rreducrble G p-submodule ¥ of V such that dim V" > p dim V. The
present assumption yields dim V, < p*.

Next we apply [22, Main Theorem] to the Lie algebra G, and the
Gmodule V. Set h = Gy, k= )7 e, = Dy(x?), e, =
Dy (xyx,), fi = Dp(xf~ +1) fz = DH(x ). As (Me, fiD) oy <0
is a nonsingular triangular matrrx there are f, f2 € k such that Me;, f;D

- As [e;, f;1 € G this means that p([e;, f;] is nilpotent if i ae] and
mvertrble if i =j. Clearly, k is an ideal of G(O) and kP € G,,,_, By
choice of a, b, k¥ acts nilpotently on V/,. By [22, Main Theorem] there is
an irreducible G,,-submodule V; of such that dimV, > p?2dim ;. The
present assumption on V' yields dimV; < p. As Gy, is solvable drm V) isa

p-power, whence dim V; = 1. This shows that every £ € G, ) ) has eigen-
value 0 on V, thus MG,) = 0. However, A( Dy, (x}), Dy (xP ~*x2* D)) #
0. Therefore this case cannot occur.

(c2) Suppose b =p — 2. We apply [22, Main Theorem] to the Lie
algebra G, and any irreducible G -submodule V; of V. Set i = G,
k= J@p-5): = Dy(x{), €, = Dp(x,x,), fi=Dy(xf™2x5™), f;=
Dy (xf~'xp~ 2) As above there is an irreducible G, -submodule V; of
such that dimV, > p?dim V. The present assumption on V' yields dim 1}
<p® We now set h =k =G, ,, and e; =Dy(x}), e,:=D (xf)
fi=Dy(xP3xY), f3 = D,(xf *x£~1). As above there are f,,f, €k
such that A(le,, ;D) = &, ;. But then dim I/, > p?, a contradiction.
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(d) Suppose a,b <p — 1 We proceed similarly to (c). Recall that
a+b>38eth—G0,k Gasp-1y €1 = Dy(x)), e; = Dy(x,), f =
Dy (xix5*h), f5 = H(xl x3). Then [e; [e;, k]l € G, and [G), k] acts
nilpotently on V. Also [e;, k] C Gy, and (M(e;, fiD); <, ;< is @ nonsingu-
lar triangular matrix. By [22 Main Theorem] V has a G ,-submodule V,
of drmensron dimV, < p?. Next put h := (1), k= Gg,p_,p and arrange
=D, (x2), e, = D;(x;x,), fi=D,(x¢ b+, f; = DH()c1 by if
a 9& 0 a #b; e, =D,(x?), e, = Dy(x3), fl = D, (x8~1xbtY), f2 =
Dy (x¢ x5~ if a 9& 0, a=0b; e =Dy(x;x,), e, = DH(xg) fi=
D (x5), fy=Dy(x,x5~1) if a =0. As in the former cases we obtain
dimV, > p? a contradlctron.

(3) Suppose b =p — 1. Then a < p — 1. This case is similar to (c).
Suppose a <p — 2. Setin [22, Main Theorem], & := G, k == G, ,_»),
e = Dy(x,), f=Dy(x{**x5~"). There is an irreducible G -submodule
V, of V such that dimV, < p*.

Next we apply [22, Main Theorem] to the Lie algebra G, and the
Gormodule V,. Set h = Gy, k=G, 3, € =Dyxd), e, =
Dy (x1x,), f1 =Dy (x¢"1x~ 2) fz- Dy, (x$x2~1). There is an irreducible

G,y-submodule V; of V; such that dimV; <p. As G, is solvable, dlm v,
is a p-power, Whence drm V, = 1. This shows that every £ € G, ) has
eigenvalue 0 on V, thus MGy,'P) = 0. However, M[D,(x3),
D, (x{*xp~ 3)]) # 0, a contradiction.

Suppose a = p — 2. We apply [22, Main Theorem] to the Lie algebra
G, and any wreducrble Goysubmodule V,, of V. Set h = G, k=
G(Zp 5) = H(x e, = Dy(x;x,), f1 = Dy(xf~ xéj %), I3 =

D, (xf xé’ D). As above there is an irreducible G;,-submodule V; of 1
such that dim ¥/, < p?. We now set h =k = G,_,, and e, := D, (x3 )
e, = Dy(x3), fi=Dy(xP %573, f, = Dy(xf x§~%). As above
dimV, > p?, a contradiction. i

There is no need to assume in the preceding lemma that C(G) = (0).

LEMMA 3.9. Let p: H(22; 1)@ — g((V') be an irreducible representation
with dimV < p*. Then the subalgebra [G(O), G(l)] + [G, G(Z)] acts nilpotently
onV.

Proof. Putin Lemma 3.8 G = p(H2;1)®) ® Fid,. 1

CoROLLARY 3.10. Let L be a finite dimensional simple Lie algebra of
absolute toral rank 2 which is not isomorphic to a Melikian algebra, and let T
be a 2-dimensional torus in the semisimple p-envelope of L. Let y € T(L,T)
be a root such that L(y)®/C(L(y)*®) = H(2; 1)®. Suppose
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dmY, ¢ Lgiiy < p* for some B € I\F,y. If vy is proper then K, = R,
forall i # 0, and dim L;,/R;, <4 in any case.

Proof. Let V=Y, ¢Lg,;, and let G be the image of L(y)® in
gl(V). Let H be an arbltrary Cartan subalgebra of G and let T,, be a
maximal torus of the p-envelope of the inverse image of H in the
semisimple p-envelope L, of L. Then 7" := T N kery + T is a torus of
L, of dimension at least 2, hence a torus of maximal dimension. Since L is
not a Melikian algebra, C,(7") is a triangulable Cartan subalgebra of L.
Clearly, C,(T") N L(y)® is mapped onto H. Thus Lemmas 3.8 and 3.9
apply to every composition factor of V. As a consequence, [G,, G;)] +
[G,G,)] acts nilpotently on V. Now let D € K;, where i # 0. Then
D eL(y)(”) Let D be the image of D in G. We may assume that
D = D, (zkx!) for sultable choices of k,! with z; =x; or z; + 1 + x,,
depending on whether or not v is a proper root (because K, is the linear
span of elements of this form). If y is a proper root, then De G U
FD,(x}) U FD,(x3), and if vy is improper, then D € Gy, U
Ujes, FD,((1 +xl)fx ). If De Gy, then the above lemmas show that
[D,G_,,]acts nilpotently on V. If D € FD,(x}) U FD,(x3) then G _,

G and again by the preceding lemmas [D, G_;,] acts nilpotently on V
As vy vanishes on [D, L_,, ] and V' carries two independent 7-weights this
shows that all roots of I'(L,T) vanish on [D,L_, ] This means that
D eR,, or y is improper and D = D,((1 Jr)cl)/x2 for some j. This

iy
proves the last statement. |

Y

4. FILTRATIONS

Let L be a simple Lie algebra over F of absolute toral rank 2, T a
standard nonrigid 2-dimensional torus in the semisimple p-envelope L, of
L (see [18, Sect. 8]), and L, a maximal subalgebra of L containing
R(T) + H. Choose a (ad L g))-invariant subspace L ;) of L containing
L,, minimal subject to the condition [Lq,, L_;] < L. Then one
defines the standard filtration of L associated to the pair (L, L _,,) by
setting

Loy =f{x €Lyl [x Loy] cLpl 120,
Lo iyy=[Ly Ly +Ly  i>0.

Since L, is maximal in L this filtration is exhaustive, and since L is
simple, it is separating, i.e., there are s,, s, > 0 with

L=L_,y>...2L¢ 1 =(0).



246 PREMET AND STRADE

Suppose L, is T-invariant. Then so are all the subspaces L, —s; <
i <s,.

PROPOSITION 4.1. Ly, contains nonzero homogeneous sandwich elements
of L.

Proof. Let (T) ={x € U,cr, L, | (adx)* =0} denote the set of
all homogeneous sandwiches of L with respect to 7. Since T is assumed to
be nonrigid, [18, Theorem 6.3] shows that & (T) # (0). It has been proved
in [18, Lemma 6.1] that &(T), [€(T), L] € R(T). As R(T) C L, we have
#(T)c Ly, 1

We now consider the associated graded algebra

S2
G = @ gr; L, G, =gr, L.

i=—s;

Identify T with a 2-dimensional torus of Der G and set I' :=T'(L,T) =
I'(G, T). By construction, G has the following properties:

(@) G_, is a faithful irreducible G,-module,

@2 G_,=[G_;,;,G_;Iforall i > 1,

(@3 ifxeG,i>0and[x,G_,]=(0), then x = 0.

Set

L={yeTIG ,+ (0}, (-s,<i<s,), and T = T,

i<0

Let M(G) denote the sum of all ideals of G contained in X, _,G,. It is
well known [34] that M(G) is a graded ideal of G, and the graded Lie
algebra

G =G/M(G) = @ G, (_;izGi/(GimM(G))

inherits the above mentioned properties (g1)—(g3). In addition, G satisfies
the property

(94) ifxe G ;,i>0and[x,X;. ,G]=(0),then x = 0.

—i

According to a theorem of B. Weisfeiler [35] G has a unique minimal ideal
A = A(G) such that 4 = ®A4;, where

A, =ANG,foralli, A,=G,fori<Q0.
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We aim to prove that the grading of G is nondegenerate in Weisfeiler’s
sense, that is, 4, # (0). Since G_, c A(G) each of the inequalities G, #
(0), [G_;,G,],G,] # (0) implies that A, # (0). We therefore assume in
Lemmas 4.2 and 4.3 below without further mention that

i G,=(0),[0G_,,G,]G,]1= (0.
We shall also assume below that
(i) T is contained in the p-envelope %, of Ly, in L,
(iii) thereis u € I' such that dim L, /L, , <p.

Set G, =[G_;,G,]. As G, # (0) by Proposition 4.1, property (g3) yields
Gy = (0). By (D, [G}, G;] = (0). Note that %, acts on every G, by the
rule

x-(u+Ly,p)=[xu] +L;,y VYu€Ly\Lj,,) Vx €Z,.

This action gives rise to a natural restricted Lie algebra homomorphism
1 Lo = Dery G.

It follows from (g3) that G, acts faithfully on G via ad. Thus we may
identify G, with a subalgebra in Der G. Then (%) =%, is the
p-envelope of G in Der G. By (i), ¢(T) is a well-defined torus of Der G.
By construction T N (ker ¢) = (0). We identify T with (T) and regard T
as a torus in Z,.

LEMMA 4.2.  Gj is a minimal ideal of G . There are a simple Lie algebra S
and m > 0 such that
TR(S) < 2, Gy=S®A(m;l).

Proof. Let I C G}, be a minimal ideal of G,. Since [G_,, I] # (0) by
(g3) the G-irreducibility of G_; implies [G_,,I]1=G_;. As [I,G,] C
[Gy, G,] = (0) by (i), we conclude

Gy=1[G_,,G,]=[[G_, I].G,] =[G}, I] 1.
Consequently, G, = I is a minimal ideal.
According to Proposition 4.1, L, contains a nonzero sandwich element
u. As L, is assumed to be (0) by (i), we identify L, with G,. Set
J=1[G_,;,u] # (0). Then J c G}, [Gj, u] = (0) by (i), and

Gi? 2 [1,Go] = [[G-1,u].Gy] = [[G-1, Gyl u] =[Gy u] = .
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Thus J = [J,G,] © G, In particular, G}, is not abelian. Being a minimal
ideal, Gy is G,-simple. Theorem 1.6 shows that Gy, = S ® A(m;1) for
some simple Lie algebra § and m > 0. We also conclude from the above
that J is an ideal of Gj. As u is a sandwich element,

(adu)o(adx)e(adu) =0 VxeL.

Therefore, [J,J] C [u,[G_;,[u,G_,]1 = (0). Thus J is a nonzero abelian
ideal of Gj, forcing m # 0.
According to [25] one has

TR(S) = TR(G}) < TR(G,) < TR(L,) < TR(L) = 2.

LEMMA 4.3.  Let J be an ideal of Z,. If Gy & J, then TR(Z, /(G}y, + J))
# 0.

Proof. Suppose TR(%,/(Gy +J)) =0. Then T acts nilpotently on
2,/(GYy + J). In particular,

Gy =Gy + Cg (T) +JN Gy

Since G is a minimal ideal of G, (hence of £,) and Gj ¢ J, then
[Gy, J1=(0). As Gy, is Gy-simple, this implies that G}, is C; (T)-simple.
Now T is a standard torus, therefore H = Cg (T) acts trlangulably on Gy.

Lemma 1.8 shows that H N G, acts nllpotently on Gy. Applying Theorem
2.6 one obtains that

Gy, =S8 ®A(m;1), T=T,® T,
where (with the notation in that theorem)

Ty, =T N (((DerS) ® A(m;1)) ® (F1d ® W(m;1)q))
={M(2) ® 1+ 1d @ My(2) |1 € Ty,

r

T,= Y Fld® (1+x,)d, forsomer>0.

Clearly, T acts on the subalgebra S ® F = S as the torus A,(T,). As A(T})
is a torus in Der S (possibly, (0)), and C(A(T,)) ® F C H, then, by the
above remark, C¢(A(T,)) acts nilpotently on S.

Suppose TR(S) = 1. Then § € {3[(2), W(1; 1), H(2; D®} [17]. If A(T,)
= (0) then C(A(T,)) = S acts nonnilpotently on S. If A,(T,) is 1-dimen-
sional, it defines a Z/(p)-grading of S. As C4(A(T,)) acts nilpotently on
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S, then S is solvable [26, (1.5)]. If A,(T,) is 2-dimensional, then necessarily
S = H(2; 1)®. Moreover, according to [5, (1.18.4)] there is an automor-
phism o of H(2;1)® such that the induced automorphism & of
Der H2;1)®, G(D)=0°D°o" ', maps A(T,) onto Fz,d, ® Fz,d,,
where z; stands for x; or 1 + x,. In this case C¢(A,(T})) acts nonnilpotently
on S also.

Suppose TR(S) = 2. Let a €T and let x € G| , be a weight vector
with respect to 7. As T is a maximal torus of L it is clear that
a(xtPl) = 0. Since C(A(T,)) acts nilpotently on S(«) every 1-section of
S ® F with respect to T is nilpotent (by the Engel-Jacobson theorem).
Reference [17] shows that every 1-section is triangulable. If T, = (0) or
kera, # (0) then S ® F is a contained in a 1-section, whence nilpotent. As
this is false, T = T, = A(T). Let S, denote the p-envelope of S in Der S.
Setting in [25, Corollary 15(2)], K=S,® F+ A(T)® F, G=S5,® F
yields A(T)® FC S, ® F + C(S, ® F + \(T) ® F). We may identify T
and its image A,(T) in §,. Then every 1-section of S with respect to 7' is
triangulable. Hence n(a) = 0 for all « € I'(S, T). We now have verified
the assumptions of [18, Theorem 8.3] showing S = H(2;1; ®(7))®. The
action of T on § has been determined in [28, (VI1.3)]. According to that
theorem all root spaces of S relative to 7 are 1-dimensional, p? — 1
(nonzero) roots occur, no root vector acts nilpotently on S. Then G{ has
p® — 1 distinct roots, and every root space G , contains an element x,
which is not p-nilpotent. These elements x,,y € I', permute the Welght
spaces of G_,. Hence G_, has p* —1 dlstmct Welght spaces of equal
dimension d, so that u F _, and dimG_, = d(p? — 1). By assumption
(i), d =dimG_; , <dim L, /Ly , <p.ApplyTheorem18to W = G_,.
Then W=U ®A(m 1) as vector spaces. Consequently, p” divides d. As
m # 0 by Lemma 4.2 this is impossible. i

We are now ready to prove the main theorem of this section.

THEOREM 4.4. Let L be a simple Lie algebra with TR(L) = 2, and T a
standard nonrigid 2-dimensional torus in the semisimple p-envelope L, of L.
Suppose L, is a maximal subalgebra of L containing R(T) + H. Let T be
contained in the restricted subalgebra of L, generated by L. Assume that
there is w € I'(L, T) such that dim L, /L, ;, < p for at least two values of
i € F,. Then, for a standard filtration defined by L,

gr, L # (0) or [[or_,L,gr,L],gr, L] # (0).

Proof. As above set G = gr L. Suppose the theorem is not true. Lemma
4.2 proves that Gy is a minimal ideal of G,, hence of &,. Suppose J is an
ideal of &, with G ¢ J. By Lemma 4.3, TR(Z,/(G}, + J)) # 0. Thus (as
Gy,nJ =)

0# TR(Gy) < TR(Gy) + TR(J) = TR(Gy +J) < TR(%,) <2
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(see [25, Lemma 2.4]). Consequently,
TR(G,) =1, TR(J)=0, TR(%,) =2.

In particular, T is a torus of maximal dimension in &, and £, has 2
F,-independent T-weights. In addition, J is a nilpotent ideal of &, [25].
Then k(x!?)) =0 for all k€T and all x € U, J,. Hence J acts
nilpotently not only on G, but also on G. Since G_, is an irreducible
G,-module this implies [J,G_;] = (0). Using (g2), (g3) one concludes
[J,G]=(0). As J is regarded as a subalgebra of Der G, this proves
J =(0).

