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It is proved that every finite dimensional simple Lie algebra of absolute toral
rank 2 over an algebraically closed field of characteristic p > 3 is of classical or
Cartan type or a Melikian algebra. = © 2001 Academic Press

1. INTRODUCTION

This paper is the third one in a series devoted to classifying all finite-di-
mensional, simple Lie algebras over an algebraically closed field F of
characteristic p > 3. The aim of the series is to generalize the existing
classification of finite-dimensional, simple Lie algebras of characteristic
p > 7 to the characteristics 5 and 7, and to confirm the generalized
Kostrikin—Shafarevich conjecture ([Ko-S 66]) according to which any fi-
nite-dimensional, simple Lie algebra over F, for p > 5, is either classical
or of Cartan type.

The Block—Wilson—Strade theory aims at proving that any finite-dimen-
sional, simple Lie algebra L of characteristic p > 7 contains a maximal
subalgebra L, that satisfies the conditions of Wilson’s recognition theo-
rem [Wil 76]. Such a subalgebra is hard to construct, one of the reasons
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being that a priori it is not clear whether L possesses a maximal subalge-
bra M with nil M # (0) (in characteristics 2 and 3 this is still an open
problem). In order to construct L, one needs a very special torus T in
the p-envelope L, of L = ad L in Der L. First of all, one needs a torus
T c L, of maximal dimension such that the centralizer C,(T) acts triangu-
lably on L. Such tori are called standard. Each 1-section L[a]:=
L(a)/rad L(a) of L relative to a standard torus 7 is either zero of 3[(2)
or W(1;1) or H2;1D)® c L[a] € H(2; 1) holds. If in the latter two cases
the standard maximal subalgebra L[a](o) of L[«]is T-invariant, « is said
to be proper. If L contains a T-eigenvector x such that (ad x)*> = 0 then T
is called nonrigid and x is said to be a homogeneous sandwich. Standard
nonrigid tori with all roots proper are the “very special” tori employed in
the classification.

In the Block—Wilson—Strade theory, constructing a “very special” torus
T relies on the classification of simple Lie algebras of absolute toral rank
2. For p > 7, such a classification (often referred to as the rank two case)
was obtained by Block—Wilson (see [B-W 82, B-W 88]). Having solved the
rank two case (which occupies [B-W 82] and most of [B-W 88]) Block and
Wilson succeeded to construct L, under the assumption that, for any
x € L, the derivation (ad x)? is inner. The resulting classification of
restricted simple Lie algebras confirmed for p > 7 the original
Kostrikin—Shafarevich conjecture (from 1966) formulated for p > 5 in
[Ko-S 66]. Proving the generalized Kostrikin—Shafarevich conjecture for
p > 7 for not necessarily restricted Lie algebras (thereby solving the
classification problem for p > 7) required more effort and was obtained by
the second author in a series of papers begun with in [St 89/1] and
finished in [St 98].

The purpose of this paper is to solve the rank two case under the
assumption that p > 3. Recall that, for a centerless, finite-dimensional Lie
algebra g over F, the absolute toral rank of g, denoted by TR(g), equals
the maximal dimension of tori in the p-envelope g, of g = ad g in the
derivation algebra Der g. Let © denote the algebra of Cayley octonions
over F. The result of the paper is the following.

THEOREM 1.1.  Let L be a finite-dimensional, simple Lie algebra over an
algebraically closed field F of characteristic p > 3 satisfying TR(L) = 2. Then
L is isomorphic to one of the Lie algebras listed below.

(1) Classical Lie algebras:
31(3) (type A,);

3p(4) (ype C,);
Der ® (type G,).
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(ii)  Restricted Cartan type Lie algebras:
w(21), S D", H4 D™, K(331).

(iii)  Nonrestricted Cartan type Lie algebras:
(a) WwW(@;2), HQ2;1; A) (Albert—Zassenhaus algebras);
(b) HQ2;1; &(r)?Y (a Block algebra);
() HQ2;2,1)® (a graded Hamiltonian algebra).

(iv) ¢g(,1), p = 5 (the restricted Melikian algebra).

The proof of this theorem will rely very heavily on the methods,
terminology, and notation introduced in [P-St 97, P-St 99].

More than 12 years ago the breakthrough publication [B-W 88] proved
the remarkable conjecture by Kostrikin—Shafarevich on the structure of
finite-dimensional, simple p-Lie algebras in the case p > 7 and provided a
framework for the classification of all finite dimensional simple Lie alge-
bras for p > 3. Especially important is the intermediate result [B-W 88,
(9.1.1D]. With (9.1.1) available it is relatively easy (compared with the
efforts made to prove (9.1.1)) to obtain the main classification result of
[B-W 88].

The work of the second author related to the general case (but still for
p > 7) began with the observation that [B-W 88, (9.1.1)] can be used for
not necessarily restricted Lie algebras as well. However, it turned out that
the general case was much harder than the restricted one. After establish-
ing a suitable generalization of [B-W 88, (9.1.1)] (see [St 89 /2]) it was split
into four subcases eventually solved in [St 91 /1, St 93, St 94, St 98].

The results of the present paper allow one to prove a complete analogue
of [B-W 88, (9.1.1)] in the case p > 3 (this will be presented in the next
paper). We have two additional members in the corresponding list, namely
the Melikian algebra g(1, 1) of characteristic 5, and one more which only
appears if also a Melikian two-section occurs for the algebra and the torus
under consideration. For p = 7 no extra algebras arise. Moreover, inspec-
tion shows that the final sections of [B-W 88] generalize without much
trouble (for restricted Lie algebras).

Furthermore, [St 91 /1, St 93, St 94] need only minor modifications in
order to accommodate the cases p = 5 and p = 7. New methods are now
available which allow one to replace [St 98] and to handle the case where
two-sections of Melikian type occur. With all this in mind we both believe
that the main difficulties in the classification problem for p > 3 have been
overcome by proving the result of this note.
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2. MAXIMAL TORI

From now on let L be a counterexample of minimal dimension to
Theorem 1.1. In particular, L is simple and TR(L) = 2. We denote by L,
the p-envelope of L = ad L in Der L.

Let g be a finite-dimensional Lie algebra over F and g, a p-envelope
of g. A torus T Cgq, is called standard if the centralizer C(T) acts
triangulably on g. We denote by I' = I'(g, T') the root system of g relative
to T (the zero root is not included in I'(g,7T)). If T is standard and
aeT(q,T) we set H = CQ(T), H,={heH|alh) =0}, and K, = {x
eq,llx,g_,1cH,} (here g, stands for the root subspace of g corre-
sponding to a). We set

nil H = {h € H | ad h is nilpotent},
and define

K(g’a) = Ha ® Z Kia’

P
il

K(q,a)=H+K(g,a),

K'(g,a)= Y K.+ Y [Ki,K_;.]
ieky ieFy
R,={reg,|[x g .]cnilH}
R(g,T) =nilHe Y R,

acl(g,T)
R(g,T) =H+R(q,T).