Consequently, G, is the unique minimal ideal of £,. Then &, is
semisimple. We are now ready to apply Theorem 3.2 to £, and 7 with
I =G, and W= G_,. According to Theorem 3.2 there is a realization

Gy=S®A(ml), Se{s(2),W(1:1),H21?),
G_,=U®A(m;l),
T=F(hy®1) @ F(d® 1+ ldgey ® t;),

where hy, € S,d € Dery (S ® U), t, € W(im;1). Moreover, Lemma 4.2
shows that m # 0. G_, cannot be as in case (a) of Theorem 3.2(2). If G _,
is as in case (b), then only ¢z, = 0 is possible. Thus T = Fh, ® 1 + Fd ® 1,
where S = H(2;1)® and U is as in case (C) of Theorem 3.1. In this case U
has p? — 2 distinct weights (Corollary 2.10), and therefore G_, has
p? — 2 distinct T-weights as well. Then there are at least p — 2 values of
i € F; such that ip is a root of G_; and ip has multiplicity at least
p™ = p. As p > 3 this contradicts our assumption. Consequently G _, is as
in case (c) of Theorem 3.2(2).

As [G_,,G,] # (0) there is g € G, such that W' =[G_,, gl # (0).
Regard G_,; and G, as S ® 1-modules. Since h, ® 1 is not p-nilpotent, it
acts invertibly on G_,. As [S® 1,¢g] =(0), W’ is a nonzero § ® 1-
submodule of G, on which h, ® 1 acts invertibly. However, G, has a
normal series G, © S ® A(m; 1) > (0), where G,/(S ® A(m; 1)) is a trivial
(S ® 1)-module and S ® A(m;1) is a direct sum of S ® 1-modules, with
each direct summand being isomorphic to S ® 1. Therefore the S ® 1-
module G, has a composition series with s, ® 1 acting noninvertibly on
each of its composition factors. Hence there is no room for W’ in G,. This
contradiction proves the theorem. |

Remark 4.1. The assumptions of Theorem 4.4 are fulfilled in a rather
natural setting. Let L be a simple Lie algebra with TR(L) =2, and T a
standard 2-dimensional torus in the semisimple p-envelope of L in Der L.
Suppose there is o € T such that a(H) = 0. Then L(«) is nilpotent. Let
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T' be the unique maximal torus of the p-envelope of L(«) in Der L. If
T' = (0) then L(«) acts nilpotently on L. By [26, (1.5)], L would be
solvable, contradicting the simplicity of L. Suppose T" is 2-dimensional. As
T =T one has [T, T'] < [...[T, L(a)],..., L(«)] = (0). Thus T + T’
is a torus, and, since T’ C ker «, it is 3-dimensional. But TR(L) = 2.
Therefore L(«) is a Cartan subalgebra of absolute toral rank 1 in L.
In this case L is one of W(1;2), H?2;(2,1))?, H2; 1, ®(r)Y, H(2;1; A)
[17, Theorem 2; 4, (2.2.3)]. _

Next suppose there is a € I" such that M(® = L. This implies H =
X, .olLl, L_,1cH,, whence a(H) =0, and by the above, L is known.
Thus there are good reasons to assume that no root vanishes on H. Then
H is a Cartan subalgebra of L. If H has toral rank 1 in L, then L is
known (as above). Thus it is reasonable to assume that H has toral rank 2.
This means that the p-envelope of H contains 7. Moreover, M = L for
every a € I'(L, T). Choose any maximal subalgebra L, containing M.
Thendim L,,/Lg, ;o <dimL, /K, <3 foralliel;.

We now specialize our setting further and fix notation that will be used
throughout the rest of the paper. In contrast with Remark 4.1 we do not
assume at the moment that the p-envelope of H contains T, but impose
the following assumptions instead:

(4.1) T is a 2-dimensional standard torus in L,, and there is a €
I'(L,T) such that M # L,

(42) L, is a maximal subalgebra of L containing M,

Then R(T)+ H C Ly, and dim L,;,/L, ;, <3 for all i € F}. Assume
furthermore that

(4.3) T is contained in the p-envelope of L, in L,, and one of the
subspaces L., where y € I' U {0}, contains a nonzero sandwich element
of L.

Choose an arbitrary standard filtration associated to L, such that

L(_1/L, is an irreducible L-module. Set G = gr L, G = G/M(G), and
let A(G) = A denote the unique minimal ideal of G. By (4.1), (4.2), (4.3)
Theorem 4.4 applies yielding A(G), # (0). In other words, we are in
Weisfeiler’s nondegenerate case. There are 7 € N and a simple graded Lie
algebra S such that

A(G)=A=850A(T;1), ANG, =S, ®A(F1) foralli.
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LEMMA 4.5. Under the assumptions (4.1), (4.2), (4.3) the following are
frue:

1 o0<7<2
(2 1<TRS) <2
(3) TR(S)=2-=7=0.

Proof. (1) Suppose 7> 3. As dimG_, < 2p® (cf. Lemma 1.5) we have
7= 3, dim S = 1. Property (g3) shows that dim S =1 As E,>OS is a
subalgebra of S of codimension 1, one concludes that S'is isomorphic as a
graded Lie algebra to ((2) or W(1; n) with the natural grading [12]. In
particular, Der, S = adg S, [34]. Put in Theorem 2.6 M = S and consider
the torus 7" :== adg, 4+ 1)T From the presentatlon of T’ given in Theo-
rem 2.6 and the assumption that dim S0 = 1 one concludes that [T, S0

F] = (0). Then §, ® F is contained in H + L,/L, Let Q denote the
inverse image of S ® F in H and let 7" denote a torus of maximal
dimension in the p- envelope of O in L, Then T" + T is a torus. The
maximality of 7" now implies that 7" < T. Since §, acts nonnilpotently on
S, T" # (0). As dim S = 1 the torus T" acts on G, by scalar multiplica-
tions. But then G_; carrles at most p distinct T—weights Yir---1 Y. In this
case we have the stronger estimate

dmG_, < ) dimL, /M <9p < p.
i=1
Thus 7 < 3 in any case.
(2) Skryabin’s theorem [21, Theorem 5.1] states that
TR(L) = TR(G).
Combining this important inequality with [26, Lemma 4.2] yields
0 # TR(S) = TR(S ® A(7;1)) < TR(G) < 2.

(3) Suppose TR(S) = 2. Then TR(G) = 2, and therefore T is a torus
of maximal dimension in the p-envelope of G in Der(S ® A(7;1). Now
Corollary 1.5 of [25] shows t_hat the p-envelope of § ® A(F:1) in Der(§ ®
A(7:1)) contains T. Then G = § ® A(F: 1) + Cz(T). Note that, as H C
L), one has Cz(T) = gr H C ¥, ,G.. Therefore Cz(T) acts triangulably
on G. Now Lemma 1.8 shows that either 7= 0 or else Cgg 4 1)(T) acts
nilpotently on G. In the second case, repeating the argument used in the
proof of Lemma 4.3 to sort out the case TR(S) > 2 leads us to a
contradiction. Hence 7= 0. |}

LEMMA 4.6.  Suppose that (4.1), (4.2), (4.3) are true. Assume that rad S,
#+ (0) and 7 # 0. Then S, is solvable and

1 S=wDorS =310
2 MG =G_, =(0).
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Proof. (1) Suppose §'= H@;1)?. Set in Corollary 3.4 M :=S. As
rad S, # (0) parts (5), (2), (3) of this corollary show that only case (4) is
p055|ble Then S, is solvable. As Der S/ad S is solvable, then so is Der, S.
Set in Corollary 3 4 M = Der S. This corollary then yields that Der, S acts
triangulably on S. Due to Weisfeiler’s theorem [35, Theorem 4.1], Q L IS
(Der, S)-irreducible, so one obtains dim S, =1 Then (g2) gives §_, =
(0). Next set in Corollary 3.4 M = S. As M, = (0) forall i < —1 Corollary
3.4(4) shows that S, cannot be solvable. Thus S is not isomorphic to
H(2; D)@, Since TR(§) — 1 (Lemma 4.5(3)), S is isomorphic to W(1;1) or
31(2).

_(2) It follows from (1) that Der S = §. Also, every Cartan subalgebra
of § is a 1-dimensional torus. Let D’ denote the degree derivation of S
with respect to the present grading. Now S = Dery S = C«(D') is 1-di-
mensional. As above, Weisfeiler’s theorem ylelds dim S = 1. Then (g2)
gives §_, = (0) forcing G_, = (0). Therefore M(G) = £,_ _,G,. As a first
consequence, [G_,,G,]1=[G_,,G,]=(0). This means that [L _,, L]
C Ly and [L_,), Lyy] © Ly,

Let D denote the degree derivation of G with respect to the present
grading. Then D induces the degree derivation D of G and the degree
derivation D' of S. As D' ® 1 € G, = L,/L ) there is a toral element ¢
in the p-envelope of L, in L, which is mapped onto D’ ® 1. Note that
D' ® 1 — D vanishes on A(G). Since G acts faithfully on A(G) this
implies that D' ® 1 — D vanishes on G. But then ad, ¢ — D maps G into
M(G). As ¥, _,G; is invariant under ad; ¢t — D and M(G) = Z,. _,G;
this gives (ad; ¢t — D)X,. _,G;) = (0). Since G_,=[G_,,G_,,,] for
i>1, wegetad,;t=D. Set

L(i) = {xe Ly [t,x] =ix}.
As D is the degree derivation, one has
Ly =L(i) + Ly for all i.

Therefore [L(—2), L)l =[L(=2), L) + Lyl cL(=D) N Ly + Ly, =
Ly, Then L(—=2) c n;(Ly,)). As L, is a maximal subalgebra of L, we
obtain L(—2) C L. This proves L _, = L(-2) + L_,, = L._,,. Conse-
quently, G_, = (0). But then M(G) = (0) as well. |

PROPOSITION 4.7.  Suppose that (4.1), (4.2), (4.3) are true. If rad L% # (0),
then¥ = 0.
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Proof. (a) We adopt the notation of L(i) from the preceding proof.
Let V' denote the inverse image of 4, under the canonical epimorphism
L, = Ly /Ly =G,y Then [L_,), L)LV, Lyl cV and

[L(-1) +V,L] = [L(=1),L(=1) + L(0) + L))
+[V, L(—1) + L)
CL(-2)+L(-1)+V+[V,L(-1)].

Note that L(—2) c Ly (as G_, =(0) and [V, L(—D] c[L(0) + L),
L(—1)] c L(—1) + V. The simplicity of L forces L = L(—1) + V, whence
G=G_, +A4,+X,.,G, =AG) + %,. G,

(b) Since A(G) is the unique minimal ideal of G = G, one has an
embedding of graded algebras

G — ((Der§) ® A(7:1)) @ (F 1d ® W(7;1)).

Obviously, ¥, . (G, is mapped into (¥, , Der; S) ® A1) and therefore
stabilizes S ® A(7; 1), This, however, contrad|cts the minimality of A(G).

PROPOSITION 4.8.  Suppose that (4.1), (4.2), (4.3) are true. Assume T + 0.
Then:

(1) §=HQD? and S, € {31(2), W(1; D}
(2) Ay(G) is a minimal ideal of G,.
) G_;=(0) and G_, = (0).

(4) There is a T-weight u € T(G, T) such that w(Cy(T)) = 0. If W' is
such a weight, then G_, € G( ).

_Proof. (1) As TR(S) = 1 in the present case (Lemma 4.5) one has
S e {31(2), w(1; 1), H(2; 1)®}. Note that S, is a semisimple (Proposition
4.7) and nonmaximal subalgebra of S. Now all subalgebras of 3((2) are
solvable, and it is not hard to see that each proper subalgebra of W(1;1)
either is solvable or is isomorphic to 3[(2) (this follows from Theorem 2.3).
In particular, every subalgebra of W(1;1) isomorphic to 3[(2) is maximal
in W(1;1). Therefore, S = H(2;1)®.

We_now apply Corollary 3.4 with M = §. As SO # S and S0 is semisim-
ple, S, = 31(2) or §, = = W1, D).

Having determlned Sy, we now conclude that A,(G) = S, ® A(F,1) has
a unique maximal ideal, namely S ® A(T; 1)(1) Let J be a minimal ideal
of G, contained in A,(G). If J a&A o(G) then J C §, ® A(F: 1), whence
[J,G_;1# G_,. The G- |rredUC|b|l|ty of G_; forces [J,G_,1=1(0). So
(@3) yields J = (0).
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(3),(4) Suppose u(C, (1)) # 0 for all w+# 0. Then G = A(G) +
Ce(T). As H= C/(T) C Ly, and H is triangulable, Cz(T') acts triangula-
bly. By Lemma 1.8, CG(T) mA(G) Y- oCy (G)(T) acts nilpotently on
A(G). _According to the present assumption 0 is then the only T-weight
of A(G). But then A(G) c C5(T) is nilpotent, a contradiction.

The gradings of S are ruled by Corollary 3.4. The present grading has
zero component isomorphic to $((2) or W(1; 1). Setting in Theorem 3.5(3)
K = S yields a, > 0. Those gradings have the property that M; is nonzero
for no more than one i < 0 (Corollary 3.4). Thus S (0) forcing
G _, = (0). Obviously, M(G) is a nilpotent ideal of G, and G = G/M(G)
acts on each factor of the series

G D M(G) > M(G)’* > ... > (0).

Suppose that S ® AF: 1) acts nontrivially on a composition factor W of
the G-module M(G)'/M(G)** (i = 1). Applying Theorem 3.2 to the
semisimple p-envelope of G yields W = U ® A(7: 1), where U is a nontriv-
ial S-module. We are in case (2b) of Theorem 3.2. Since 7 # 0, then
W(T)=F(h,® 1) ® F(d ® 1), and the (S + Fd)-module U is as in case
(C) of Theorem 3.1. Then U has p? — 2 distinct weights relative to
Fh, ® Fd (Corollary 2.10). Hence W has p? — 2 distinct T-weights of
multiplicity at least p”. But then there is i + 0 such that dim L;./Lg)ia=
p contradicting the inequality dim L;,/L, ;, < dim L, /K;, < 3. Conse—
quently, S ® A(7;1) acts trivially on all M(G) /M(G)’+l Therefore all
T-weights on M(G) are contained in [/, where w' is any weight with the
property w(C, (7)) = 0. This means that X, _,G; € G(w'). Observe
that ann; (G_,) is Gy-invariant. The irreducibility of G_, forces that
either ann; (G_,) = G_; oranng (G_,) = (0). In the first case G_, =
[G_,,G_,] = (0). Consider the second case. As G_5, G_, only have roots
in the w-direction, all G_, , (A & [, w) annihilate G_,. Therefore G_,
= G_,(w). Similarly, each AO(G)A,A ¢ I, w, acts trivially on G_,. By
(gD this implies A,(G) = A(G)( ). As w(Cy (TN =0, Ay(G) is
solvable [26, (1.5)]. This contradiction proves the proposition. 1

Remark 4.2. In the situation of Proposition 4.8, let <, denote the
p-envelope of L, in L, We have a natural restricted Lie algebra
homomorphism

®: %, — Der, A(G) = (Der, §) ® A(7,1) + F Id ® W(F'1).

As S = H(2;1)® and S, € {31(2), W(1; 1)} the grading of S is ruled by
cases (2) or (3) of Corollary 3.4. Applying this corollary gives

Der, S = S, ® Fs,
where & is the degree derivation.
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Let G denote the p-envelope of G in Der A(G). As TR(G ) =2, A(G)
is the unlque minimal ideal of G and TR(A(G)) = TR(S) = 1, Theorem
3.2 shows that one can choose an isomorphism ¢: A(G) —» § ® A(F 1)
such that O(T)=F(hy®1) @ F(d® 1+ Id,G) ®ty). If Fhy+ Fd C
Der, S is a 2-dimensional torus, then Fhy + Fd = Fh, + F8. As a conse-
guence, we may choose i so that

O(T) =F(hy®1) @ F(R6® 1 + Id 4z ® 1), (4)

where k € F,, k=0 provided that ¢, & W(7;1), and Fh,® 1=
d(T) N S
As Fhy® 1= d(T) N S = &(T N ker w) we have

u(h,® 1) =0, y(ho®1) #0 Vye '\F,pu.

Therefore Fhy ® A1) € ®(L,(w) € (Fhy + F8) ® AT, 1) + Fid ®
W(7 1). Set

G = (2 B) (Lo w) € W(FiD).
Then

D(Zo( 1)) C (Fhy + F8) ® A(F;1) + F1d .

Moreover, (I)(,S”o)) c(S, +F) @ AF 1) +FIld®J, so that I =
(y 0 @)(_E”(O)) is a transitive subalgebra of W(7; 1).

Suppose ¢, = 0. Then D(T) = F(hy ® 1) ® F(6 ® 1). Set in Lemma 1.8
V == ®(H). Since T is a standard torus, V" acts triangulably on G. But then
Lemma 1.8 yields 7 = 0, a contradiction.

Define B € T* by
B(h,®1) =1, B(k6®1l+1d®t) =0.

LEMMA 4.9.  Suppose that (4.1), (4.2), (4.3) are true. Assume 7 # 0 and
So=502). Then G_, = (0). If 7= 1 and t, & W(1; Dy, then either 9 =
W) orp =5and 9 = 31(2).

Proof. (a) By Proposition 4.8(3), G_, c G(w) and G_; = (0). The
grading of S is as in case (3) of Corollary 3.4 yielding dim §,1 = 2. We
adjust iy sothat ', = £ B+ F,pu, Ty c(£28+ F,w) U T, u.

As G_; =(0),G_, =(0), 0ne has [L, L] c L, Therefore

[L( “’)’L(O)] c 'ZEF Lygij, +L(p)+ [L( K, L(l)] CLg +L(n).
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Then L(w) + L, is a subalgebra containing L, The maximality of L,
implies L(w) € L), whence G_, = (0).

(b) Suppose 7= 1. Choose T-invariant vector spaces V_,, Vg, V;,
such that

Vo © X Lpjut X Logy,,
ek, €k,

Vv;cV,c Y, Logij, + Y L ogpiju™t Y L,
Jjer, jekr, jer,

and
L=V_, &Ly, Loy =V, ® Ly, Vo + Lay/Lay =8, ®A(L;1).
Properties of the associated graded Lie algebra G ensure that

[L, L(l)] C Vs + Ly, [Vé, L(O)] C Vg + Ly,
while properties of I'_; yield

[V_1,V_1] €L, [V_l,L(O)] CV_i+Vg+ Ly

From this it is not hard to deduce that L) + Vg + V_, +[V_;,V_j]lisa
nonzero ideal of L, and therefore must commde Wlth L. Since T %,
and ®(T) ¢ §, ® A(L; 1) we have

V..v.]ev

() Let o_, :G_; = V_, denote the inverse of the canonical linear

isomorphism V_, = L /L, = G_;. The Lie multiplication of L gives rise
to a skew-symmetric bilinear mapping

NG XG =Gy, Awv)=[o4(v),0 (V)] + Ly,

Note that one has [A(v,v), v"] = [[o_y(v), o_1()] + Ly, v"] =
[[o_,(v), o_ ()], o_,(v")] + L), so the Jacobi identity yields the equa-
tion [A(v,v),0v"] + [AW, "), v] + [AQ@",v),0']=0 for all v, v, 0" €
G_,. Set A, = m,oA where m, is as in Remark 4.2. If A, =0, then
[V_,,V_,] c Vg, a contradiction. So A, # 0.

(d) The Lie multiplication of L gives rise to a Z,( w)-invariant
bilinear mapping

Y Lgu+ X L—Bﬂ'u) X ( YL+t L L g Lo
j€F, jEeF, j€F, j€F,
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Since (ZjerLpiju+ LierLopisu) N Lo € Lay [Lay L1 € Vg + L,
and [Ejcr Ly gy Lo(mICEicpLipyj, Ainduces a (T + Go(p))-
invariant mapping

NG XG> Go/(S,®A(L1)) > .

Note that
A(v,v') = [o_y(v), o_ (V)] + (V§ + L))

Hence A = A,, and as a consequence A, is (T + G,( w)-invariant. As &
is a trivial Fh, ® A(1; 1)-module, we have

0# Ay(S_; ®A(1;1),5 , ® A(L; 1))
= A,(5, @ A(1;1), [ho © A(1;1), 5, ® 1]
= Ao([h @ 4(1;1), 5, © A(1;1)]. 5, ® 1)
= A,(§.,®A4(1:1),5 , ®1).

Write ¢, = zd /dx. We may assume that z = 1 + x (cf. Corollary 2.7 and
Remark 4.2 and observe the assumption on ¢,). Set in [33, (4.6(2))] f = z,
and let u,u’ € S_; be linearly independent. Then for i > 0

Auoz " uez)=(i-2)zA,(u® 1,y ®1)
+(1 -z A (u®z,u ®1)
+(2-i)z" A (u®lu ®2)
+(i— 1)z A,(u®z,u ®z)
+zA(u ® 2z ® 1),

Next choose u,u’ € S\(0) such that [hy, ul = u, [hy, '] = —u/. As A, is
(hy ® z)-invariant one has A,(u ® 1,u' ® z) = Ay(u ® z,u’ ® 1). Induc-
tively, we obtain

A (i—-1)(i—-2)
A(u®zu®l) = fz’Az(u ®1lu ®1)

+i(2 -0z A (u®z,u ®1)

)

5 27 (u @ z% U ® 1)
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forall 0 <i < p — 1. Comparing eigenvalues one finds s, s;, s, € F such
that

A(u®z5 u @ 1) = 5,217 2%d /dx, k=0,1,2,
where k + 1 — 2 is taken modulo p and k is as in Remark 4.2. Then
Ay(u®zu ®1)

(5= 12)(1' D ey szi(iz— 1)

ZH—l_ZEd/dx.

As A, # 0 by assumption, the above coefficient regarded as a polynomial
in i is a nonzero polynomial of degree < 2. Consequently, it has at most 2
different zeros. We obtain

dim > dim Ay(G_,,G_,) = p — 2.

Recall that F is a transitive subalgebra of W(1;1). If dim & > 3 then
Z = W(1,;1). Otherwise the above estimate gives p =5 and dim & = 3.
In this case 2 = 3((2). 1

5. MAXIMAL SUBALGEBRAS

We start an investigation of the triples (L, T, ), where

(5.1) L is asimple Lie algebra over F of absolute toral rank 2,

(5.2) T is a 2-dimensional standard torus in the semisimple p-en-
velope L, of L,

(5.3) « is a root of L with respect to T such that K'(«a) acts
nontriangulably on L.

(5.4) one of the subspaces L., where y € I'(L, T) U {0}, contains a
nonzero sandwich element of L.
LEMMA 5.1. Let (L, T, o) satisfy (5.1)—(5.4). Then

(1) H#H, and M® # L,

(2 K'(a)+HY = K(a)®.
Proof. (1) Suppose H = H,. Then L(a) = K(«) is a Cartan subalge-
bra of L of absolute toral rank 1 in L (Remark 4.1) and [17, Theorem 1]

shows that L(«) is triangulable. This contradicts our assumption on
K'(a).
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Suppose M®) = L. Then H=H N LY = H, + HY = H_, contrary to
the above result.

(2 By (), [H K, ]=K,, for each i # 0. Hence K(a)» = H® +
Sis oK + TovolKpn Kyl = K'(a) + HO. I

Set I :== I'\[F, . Let L, denote a maximal subalgebra of L containing
M. Set

ia?

= X Lo, + Z[ .y Loy —]

yel”

and let .7 and %, be the p-envelope of I and L, in L,, respectively.
Clearly, I is an |deal of L. Note that R(T) + H+ K'(a) c M@ c L.
The maximality of L, ensures that n,(I) = L,

LEMMA 5.2. Let (L, T, a) satisfy (5.1)—(5.4).
(1) The intersection of the p-envelope of K'(a)® in L, with T contains
an element t' such that o(t') = 0 and y(¢') # 0 forall y e T".
(2) The p-envelope of K(a) in L , contains T.
(3) Suppose J is a Lie subalgebra of L, satisfying [T + I +
Y. 0Kio J1 CJ. Then either I C J or J is p-nilpotent.

(4 If TR(I) = 1 then I has 2 T -independent T-roots, T N.% =T N
ker a, and IV = 1.

Proof. (1) As U, (K’ ()N L) is a weakly closed set, (5.3)
implies that it is not a nil set. The result follows.

(2) According to Lemma 5.1(1) there is & € H such that «a(h) = 0.
The element ¢ described in part (1) of this lemma and the semisimple part
of hspan T.

(3 Let J, be the p-envelope of J in L,. Then

L= Y T

nelu{0}n=0

Suppose J is not p-nilpotent. Then one of JlEP]" contains an element which
is not p-nilpotent (by Jacobson’s theorem on weakly closed nil sets). This
implies TN J, # (0). Let ¢ be a nonzero element of T € J,. If a(¢) =0
then y(¢) # 0 for all y € I, whence I,=[t,I,]cJand hence I CJ.

If a(¢) # 0 then a similar argument yields ¥, . ,K,, < J. Part (1) of this
lemma shows that there is ¢/ € T N J, with the property I, = [¢', I, ] for all
vy e I'. Thus I cJ in either case.
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(4) The present assumption ensures that I is not p-nilpotent. There
is y € I'" such that I, + (0) (otherwise I = (0)). Since K'(«) acts nontrian-
gulablyon L, I, £ (0) [18, (5.D)]. Thus I has 2 [ -independent roots.

As above T N7 # (0). Suppose T N7 & ker a and pick r € T N7 with
a(t) # 0. Then X, . ,K;, €I, whence K'(a) C I. Let ¢ be as in (1). Then
T = Ft + Ft' .7 But then, as I has 2 independent roots, TR(I) = 2, a
contradiction.

Thus there is t € TN with () =0, y(t) #0 for all yTI'. In
particular, I, = [z, I,] c I for y € I"". It follows that 7 = I. |

Consider a standard filtration L = L_, ) > ... D L, ) > (0) defined by

L, such that L ._,,/Lq, is an |rredu0|ble L ,-module, and put G =grL.
As M® c L, Remark 4.1 and Lemma 5. 2(2) show that the assumptions
of Theorem 44 and (4.1)-(4.3) are fulfilled. Note that G carries 2
F,-independent T-roots, since otherwise all 7-roots of L _,, would lie in
[F @, and hence all T-roots on L would lie in F,a contradicting the
assumptlon on 7. Thus TR(G) =2 and T can be identified with a
2-dimensional maximal torus in the semisimple p-envelope of G. We now
assume that

(5.5) TR(I) <1

and introduce the set of triples

S, ofall (L, T, ) satisfying (5.1)—(5.5).

LemmA 5.3. Suppose (L, T,a) € ©,. Then U,y L, , consists of
p-nilpotent elements.

Proof. Let u € Ly, , =1, where y<I", and let u; € T denote the
semisimple part of u. Then y(u,) = 0. According to Lemma 5.2(4) one has
a(u,) = 0. As «a,y are independent, they span T*. Therefore u, = 0. |

COROLLARY 5.4. Suppose (L, T, «) € ©,. Then I is solvable if and only
if it is p-nilpotent. In any case, I(a) acts triangulably on L. If I is not solvable
then I + Ly, /L, has 2 F,-independent T-roots.

Proof. If I is not p-nilpotent then TR(I) # 0 and Lemma 5.2(4) shows
that I is not solvable.

We are now going to prove that I(«) acts triangulably on L. If I is
solvable, then it is p-nilpotent and the result follows. Suppose I is
nonsolvable. Since H NI c H, (Lemma 5.2(4)), I(«) is a nilpotent Lie
algebra. Note that I is [, graded by setting I = EB}E[F I, where I, :
Lic, ligiia forafixed g e I'. Since I is nonsolvable, I(a) does not act
nllpotently on [ and on I+ Ly/L, [26, (1.5)]. Thus I(«) is a Cartan
subalgebra of I of absolute toral rank 1 in I (Remark 4.1). Note that this
also implies that I + L,,/L ,, has 2 [ -independent 7-roots. Let J denote

a maximal ideal of I and set I := I/J. Then I® = I # (0) (Lemma 5.2(4)),
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and therefore TR(I) = 1, TR(J) = 0. In particular, I is simple and J is
nilpotent. Now I € {3((2), W(1; 1), H(2; 1)®}. All Cartan subalgebras of all
of these Lie algebras are abelian (which one can conclude from the
normalization theorems of maximal tori of these Lie algebras). Thus
I(a)P c J. Consequently, I(a)® acts nilpotently on I. Since I has 2
F,-independent roots, this implies that I(a)® acts nilpotently on L. |

ProPOSITION 5.5. Suppose (L,T, @) € ©, and that I is nonsolvable.
Then

(1) rad &, is p-nilpotent.

(2) I+ rad %, /rad %, is the unique minimal ideal of %, /rad %,
and I + L /Ly, is the unique minimal ideal of G,,.

(3) There exist S € {3((2), W(1;1), H2;1)®} and r € N such that

I/In (rad Z,) =8 ® A(r; 1).

(4)  Any isomorphism ¢ :1/1 N (rad %)) 58 ® Ar; 1) gives rise to
embeddings

S ®A(r;1) cZy /rad Z, < ((DerS) ® A(r;1)) ® (FId e W(r;1)).

Let m, (S ® A(r; D) @ (F Id ® W(r;1)) - W(r;1) denote the canonical
projection. Then w)(Z,,/rad ) is a transitive subalgebra of W(r; 1).

5) 0<r<2andr=0+S8=H(2;1)?,

(6) Suppose r + 0. Let h be a p-semisimple element of 7. If h acts
nontrivially on a composition factor of the L-module L /L), then it acts
invertibly on this factor.

(1) Suppose r # 0. Then I'_; C1". If y € 1" is a weight of L /L,
then sois —vy.

Proof.  Set % = rad %,

(1) Setin Lemma 5.2(3) J =%. Since [ is not solvable, I cannot lie
in %Z. Thus &% is p-nilpotent.

(2) Let J be an ideal of %, containing %, and such that J /% is
minimal. As J is nonsolvable, Lemma 5.2(3) yields I c J. The minimality
of J/% implies J =1 + Z.

Since % acts nilpotently on L (by (1)), then #Z N Ly =Ly, The
second statement follows.

(3) By (2), %, /% is semisimple restricted and has the unique
minimal ideal (I +.%)/%. By Theorem 1.6, I/I N% = S ® A(r;1) where
S is a simple Lie algebra. As TR(I) = 1, we have TR((I +%)/%#) = 1,
whence S € {3((2), W(1; D), H(2; D},
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(4) This follows from Theorem 1.6.

(5) Suppose I acts nilpotently on each composition factor of the
Zomodule L /L. As IV =1, I annihilates L/L,. As I is an ideal of
L), itis an ideal of L. As this is not true, there is a composition factor W
of the #,-module L /L which is not annihilated by I. Since % acts
nilpotently on W, it annihilates W. Thus W is an irreducible restricted
Z0,/%-module which is not annihilated by (I +.%)/%. Now apply Theo-
rem 1.7. There is a nontrivial S-module U such that W = U ® A(r;1) as
vector spaces. Recall that dim W < dim L/L%O) < 2p3 (Lemma 1.5). Con-
sequently, dimU > 2 and 2p" < dimW < 2p° yielding r < 2.

Suppose r = 0. As in this case S is the unique minimal ideal of %, /%,
T acts faithfully on S. As T is 2-dimensional, S = H(2; 1)®.

Suppose S = H(2; 1)@ and r # 0. As 0 is not a T-weight of W, we are in
case (2b) of Theorem 3.2. In particular, ¢, = 0. In the notation of that
theorem, W(T) = F(h, ® 1) + F(d ® 1), and the (S + Fd)-module U is as
in case (C) of Theorem 3.1. Then U carries p? — 2 different weights
(Corollary 2.10), and hence there is i # 0 such that i« # 0 is a weight of
U. Now W, = U, ® A(r;1) whence dimW,, > p”. On the other hand,
dimW,, <dimL,,/K;, < 3. This contradiction proves the implication

la —

S=H2;1)? =r=0.

(6) By (5), S €{3((2),W(1;1)}. Now Theorem 3.2 applies. Conse-
quently, (#+ %) /% = (I +%)/%#, and Theorem 3.2(2)(c) yields the re-
sult.

(7) (@) Set W= L _, /Ly, This is an irreducible L ,-module, on
which I acts nontrivially. Thus every nonzero element of TN. =T nN
ker « acts invertibly on W (by (6)). Then I'_; c T".

(b) Choose a composition factor W of the #,-module L /L,
which has T-weight y. Since T N.# = ker « and y € I"one has y(T N.¥)
# 0. Therefore I does not annihilate W. Theorem 3.2(2)(c) now shows that
—v is a T-weight of L /L. |

LEMMA 5.6. Suppose (L,T,a) € ©,. If I is solvable, then there is
B € I such that

G, = Z G,‘,i[gﬂ‘a foralli € 7.
jel]:l7

If G; # (0) and i # 0 mod(p), then dimG, ., # O does not depend on j.

Proof. Corollary 5.4 shows that I acts nilpotently on the irreducible
L-module G_,. Since [ is an ideal of L, this means that I annihilates
G_,. By definition of a standard filtration, we obtain I C L. As
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L, erLg,, €I wehave G, = Gy(a). Since G_, is G-irreducible there is
BeTl" such that G, =X;c¢G 4 4y, BY (g3) there is an injective
T-invariant linear mapping G, = Hom(G_,, G,_,). This observation and
induction on i proves that for i > 0 all weights of G, are contained in
iB + F,a. Similarly, it follows from (g2) that all roots of G; (for i < —1),
are contained in i + F,a. If B € F,a then I' C F,a contrary to the fact
that dim 7T = 2.

Since K'(«a) acts nontriangulably on L it is immediate from [18, (5.1)]
that all G, ;5. ,, (j € F,) have the same dimension, whenever i # 0. |

Our next lemma employs the notation of Section 4.
LEMMA 5.7. Suppose (L, T, a) € ©,. The following are equivalent:

L 7=0.
2 TR(ES) =2
() a(C,(T)) # 0, where Ay = Ay(G).

Proof. (a) The implication (2) = (1) has been proved in Lemma 4.5(3).

(b) Suppose 7=0 and_ TR(S) = 1. Then G acts faithfully on its
unique minimal ideal § and S = - (512, w(1; 1), H(2; D®}. Thus T acts as
a 2-dimensional torus on S, so S H(2; 1)® necessarily holds.

We now observe that Der S is Z- -graded and T is of degree 0 with
respect to this grading. Moreover, G is a graded subalgebra of Der S.
Theorem 3.3 shows that the grading is given by a (a,, a,)-grading of
A(2;1). We now apply Corollary 3.4.

Since the grading is nontrivial we have a; # 0 or a, # 0.

If I is nonsolvable, then S contains S ® A(r; 1) since the latter is the
unique minimal ideal of G, = G, by Proposition 5. 5(2). As either r > 1 or
S = H2; D (by Proposition 5.5(5)) we obtain that S, is nonsolvable of
dimension > 2p. Corollary 3.4 shows that no such grading exists. Thus 1
is solvable. Then the roots on G, are contained in [, « (Lemma 5.6).