It is easy to check that K(g, a), K(g, @), K'(g, a), R(g,T), R(g,T) are
subalgebras of g. Moreover, the subalgebra K(g, @) is solvable and
K(g, ) is a nilpotent ideal of K(g, ) of codimension < 1. Given two
F,-independent roots «, B € I' we set

Mf={xeq,|[xq.,] CH,

and define
M =K(g,a)® ), M,
Y& [Fpa
M@ = H + M@,

Again M‘® is a subalgebra of g, and M is an ideal of codimension
< 1in M. We suppress g in the above notation when this causes no
confusion.
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According to [P-St 99, Theorem 8.6] the subalgebra K'(L, a) acts
triangulably on L.

We remind the reader of the following well-known facts, which often
will be used in the sequel. Jacobson’s formula on pth powers states that
(x + )P =x? +y? + ¥ s5,(x,y), where s,(x, y) is a linear combination of
p-fold products with i factors of x and p — i factors of y (see for, instance,
[St-F, p. 64).

Let L = ¥ L, be the root space decomposition with respect to a Car-
tan subalgebra. Then Schue’s lemma states that L =X _.,L, +
Yo.olLly, L_,](see [B-W 88, Lemma 1.12.1]).

LEMMA 2.1.  Each maximal torus T C L, is 2-dimensional and standard.
The p-envelope H, of H = C,(T) in L, contains T. For any a € I one has
M@ + L.

Proof. Let T be a maximal torus in L ,. Suppose dim 7' = 1. Then T is
spanned by a toral element hence defining an [F,-grading of L. The
centralizer H = C,(T) is the zero component of this grading. If C,(T) acts
nilpotently on L, then L is solvable (this follows from the Engel-Jacobson
theorem, see, e.g., [St 97, Proposition 1.14]). Observe that H is nilpotent
(for T is a maximal torus in Lp). Since L is nonsolvable, we therefore
have that the (unique) maximal torus 7" of H, is nonzero. The maximality
of T ensures 7' € T. Then T’ = T; hence H is a Cartan subalgebra with
TR(H, L) = dim T = 1. Applying [P 94, Theorem 2] we now obtain that L
is either 3((2), W(1; n), or H(2; n; ®)?. As TR(L) = 2, L is one of the
algebras listed in part (iii) of Theorem 1.1 (see [B-W 88, Sect. 2]). As L is a
counterexample to that theorem, we deduce dim 7" = 2.

If L, contains a nonstandard maximal torus then L = g(1,1) (P 94,
Theorem 1]). Since this case has been excluded, all maximal tori in L are
standard. Let 7" be the unique maximal torus of H,. Then 7' C T and
H c C,(T"). Suppose T' # T.If C,(T') = H, then H is a Cartan subalge-
bra with TR(H, L) = 1, and as before L is one of the algebras listed in
part (iii) of Theorem 1.1. Thus C,(T') 2 H so that there is « € T such
that a(H,) = 0 (we view any y € I as a function on H, via y(h)? =
y(htPY) for all & € H). But then [P-St 99, Remark 4.1] shows that L is
listed in part (iii) of Theorem 1.1.

Finally, if L = M(® for some « € T, then Yyerolly, Lo,1CH,. As
L is simple, Schue’s lemma [B-W 88] yields a(H) = 0. But then a(H )=20
contrary to the previous step. So M® # L for any a € I, and the proof
of the lemma is complete. [

LEMMA 2.2.  Let T be a maximal torus in L. If a € T'(L, T) is such that
C(a) T and L(a)/C(L(a)) = W(;1), then L(a) = W(1;1) &
C(L(«a)) is a split extension.
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Proof. The process of toral switching (based on the ideas of [Win 69,
Wil 83, P 87]) has been described in [P-St 99]. Switching T by a suitable
root vector in U, L,, we can obtain a torus 7' C L (a) such that the
preimage of W(1; 1), in L(a) is T'-invariant. Clearly, dim 7’ = dim 7' =
2. By Lemma 2.1, 7" is a standard maximal torus in L,. As a(C(L(a))) = 0
we have C(L(a)) € T'. Thus no generality is lost by assuming that
T=T'.

If C(L(a)) = (0) there is nothing to prove. So assume C(L(a)) # (0).
As a(C(L(a)) = 0 and dim T = 2 the center C(L(«)) is spanned by a
toral element, say z. Suppose L(a) is a nonsplit extension of W(1;1).
Then there exist root vectors E_,, E,, E,,..., E, _, relative to T such that
K(a)=Fz + ¥,., FE; and [E,, E,_,] € F*z (see [P-St 99, Section 7).
But then K’'(a)® contains z, hence acts nontriangulably on L. As
L % g(1,1), this contradicts [P-St 99, Theorem 8.6]. This contradiction
shows that L(a) = W(1;1) @ C(L(a)) is a split extension. [

For a maximal torus 7 C L, and a root y € I'(L,T) we set L[y]:=
L(y)/rad L(y). By [P-St 99, Sect. 1], one of the following can occur:

L[y] = (0);
Lly] = 31(2);
Lly] =W(1;1);

H(2;1)® c L[y] c H(2;1).

Accordingly, we call y solvable, classical, Witt, or Hamiltonian. In all cases,
the Lie algebra L[vy] is restrictable and the radial of L(y) is T-invariant
(see [P-St 99, Sect. 1]). Thus T acts on L[vy] as derivations. We often
consider W(1; 1) and H(2;1) with their standard gradings characterized by
the property that deg d = —1 and deg 9, = deg d, = —1 (in the respec-
tive cases). The subalgebras W(1;1), and H(2;1), spanned by the
elements of nonnegative degree are known to be maximal and therefore
called standard maximal subalgebras. If y is Witt (resp., Hamiltonian) we
inject L[y]onto W(1; 1) (resp., into H(2; 1)) and define L[y](o) = W(,; 1)(0)
(resp., L[y](o) = L[yl N H(Q; l)(o)). This subalgebra is known to be inde-
pendent on the choice of the injection (see [P-St 99, Sect. 1], for example).
If y is Witt then L[y](o) is solvable and has codimension 1 in L[y]. If vy is
Hamiltonian then L[y](o) has codimension 2 in L[y] and L[y](o) /
rad L[y](o) = 3[(2). We call the subalgebra L[y](o) the standard maximal
subalgebra of L[y]. We say that y is a proper root if v is either solvable
or classical, or the standard maximal subalgebra L[vy], in the Cartan type
Lie algebra L[vy]is T-invariant.

If y is not a proper root we say that vy is improper. Note that if vy is
improper, then all scalar multiples ay, where a € [, are roots. We
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denote by I', = I',(L, T) the subset of all proper roots in I'(L, 7), and we
say that T is an optimal torus if the number

r(T) =IT(L, T)\T,(L,T)|

is the minimal possible. Let @ € T'(L, T'). Applying toral switchings inside
L (@) one can construct a 2-dimensional torus 7" such that L(a) = L(a')
for some «” € I' (L, T"). In particular, this implies that any optimal torus
in L, has at least one proper root.

The definition of a rigid torus was given in [P-St 97, Sect. 8] in terms of
rigid roots (see [P-St 97, Sect. 7]). According to Lemma 2.1 all maximal tori
in Lp are 2-dimensional and standard. Therefore, [P-St 97, Theorem 6.3]
implies that a 2-dimensional torus 7' C L, is nonrigid if and only if there is
a T-eigenvector x € L such that (ad x)* = 0. Combining [P-St 97, Lemma
8.1] (and its correction in [P-St 99, Sect. 1]) with [P-St 99, Theorem 8.6] one
obtains that for any rigid torus 7' C L, no root in I'(L, T') is Hamiltonian
and all Witt roots in T'(L, T) are improper.

LEMMA 2.3.  Let T be a 2-dimensional rigid torus in L,. Then either all
roots in T'(L, T) are improper Witt or T'(L, T) contains a solvable root o and
the complement T'(L,T) \ F, & consists of improper Witt roots.

Proof.  Since all Witt roots in T'(L,T) are improper we may assume
that there is a root in I'(L,T) which is not Witt. By [P-St 97, Lemma
8.1(3)], in this case dim L., = 1 for any y € I'(L, T). In particular, no root
is Hamiltonian. Since L, is centerless this also implies that C, (T)
contains no p-nilpotent elements. Therefore every element in C, (f) is
semisimple. Since T is a maximal torus in L,, C; (T) is nilpotent. Then T
is the set of all semisimple elements of C; (T) Cponsequently, o (T)
and L, =L + C, (T) L+T. LemmaZlglvesH =T.

(@) Suppose there is « € I such that rad L(a) ¢ T. As dim L,=1 for
all y eI, a is not Witt. Define

[*=1:= ) (radL(a));, + Y [(rad L(a));,,(rad L(a))_;.]-

R P
iel, iel,

If « is solvable, then (rad L(«)),, = L,,; hence I is an ideal of L (a)
Suppose « is classical. If (rad L(a)) # 0 for some j € [, then L., c
rad L(a) (since all root spaces are 1 d1mens10nal) hence [L lcL
So again I is an ideal of L (o).

As a is neither Witt nor Hamiltonian, / is an ideal of L (a) in all
cases. By construction, I € K'(a). So [P-St 99, Theorem 8.6] shows that [
acts triangulably on L. Let n be the minimal integer with I c T.
Suppose n > 1. Then I~V c K'(a)®, hence acts nilpotently on L.

je> —Ja
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Clearly, 1"~V is T-stable. Let a € I*~Y be a root vector. Then
(ad a)*(L(a)) € I™ c T N H,. Observe that (ad a)” € C(T) =T. As
ad a is nilpotent we therefore have (ad a)” = 0. But then [P-St 97, Theo-
rem 6.3] applies and shows that L contains nonzero 7T-homogeneous
sandwiches. As T is rigid this is impossible and we deduce n < 1. As [ is
triangulable, the derived subalgebra I’ ¢ T must be zero. Thus I is
abelian; that is,

Y (rad L(@)),-

i€l
In particular, I N H = (0). Then we have

[INL;,,L_,]=(0)forallie [

Again applying [P-St 97, Theorem 6.3] we deduce that (ad b)? # 0 for any
(nonzero) root vector b € I. Since a(b!?!) = 0 and dim T = 2 we have that
y(b!P)) # 0 for all y € '\ F,a. As a consequence,

(adb)'(L,) =L, e Vb € Ly, \ {0}, k € F, Vy e T\ F,a.

(b) Under the assumption of (a) suppose that « is classical. Pick
y €I\ F,a and set M(y, a) = Licr, Lysia- Then M(y,a)is a L,(a)-
module of dimension < p. By (a) we have that y + F,a cT. From thlS it
follows that C, (T) T acts faithfully on M(y, a). Let J denote the
kernel of the natural representation of L,(a) = L(a) + T in
al(M(y, @)). Now J is T-invariant, T N J = (0) (by the preceding remark),
INnJ, =) forall i € F (by(a)), and L(a)/I = [(2). This implies that
M(y, a) is an 1rredu01ble and faithful L (a)-module. Thus L ,(a) has an
irreducible faithful representation of d1mens1on <p? T is an abelian
Cartan subalgebra of toral rank 1 in L (), and Lp(oz) contains an
abelian ideal I such that I ¢ C(L(a)). In this situation [St 90] applies and
yields dim I = p. However, dim [ = ¥, _ s dim(rad L(@));, < p — 1. This
contradiction shows that « is solvable (recall that a is nelther Hamilto-
nian nor Witt).

(c) As a €T, (b) says (0) # L, C I. Let x € L\ {0}. As (ad x)'(L,) =
for all y e '\ F, e (by (a)) we have for any (fixed) g € I'\ [F a,

'y+la
[LpsiarLopoia] SLINL, Lo I+ [Lg, L_g] =[Lg, L_g].
Combining this inclusion with Schue’s lemma we obtain that

H= Y [L,L,]c X [Ljg L]
velF,a JjeFy
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Now suppose I'\ F,a contains a solvable root, v say. Setting B = v we
deduce v(H) = 0, contrary to Lemma 2.1. Thus no root in '\ F,« is
solvable.

(d) Under the assumption of (a) suppose that I'\ F,a contains a
classical root, & say. By (a), if i§ + ja € I' for some i € [} and j € [,
then i§ € I'. We also have (substituting « by § in (b)) that rad L(5) c T.
Then [FPS N T ={+8}. From this it is immediate that T"\ [Fpa ={5+
F,a} U{=6+ F,a}. Set L(0) = L(a), L(—1) == M(— 38, a) and L(1) =
M(8,a). Then L =L(—1) & L) & L(1), [L(+1), L(+1]=(0) and
[L(—1), L(D] c L(0). In other words, L admits a nontrivial short Z-grad-
ing. As p > 3, this yields that L is a classical Lie algebra (see, e.g., [P 85,
Lemma 14]). As TR(L) = 2, L is then listed in part (i) of Theorem 1.1.
Since this contradicts our choice of L, we derive that all roots in I'\ F,
are Witt. This proves the claim under the additional assumption of (a).