Suppose the grading of G is of type 2 (cf. Corollary 3.4). Then G{" =
W(1; D acts restrictedly on G. Therefore U, . B G0 ;o CONsists of ad- nllpo—
tent elements of G. Also it is immediate from our remarks in Section 1
that for every i € [ either [Go.ia Go, il = (0) 01 a([x, y]) # 0 for all
nonzero x € GO’, . y€G, 0. _iq+ This contradicts the assumption that
K'(a) is nontriangulable. We proceed similarly for the gradings of type 3.

The gradings of type 4 have the property that G{V acts nilpotently on G.
Again this contradicts the assumption that K'(«) is nontriangulable.

(c) Suppose aC,(T)) # 0. Then the p-envelope of A, in Der G

contains an element ¢ € T with a(¢) # 0. As A, is an ideal in G, this
implies =, ,G, ;, € A4,. Lemma 5.2(1) yields the existence of ' in the
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intersection of T and the p-envelope of A4, in Der G satisfying a(t') = 0,
y(¢') # 0 for all y € I". As a consequence, T is contained in the p-en-
velope of A, in Der G. Then G = A(G) + CG(T) Since G has 2 [ -inde-

pendent roots, so does A(G). But then TR(S ® A(F:1)) = TR(A(G)) = 2
whence TR(S) = 2 [26, Lemma 4.2].

(d) Suppose 7= 0 and a(C,(T)) = 0. Set

P, = U{Aivﬂ["]jliaﬁ opel,j> o},

Py = U{onu[p]jl,uel"’,j> o},
Fy = U{Ao " 1i#0,j> 0},
F=U{(A4,nC(T) i€z, j=0).

Then U?_ % is a weakly closed set. Clearly, ., consists of ad-nilpotent
elements. According to Lemma 5.3 the same holds for .#,. Clearly,
adz.; consists of nilpotent transformations, and the same is true for
ad(;yj1 by the present assumption. Thus U ¢ _,adg.7 is a weakly closed set
of nllpotent transformations. Let . denote the p-envelope of A(G) in
Der A(G). One has .= span(U4_ %) + © EFA(G) Therefore T N7
= T n span(U ¢_,.%). Consequently, ads (T m&”) (O) whence T N.¥ C
ker a. On the other hand, we have already shown that 7= 0 implies that
TR(A(G) = TR(S) = 2. Now Corollary 1.5 of [25] shows that 2 =
TR(A(G)) = TR(T Nn.%,.%), contradicting the previous inclusion. [

6. THE BLOCK-WILSON INEQUALITY

In this section we shall at last prove the Block—Wilson inequality
n(a) < 2 for all standard tori and all roots. In order to obtain this result
we take a closer look at triples in &,.

LEMMA 6.1. Suppose (L, T, @) € ©,. If I is solvable, then 7= 0 and
n(a) < 2.

Proof. (a) According to Lemma 5.6, G, = G,(a). If 7+ 0 then Lemma
5.7 shows that «(C, (7)) = 0. But then A, is nilpotent by Jacobson’s
theorem on weakly closed nil sets. As S C A,, this contradicts Proposi-
tion 4.7.

(b) It remains to prove that n(a) < 2. First suppose that I, = M
forall yeTI'. Then ¥, [L_,, [L]CH,. Also T_;, T, cI" by Lemma

-y
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5.6,s0 that G, =1 N Ly, + Ly, /L, (by definition of 7). But then
Cy(T)=[A_,, A1 N C(T) € Cy(T) N kera.
Lemma 5.7 now shows that 7 = 0, contradicting part (a) of this lemma.

Thus there is y € ' with I, # M. Then Z,EFL(O) yria/M
nonzero K(a)-module.
Suppose that L, C Ly, Then L ., C Ly, forall j€F, (by Lemma

7+la IS a

5.6). As a consequence, the Lie subalgebra of L generated by L,,;, acts
nilpotently on L. We conclude from Lemma 3.7 thatdim L. ;, /K., < 1.
Also, Proposition 1.3 shows that n,,;, < 2. Thus
dim Ly+ja/ y+ja = dim Ly+ja/Ry+ja = 2dim Ly+ja/Ky+]a y+ja
<4 <p.
Now we can use Proposition 1.3 to observe that n(a) < 2.
Finally, suppose that L, & L. Then ¥, ¢ L) yria/M 7+,a is a proper

K(a)-submodule of &, _; Lyﬂa/ v ia- Thus the latter is K(a)-reducible.
Proposition 1.3 yields n(a) < 2.

We now investigate the case that I is nonsolvable.
LEMMA 6.2. Suppose (L, T, a) € &, and 7+ 0. Then
1) S=HQD? Ay=U+Ly)/ Ly, So=S5 € {302, WD)},
and 7 =r;
(2)  Aq has 2 T -independent roots,
3 T_,cI;
4 G_3=(0),G_,=(0), and M(G) = G_, c G(a).
Proof. (1) Since A, = S, ® A(F; 1) is an ideal of G, and (I + L)) /L,

= S ® A(r; D) is the unique minimal ideal of G, (Pr0p05|t|on 5.5(2)), there
is an embedding S ® A(r;1) — S0 ® A(7;1). Proposition 4.8 shows that
S=HQ;D?, §, € {30(2), (1,1} and that A, is a minimal ideal of G,.
But then A, = (I + L))/L, whence § ® A(r;1) = S, ® A(F: 1) and

S=(SeA(r;1)/(S@A(ri D)
= (5,0 A(7:1)) /(S @ A(F D) = 5o
By dimension reasons, we obtain r = 7.
(2) If Ay =A,(w) is contained in a 1-section, then part (1) of this

lemma in combination with Lemma 5.3 and Corollary 5.4 shows that [ is
solvable. But then Lemma 6.1 proves 7 = 0, a contradiction.

(3) As r =7+ 0 Proposition 5.5(7) yields '_, c T".

(4) As a(InH) =0 (Lemma 52(4)) and 4, = + Ly,)/L, by
part (1) of this lemma one concludes that a(C,(T)) = 0. Proposi-
tion 4.8(3),(4) give the result. 1
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We recall that ® and & are defined in Remark 4.2.

LEMMA 6.3. Suppose (L, T, a) € ©,. If T+ 0, then there exist k € I}
and u € K., such that (m,o ®)u) & W(F; Dy If 7=1 then
dim(7r, o CI))(fZ(O)(a)) 2, Zy(a) is solvable, and n(a) < 2.

Proof. Since K'(«a) acts nontriangulably on L and A, has 2 [ -inde-
pendent T-weights (by Lemma 6.2), (K ()@ acts nonnllpotently on
Sy ® A(7; 1). By the Engel—-Jacobson theorem there are i, j € [, such that
CD([KW i) acts nonnilpotently on S, ® A(7:1). As H acts trlangulably
on L, we may assume that i # 0.

Set @' == (1, DN K'(a)) CZ. Recall from Remark 4.2 that

a1 D]

Since K'(«) acts nilpotently on L(«a) and Fh, ® A(F;1) C CI)(LO(a))_L
acts nilpotently on A(7: 1). Therefore Id ®9’ acts nilpotently on §,
A(F ). Let

O([K;y. K ]) € [F1d 0

ia? ta?

Fhy ® A(T;1)] +1d ® [Z]

-(Unea,|u( U del2,, 2,

a+#0 a,b+0

u( U [1d ®Z;

aa’
a+0

Fhy ® A(T; 1)]).
Clearly, % is a weakly closed set. If U, [ld ® 2., Fh, ® A(F;1)] con-
sists of adg -nilpotent elements, then the Lie subalgebra spanned by %
acts nllpotently on S, ® A(F;1). But then <I>([Km, K;, ] would act nilpo-
tently on S, ® A(F; 1) contrary to the choice of z j. Thus there are
k€ Fyandu €K,,,such that [Id ® (m, ° CI))(u) Fh, ® A(F; 1)] acts non-
nilpotently on S, ® A(7; 1). This implies (7, ° CD)(u) eE W Dy

Suppose 7 = 1 As t, 69 one has dim 9 > 2. Suppose dim & > 3.
Then either & = 3((2) or & = w(1, D (as J is transitive). If & = 3((2)
or Ft, is an improper torus of 9 W(1;1), then @' = (0), while in case
that 7, is a proper torus of & = W(1;1), then @' c W(l; 1, (cf. the
discussion preceding Remark 1.1). As this contradicts the first part of this
lemma, dim 2 =2, ie, 9 = Ft, ® Fii. Remark 4.2 shows that ((ker ,)
N @)(30 (@) € (Fhy + F&) ® A(7;1). The latter is abelian whence

Zola) is solvable As (ker 7, ®) N K'(a) c I(a) + L, (by Lemma 6.2)
and I(«) acts triangulably on L (Corollary 5.4) we derive that n,,, = n
=land n,,=0if k# +«x. 1

LEMMA 6.4. Let L satisfy (5.1),(5.2). Let I be nonsolvable. Assume that
r+0,G_;=(0),G_, cG(a)

(D IfLg =M+ Lg(a), then G_, = (0).
(2 If G(a)® acts nilpotently on G_,, then dimG_, < 1.

—K«a
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Proof. Set V=X, . L, The present assumption implies that }' C
L, while Proposition 5.5(7) yields L(a) N L _,, C L,

(1) Set N:=[Lg, V1N L(a). Clearly, N is an ideal of L (a).
Also, for each y € I”,
[L,/,L(O)V,y] = [LY,M;“y] CH,.
Therefore the Engel-Jacobson theorem shows that N acts nilpotently on
L(a).

We aim to prove that L = L_;,. So assume for a contradiction that
L # L, ThenT_, c F,a is nonempty, so there is a subspace W c L(«)
C Ly such that W¢ L _;, and [N,W]CL_; N L(a)=Lg N L(a).
Lety, 6. If y+ 6 1" then

[[W.Mg]. L] cV Ly,
If y+ 6 €l,a then
[[w. M7 ] Ls] < [ [ M5 Lo] ]+ [M7 W, Ly ]
c[W.[Leg V] NL(a)] + X [M Ly,

3 v Lotja
cC[W,N]+ [L(O),L(fl)] CL_y.
Consequently, for y e I",
(.M Lew] © T [[WM7] L] =+ ([ M5, ()]
CL_y+VCL_y.

The maximality of L g in combination with the assumption that L +# L _,
forces L, = n,(L._,), while we just showed that

Y [W. M| cny(Liy) =L,

yel”

Recall that in the present case I, = L, , = M, for all y € I". Thus we
have proved that [W, [ ] cC Lcglyrio €1 for all y € I". Consequently,

W cn,(I) = L, contradicting the choice of W. Thus L =L _,,

(2) Suppose G_, # (0). Then G_, contains a common eigenvector
u # 0 for G,(a) (by Engel’s theorem). Let u € L(a) be an inverse image
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of u. Then [L (@), ul € Fu + L(a) N L_;, = Fu + Lg(a). Then

[Fu+ Loy Fu+ Lip] < [, L] + [Lopu] + Ly
Clu,V]+[u, Lo(a)] + Ly

CV+Fu+Lg(a)+L_yCFu+L_,,

whence Fu + Lo € n;(Fu + L_y). If Fu+ L, + L then n,(Fu +
L _;) # L. The maximality of L, now forces u € L), a contradiction.
Consequently, L = Fu + L,_;yand dimG_, = 1. |

LEMMA 6.5. Suppose (L, T, a) € S . If n(a) > 2, then 7= 2 and « is
non-Hamiltonian.

Proof. According to Lemma 6.1, I is nonsolvable.

(@) Suppose first that » = 0. Then S = H(2; 1)® (Proposition 5.5(5)).
Since rad ., is p-nilpotent (Proposition 5.5(1)), one can compute 7,,
dealing with %, /rad %,  Der H(2; )®. We identify the image of I in
Der H(2; D)® with H(2; 1)®, and T with its image in Der H(2; 1)® (this is
possible in view of Proposition 5.5(1), (4)). Then T is a 2-dimensional torus
in Der H(2; 1)®. According to [5, (1.18.4)] we may assume that

T=Fz,0, ® Fz,0,,

where z, € {x,,1 +x;} (i =1,2). Then T N H?2;1)® = FD,(z,z,). The
description of Der H(2; 1)® is given in Section 3. As a(T N.¥) =0
(Lemma 5.2(4)), one has

p—1
(Lo/rad L)) (a) © ). FDy(z123)
i=1
+ FzP79, + Fz879, + F(z,0, + 2,0,).

Since z/ ™%, and zf~ %, are in the same root space with respect to 7', all
other root spaces are 1-dimensional, and [ D, (ziz}), Dy (z{z})] = 0 for all
i, J, it is now clear that n(a) < 2.

(b) We therefore have r + 0. Let y € T'_N TI". Since vy is a weight
of L/Lq,, the vector space W = Z,»EFPL,/M/M;“M is nonzero. Due to
Proposition 1.3, W is an irreducible K(a)-module. On the _other hand,
W= Lice Loy yria/Mysia 15 K(a)-submodule of W (as K(a) C L),
and W' # W (since L, & L). Thus W' = (0), whence L, , = M,* for all
yel_nI"
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By Proposition 5.5(7), —v is a weight of L/Lq, as well. Thus —y €
I'_NnI’,and Ly _,=M2 by the above. The simplicity of S yields
[S_, S 1=35,. Recall that F, c I (Proposition 5.5(7)). Consequently,

Cu(T) = [A_;, 4] N Cy(T) >z [(_;—1,yv(_;1,—y]

yel

CCy(T) N kera,

Now Lemma 5.7 yields 7 # 0. So Lemma 6.2(3) applies and gives G_,; = (0),
G_, c G(a).

(c) Lemma 6.3 shows that 7 # 1. Therefore ¥ = 2.

(d) Note that » =7 =2 (Lemma 6.2(1)). Let v € I" be such that
Lo, ,# 0. 1f yel'_ then yeI'_NnTI"=T_,. The result of (b) yields
Lo, , =My 1f y&'_ then —y & I'_ as well (Proposition 5.5(7)). Hence
L,L_,CLgy and [L,,L_]cINnHCcH, (by definition of I and
Lemma 5.2(4)). So in any case, L, VT =M Consequently, o =M+
L(a) and Lemma 6.4 yields G_, = (0). Thus L(a) C L,

Suppose  a is Hamiltonian. We have proved that 7TZ(CI>(L(a))) c
7 (D(Z o) =9 c W(2;1). Combining Proposition 5.5(2), (4) and
Corollary 5.4 one easily observes that (ker,o®) N (Zola) = U +
rad %, )a)) C I(a)) + rad Z,, is solvable. Therefore & /rad & is of
Hamiltonian type. Set D == N ., 2. Then D/rad D = H(2; D)®. As
H(2;1)® has no subalgebra of codlmenS|0n 1[11], rad D € W(2; 1), (for
rad D + D N W(2;1),,, is a subalgebra of D). But then D N W(2;1), is a
proper subalgebra of D of codimension < 2 which contains rad D. A
similar argument shows that there are d,,d, € D such that d, = g,
(mod W(2; 1)) But then rad D = (0). Thus D is a transitive subalgebra
of W(2;1) isomorphic to H(2;1)®.

We have two filtrations of D at our disposal. The first is the filtration
with D, == D N W(2;1);,, where D is viewed as a subalgebra of W(2;1).
The second one, D,;, == span{D,(x{'x5?) la; + a, —2 =i} (i>= —1) is
induced by the isomorphism D = H(2; 1)® and the canonical filtration of
H(2; D). As Dy, has codimension 2 in D, D) = H(2; D, = Dy, is the
unique maximal subalgebra of codimension 2 in H(2; 1)® [11]. Therefore
both filtrations are standard filtrations associated with the same pair
(D(O), D), and hence coincide. The description of K(a) given in Section 1
shows that for i # 0

(772 ° Ef))(Kia) = K;,(D) €Dy, CW(2;1) ).
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Therefore,
D(K'(a)Y) c ((Fhy® F8) ® A(2;1)q)) @ (F 1d ® W(2;1),)

(cf. Remark 4.2). Since the latter acts nilpotently on S ® A(2;1), and
S ® AQ; 1) has 2 F,-independent roots, one obtains the contradiction that
K'(a) acts trlangulably onL. 1

PROPOSITION 6.6. Suppose (L, T, a) € S,. If ¥+ 0, then I is nonsolv-
able, ¥ = 1, and «a is a non-Hamiltonian proper.

Proof. (@) Lemma 6.1 shows that I is nonsolvable.

(b) Suppose 7 =2 and (m,° DONT) c W(2; 1, Note that
(7,0 DNT) # (0) (Remark 4.2). According to Lemma 6.3 there is u € K, ,,
such that (mr, o D)u) & W(2; 1)(0) We now shall switch T by using u and
some ¢ € A, as is described in Section 2.

Suppose 7, is not standard (this means that C,;(7,) acts nontriangulably
on L). Reference [17, Theorem 1] yields that p =5 and L = g(1;1) is
isomorphic to the Melikian algebra of dimension 125. However, as S =
H(2; D® by Lemma 6.2(1), dim L > dim G > (dim §)p” = (p? — 2)p? >
125. Since u € K,,, Corollary 2.9 gives K(a) = K(a, ;). Therefore
K'(a, ) =K(a, g)“) = K(a)® = K'(«) acts nontriangulably on L (cf.
Lemma 5.1(2)). Suppose T, is rigid. Then [18, (8.1(3))] implies that dim L
< 2p®. As above this y|elds a contradiction. As a consequence, (L, T,, , ;)
satisfies (5.1)—(5.4).