(e) Thus from now on we may assume that rad L(y) c T for all y € T.
Then every root is classical or Witt. We first suppose that all roots in I" are
classical. If all root strings «, k + 7,..., k + (p — Dn, where k, n €T,
have gaps, then the Mills—Seligman theorem shows that L is classical. But
then L is listed in part (i) of Theorem 1.1. Thus there are 8’, 8” € I' such
that B” + F,B’ c I Since all roots in I' are classical, B’ and B" are
F,-independent, and +B" + F,B" cI'. If i,B" +j,B' €' for some
ip {0, £1} and iy, j, €F,, then £(B" + 128"), i(B" + 2B)ET
which implies that 8" + %B’ is Witt. Since this contradicts our assump-
tion, we obtain that

= (+p" +F,B)U{+p}.

As in (d), set L(0):=L(B'), L(—1):=M(—B", B’) and L(1) :=
M(B", B"). Then L =L(-1) & L(0) ® L(1), [L(+1), L(+ 1] = (0) and
[L(—1), L(1] c L(0). In other words, L admits a nontrivial short Z-grad-
ing. Arguing as in (d) we arrive at a contradiction. This contradiction
shows that I" contains a Witt root, 3, say.

Suppose there is « € I' such that «((Lg, L_zD # 0. By Lemma 2.2,
L(B)Y = W(1;1). Consider the L(B)"Y-module M(k,B). As L, C
M(k, B), the latter is a nontrivial W(1;1)-module of dimension < p. By
Chang’s theorem [Cha], this module is either irreducible of dimension p or
one of its composition factors is isomorphic to A(1;1)/F. It follows that
M(k, B) has at least p — 1 T-weights. More precisely, the following
implication is true for k € [

k€T, k([Lg, L_g]) #0,

(k +kB)([Lg. L _5])#0 =k +kBeT(L,T). (1)
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(f) Suppose all Witt roots in I' are contained in F, 8. By Schue’s lemma
there is y € I'\ [, B such that B({L,, L_,] # 0. Then v is classical. Let
(e, h, f) be an $[(2)-triple in L such that e € L, and f€ L_,, so that
v(h) = 2. Note that [Ly, L_y] is 1-dimensional; hence B(h) # 0. Consider
the L(y)"-modules M(iB,y), where i € Ff. As FXBcT, ip(h) is a
weight of M(iB,y). If B(h) € F,, representation theory of 5[(2) shows
that —iB(h) also is a weight of M(iB, y). As y(h) = 2, this implies that
ip—ip(h)y €T for any i € F}. If B(h) & [, representation theory of
3[(2) ensures that all i8(h) + "k with k e F, are weights of M(iB,y).
Then F;B + F,y cI'. So in either case B — B(h)y eI is a Witt root
contrary to our assumption. Thus I' contains two [, -independent Witt
roots.

Let y and & be arbitrary F,-independent Witt roots. Rescaling y and o
if necessary we may assume that

[L,,L_,] #0,[Ls,L_5]+0.

Since Witt sections split (Lemma 2.2) the subspaces [Ly, L_y] and
[Ls, L_;] are 1-dimensional. Then 'y([Ly,L,y]) # 0 and 8(L;, L_5D
# 0.

By our initial assumption, I contains a classical root. So let u € I' be
classical.

(g) Suppose y([Lg, L _5]) # 0. Consider the L(8)"-modules M(iy, §),
where i € [ (these are all nontrivial by the present assumption). Let
hs € [Ls, L_;] be such that 8(h;) = —1, and let r:= y(hy). If r € F,
then it follows from implication (1) (with k =iy and g = &) that [y +
[Fpé c I'. This, however, is impossible as [F;,u ¢ I'. Thus r € [Fp and the
previous remark shows that (Fy + F,8) \ F,(y + r8) c T'. Since Fiu ¢ T
we obtain that F,u = F,(y +r8) and all roots in I'\ F, u are Witt. By
Schue’s lemma, H Yer M[L +» L_,]. So there is a Witt root &' such that
uw(Ls, L 5] # 0. By an earlier obervation, L;, ;s # (0) provided j # 0.
For every i € F¥ there is k(i) € F} such that (l[.L + k(@6 MLy, L_5D
# 0. Again applying (1) (with « = i,u + k(i)8' and B = &') we obtain
Fru c T which is false. So y([Ls, L _;] = 0. Since w is classical and y, &
are [ -independent, u =my + né for some m, n € [F;f. As a conse-
quence, u([Ls, L_5] # 0. Using (1) we conclude my + F;"S cT.

By symmetry we also have that 8([L,, L _ 1) = 0. Setting in (1) k = my
+1i6 with i € ¥ and B =y we deduce [y + F;6 C I' and arrive at a
contradiction as before. ||

The main result of this section is the following.

PrROPOSITION 2.4. L, contains a 2-dimensional, standard, nonrigid opti-
mal torus.
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Proof. By Lemma 2.1, all maximal tori in L, are 2-dimensional and
standard. Let 7 be a maximal torus in L, which is optimal. If T is
nonrigid there is nothing to prove. So suppose T is rigid. We mentioned
before that, since 7T is optimal, at least one root in I' is proper. Applying
Lemma 2.3 yields that T" contains a solvable root w and each root in
(L, T)\ F, n is improper Witt. Let @ € I'(L,T) be a Witt root. There
exists a 2-dimensional torus 7' < L (a) such that L(«) = L(«a’) for some
a' €T(L,T")and rad L(«), L[« ] and L[a]((,) are all 7'-stable (see [B-W
88, (1.9)]). Thus a’ € T'(L,T’') is a proper Witt root. Also [I'(L,T)| =
IT(L, T by [P-St 99, Corollary 2.11] and [T,(L, Tl = IT(L,T) N F, ul <
(p—D=I|I(L, TN [Fpa’l < IFp(L, T")|. Thus T’ is optimal. By Lemma
2.3 it is nonrigid. 1

LEmMMA 2.5. Let g be a Lie algebra satisfying one of the following
conditions:

1. g is classical simple or ¢ = q(n)/F, where p | n;

2. X(m;n; W)® c g € CX(m; n; V), where X € (W, S, H, K);
3. g = q(ny,n,), a Melikian algebra.

If TR(g) = 2 then one of the following holds in the respective cases:
1. g is classical of type A,, C,, or G,;

e

2. @ is according to the choice of (X, m) one of

W(2;1),W(1;2), H(2;1;A), K(3;1);
X(m; 1)V € g cX(m;1), where (X,m) € {(S,3),(H.,4)};
H(2;1)” € g € CH(2;1);
H(2;(2,1)? c g cH(2;(2,1))
H(21;9(7))" € g C H(2;1;0(r));

3. g=g@,1).

Proof. (1) Suppose g = gl(n)/F, where p | n. Then TR(g) >n — 1 >
p — 1, a contradiction.