As u € K(a) c L, one obtains E, (L) = L, In particular, L, is
a maximal subalgebra of L containing M (“«¢) (Corollary 2.9). Note that
'y € I'(L, D\F, @ ifand only if v, , € I'(L, T)\F, @, ;. As I is an ideal of

L, the definition of [ yields I =FE, ,(I) = I(L T,, a, ;). Therefore

y Ly

(L,T,, a, ) satisfies (5.5). Since the parameter 7 depends on the choice of

L, only, it does not change after switching from 7 to T,,.
Thus in what follows we may assume that (mr, e DXT) ¢ W(2; D)-

(c) In the present case Remark 4.2 tells us that
O(T) = F(hy® 1) ® F(ld 5, ® (1 +x,)d,).

Recall that A4, is_a toral element in SO In view of Proposition 5.5 we
identify T and ®(T). Let g€ T* be such that B(h, ® 1) =1 and
B(d 5 ® (1 +x,)3;) = 0. Then G(B) = S'® Flx,] + C(T).

Suppose that S = 3((2). Then there exists a generating set {u,, u,} of
A(2; 1), such that the grading of S is as in case 3 of Corollary 3.4. Hence
Corollary 3.6 yields that B is proper Hamiltonian and Fh, is a proper
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torus of S. We leave it to the reader to check that every o € SL(Fu, ® Fu,)
gives rise to a homogeneous automorphism of H(2;1)® with respect to
the present grading. Thus we may assume that h, = D§j’(uyu,). Then
S ® F contains elements

Di(u))®1e(S®1) 4 5  DiN(u,) ®1€ (S®1) 44,
Dy (uyu3) ® 1 € (§® 1)1, Dy (uiu,) ® 1 € (§® 1)1 —p.
As
[D(F}‘)(ul), D}j‘)(ulug)] = 2D (uyu,) = 2hy,
[Dﬁ}‘)(uz),Dg‘)(ufuz)] = _ZDg)(ulu2) = —2hy,
one has Ly, , 5 # R, 5. Moreover,
D (uy) ® F[x,1 G, g,
Di’(u,) ® F[x,] ¢ 6—1,3-
Therefore,
dimL,g/R,p=dimL, /Lo, +p+diMLe, ,p/Rip2p+126.
As B is proper, Lemma 1.4 yields
n,g=dmL, /R, ,—2dimL, /K, ,>6-4=2

Then n(B) > 2.

Suppose that § = W(1;1) and Fh, is a proper torus of S. Then Corol-
lary 3.6 implies that B is proper Hamiltonian. Since dim(S ® 1)_; ;5 =1
one has dimG_, ;5 = p for all i # 0. Therefore

dimL;3/R;p >dim L,z/Lg ;5=p=5

and
dim Lig/Rig <4+ n,

forall i [F; (cf. Lemmas 1.1(5) and 1.4). Thus

n(B) = Z (dim Liﬁ/Rz’B - 4) >(p—-(p—4)>2

e F*
i€l

Suppose that S = W(1; 1) and Fh, is an improper torus of S. As above, 3
is Hamiltonian. By Corollary 3.4(5), Fh, is an improper torus of S. Put

Kp(8) = {xe (§e 1)1 8([x. (S0 1)-5]) = 0}.
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According to Lemma 1.1(6) one has dim S‘;B/Kiﬁ(f) =3 for all i € F.
This implies that =, (S, _,5 ¢ K_,;3(8) forcing

[(§@1)_1:6.(§® 1)1, 5] # (0)

for all i € . Moreover, since Fh, is improper in S,, one has B(S ®
1, sz(S ® 1y _;gD) #0 for all i eF. Therefore dim L, ,5/Rip =2
whenever i € F. Since S Lig ® F[xz] =G_, ;4 forall i € [ one ob-
tains that

dimL;3/R;p=dim L;s/L, ;5 +dimLg ;5/Rig>p+2=>7

forall i € F. On the other hand, dim L,;/R;; < 6 + n;, by Lemmas 1.1
and 1.4. Thus n(B) =p — 1 > 2.

As a consequence, in all cases B is Hamiltonian and n( 8) > 2. We now
take B instead of « and construct the new ideal I = I(L,T, B) = 1P,
Lemma 6.5 yields that B is non-Hamiltonian. This contradiction proves
that 7 < 2.

(d) We conclude that 7= 1. Then r =1, G_, = (0), G_, € G(a),
and T'_, cT" (Lemma 6.2). According to Lemma 6.3, G,(«) is solvable.
Using the Engel—Jacobson theorem it is not hard to see that G,(a)® acts
nilpotently on Gy(a). Since ka # 0 is a root of Gy(«a) (Lemma 6.3),
Go(a)® acts nilpotently even on G(a). Now Lemma 6.4(2) yields dim G _,
< 1. Consequently, L(o)(a) is a T-invariant solvable subalgebra of L(«a) of
codimension < 1. Then « is solvable, classical, or proper Witt. |

We are now in the position to prove our first main theorem.

THEOREM 6.7. Let L be a simple Lie algebra over an algebraically closed
field F of characteristic p > 3. Suppose that TR(L) = 2 and let T denote a
2-dimensional standard torus in the semisimple p-envelope L, of L. Then
m(a) <2 forall a € T(L,T).

Proof, Let (L,T, a) be a minimal counterexample to the theorem.
Then M(® = L by Lemma 5.1(1). Rigid tori are defined in [18, Sect. 8]. By
[18, (8.1(4))], T is nonrigid. So it follows from [18, (6.3)] that (L, T, a)
satisfies (5.1)-(5.4). Let L, and I C L, be as in Section 5. In a first step
we shall prove that TR(I) < 1.

Suppose TR(I) > 1. Then %, /7 is p-nilpotent whence T c.7. There-
fore ¥, (K, cland £ _ [T, Ly 1 €7@ = 1%, Consequently, I =
I. Let J denote a maX|maI ideal of I Then J is an ideal of .7 Let # be
the inverse image of rad(_#/J) in .7, and let 7 :.%—_7/# denote the
canonical epimorphism. As #® cJ # 1 one has I ¢_# According to
Lemma 5.2(3), 7 is p-nilpotent. Therefore #=rad.7 and 7 is a re-
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stricted ideal of _# (because the p-closure of _# is solvable as well). It
follows that 77(_#) is a semisimple p-envelope of 7 (I).

Since # is p-nilpotent, one has T N_# = (0). Thus «(T) is a standard
torus of dimension 2 in the semisimple p-envelope = (%) of the simple Lie
algebra 7 (I) of absolute toral rank 2 [25, (1.5)]. Since ¥, K, (L, T) C I,
then 7(%,;. (K, (L, T)) C X, (K, (e (D), w(T)). Then

RK, (7 (I),7(T)) N W(Km(L,T)) cC W(RKiu(L,T)).
As ker 7 is p-nilpotent, (ker 7) N K, (L, T) € RK,, (L, T). Therefore

n,(L,T)=dmK,, (L, T)/RK,;,(L,T)
= dimm(K;,(L.T))/7(RK;,(L,T))
< dim (K, (L, T))/RK;, (7 (1), n(T)) N 7(K;,(L,T))
<dim K, (7 (1), 7(T))/RK; (7 (1), m(T))
=n(m(1), 7(T))

for each i € [. We have now proved that (7 (1), 7(T), ) is a counterex-
ample to the theorem. As dim 7(I) < dim L this contradicts our choice of
(L, T, a). Consequently, TR(I) < 1.

Thus (L, T, @) € ©,. But then Lemma 6.5 shows that 7 = 2, contra-
dicting Proposition 6.6. This contradiction shows that there is no counter-
example. |

7. GRADED SIMPLE LIE ALGEBRAS
Let G be a Lie algebra of endomorphisms of a vector space V. Then

ZM(G) = {¢ € Hom,(V,G) | ¢(u)v = ¢(v)u Yu,v € V}

is called the first Cartan prolongation of the pair (7, G). Clearly, G acts on
ZP(G) in the natural fashion

(89)(v) =[5, e(v)] — @(8v)
with the obvious choices of g, ¢, v. In Lemmas 4.1, 4.2, 4.3.3, 4.4 of [20]
the following has been proved:

ProposITION 7.1. Let G € g[(V') be an irreducible Lie algebra of linear
transformations of a finite dimensional vector space V, and ¢ € P(gl(V)).
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Suppose that B € End(V') is a G-invariant commutative subalgebra.

(1) Forfe EndV,v eV, the mapping
&V - al(V). &(v) = [e(f(v)).f] = fele(v).f]

is contained in (g [(V)).
2) Let ¢ € #9(G), and

Y=moep:.V — DerB,

where 7 is the canonical homomorphism .G — Der B. If rkgV > 1, then
Y is B-linear. Suppose that V' = B has rank 1 over B. Let ¢ be a G-invariant
subspace of 3(G), and

J:=span{e(V) | ¢ €7}

Then w(J) is a B-invariant ideal of 7(G).
(3) Suppose [¢(V), B] € B. Then

e(f3(v)) + 2fe(f(v)) + fP%(v) =0 VfeBuveV.

Note that the irreducibility of the G-module IV implies that B is
G-simple and V' is a free B-module (see [20, (1.4), (1.2)]. In particular,
rkgV is well-defined. We apply this proposition in the following situation.
Let G denote the universal p-envelope of G, and let K be a restricted
subalgebra of G of finite codimension. Assume that 1/, is a finite dimen-
sional K-module. Then md“ V, is a finite dimensional G-module. There is
a G-module isomorphism

ind$ 1, > Hom,, «,(u(G).7;).
where V0 Vo ® F, is defined by the Frobenius twist o of the extension

w(G): u(K) [13] Now Homu(K)(u(G) F) carries a commutative algebra
structure given by

(f6)(u) = Sf(ua)g(ug).  f.g € Hom,(u(G), F),u € u(G),
where A u(G) — u(é) ® u(G), Alu) = Lugy ® Uy, is the natural comul-

tiplication  of u(G) = U(G). Moreover, Homu(K)(u(G) V) is a
Homu(K)(u(G)) F)-module, and G respects this module structure, that is,

D(fg) = (Df)g + f(Dg)



276 PREMET AND STRADE

for all DeG,fe Homu(K)(u(@), F)ge Homu(K)(u(@), V,) (see [18,
Sect. 2] for more detail). Set

B == Hom,(u(G), F).

Due to [19] there are m € N, n € N™ such that B = A(m; n), the action
of G on B induces a Lie algebra homomorphism 7 : G - W(m; n), and
7(G) is a transitive subalgebra of W(m; n). In particular, B is G-simple.
Note that pX"i = p9mG/K By [31] there is an isomorphism of vector
spaces

Hom,, ,(u(G), ;) =V, ® A(m; ),

such that the module structure on the left induces a Lie algebra homomor-
phism

G- (QI(VO) ®A(m;g)) ® (FIde® W(m;n)).

The latter can be explained as follows.

Let D€ G. Then D(u ® f) =D(u ® 1)f + u ® D(f) by the above.
Write D(u ® 1) = £,5,(uw) ® x* with S, € EndV;,. As D acts_on
A(m;n) by special derivations [19] we get D = XS, @ x +Id® D €
al(Vy) ® A(m; n) + 1d ® W(m; n). Clearly, in this realization, 7(G) =
,(G), and 7,(G) is a transitive subalgebra of W(m; n).

PRoPOSITION 7.2. Let g € gl(V') be an irreducible Lie algebra of linear
transformations of a finite dimensional vector space V. Assume that V is
induced, that is,

V =ind} V, = Hom, . (u(3). Vo) = V, ® A(m; n),
where § denotes the universal p-envelope of ¢. Set J = span{e(}V) | ¢ €
ZP(q)}. Then

@) 7,(J) is A(m; n)-invariant;
(2) ifJ c kerr,, then J is A(m; n)-invariant;
() if J # (0), then dim g > p*" = p9im8/K,

Proof. In Proposition 7.1(2) set B = Id ® A(m; n) and 7 = #M(g) to
obtain (1). Next assume that m,(¢(}))) = (0) for all ¢ € Z"(q), ie,
suppose that ¢(V) c gl(V,) ® A(m; n) for all ¢ € #P(g). Then

fe(ueg)(v®h)=fe(v®h)(u®g)=¢(veh)(udgf)
o(u®gf)(v®h),
whence fo(u ® g) = o(u ® gf) for all f € A(m; n). This proves (2).
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Suppose J # (0). As m,(J) is m,(g)-invariant and ,(g) is transitive,
either 7,(J) ¢ W(m; n) g, or m,(J) = (0).

In the first case (1) yields dim m,(q) > dim A(m; n). If 7,(J) = (0)
then the transitivity of m,(g) implies that J contains an element of the
form S, ® 1 + X,. .5, ® x©, S, € g[(,). Now (2) shows that dim J >
dim A(m;n). |1

LEMMA 7.3. Let g be an irreducible Lie subalgebra of §[(V') such that
g/rad g = W(1;1). Suppose that rad g is abelian and isomorphic, as a
W(1; D-module, to a submodule of the canonical W(1; 1)-module A(1;1). If
ZP(q) # (0), then dimV < p and the extension

g=W(1;1) ®radg
splits.

Proof. (1) Suppose rad g = C(g).

(a) Assume that the extension does not split. Recall that g has a

basis Ey,..., E,_,, Id such that
(J = E.;, -l<i+j=<p-2,
[E.E] =1 (j* =), i+j=p2<ij<p-2,
0, otherwise

(2) First observe that the monomials
Ejeo .. o EJrg, 0<ay,...,a, ,<p—1,

are linearly independent. In order to prove this statement, order the
admissible tuples (a) = (a,,...,a,_,) lexicographically, and suppose that
for some b = (b,,...,b,_,)

b b—z a a,_»
Ejeo.. . oEr?e€ ) FEf2o...0Eyr}.

a<b

Using the commutator relations above one easily derives a contradiction.

Now let ¢ € {(q). Set f:= E, ,, and let B be the associative algebra
generated by E, ,. By Proposmon 7.100), & € P (gl(V), where &(v)
= [o(f(v)), f] —fo[go(v),f] for all v € V. Note that

&(v) € [9.E, o] +E, ,°[8.E, ;| CFE, ;+FE, ,+FId

+FE, ,°E, ;+FE}_,.
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But then [£,(7), B] c B, and Proposition 7.1(3) yields that
&(f2(v)) —2f = &(f(v)) +f2e&(v) =0

for all v € V. It follows that

[e(£3(v)). ] = 3f=[e(£2(0)). f] + 3f%[@(f(v)).f]
—fe[e(v),f] =0.

Obviously [¢(f"(v), fl1€ g, E,_,] CFE,_ 5+ FE,_, + F Id for all r >
0. Thus the above remark on the linear independence of the monomials in
E. (applied to monomials of degree < 4) implies that [¢(v), f] € F Id for
all v € V. Now substituting v by f"(v) shows that there are «, € F such
that [¢(f"(v)), f]1 = «, Id. Putting this into the above equation and again
using the independence of the monomials we obtain that [¢(V), f] = 0 for
all v € V. Therefore [¢(V), E,_,]1 = (0).

On the other hand, J := span{go(V) | ¢ € #P(g)} is a g-invariant sub-
space of g. This forces J € C(g) = F Id. Now suppose ¢ # 0 and ¢(v) =
Id. For every u € V' one has

u=oe(v)(u)=¢e(u)(v) € Fo,
yielding dim IV = 1. This contradiction proves that the extension splits.

(b) Note that W(1;1),, acts nilpotently on W(1;1). The irre-
ducibility of I implies that there is an eigenvalue function A: W(1; 1), —
F such that E — A(E)Id is nilpotent for every E € W(1; 1),

Suppose A(E,_,) # 0. Then one observes that the monomials in E;
exposed in (a) still are linearly independent. One proceeds as in (a) (with
minor simplifications) to prove that #(g) = (0).

(c) Suppose there is i, with 1 <i, <p — 3 such that A(E, ) # 0.
By part (b), A(E,_,) = 0. Now [6] shows that dim V=>p?and V is induced
from a 1-dimensional representation of a subalgebra K of § (see also
[34]), that is, V = ind} F,. Proposition 7.2(3) shows that dim g > p?, a
contradiction.

(d) As a consequence, W(1; 1), acts nilpotently on V. In view of
[6] we conclude that dim 1 < p.

(2) Suppose rad g # C(g). Let A:rad g — F denote the elgenvalue
function on rad g. By [34, (5.7.6)], V' = ind}.(}}) where §" = {x e ql
Mx,radgD) =0 and V, :={v €V ]xw = )\(x)v Vxeradg) If 32 =37
then [g,rad g] acts nilpotently on V, and the irreducibility of 17 gives
[g, rad g] = (0). As this is not true in the present case one has §* # §.
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Proposition 7.2(3) now yields that dim §/3* = 1. But then dim g/g* =
(where g*=gng". As radg c g’ this implies that g/rad g =
W(1; D, Therefore g* is solvable. As [§*, §*] c g* §" is solvable as
well. Therefore 1V is induced from a 1-dimensional subrepresentation of
K = Q% that is, V = ind} F,. As above dimV = pm3/K = p.

We now apply [27] to conclude that the extension splits. i

Remark 7.1. Part (1)(a) of the proof of Lemma 7.3 is due to Skryabin
(unpublished). We are most thankful to him for permitting us to reproduce
it here.

LEMMA 7.4, Let L = @ _ _, L, be a finite dimensional graded Lie alge-
bra satisfying (g1)—(g3d) (s, s > 0) Suppose that Ly/rad L, = W(1;1) and
rad L, is abelian. If rad L, is isomorphic as a W(l 1)-module to a nonzero
submodule of A(1;1), then dim L _, < p and the extension L, = W(1;1) &
rad L, splits.

Proof. Let L be a minimal counterexample. Let M(L) denote the
maximal ideal of L contained in X, . _,L,. As L/M(L) satisfies the
assumptions of this lemma, the minimality of L implies M(L) = (0).

Let L) denote a nonzero L,submodule of L, and let QO be the
subalgebra of L generated by L _, + L, + L. As Q satisfies the assump-
tions of this lemma, the minimality of L gives L = Q. But then L, is an
irreducible L,-module and L, =L for all i > 0. Moreover, if x €L,
(j<0) and [x, L;] = (0) then [x, L;] =0 for all i>0. Thus ann, L,
generates an ideal I(j) of L contained in X, _;L,. If j< —1 then
1(j) € M(L) = (0). By (g3), ann; L, = (0). Suppose 1(0) # (0). The pres-
ent assumption on L, shows that every nonzero ideal of L, contains
C(Ly) = F1. Butas F1 acts nontrivially on L_, itactsas F 1d, .By(g3),
Flactson L, asFld, aswell. Asaconsequence ann, L; = (0). Thus we
have proved

[x,L;]=(0)=x=0 VxelL,;j<0.

Thus the reverse grading of L also satisfies (g1)—(g3). Therefore we may
assume that s’ <s.

First, suppose that p + 5. Let z € C(L,) be the element acting on L _,
as —Id. It is easy to see that ad, z=ild, for all i. In particular,
ad, ,z= —s'1d,_, #0. As every nonzero |deal of L, contains z, this
means that L, acts falthfully on every irreducible L, submodule of L_,.

Let I/ be such a submodule. Now 7 = (ad L _,)*(L, ) is a nonzero ideal of
L, whence

(0) # [V, 1] = (ad L_,)" ([V, L,]).
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Therefore [V, L] # (0). But then L, gives rise to nonzero elements of
ZP(L,). By Lemma 7.3, L, = W(1;1) @ rad L, splits and dimV < p. Let
A:W(L; D, @ rad L, — F denote the eigenvalue function associated with

ad, E— A(E)ld,  isnilpotent for all E € W(1;1)q, ® rad L,.

It is easy to check (using (g2)) that ad, , E — sA(E)Id, | acts nilpotently
on L_,.

Recall that p +s'. By [34, (5.7.6)], V = md 2(V)) is induced from a
subrepresentation of L} = {x € L, | A([x, rad L D=0} If L) = L, then
rad L, = C(L,). As dim IV < p we conclude from [6] that A(E) = 0 for all
E e (W(l 1)(0) ® C(L))W.

If LA # L, then a dimension argument gives dim LO/L" =1,dimV, = 1
But then LA N L, has codimension 1 in L, and contains rad L. Thus
LyNnL,= W(l Dy, ® rad L, and again A(E) = 0 for all E € (W(1;1),

® rad L,)™. Thus in both cases Q = W(1;1),,, ® rad L, acts triangulably
on L_,,sothat L_, has a 1-dimensional Q-submodule Fu. Then L_; isa
homomorphic image of indfe Fu, and dim L _, < p®™ /¢ = p,

Next, suppose p | s'. Let W be an irreducible L -submodule of L_, ;.
Clearly, ad, , z=(-s+ DId_,,, whence L, acts faithfully on W.

As L, is L0 irreducible, one has (ad L _ DY "3(L,_ ) =L,. Then

(ad L ;)" *([L_y. Ly y]) =Ly (ad L ;) "% (L, y)]
= [L ' Ll] i (0)

by earlier remarks, yielding [L_,,, L,_,]1# (0). As L_, is L-irreducible,
[L_,,L,_,]1=L_,. Finally, if [W,L,_,]1=(0), then

(0) = [L_Sr,[W, Ls’—l]] = [W’[L—S"Ls’—l]] =[w.L_,]

Butthen Q = X, _,,(ad L,)’(W)is an ideal of L which contains L _; + L,
(by (g1)—(g3) applied to both the grading and the reverse grading). In this
case Q + L, = L by the minimality of L. Then L__, = (0), a contradic-

tion. As a consequence, L, _, gives rise to nonzero elements of #5(L,).
Now proceed as in the former case. |

We are now in a position to derive our first structure theorem on graded
simple Lie algebras. The proof relies on Lemma 7.4 and recent results of
Skryabin [20].

THEOREM 7.5. Let L = @’__, L, be a simple graded Lie algebra satisfy-
ing (@L—(g3) (5,5’ > 0), and let 3 be the p-envelope of L, in Der L.
Suppose TR(L) = 2, and let T %, be a 2-dimensional standard torus.
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Assume rad &, # (0). Then one of the following occurs.

(@ dmL,=dimL_, =1, L =W(1,2);

(b) L,=W(;1) & A1; 1), where A(1;1) is an abelian ideal. More-
over, dim L _, = p and W(1; 1), + A(1; 1)y, acts nilpotently on L _;

(© Ly=S @& C(Ly), where S € {31(2), W(1; D}, dim C(L,) < 1, and
dmL_, <p;

(d) H@; 1)@ c L,/C(L,) € H2; 1) and dim C(L,) < 1. If
dim L_, < p* and all 2-dimensional tori of %, are standard with respect to
L, then [Ly ¢, Ly )] acts nilpotently on L, where L o, and L, , are the
preimages of H(2; )® ¢ and H(2; 1)® ,, in L, respectively.

Proof. (a) First suppose that L, is solvable. By [20, (7.4); 35, part 11; 12]
dimL,=dimL_, =1, and L = W(1; n) for some n. As TR(L) = 2 we
have n = 2 [28].

(b) From now on we assume that L, is nonsolvable. Consider the
case rad L, # C(L,). Let p denote the representation of L, on L_,. By
[20, (6.5)], p maps rad L, isomorphically onto a L -invariant commutative
subalgebra B < End L_,, and there is an algebra isomorphisms B =
A(m; n) for suitable m and n € N™ such that the image of L, in
Der A(m; n) coincides with W(m; n). If m =0 then B = F Id, whence
[Ly,rad L,] € ker p = (0). This contradicts the assumption that rad L, #
C(Ly). Thus m > 1.

Since p(rad L) contains F Id one has TR(L,) < dim7T — 1 = 1. But
then

1<m=TR(W(m;1l)) < TR(W(m;n))
— TR(Lo/ker(my )
< TR(L,) — TR(ker(,° p))
<1 - TR(ker(m,° p))

whence m =1, n = 1, and TR(ker(ar, » p)) = 0 [25]. As a consequence,
ker(sr, o p) is nilpotent [25]. This shows that ker(w,° p) Crad L,. As
W(m; n) = Ly/ker(m,° p) is simple, ker(w,°p) = rad L,. Thus
L,/rad L, = W(1;1), rad L, is abelian, and rad L, is a W(1; 1)-submodule
of A(1;1). Since rad L, # C(L,) one obtains rad L, = A(1;1). As rad L,
acts faithfully on L_; we also have dim L_, > p. Lemma 7.4 now shows
that the extension splits and dim L _, = p. From this one concludes that
W(1; 1), + A(L; D, acts nilpotently on L _, [27]. Thus we are in case (b)
of the theorem.
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(c) Next assume that rad L, = C(L,). By our assumption, rad %, +
(0). If rad %, acts nilpotently on L _,, it annihilates L_,, and then it is
easy to derive from (g1)—(g3) that rad %, annihilates all L,. As &, is
homogeneous of degree 0 this is impossible.

Therefore rad %, contains a toral derivation 6 which annihilates L,
and acts on L_, as —Id. Then & is the degree derivation of L with
respect to the present grading. We conclude that 0 < TR(L,/rad L,) <
dimT — 1 = 1. Therefore either L,/C(L,) € {3((2), W(1; 1)} or H(2; )®®
c L,/C(Ly) € H(2;1) (cf. [25, (4.2); 38; 17, Theorem 2]). Also, dim C(L,)
<1las L_, is Ly-irreducible.

If L,/C(Ly) = 3((2) then L, = 3((2) ® C(Ly) (for H*(3((2),F) =
(0)). L _, being an irreducible 3((2)-module, this implies dim L_, < p.

If L,/C(Ly) = W(1;1) then Lemma 7.4 shows that the extension splits
and that dim L_, < p. Thus in both of these cases we are in case (c) of the
theorem.

Finally, suppose that H(2;1)® c L,/C(L,) c H(2;1),dim L_, < p*,
and that every 2-dimensional torus in %, is standard with respect to L.
Let L, be the preimage of H(2;1)® in L, and Lj ; the preimage of
H(, 1)(2)(,) in L,. First suppose that all Cartan subalgebras of L, act
triangulably on L _;. Then Lemma 3.8 yields the claim. Now suppose that
L, contains a Cartan subalgebra f) which acts nontriangulably on L _,. Let
T, be the maximal torus of the p-envelope ) of § in Z,. If dim T, = 2
then T, is standard with respect to L (by assumption), so that §) = I/, N
C,(T)) acts triangulably on L.

Therefore dim T, = 1. Then é & T, for otherwise T, = Fé and f) would
act nilpotently on L,. But f) is a Cartan subalgebra of L, and L is not
nilpotent. Then 7, = T, + Fé is a 2-dimensional torus of %, and again
hH =L, n C,(T,) acts triangulably on L. |

Next we consider some cases where rad %, = (0).

PROPOSITION 7.6. Let L = ©_ L, be a graded simple Lie algebra
satisfying (g1)—(g3) (s, s’ > 0), and let .,S/ be the p-envelope of L, in Der L.
Suppose that TR(L) = 2 and

H(2;1)” c% c Der H(2;1)?.
Then, for every 2-dimensional standard torus T C%,, one has C,(T) N

L_, #(0).

Proof. (a) Suppose %, contains a 2-dimensional torus T for which
C,(T) n L_, = (0). Recall that Der H(2; 1)® has absolute toral rank 2
[5, (1.18.4)]. By Corollary 2.11, we may assume that T = F(1 + x,)d; &



LIE ALGEBRAS OF SMALL CHARACTERISTIC 283

Fx,d,. Define ¢, &, € T* by letting £/((1 + x,)3,) = &,(x,d,) =1 and
&,((1 + x,)9,) = &/(x,d,) = 0. Note that

[(1+ )00, Dy (1 +x1) x4)] = (i = DDy ((1 +x,)'x3),

[x205, Dy (1 +x1)'54)] = (= DDy ((1 +x,)'x)
[(L+x)d, (1 +x)" 0, = —(L+x,)" 10y,
[(1+x)a,, x27 %] = —x27 %,
[x20, (L+x)" 10, = —(1 +x,)" "9y,

[xz &z,xzp_lal] = —xt7%,.

Put k = ¢, + &,, T= F,e; © F,e,\{0}, and = F\[FPK. Let BT, so
that B =me, + ne, and m # n. If n # 0, put a = 7. Then a # 1. Using
the formulas above one easily checks that 4, (B) = T + span{D,((1 +
X)) | —1<i<p—2} for n#0, and Z(B) =T + span{Dy
(@ +x))'%,10<i<p—1} for n=0. A plain computation now shows
that, for each B € I, the 1-section #,( 8) is isomorphic to a split central
extension of W(1; 1).

Now L _, is a faithful restricted H(2; 1)®-module. So Theorem 3.1 says
that either L_, or L* ; is isomorphic to

A(2;1) /F = span{xix} | (i,]) # (p — 1,p — 1)}/F,

with the action of %, induced by that of W(2;1) (which contains
Der H(2; 1)®). Therefore all weight spaces of L _, and L* ; with respect
to T are 1-dimensional, each g € T", is a T-weight of both L_,and L* |,
and 0 is not a T-weight of L* , (this follows from a straightforward duality
argument and the fact that I" = —1I7).

Given a restricted #,-module V' and p € T*, Let V( u) denote the sum
of the weight spaces &,_, V., © V. It is immediate from our preceding
remark that !

dim L_,(B) = dim L* (B) =p — 1

for every B € r.

(b) As L, is a nonzero ideal of .%,, it contains H(2; 1)® and is
T-invariant. On the other hand, each T-invariant subalgebra of
Der H(2; 1)® containing H(2; 1) is restricted (by Jacobson’s identity). As
C(#,) = (0) the (unique) p-structure of %, is induced by that of
Der H(2; 1)®. Therefore %, = L,. Put L,:= L, N H(2;1) (recall that
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H(2;1) is an ideal of codimension 1 in Der H(2; 1)®). As T ¢ L, L, is a
restricted ideal of codimension 1 in L,, and the restricted quotient algebra
Ly/Lj is toral. Now [L_,, L] =L, (for L is simple, and &,_, L, is
generated by L_,). Composing the map L_, X L, — L, (given by Lie
brackets) with the canonical epimorphism L, — L,/L,, = F one obtains a
pairing b: L _, X L, > F. As (Der H(2; 1)) c H(2;1), the pairing b is
L,-invariant. As L _, is Lg-irreducible the subspace {x € L_, | b(x, L)) =
0} is zero. Put E ={x e L, | b(L_,,x) = 0}. Then E is an L,-submodule
of L;,and L,/E = L* | as L,-modules.

(c) We claim that the ideal H(2;1)® c L, annihilates E. Suppose
the contrary. Then [[L_,, E], E] # (0) (as the nonzero ideal [L_,, E] C L,
contains H(2;1)®). From the description of L _, given above it follows
that L_, remains irreducible when restricted to H(2; 1)®. Let G denote
the Lie subalgebra of L generated by L_; and E. Then G carries a
Z-grading induced by that of L. Let M(G) denote the maximal ideal of G
contained in @, _G,. Let G, denote the p-envelope of G in Der L. By
Jacobson’s formula,

G,c G, ,® ) DerlL,
i#0
where G, , denotes the p-envelope of G, in Der L. As G, =[L_,, E]is
an ideal of H(2;1)),s0is G, , whence T N G, = F((1 + x,)d; — x,d,). As
E is L,stable, T normallzes G,. From this it is immediate that G,
contains no 2-dimensional tori [4, (1.7.1)]. As G is nonnilpotent, TR(G) = 1
(by [25]). Therefore G := G /M(G) is nonnilpotent as well.

By [35], G is semisimple and contains a unique minimal ideal A = A(G).
As[[L_,, E], E] # (0), one has A, # (0). Thus we are in the nondegener-
ate case of Weisfeiler’s theorem. So there are a simple graded Lie algebra
S =@ _,S; and m € N such that

ieZ™i
A=S®A(m;1), A, =S5 &A(m;1).

Clearly, A, is an ideal of [L _,, E] whence contains H(2;1)® and may be
viewed as a subalgebra of Der H(2; 1)®. Therefore, A, is a semisimple Lie
algebra. This implies that m = 0 and A is simple. Also 4A_, = G_,, s0
that dim 4 > 2p? — 4. On the other hand, A is a simple Lie algebra of
toral rank 1 (as a homomorphic image of a subalgebra of G). This,
however, contradicts [17, Theorem 2] (see [38] for the case p > 7). This
contradiction proves the claim.

(d) Since H(2;1)® annihilates E, all T-weights of E belong to F,«.
As L* | = L, /FE (by (b)), this implies that, for every 8 € L L( B)/CE(T)
= [* (B). Thus the L,(B)Y-module L,(B) has 2 composition factors,
namely, L* ,( 8) (of multiplicity 1) and the trivial L,(8)®"-module F (of
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some multiplicity). We now claim that L ,,(3) c rad L( ). Suppose the
contrary. Clearly, the 1-section L( ) carries a canonical graded Lie
algebra structure induced by that of L, i.e.,

L(B)=©;c2Li(B).

Being invariant under the action of Aut L(8), the radical of L(B) is a
graded subspace of L(B), that is,

rad L( B) = leZL(,B) Nrad L( B).
Therefore, the quotient algebra L[ 8] := L(B)/rad L( ) is also graded:

L[Bl=&_,L[Bl. LIBLi=Li(B)/L(B) Nrad L(B).

By our supposition, either L[ 8], or L[ B]_, is nonzero. As Ly(B) =
Lo(B)P & C(Ly(B)) and Ly( B = W(L;1) (by our discussion in (a)) we
also have L[ B] = W(1;1). Now the classification of 1-sections given in [18,
Lemma 1.2] implies that H(2;1)® c L[ B8] € H(2;1). But then the present
grading of L[ 8] is induced by an (a,, a,)-grading of W(2; 1) (see Theorem
3.3). As L[ B], = W(1;1) we must have either a, # 0, a, =0 or a; =0,
a, + 0 (by Corollary 3.4). No generality is lost by assuming that a, # 0.
Then L[ B]; # (0) implies a, | k. But we know that either L[ 8], # (0) or
L[ B]_; # (0). This forces a, € {+1}. Now it is immediate from Corollary
3.4(2) that both L[B], and L[ B]_, are nonzero. Moreover, using the
formulas established in the course of the proof of Corollary 3.4(2) one
easily observes that the L[ gl-module L[ 8],, is p-dimensional irreducible.
This, however, contradicts the fact that each composition factor of L[ 8], ,
is either (p — 1)-dimensional or trivial. R

(e) Thus we have established that L , (8)  rad L( B). Clearly this
means that [L _,(B), L,( 8)] € C(L(B)). It follows from our discussion in
(@) and (d) that dim L_, ;=dim L, ;=1 whenever 8 € . Since the
pairing b:L_, X (L,/E) — F is nondegenerate and T-invariant, b re-
mains nondegenerate when restricted to L_, ;X L; _,z, where g & T
As Z,#OLHZ crad L(B) we must have B(L_ vigr L_jg) =
B(L, i L_g ]) 0 forall B e ' ie F. In other words, L, ;5 C K,
forallieF), B e I". Our preceding remark implies that L, ; ;4 <7: RK,
This means that n(B)>=p—1>4foreach B T" contradicting Theo-
rem 6.7. This contradiction proves the proposition. |

PROPOSITION 7.7. Let L = ©/__, L, be a graded simple Lie algebra
satisfying (91)—(g3) (s, s' > 0), and let #, be the p-envelope of L in Der L.
Suppose TR(L) = 2 and there is a 2-dimensional torus T C%, such that
C(T)cX,. L, Assume that

Ly=S®A(m;n) + 1ldg ®9,
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where S is a simple Lie algebra with TR(S) = 1, m # 0, and 9 s a transitive
subalgebra of W(m; n). Then

1) Se{sl@ WL m=1n—1 and @ — W D).