By [P 87], a self-centralizing torus in a finite-dimensional, centerless
restricted Lie algebra . has dimension equal to TR(¥). For p > 3, any
classical simple Lie algebra contains a self-centralizing torus whose dimen-
sion is equal to the rank of the corresponding irreducible root system. Our
preceding remark now implies that the only classical, simple Lie algebras g
with TR(g) = 2 are those listed in the lemma.
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(2) Suppose g = W(m;n). Then g contains a subalgebra isomorphic to
W(m; 1) which has absolute toral rank m (by [Dem 70]). Hence m < 2. If
m =1 then n =2 by [B-W 88, (2.2.3)]. Note that W(2;n) contains a
subalgebra isomorphic to the direct sum W(1;n,) & W(1; n,). Hence 2 =
TR(g) > n, + n,. Thus m = 2 forces n = (1, 1).

(3) Suppose S(m;n; W)V c g € CS(m; n; ¥) (in the S case we must
have m > 3). By [Wil 76], the compatibility condition

S(m; Lz)(l) Ccgrg cCS(m;n)

holds for the graded Lie algebra associated with the standard filtration on
a. By [Sk 98], TR(gr ) < TR(g) = 2. Now S(m; n)¥) contains a subalge-
bra isomorphic to the direct sum W(1; n,) ® W(1;n;), where 1 <i <j < 3.
In view of the above discussion this implies n; = 1 for all i. It is immediate
from [Dem 70] that TR(S(m; 1)) = m — 1. So m = 3 necessarily holds.
According to [B-W 88, Lemma 9.2.1], TR(S(3;1; ¥)®) > 3 unless
S3;1; ¥)D = §(3; DD, Thus we may assume W = Id. As TR(g) = 2 we
also have that g/S(3; D)™ is p-nilpotent. Then S3; D® c g < S(3;1) (by
[St-F, Theorem 8.6]).

(4) Suppose HQ2r; n; W)@ c g € CHQ2r; n; ). Applying [Wil 76] as in
(3) one deduces TR(HQ2r;n)®) < 2. As TR(HQ2r; n)®) > r (by [St-F,
(4.4.6)]) we get r < 2. Suppose r = 1. Then [B-W 88, (2.2.5)] implies that
a® is one of H(2; 1)@, H2;(2,1)?, H(2;1; ®(r)P, H(2;1; A). More-
over, in the latter three cases we must have g/H(2; n; ¥)® is p-nilpotent
whence g € H(2;1;¥). Suppose r = 2. Then H(2r; n)® contains a subal-
gebra isomorphic to the direct sum H(2;(n,, ny)® & HQ2;(n,, n,)?.
[B-W 88, (2.2.4)] yields n; =1 for all i. By [B-W 88, Corollary 9.2.3],
TR(H(4;1; ¥)®) > 3 unless H(4;1; ¥)® = H(4; D", Thus we may as-
sume ¥ = Id. Since g/H(4; )" is p-nilpotent, [St-F, Theorem 8.7] im-
plies g € H(4;1).

(5) Suppose KQ2r + 1; n; W)V c g € KQ2r + 1; n; ¥). As before we ap-
ply [Wil 76] to deduce TR(K(Q2r + 1; n)") < 2. Then [St-F, (4.5.7)] shows
that r = 1. Now K(3; n)' contains a subalgebra ¥, _ ,u ;- ,n FDx(x{?x$)
+ FDy(x;) isomorphic modulo its center FD(1) to CH(2;(n,, n,)). This
gives n; =n, = 1. Also, ¥, _ ,» FD(x{") is a subalgebra of K(3;1) cen-
tralized by Dy (x,x,) and isomorphic to W(1; n;). As Dy (x,x,) is ad-semi-
simple this subalgebra must have absolute toral rank 1. So n; = 1 as well.
By the compatibility condition,

K(3:1) = K(3;1)” c gr(K(3;1; %)) cK(3;1).

Hence gr K(3; 1; W) = K(3; 1). Now [Ku 90] yields K(3; 1; V)" = K(3; 1).
(6) Finally, suppose g = g(n,, n,). By definition, g(n,, n,) contains a

subalgebra isomorphic to W(2;(n,, n,)). By part 2), n, =n, = 1. 1
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3. CENTROIDS

As a consequence of Lemma 2.1 and Proposition 2.4, the following
definition is nonvoid.

DEFINITION. A triple (T, u, L) is called admissible if T C L, is a
2-dimensional, standard, nonrigid optimal torus, u € I'(L,T), and L, is a
T-invariant maximal subalgebra such that M“(T) C L.

From now on let (T, pu, (0)) denote an admissible triple. Then H =
C/(T) c L, By Lemma 2.1, L, is T-invariant. Choose an L -invariant
subspace L _,, C L that contains L, properly and is minimal among the
subspaces V' C L such that V' 2 L, and [L,, V] € V. Then L /L, is
an irreducible L -module. The standard filiration associated with the pair
(Lo L(-1y) is defined by setting

Liiyy= {x €Ll [xa L(—1)] CL(i)}ai >0,
L(—i—l) = [L(_i), L(—l)] + L(_i),i > 0.

Since L, is maximal and L is simple this filtration is exhaustive and
separating. In other words, there are s, s, > 0 such that

L=L_2 = 2Ly1=(0), [Ly Lijy] €Lgsj-

By Lemma 2.1, the p-envelope of H in L, contains T. It follows that
L.,y is T-stable. Easy induction on i shows that so are all subspaces
Ly, =5 <i<s,.

Since T is nonrigid, the union H U (U . L,) contains a nonzero
sandwich, ¢ say. By [P-St 97, Lemma 6.1], ¢ € R(T) and [c, L] € R(T).
From this it is immediate that ¢ € L;). So s, and s, are both positive.

In this section, we begin our investigation of the associated graded
algebra

$2
G= @ G,G, =gl
i=—s5;
By construction, G has the following properties:

(g1) G_, is an irreducible and faithful G -module,

@) G_,=[G_,G_; . Iforallix>1,

(g3) ifxeG,i>0,and[x,G_,]=(0), then x = 0.

Let M(G) denote the sum of all 1deals of G contained in X, _ _, G;. By
Weisfeiler [We 78], M(G) is a graded ideal of G and the graded Lie
algebra

$2
G = G/M(G) = D éi’éi = G,;/G; N M(G)

i=—s5
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contains a unique minimal ideal 4 = A(@) Moreover, A is a graded ideal
of G;ie., A= @A,,whereA =A NG, for all i, and A, = G, for all
i < 0. The grading of G is said to be nondegenerate (in Weisfeiler’s sense)
it A, # (0).