(2) Anelementh € S ® A(1;1) is either p-nilpotent or else acts invert-
ibly on every L -composition factor of L _== ¥, ., L;, which is not annihilated
by S ® A(1; D).

3 [SeALD,L_,]1=(0.

Proof. (a) Let I =S ® A(m; n) be the unique minimal ideal of %, and
W a L,-composition factor of L _ which is not annihilated by /. Note that
there is such a composition factor because otherwise I would annihilate
L _, contrary to (g3). In Theorem 3.2 set G =.%;. That theorem shows that
for some choice of a S-module U and r € N there are compatible
mappings

pleoWS(SeU)®Arl),
¥ % - ((Derg(S © U) ® A(r;1)) @ (F ldgey ® W(r;1)),
such that
W(T)=F(hy®1) ®F(d®1+ ldgey ®1,),

where h, € S,d € Dery(S ® U),t, € W(r;1). By assumption 0 is not a
T-weight of W. So W is not as in (2)(@) of Theorem 3.2. Suppose
S = H(2; )®. Then we are in case (2)(b) of the theorem. As m = 0 we
have r # 0, so that t, = 0 and Fh, ® Fd |¢ is a 2-dimensional torus in
Der S. Now let J = § ® A(r; 1), denote the unique maximal ideal of 7. In
the present case T stabilizes J and acts as a 2-dimensional torus on
1/] =S.
Now recall that by assumption

Ly=(S®A(m;n))® (Fldg ®2)
c(S®A(m;n)) ® (FIdg ® Der A(m; n)).
As S is a restricted Lie algebra,
adgg g(m:nyZo € (S ® A(m;n)) ® (F Idg ® Der A(m; n)).

Since T stabilizes J = S ® A(m; n),,,, the above shows that 7' injects into
S. Since TR(S) = 1 this is impossible.

Thus we are in case (2)(c) of Theorem 3.2. Therefore S € {31(2), W(1; D)}.
Moreover, every h € [ is either p-nilpotent or acts invertibly on W.
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(b) We now specialize W by setting W := L _,. It follows from (a)
that %, =1+ C,(S ® F). Remark 1.2 shows that the S-module U is
restricted, semisimple, and isogenic. Moreover, 0 is not a Fh,-weight of U
(since A, is not p-nilpotent). If § = W(1;1), then necessarily

UsU®o..oU, U =A1,1)/F

(this follows from the classification of the restricted irreducible W(1;1)-
modules [6]). Since Fh, is a torus of W(1;1) we may assume that either
hy € Fxd or hy € F(1 +x)d [7]. Set @ = F9 & Fxd @ Fx%. Then h, € g
and U’ is g-irreducible.

Thus in any case there is a subalgebra g = 3((2) of S ® F c I contain-
ing Ay, ® 1 such that L_, is a restricted semisimple isogenic g-module.
Butthen L_, =[L_,, L_,]is generated as a g-module by the zero weight
space with respect to 7, ® 1 [38].

(c) We now show that 7-L_, = (0). So suppose for a contradiction
that V:=1-L_, #+ (0). Let V' be a maximal %,-submodule of V. As I is
perfect, V'=1-V whence I acts non-trivially on V/V'. We claim that
there is a subspace Q c L_, such that g-Q =(0)and L_,=0Q ® V as
g-modules (recall that g c I, so that IV is g-stable). As g acts trivially on
L_,/V, it suffices to show that the first cohomology group H(g,V) is
zero. This in turn follows from a stronger statement that H'(g, W) = (0)
for each composition factor W of the g-module L _,, which is proved as
follows.

Let (i) denote the irreducible restricted g-module with highest weight
ie{0,1,...,p — 1}. It follows from (b) that the g-module L _, is isomor-
phic to a number of copies of V() for some odd r € {0,1,..., p — 1}. Let
Q(7) denote the projective cover of (i) in the left module category of the
restricted enveloping algebra u(g). By [1]

ViryeV(r)y=V(2r)eV(2r—-2)e ... 1V (0)
if 2r < p and

ViryeV(r)=002p—-2r—-2)eQ0@2p—-2r)®...©0(p—1)
oV@2p—-2r-4)eVQ2p—-2r—-6)e...o V(0

if 2r > p. It is well known (see, e.g., [1]) that for kK < p — 2 the projective
cover Q(k) has two composition factors, namely V(k) and V(p — k — 2).
Also, Q(p — 1) = V(p — D). It follows that (p — 2) is not a composition
factor of the g-module V(r) ® V(r). But L_, =[L_,,L_,] is a homo-
morphic image of a number of copies of V(r) ® V(r). Therefore V(p — 2)
is not a composition factor of the g-module L_,. On the other hand, it is
well known that H(g, V(i)) = (0) unless i = p — 2. This proves the claim.
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As L_, =Q @V as g-modules, there exists a g-epimorphism L_, —
V/V'. So the concluding remark of (b) now implies that s, ® 1 acts
noninvertibly on V /1. This, however, contradicts (a) (in view of the fact

that 7-(V/V") # (0)) proving that 7-L_, = (0).
(d) Write L_, = U ® A(m; n), and set

U:={uecUl|[hyul =iu},

Ly, ;= {x eL,|[h,®1,x]= —L'x},
G:=Fhy®A(m;n) +1d 9,

where i € F,. Note that U, = (0) by (a). Also, [U; ® A(m; n), U; ® A(m; n)]
= (0) for each i # 0, as i, ® 1 annihilates L _,. Pick a nonzero u € U,
and set V := Fu ®A(m;g). Then V' is canonically a A(m;n)-module.
Identify A(m; n) with its image B in EndV. For x € L, ; set ¢, =
(ad x) |, : ¥V = G. It follows from our preceding remark that ¢, € Z1(G).
Then in the notation of Proposition 7.1

(moe)(f) = m([xuefl) forall feA(r;1).

Set 7 :={¢ lxeL, } and J;={m(x,u®fDIlxeL, ;}. Proposi-
tion 7. 1(2) shows that J; is a B-invariant ideal of &. Next observe that the
simplicity of L gives L, = [L,, L_,]. It follows that

9 = my(Ly) = .E()Wz([Ll,ivL—l,—i])

is A(m; n)-invariant. Since 2 is a transitive subalgebra of W(m;n) it
contains elements g, + E; (i = 1,...,m) with E; € W(m; n),,. As & is
A(m; n)-invariant this implies that & = W(m; n). Note that

Mz
3

I
=
)
A

TR(L,) — TR(I) < 1

[25]. Then m =1, n=1and 9 = W(1;1). 1

8. TRIANGULARITY OF K'(a)

We now return to the investigation of the triples (L, T, ) satisfying
(5.1)—(5.4). From now on we assume that

(8.1) L is not a Melikian algebra
and introduce ©,, the class of those triples (L, T, a) satisfying (5.1)—(5.4),
(8.1) for which dim L is minimal.
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LEMMA 8.1. Each (L, T, o) € ©, satisfies (5.5).

Proof. Adopt the notation of Section 5. We follow mutatus mutandis
the proof of Theorem 6.7. If TR(I) > 1, then %, /% is p-nilpotent whence
T c.7. Therefore, X, , (K;, cTand X, . [T, Ly, ] 7Y = 1%, so that,
in particular, I = IV, Let J be a maximal ideal of 1. Let _# be the inverse
image of rad(_#/J) in .#, and let 7 :.#—_?/7 denote the canonical
epimorphism. As _#® c J # I one has I ¢_#. According to Lemma 5.2(3),
S is p-nilpotent. As J C # we have #=rad. 7 In particular, # is a
restricted ideal of 7. It follows that 7 (_#) is a semisimple p-envelope of
a(I). As £ is p-nilpotent, one has T N_# = (0). Thus #(T) is a standard
torus of dimension 2 in the semisimple p-envelope 7(_#) of the simple Lie
algebra 7 (I) of absolute toral rank 2. Given a 2-dimensional torus
T, ¢ w(¥) there is a 2-dimensional torus 7, c.# such that #(T,) = T,. By
[17, Theorem 1], T, is standard with respect to L. Employing the root
space decomposition of I (resp., w (1) with respect to T, (resp. T,) one
obtains that C__ ,(T;) = w(C,(T)). It follows that C,,,(T,) acts triangula-
bly on 7 (I). Hence 7(I) not a Melikian algebra [17, Lemma 4.1].

As kerar is p-nilpotent, (ker w) N K(a) acts nilpotently on L. As
(L, T, &) satisfies (5.3) there are y € I" and i, j € [ such that

'y([Km,Kja][P]) £0

(by the Engel—Jacobson theorem). From this it follows that =(%;, ,K;,)
generates a nontriangulable subalgebra of = (I) (since otherwise
X, er I, Ckera and then I C ker by definition of 7).

One has @ (X,;.K;,) € X, oK, (w(D), w(T)) (for X,.,K;, <I). By
[18, Corollary 8.7] there are a 2-dimensional torus T' c 7 (.#) and a root
a e (w(I), T") such that (#(1),T', ') satisfies (5.1)-(5.4). There-
fore (#(I),T', @') € ©, contradicting the minimality of dim L. Thus
TR(D) < 1. 1

As a consequence of this lemma, &, ¢ &, and the results of Section 5
apply to every triple (L, T, a) of &,.

LEMMA 8.2. Foreach (L,T,a) € ©, one has 7= 1.

Proof. 1f 7+ 0 then 7= 1 (Proposition 6.6). Now suppose 7= 0. We
recall from Sections 4 and 5 that G = gr L, G = G/M(G), and

A(G)=ScGcDerS, TR(S)=2

(the statement on TR(S) is due to Lemma 5.7).
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(@ We first show that S =G. Let S (G ), denote the p-en-
velopes of S, G, G, in_ Der S. By Skryablns theorem [20], TR(G) < 2
yielding TR(G) = TR(S) = 2. This means that G, /S is p-nilpotent [4].
As Z,, preserves the components L, of the f||trat|on of L which gave
rise to G, there is an epimorphism & : %, — G whose kernel is p-nilpo-
tent. Note that <I>(T) is a 2- dlmensmnal torus of G so_by the_above
observation ®(7’) cS We identify T and its |mage in S As S is an

ideal of G, one has G S+ ®CT). As T is a standard torus on L
(and_ S is nontrivially graded), it clearly has the same property as a torus
on S. It is not hard to see that O(K'(a, L, T)) € K'(a, S, T). 1t follows
that (S, T, «) satisfies (5.1)—(5.3). According to [18, Corollarx8.7] there are
a 2-dimensional standard torus 7' S, and a root o’ € I'(S, T") such that
the triple ( (S, T, ') satisfies (5.D-(5.4). If S is a Melikian algebra then
DerS =S [14] whence G = S If §is not a Melikian_algebra then
ST, a) e = &, forcing dim S = dim L. In this case dim § = dim G, and
again G = S

(b) Suppose I is nonsolvable and r # 0. According to Proposition
55 S € {3(, W, Dyand I =1 + Lyy/Lay=S8® A(r; 1) is the unique
minimal ideal of G, = G,. Since G, has a unique minimal ideal I, there is
a realization

S ® A(m;n) € G, c (DerS) ® A(m;n) + F Idg ® W(m; n)

such that 7,(G,) is a transitive subalgebra of W(m; n) (Theorem 1.6). In
the present case DerS =S whence G, =S ® A(m;n) + F ldg ® 7,
where & is a transitive subalgebra of W(m;n). By Proposition 7.7,
G, =S ®A(1;1) + F Idg ® W(1;1). As TR(G,) =2 and T is a torus of
G of maximal dimension, T acts on G, as a 2-dimensional torus (other-
wise a 2-dimensional torus in the p- envelope of G, and C;(G,) span a

3-dimensional torus of G). According to Theorem 2.6 there is a realization
T=F(h®l ®F(ld®t),

where Fh and Ft are maximal tori of S and W(1; 1), respectively. It is now
easy to check that K'(a,G,,T) C Fh ® AL + F1d ® W(L; 1)(2) acts
triangulably on G,. On the other hand, d(K'(a, L, T)) € K'(a, G, T)
acts nontrlangulably on G (otherwise K'(e, L, T) would be triangulable).
But G, has 2 F,-independent roots, and hence ®(K'(a, L, T)) acts nontri-
angulably on G0 as well. This contradiction shows that the case we
consider is impossible.

(c) Suppose I is nonsolvable and r = 0. By Proposition 5.5((4), (5)),
S =H(2;D®, and H(2;)® is the unique minimal ideal of %, /rad .%,,.
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As rad %, is p-nilpotent (Proposition 5.5(1)), T acts on H(2;1)® as a
2-dimensional standard torus. By Proposition 7.6, C5(T) N G_, # (0)
contradicting the choice of Ly

(d) Suppose I is solvable. Then G, = G,(a),G_, =
ZIE[FFG 1, —p+ia With BT’ (Lemma 56). As T NkeracC rad(G, )
Theorem 7.5 applies. In case (a) of Theorem 7.5, L(O) C Ly, acts nllpo-
tently on L. In case (b) of Theorem 7.5, T is conjugate to Fh & F1 where
Fh is a maximal torus in W(1;1) [18, Theorem 3.3]. If Fh is an improper
torus of W(1;1) then K'(a,G,, T) = A(1;1) is abelian. If Fh is a proper
torus of W(1;1), then K'(a,G,, T) = W(1; 1, + A(1; 1) acts triangulably
on G_, (Theorem 7.5). In case (c) of Theorem 7.5, one has K'(«, Gy, T) =
C(G,) or else T induces a proper torus of G,/C(G,) = W(1;1). In the
latter case, K'(a,G,,T) = W(; 1)(2)69 C(G,), and again K'(a,G,,T)
acts triangulably on G_,, as dim G_, < p (this is immediate from results
of [6]).

In case (d) of Theorem 7.5 we observe that

dmG , < Y dimL 4., /R 4., <9 <p°.

iel,

Choose t, € T N ker @ such that B(¢,) = 1. Then adz ¢, = § is the de-
gree derivation of the graded Lie algebra G. Let iy (G ) -
Der(G,/C(G,)® = H(2; 1)® denote the canonical epimorphism. By the
present assumption 7(G,) € H(2;1) (one identifies H(2;1) and its image
in Der H(2;1)@®). As 6 € T, T acts on H(2;1)® as an at most 1-dimen-
sional torus. If m(Cg(T)) N H(2; )® acts nilpotently on H(2; 1), then
H(2; )® would be nllpotent (by the Engel-Jacobson theorem). Thus this
space contains a nonnilpotent element, and as H(2;1)® is a restricted
subalgebra in Der H(2; 1)®, it contains a toral element z. Then 7 (T) = Ft
Let ¢ € TN kerm be a toral element. Then [¢,G,] = [¢"),G,] = (0)
whence t' € ker o = F5. Therefore t/?) —te TNnkerm=Fs, and T =
Ft @ F8. Note that 7 acts trivially on H(2;1)/H(2; 1)®. We obtain that

7(K'(a,G,.T)) = K'(H(2:1)?, Fi).

Let G, ,, denote the preimage of H(2;1)®, in G,. Therefore, ®(K'(a))

c G, -

If (C_;O)P contains a 2-dimensional torus 7; which is nonstandard with
respect to G, then the preimage of 7, in &, contains a 2-dimensional
torus 7, which is nonstandard with respect to L. Since this contradicts one
of the initial assumptions on L, all 2-dimensional tori of ((_;o)p are

standard with respect to G. But then G, ,, acts triangulably on G_,
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(Theorem 7.5(d)). This yields that ®(K'(«)) acts triangulably on G_,.
From this one easily derives that K'(«) acts triangulably on L. This
contradiction proves that 7+ 0 in all cases. |

In what follows we normalize ®(T) = F(h, ® 1@ F(ké® 1+
Id, ® t,) according to Remark 4.2. Since a(A(G,)) = a(I) =0, we
have u = a in Remark 4.2. Then

a(hy®1) =0, B(hy®1) =1

a(K6®1+1d,5 ®1)#0, B(K6®1+1d,q5 ®1,) =0.

One may choose ¢, as a toral element of W(1;1), i.e., t, =2zd/d, with
ze{x,1+x}

LEMMA 8.3. Assume (L, T, a) € ©,. Then I is nonsolvable, S = W(1,; 1),
dimL, =pforall p €T’ anddim L, <p + 3 foralli # 0. If B isa Witt
root, then dim L;, = p for all i # 0.

Proof. (a) Since 7= 1 by Lemma 8.2, Lemma 6.1 shows that I is
nonsolvable.

(b) Suppose S is not isomorphic to W(1;1). Then S = 5"0 = 3((2)
(Lemma 6.2). _ _

If ¢, & W(L; 1), then Lemma 4.9 shows that & = W(1;1) or D = 3((2).
But then G,(«) is not solvable (cf. Remark 4.2), contradicting Lemma 6.3.
Suppose t, € W(1;1),,. By Lemma 6.3, there is u € K,, such that
(1, o B(w)) & W(; 1) ) Fix € € Ap. We now switch to the torus T by u
(see Section 2). It is immediate from Jacobson’s identity that (r, o ®XT,)
¢ W, 1), By Corollary 29, K'(a, ;, L, T,) acts nontriangulably on L.
As M =F, (M )CL(O), the data S r do not change after the
switching. Since L( 5 =(0), L, , # (0), L contains T,-sandwiches. So
(L, T, e, ;) € S,, and substituting 7 by 7, we are in the former case,

v Ly

again obtaining a contradiction.

() Let wel' Since M(G)c G(a) (Lemma 6.2(4)), one has
dim L, = dim G As u(hy ® 1) + 0 (by definition of «) we conclude that
dim L = dim A(G) Recall that &(T) = Fhy® 1)@ F(k6®1+1d®
z&/&x) with z € {x 1 + x}. From this it is easy to derive that all root
spaces of A(G) = H(2;1)® ® A(1;1) corresponding to the roots in I are
of dimension p.

(d) Let w=ia+0. Note that & = Gy(a)/A, is 2-dimensional
(Lemma 6.3), and Go(a)® C Ay(@) + L, (G, j,. Since I acts trivially on
G_, (Lemma 6.2(4)) and all G, ,,, (j # 0) act nilpotently on G_, < G(«),
we obtain that G,(@) acts triangulably on G_, (cf. Lemma 6.2(1)). By
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Lemma 6.4, dimG _, < 1. Next we recall that G c (Der ) ® A(1;1) +

F 1d ® W(1;1). Using the description of Der H(2; 1)® given in Section 3
we conclude that dim G,, < dim((Der §) ® A(1;1)),, + 1 < p + 2. Conse-
quently, dim L;, = dimG,, <p + 3. It is stralghtforward that I'(L,T) =
[Fpoz + [Fp B\{0}.

() Letxe L,z k+#0,andset R:=Fx + rad L(B). As B(x!?]) =
0, we have that ad, x is nilpotent. Therefore, R is a nilpotent (ad T)-in-
variant subalgebra of L. If (R + T)® = RW + Z#ORJB acts nonnilpo-
tently on L, then [18, (5.1)] shows that dim L;, = dim L,,, , = p for all
i # 0 (by (c)). Thus we may assume that R® + Y;.oR;p acts nilpotently
on L. Since this is true for all x € U, ., Lz, the Engel-Jacobson
theorem implies that [T + L(B),rad L( 8)] acts nilpotently on L.

Note that dim H/H N rad L(B) = 1. It follows from (c) that F8 N

_, # &. Therefore LL;, # LM, hence a(H N L(B)Y) + 0. Fix
jo # 0 such that (a + j, B H N L(B)P) # 0.

Pick k € F¥ and let W denote a composition factor of the 7' + L(8)-
module X, c ¢ Lka+j[3 Let 0: T + L(B) — gl(W) denote the correspond-
ing representation. Now o([T + L(B), rad L(B))]) is an ideal of o(T +
L(B)) which by our assumption acts nilpotently on W, hence is (0). Thus
rad o(T + L(B)) = C(o(T + L(B))). If the central extension does not
split then there are x; € L;5, y, € L_;5 for some i+ 0 such that
o(x;, y;D € C(o(T + L(B))) acts invertibly on W. Now Fo(x,) + Fo(y,)
+ Fo([x,, y,D constitutes a Heisenberg algebra. The representation theory
of this algebra yields dim W, , = dim W, , for all k + 0.

Suppose the central extension splits and W is a nontrivial L( 8)®-mod-
ule. Then C(o(L(B))™P) = (0) whence o(L(B)Y) = W(1;1). There are
X, € Lig, y, €L_,;, for some i # 0 such that Fo([x,, y,] constitutes a
Cartan subalgebra of W(1;1) and Fo([(x,, y,]) + C(o(L(B)) = o(H). The
representation theory of W(1;1) yields that o([x,, y,] is semisimple and
all its eigenvalues are of the same multiplicity d = d(W) (see [18, p. 444]
for more detail). Moreover, dim W, ., = d unless (ka + j B)[x,, y,) = 0
[18, p. 445]. It follows dim W, = dim W, s, = d.

Now suppose that the central extension splits and W is the trivial
L(B)P-module. Then W = W, for some y. The above also shows that
y & Fra U Ff(a+j,B)

Summarizing we obtain that dim L, , = dim L, s, = p. This proves
the lemma. |

LEMMA 8.4. Suppose S, # . Then there exists (L, T, a) € S, such
that

Ide®d/dx € (’I;(L(O)(a))’

O(T) =Fhy® 1+ F(k8®1+1d®xd/dx) and  «+0.
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Proof. (a) Let (L, T’, @') be an arbitrary triple in &,. By Lemma 8.1,
one has 7 = 1, so that there is a realization

A(G) = § ® A(1;1),
D(T') =Fhy® 1+ F(R6® 1 + Id ® zd /dx),

where z € {x,1 +x} and kK € [Fp (see Remark 4.2). _

By Lemma 6.3 there is u € K, (j # 0) with 7, ®(u) & W(1; 1),
Switching 7" by use of a smtable multiple of u gives 772°CI>(TM)
772 ° CD(EM AT) € W(1; 1Dy, Now Corollary 2.9 shows that M ®w«¢ =

E,, §(M )CL(O) and K'(a,, ;) = K'(a) acts nontriangulably on L.
Since L is assumed to be non-Melikian every 2-dimensional torus in L, is
standard with respect to L. Moreover, T := E,, .(T") stabilizes the filtra-
tion of L. It follows from Lemma 6.2 that L = L _, and L,_, # (0).
Hence there are T-homogeneous sandwich elements. Thus in what follows
we may assume that

®(T) = Fhy® 1+ F(k6® 1+ 1d ® xd /dx).

(b) By Lemma 6.3, there is u€K;, (j+0) with m,e° D(u) &
W(1; D, There are fy, f,, f3 € A(1; D) such that

D(u) =hy®f, +8&f, + Id ® fyd /dx
(cf. Remark 4.2). Then
0#ja(kd® 1+ 1d ®xd/de)®(u) = [k6® 1+ 1d ® xd /dv, D(u)]
= hy ® xd/dx(f,) + 8 ® xd /dx(f,) + 1d ® (xd/dx(f,) — f3)d/dx.

As f, has nonzero constant term and xd/dx(f;) € Ff;, one obtains
xd/dx(f,) = 0, that is, f; € F. Adjusting u we assume that f; = 1. But
then the above computation also yields ja(kd ® 1 + Id ® xd /dx) = —

and f, = AxP1, f, = XxP~! for some A, X' € F. By Jacobson’s formula,

B((Ahg + X&) ® xP L+ 1d ® d/dx)”’

(APhy + N78) @ xPP~Y + 1d ® (d/dx)”
+ (Mg + X8) ® (d/dx)""*(xP~ 1)
—(Ahy + N8) ® 1.

Consequently, X8 @(T), forcing X' = 0. Since Fh, ® x” ! € Gy(a) we
obtain Id ® d/dx € G(a).
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(c) It remains to prove that k # 0. Set 7= k6 ® 1 + Id ® xd /dx.

Suppose L, # M + L (a). Since [Ly, .. Lo, ,JCHNICkera
for yeI’, there is ye I'_n 1" such that [Ly, _,L,]1¢ H,. Lemma
6.2(4) yields y € I'_;. Since L(«) N L_y, € L, (cf. Lemma 6.2), the Lie
multiplication of L ylelds a L(o)(a) invariant bilinear mapping

A ( ) Loy - yria

ief,

X ( ) L(l),y+ja) = Lg(a).

je [Fp
Properties of the graded algebra G ensure that

[Lay L-y] + 2 [Loy. - ysiar L] 1+ Ly

ief,

Thus A induces a G,(a)-invariant bilinear mapping

A:( Z GO,*eria

i€f,

Z él,erja)

i€k,
- Go/(S®A(1;1) + Fld®d/dx) = T/T N ker «

(one should take into account Proposition 5.5(2), Lemma_6.2(1), and
Lemma 6.3). By choice of y we have A # 0. Sothereare e € Sy, ¢’ € S_,
and a,b €{0,..., p — 1} such that A(e ® x%, ¢ ® x®) # 0. We may as-
sume that e, e’ are eigenvectors of A, so that

[ho®x‘ e ®x] = —y(hy ® 1)e ® x“*°,
[T,e ® x*] = ae ® x°,

[ho ®x¢, ¢ @x"] = y(hy ® 1)e’ ® x**
[T,e ® x®] = (b — k)€ ®x".

Since y(h, ® 1) # 0 and A is invariant under Fh, ® A(1; 1) one can move
the factor x“ from the left side to the right side of A. Thus we may assume
that a = 0. Also, [lds ® d/dx, D(T)] cS®AL1L +F Idg ® d/dx
whence

0=(ldg®d/dx) - (A(e®1l,¢ ®x'))=A(e® 1l ®@x'"),
foreach / € {0,..., p — 1}. Thus the assumption A # 0 necessarily implies

Ale® 1,¢ ®xP™ 1Y) #0.



296 PREMET AND STRADE

We now determine eigenvalues with respect to 7. Since 7 annihilates
Ale ® 1,¢' ® x?~1), we obtain

0=T7-(A(e®1,¢ ®@xr 1))
= A([T,e ®1],¢ ®x’ ') + A(e ® 1, [7, ¢ ® x"71])
=(p—-1—-k)A(e® 1, ®@xF 1),
Consequently, k = —1.

Next, assume that L, =M + Ly (a). Then [L, ., L,]1cH, for
all yeI". Lemma 6.4(1) yields L = L _,,. Therefore for an arbitrary
y € I'', the bilinear mapping (X, [FPLVHQ) X (Z; e [FPL_YHQ) = L) in-
duced by the multiplication on L gives rise to a (_?o(a)—invariant pairing

Ay:( Z G*l,eria X ( Z Gl,eria)

iel, i€f,

= Gy/(S®A(L;1) + Fld®d/dx) =T/T N ker a.

Since M C L, there is y € I" such that A, # 0. One now proceeds

as in the former case. As [f,e ® 1] = —«ke ® 1 and [7,¢ ® x?~ 1] =
(p—1-«k)e ®xP"! one obtains now p — 1 — 2k =0, ie,, k = —1/2.
|

LEMMA 85. Suppose (L, T, a) € &, is as in Lemma 8.4. Then for each
y € I\(F, @ U T, B) there exists s(y) € [ such that
dmL, /R, =2+,

i,s(y)?
whenever i € [F;".

Proof. (a) With the notation of the previous lemma,
Go(B) =S, ® F+Fi, G_(B)=8_,@x"

Since « # 0 this implies [G_,(B),G,(B)] € G(B) N (S ® A(L; D)y) =
0). As L(B) € L _,, (Lemma 6.2(4)) we conclude that [L(8), L (B)] C
Ly(B). Ther'efore L4y(B) is an ideal of L(B) which acts nilpotently
on L. In particular, L, ;5 € R;z forall i.

Since dim L(B)/rad L(B) < dim L(B)/L(B) < 2p, B cannot be
Hamiltonian. On the other hand, G,(B) =S ® F + Ff and § = W(1;1)
(Lemma 8.3). So B is Witt. Now Lemma 8.3 shows that dim L., = p for all
Y E I

Next we consider the p?-dimensional L( 8)-modules ¥, b, Lia+jp: Where
i€{1,...,p — 1}. Suppose all these modules are irreducible. As L ()
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acts nilpotently on L, it annihilates all these irreducible L( 8)-modules.
This in turn implies that L () is an ideal of L. Hence L,(B) = (0).
But then dim L; = 2 contradicting Lemma 8.3. So one of the above
modules is reducible. Let W denote a composition factor of a reducible
module ¥, ¢ L, ;5 Which has weight ia # 0, and let o : L(B) — q[(W)
denote the correspondmg representation. By construction dImW<p
Note that ker o ¢ M(®) ¢ L, But then ker o = L(1)(3) since G,( B) has
only two nonzero ideals, namely, S ® F and F7. Thus ker o c R(B).
According to [28, (111.3), (111.2)],

L(B)/kero=W(1;1) ® A(1;1), (rad L(B))"” Ckerp,

and [o(W(1; 1), ® A(1; 1),)), o(L(B))] consists of nilpotent transforma-
tions of W. In view of the natural embeddings

W(L;1) = 85 = L B)/Ley( B) Nrad L(B)
= L(B)/rad L(B) = W(1;1)
we must have
L(B) =Lg(B) +radL(B).

Now suppose that 8 is proper. Then T maps onto a torus in W({; 1)0
A(1;1) (note that T = &(T) is contained in Gy(B) = (0)(,8)/L(1)(,8))
Since [ o(W(1; 1) 5, ® A(1; D),)), o(L( B))] consists of nilpotent transforma-
tions on W, we conclude that ¥, , dim L,;/R,, < 3 (one should take into
account that W has 2 [F,-independent T-weights). ThIS contradicts the
assumption that dim L(8)/M*X(B) > dimG_,(B) =p — 1.

Thus B is improper. In this case, [W(1;1),5, A(L; 1) gl =F1 for all
i € F*. This means that M(‘“ C ker p. But then a previous inclusion gives
Mg =L, Nkero =R, hence

MO = forall i # 0.

iB L

,ip
(b) Since K'(a) acts nontriangulably on L, [18, (5.1)] applied to

R = K(a) and the module Licy, M5) /Ly ip+jo Proves that
M@ =L

iB+ja

VierlF, Viel;.

Q) iBt+ja

(c) Let y€iB+ja, i,j#0. Let B be the restriction of B to
Fhy ® 1 = Fhy. It follows from our discussion above that L, ,CR, C
M{® =L, Thus to determine R, we are to deal with G,. Observe that

51,7=§1,i5®xs, where s € {0,...,p — 1} and s + k =j (mod p).
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If s # 0, then [S, Lig ®x° .G 1§, ® AL 1)), and the algebra on the
right acts nilpotently on G . Consequently,

Ly, , =R, whenever j# k (mod p).

Recall that B s improper Witt and L(B) = (0)(3) + rad L(B). There-
fore B(S 0. 5D # 0 forall i # 0. Then Fh, is an |mproper torus of
S'=H(Q; 1)5) (by Corollary 3.6(2)). Therefore B([Sl 5 S_1 ;gD # 0 for
all i € ¥ (this is immediate from Lemma 1.1(6)).

Now suppose y 1B+Ka Then G, Y—Sll ®1 G_ =§_1_

® 1 whence ,8([G _1 -, D# 0t foIIows that

=

ly’

Ly, , &R, wheneverj =« (modp).
As a consequence, for y =iB + ja, i,j # 0, one has
dmL, /R, =dmL, /L, . =2
if j # «, and
dimL, /R, =dimL,/Ly , +dmLg, /R,

if 7j = k (one should take into account that dim L, /L., , =1 for
ie{-10,1}. Nowput s(iB + ja) == k/j. Then s(i 8 + jy) # 0(as « # 0).
1

Our final result in this note is the following

THEOREM 8.6. Let L be a simple Lie algebra over an algebraically closed
field F of characteristic p > 3. Suppose TR(L) =2, and let T denote a
2-dimensional torus in the semisimple p-envelope L, of L. If L is not a
Melikian algebra, then K'(a) acts triangulably on L for all o« € T(L,T).

Proof. Suppose the theorem is not true. Let (L, T”, @”) be a counterex-
ample with L having minimal dimension. Observe that all 2-dimensional
tori of L, are standard, for L is not a Melikian algebra. By [18, Corollary
8.7] there is a torus 7' and a root o' such that L contains 7’-homoge-
neous sandwich elements and K'(«') still acts nontriangulably on L. In
other words, ©, # . Choose (L, T, @) € ©, according to Lemma 8.4.
Then Lemma 8.5 applies. Let y € I'\(F,« U [, 8) and define

d=dimL, /R, 1l<i<p-1.

By Lemma 85, d, =2 + §, ). Due to Theorem 6.7, n(y) <2. If y is
solvable then d, = n, < 1;if vy is classical, then X/ Md; <4+ n(y) <6;
is proper Wltt then Yrold, < 4 + n(y) <6; if y is improper Hamil-
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tonian, then d; > 3 for all i. Therefore neither of these cases occurs. Thus
v is either improper Witt or proper Hamiltonian.
Suppose vy is improper Witt. Then

p—1

2Ap-Y+1= Y d=<2p-1) +n(y),

whence n(y) # 0. Therefore K’'(y) acts nontriangulably on L, yielding
(L,T,y) € ©,. By Lemma 8.2, 7(y) = 1. But then Proposition 6.6 shows
that +y is proper, a contradiction.

Suppose y is proper Hamiltonian. Since dim L, = p = dim L[y],, for
all i # 0 (Lemma 8.3), we have rad L(y) C H. But then [rad L(y), L(y)*]
= (0) whence L(y)®/C(L(y)*™) = H(2;1)®. Moreover, dimX/ ('L,
<(p+3)+(p—1p <p* (cf. Lemma 8.3). Corollary 3.10 applies forc-
ing

d=dmlL, /K, <2 for all i.

Again this is impossible and gives the final contradiction. |

We mention that, under the assumptions of Theorem 8.6, one has
K, = RK, forall roots a € T'(L,T), that is, n(a) = 0 and, in the notation
of [4, (5.6.5)] no exceptional roots exist.
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