Since K;, € L), we obtain that dim L,, /L, ;, <3 <p forall i € [}.
Then [P-St 99, Theorem 4.4] applies showing that either G, # (0)
or [[G_,,G,],G,] # (0). Since G satisfies (g3), G_, C A, and
([G_,,G,G]1+[G_,G,D n M(G) c G, n M(G) = (0), the grading of
G is nondegenerate in Weisfeiler’s sense. By Weisfeiler’s theorem [We 78],
there are d € N and a simple graded Lie algebra § = &, S, such that

A(G) =S ® A(d;1), A, =S, ® A(d; 1) for all i.
The commutative algebra
nd, g A(G) = A(d;1) = F[X,,..., X,1/(X],..., X2)

is called the centroid of A(G).

Since R(T) € M™, the preceding remarks apply to any admissible
subalgebra of L. Moreover, it follows from Lemma 2.1 that any admissible
subalgebra L, of L satisfies the conditions (4.1)—(4.3) of [P-St 99, Sect. 4].
Choose Ly, as above and let G, G, A(G), and S be the graded Lie
algebras attached to the pair (L), L ;). By [P-St 99, Lemma 4.5(1)],
AG) =S ® A(d; 1), where 0 < d < 2. (Notice that S and d are denoted
in [P-St 99] by S and 7, respectively).

Let ¥4,, denote the p-envelope of L in L,. Clearly, 4, preserves all
components L of our filtration and therefore acts on G =grL as
derivations. The grading of G gives Der G a natural graded Lie algebra
structure: Der G = @, Der; G, where Der; G == {D € Der G | D(G)) €
G,.; Vj}. Obviously, there is a homomorphism of restricted Lie algebras
Zoy = Der, G. Using Jacobson’s identity and the definition of the Lie
product in G it is not hard to see that the image of %, in Der, G
coincides with the p-envelope of G in the latter. As a consequence, %,
preserves M(G), hence acts on the quotient algebra G. Furthermore, the
image of 4, in Der, G coincides with the p- -envelope of G, in Der, G.
From this it is immediate that 4, preserves A(G). Thus we have a
natural homomorphism of restricted Lie algebras

®: %, — Dery A(G) = (Der, S) ® A(d;1) + F1d ® W(d;1).
Suppose the centroid of A(G) is nontrivial; i.e., d > 0. Then the following
are true (see [P-St 99, Proposition 4.8(1), (3), (4) and Lemma 4.9)).

() S=HQ2;1D?and S, € {302, W(1; D};
() G 5= andG_,=(0) (e, MG) =G _,);
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(i) G_, = G_,() for any a € I'(G, T) with a(C,(T)) = 0;
(iv) if S, = 31(2) then G_, = (0).
By [P-St 99, Corollary 3.4], Der, S = S, @ F8, where & is the degree

derivation of the graded Lie algebra S = &, S,. By [P-St 99, Remark 4.2],
® can be adjusted in such a way that

Il

O(T) =F(hy®1) +F(kd® 1+ 1d,q5 ®1),

where &, is a nonzero toral element of §,, k € [, and ¢, is a nonzero
toral element of W(d;1). Moreover if t, e W(d Dy, then it can be
assumed that ¢, = Y¢ | a,x,d, for some a, € F, whlle 1f ty & W(d; D,
then t, = (1 +x,)d,, k = 0 and Fhy®1=®T)N (S, ®F) (see [P-St
99, Theorem 2.3]). We identify T with ®(T) and choose «, 8 € T* such
that

Bhy®1l)=1,B(k6®1+1d®¢)) =0,
a(hy®1)=0,a(ké6®1+1d®1¢t)) =1.

Given a torus t and a restricted t-module V' we denote by I'"(V, t) the
set of all t-weights of V' (this set may contain 0 € t*). The weight space of
V' corresponding to A € I'"(V/, 1) is denoted by V. Put V(A) == @, _ F, V.
The weight space (S, ® A(d; 1)), corresponding to 0 € F W(SO
A(d; 1), Fhy ® 1) equals Cg(hy) ® A(d;1) = Fhy ® A(d; 1) = C, (hy ® 1).
The definition of a € T* now shows that A,(a) = Fh, ®A(d 1) and
a(Cy(T)) = a(Fh, ® 1) = 0. It is mentioned in (iii) that G_2 =G_,(a).
Finally we recall from [P-St 99, Remark 4.2] that

®(Z,) (S, + F8) ® A(d;1) + Fld ® 7,
where
= (my° @) ()

is a transitive subalgebra of W(d; 1). (As in [P-St 99], given a Lie algebra g
and m € N, we denote by 7, the canonical homomorphism from the
semidirect product g ® A(m;1) + F Id ® W(m; 1) into W(m; 1).) Now we
can state our first result on centroids.

LEMMA 3.1.  Let d =: d(L ) # 0. Then the following are true.
L If (myo ®XT) € W(d; Dy, then there is i € [ and w € L) ,,
such that (7, o ®)w) & W(d; 1),
2. |L,(L,T) >p*—p.
3. d(Ly) =1
4. dim L, < 3p forall y € I'(L,T).
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Proof. (1) Let (m,o®XT)C W(d;1D,. Then ty=1X" ax;0,+0
with a;, € F. Observe that & is T- stable and h, ® 1 € §; ® A(d; 1) acts
tr1v1ally on . Hence o = @, _ . Suppose Z;, € W(d; 1), for all
i e [F* Then [t,, 2] c W(d; 1)(0) As 9 is a transmve subalgebra of

w(d, 1) this implies a; = 0 for all i, a contradiction.

(2) Assume (7, ®NT) c W(d; 1) 0 and let w be as in (1). Let
m = m(w) be the minimal integer with w!?1" € T. As F is infinite there is
A € F such that

m—1

(mye ‘D)( )y /\p[W[p]') & W(d;1) ).
i=0
Now consider the 2-dimensional torus

T = {t —~ y(t)(mi‘,l /\Piw[f’]i)

i=0

t e T} C %o

(see [P-St 99, Section 2]). By Lemma 2.1, T’ is standard. By the choice of w
and A, (m,° ®NT") ¢ W(d; 1), According to remarks preceding this
lemma there is a Lie algebra homomorphism

O': F, — (Dery S) ® A(d;1) + F1d ® W(d; 1)

such that ®'(T") = F(h, ® 1) @ F(Id ® t;), where t;, = (1 + x,)d,. Note
that Id ® t;, spans ker B’ C T'. If necessary we switch 7"’ to yet another
2-dimensional torus 7", this time performing the switching inside the
restricted subalgebra %, (B").

The torus 7" will satisfy the following conditions:

L if S, = W(1; D then hj € W(1; 1)),
2. tf=0+x)d, and k" =0
(we dash and double dash the entities for 7' and T" corresponding to the
nondashed entities for 7). If ¢, & W(d; 1), we set T' = T if §; = 3[(2)
or S, =W(;D and A, € W(1;1), there is no need for the second
switching (.e., T' = T").
Given y € T* define y € (Fh,)* by setting

¥(hy) = y(hg @ 1).

Let S+ be the eigenspace of adg /{ belonging to eigenvalue y" (A ® 1).
Since #; = (1 +x,)d, and " = 0, it is easy to check that for any i € [,

(S®A(d;1))(ia" + B") = Z{F Sigr ® Caar)(10)(1 +x1)”
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The natural mapping

P Sz ® Cyeas () (1 +x1)”
jel,

= L S5 ® Caun(1
jeF,

=8 ® Cugp(ty) =H(2:1)? ® A(d — 151)

is an isomorphism of Lie algebras. Both H(2;D® ® A(d — 1;1),, and
H(2; D) ® A(d — 1;1) are T"-invariant (by property (1) of Aj). As M(G)
=G_, = G_,(a") we have that G(ia” + B") = Glia" + B”). As Wy ®
1€ A(G) and (ia” + B")H,;® 1) # 0 we also have G(ia" + B") =
A(G)ia" + B") + C5(T"); hence G(ia" + B")® = AG)ia" + B") =
(S ® A(d; D)ia” + B"). Therefore, each ia” + B” is a Hamiltonian
proper root of G. Then [P-St 99, Corollary 3.6] says that each ia” + B”
with i € [, is a Hamiltonian proper root of L. Since T is an optimal torus
in L,, we deduce that 7' has at least p? — p proper roots.

(3) By [P-St 99, Corollary 2.10], there is a bijection

O"F(G s ) - F(G ],T”) y=o(y)=v",
such that dim G 1y = =dimG_ 1, o(y) fOrany y € I'(G_,,T). On the other
hand, it follows "from our discussion in (2) that dim G_, =
(dim §_, 5)p?~! for any y" € I'(G_,,T"). By earlier remarks, d < 2. If
d=2 then dimG 1y =WimS_, ;)p <(dimS_)p for any y €
I'(G_,, T). Since R(T) CLy, p<dimG_,, <dimL,/Ly, <
dim L,/R, < 2dim L /K, (by [P St 99, Lemma 1.4. and Theorem 8.6)).
As p > 5, dim Ly/Ky > 3. Then [P-St 99, Lemma 1.1] implies that each
v e T(G_,,T) is improper. Since there is no more than p — 1 improper
roots in I' we obtain that dimG_, < (dim S_,)p(p — 1). On the other
hand, dimG_, = dim S_, ® A(d;1) = (dim S_,)p?. This contradiction
proves that d = 1.

(4) Combining [P-St 99, Lemmas 1.1 and 1.4] and [P-St 99, Theorem
8.6, property (2) of t;, and the description of Der H(2; 1)® given in [St-F]
one obtains the estimate (for any y € I'(L, T))

dim L, < dim L /R, + dim L,

<6+dimG, =6+ dimG,,

< 6 + dim(Der §); + dim Z,,

< 6 + dim(Der S)y + dimW(1;1),.
<6+ (p+2)+1<3p.
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LEMMA 3.2. Let y < T'(L,T) be a Hamiltonian proper root such that
L(y) + L(O)(y) + rad L(y), and m: L(y) — L[y] € H(2;1) the canonical
homomorphism. Suppose there is & € I'(L,T)\ F,y such that the L(y)-
module Y., . F, L. ;, has a composition factor of dimension < p>. Then the
following hold.

L aw(L(y) € H2; D,
2. If L(y) is solvable and dim L, /L, ;, = 1 foralli € F, then

p=>5and w(Lg(y)) =H(2: )P + w(H).

Proof. (a) Let g == L(y)®. Fori > —1,set g = 7 '(H(2; D) +
H and let g, denote the p-envelope of g in L,. Note that the action of T
on L induces an [,-grading on L(y), hence on g. Since g is not solvable,
the zero part of this grading contains an element x such that ad x is not
nilpotent ([St 97, Proposition 1.14]). Then g, N T contains a toral ele-
ment, ¢, say, with y(z) = 1. Set

Y (rad L(v))n + X [(rad L(¥))iy, L_p ]
ieky ieFy
By the preceding remark, I is an ideal of L(y) contained in g N rad L(y).
Since I < K(y), the ideal [ is nilpotent. The image of g in L[y] is a
simple ideal of L[y] (recall that H(2; )® c L[y] c H(2;1). It follows that

radg=gnNnrad L(y) =1+ HNradg.

This gives [q;,,rad g] €I for all i € F. As g is perfect, [g,rad g] € L.
This implies that a/I is a central extension of a/rad g = H2; D®.

Let W be an L(y)-composition factor of ¥;c¢ L;,;, of dimension
< p>. Then W is a restricted g ,-module. Let p: g S q{(W) denote the
corresponding representation. As I is nilpotent there is n > 0 such that
p(D)"* ! c F1d,,.

(b) Suppose n = 0. As [q, ] D [t,I] we have the equality [g, I] = I.
Then I acts trivially on W (by our assumption on 7). As a consequence, p
gives rise to an irreducible representation of a central extension of
H(2; D®. Any Cartan subalgebra of this central extension acts triangulably
on W (this follows from the fact that any Cartan subalgebra of L is
triangulable). As dim W < p*, [P-St 99, Lemmas 3.8 and 3.9] apply to the
representation p: g — g((J) and show that the subalgebra [g ), g1 +
g, g(z)] acts nilpotently on W.

(c) Suppose n # 0 and let m > 1 be such that p(I)” ¢ F1d, and
p(D)"*' cF1dy,. Set A:=1" Both I and A are T-stable. Since
p(t,[1, AID = (0) (by the choice of m), we must have

p(N"""=p([HNLHNAD + ¥ p([Iy. A_4])-

fe E*
tEIFp
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Now [HNI,HNAlcH® cnil H and [I,,, A ,,]cK'(y)V for any
i€ [F;,". Combining this with [P-St 99, Theorem 8.6] we obtain that union

p(lHNIL,HNA]) v | U p([li‘y7A—i‘y])

e E*
iefy

consists of nilpotent endomorphisms. This means that p(I)"*! = (0).
Thus p(A) is an abelian ideal of p(g,). As W is g ,-irreducible and A is
nilpotent, there is a linear function A € A* such that A(A?) =0 and
p(x) — Mx)Idy, is nilpotent for any x € 4. Let

W, = {we W] p(x)(w) =A(x)w forall x € A}
and
ap = {x € a, 1 M([x A]) = o}.

Obviously g7 is a restricted subalgebra of g, and W, is p(g))-stable. By
[St-F, Corollary 5.7.6], W, is p(g ;,\)—irreducible and
W=u(g, §

u(gp) Wy

as g,-modules. If g, =g ;‘, then the ideal [g,, A] acts nilpotently on W
hence annihilating this irreducible module. This forces p(A) C F 1d,.
Due to our choice of m this is not the case. Therefore, g, # g;. Also,

dim W = p%m 8,/ 95 dim W,

yielding dim g,/g5 <2. Set m:=g N q). Then dim g/m = dim(g +
a5)/a, < 2. From the definition of g, it follows that 7 ¢ m. Suppose
g =m + rad g. Then g = g € m + [g,rad g]. By our discussion in (a),
[g,rad g] C 1. Tt follows that g = m; i.e., g C g). This implies g, = g
(as g; is a restricted subalgebra of g p), a contradiction. Hence g # m +
rad g; i.e., 7(m) is a proper subalgebra of H(2;1)® of codimension < 2.
But then 7(m) = H(2; D? (by [Kr]); hence

2=dimg/(m +rad g) < dim g/m < 2.
This shows that rad ¢ € m and m = g ,. Therefore,
2 = dim g/m = dim(g + ¢})/a)
forcing dim g, /4 ; = 2. As a consequence, dim W, < p.

Let x be an arbitrary element of g, and x; the semisimple part of x in
q,. Since H(2; D@, acts nilpotently on H(2; 1), one has [x,, g o] Cradg.
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As ad x, is semisimple and maps ¢ into rad g, there is » € rad g such that
[x,,t +r] = 0. Clearly, [T N kery,t + r] = 0. Let y denote the semisim-
ple part of 7 + r in L,. As rad g is nilpotent, our choice of ¢ implies that
ad y acts nonnilpotently on L(y). As TR(L) =2, Fy + TN kery is a
maximal torus of L,. This implies x; € Fy + T'N kery, that is x; € T'N
ker y. But then g, is a nilpotent subalgebra of g (by Engel’s theorem).

The above discussion shows that the eigenvalue function A: A4 — F
extends to g, The function A:g.) — F has the property that p(x) —
A(0)Idy, is nilpotent for any x € g). For u € g, and v € g;, one has

0 = trace p([u,v]) |y, = (dim W) A([u,v]).

As dim W, < p we derive that A vanishes on [g(o), g(l)]. In other words,
[G0)> 8] acts nilpotently on W.

(d) It follows from our discussion in (b), (c) that in all cases the
subalgebra [g ), g;,] acts nilpotently on W. Let z be an arbitrary element
of [g), ) and let z; be the semisimple part of z in g,. We have
already established that z, € T N ker y (see (c)). This means that (ad z) —
8(zId acts nilpotently on X, ¢, Ls+jy- Since p is induced by the adjoint
action of g on ¥, L, and p(z) is nilpotent, 8(z,) = 0 necessarily
holds. But then z, =0 for any z € [g(o), g(l)]; that is, [g(o), g(l)] acts
nilpotently on L.

(e) Since vy is proper, T stabilizes g, and g, and acts on H(2; D® as
F(x,0, —x,d,) ((Dem 72]). No generality is lost by assuming y(x,d,; —
X,d,) =1. Then g =L, +L_, +gg. If i# +1, then L, Cgq. By
[B-W 88, (5.2.1)], K;, C g, for any i € F. So it follows from (d) that
[L_,,,K;] acts nilpotently on L whenever i # +1. In other words,
K., =R, CLg,, foranyie F:\{+1}.

Suppose L ,(y) & g, Then there is a € Ly, , such that

m(a) = Dy(xy) + 1 /\,-DH(XTIXQ)-

i>1

There is b € L,, such that w(b) = D, (x{~?). Note that b € K,, = R,
c L(O)(y). Also,

_3 2)
7((ada)’ (b)) = (p = 2)1Dy(x,) (mod H(2: D)%)
It follows that there is a’ € L, _, such that

m(a') =Dy(x;) + 1 MiDH(xixéﬂ)-

i>1

Y

There is b’ € K_,,, such that w(b") = D, (x{~?). As before, b’ € L (y).
Since (ad a)?~*(b), (ad a’)?~*(b') € L(y) we deduce that there are
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Uy, Uy € Lig(y) such that w(u;) = Dy(x7) (mod HZ2; D®,,), i = 1,2. Ar-
guing in a similar fashion we find c,c’ € L, (y) such that 7(c) =
D, (xP~'x$7%) and w(c’) = D,;(xP 3xt~1"). Since each quotient
HQ2;D®, /HQ2; 1P, is an irreducible module over H(2;D® /
H(2; 1Py, it is easy to see that the subalgebra generated by (a), 7(a’),
w(c), w(c"), m(u,), m(u,) coincides with H(2;1)®. We deduce that
L (y) + rad L(y) contains 7~ '(H(2; D®) = g. However, L(y) = H + g
and H c L (). This contradiction proves (1).

(f) Now we are going to prove (2). First suppose p > 5 and pick
keF,\{0,+1,+2} # &. Then L,, =K, (because y(x,;d, —x,d,) =
D. By our discussion in (e), K;, =R, C L, ;, for any i € F,\{£1}.
Therefore, L, = R, € L. As this contradicts our present assumption
on L (y) we must have p = 5.

Next observe that

W_l(H(Z,l)(l)) N Liz)’ = KiZy = thy CL(O)'

Pick i,j €{0,..., p — 1} with i #j (mod(5)) and choose a root vector
v(i,j) € g such that 7 (v(i, ) = Dy(x|x}). Suppose i —j =1 (mod(5))
and i +j > 1. Notice that v(i, j) and v(1,0) are in L.,. By our assumption,
L, , has codimension 1in L. So v(i, j) & L, , implies v(1,0) + Av(i, j)
€ L, , for some A € F. But then Dy(x,) = w(v(1,0)) € 7(L(y)) +
Dy (x1x}) € H(2; 1), a contradiction. Thus v(i, j) € L,(y). Similarly,
v(i, j) € L(y) for all i,j with i —j = —1(mod(5) and i +j > 1. As a
consequence, @, C L, (y). On the other hand, L(y)/g,, is spanned by
the images of v(1,0), v(0, 1), v(2,0) and v(0,2). We get L (y) = g, as
desired. |

LEMMA 33. Let g be a simple Lie algebra with TR(g) =2, g, the
p-envelope of g in Der g, and t C g, a 2-dimensional standard torus. Let
v € I'(g, t) and suppose that §(y) contains a t-invariant solvable subalgebra
M of codimension < 2. Then vy is a non-Hamiltonian proper root.

Proof. Set gly] = g(vy)/rad g(y). _

Suppose y is Hamiltonian. Then H(2;1)® c g[y]l c H(2;1). Let M
denote the image of M in H(2;1). Then M N H(2;1)® is a solvable
subalgebra of codimension < 2 in H(2; )®. But H(2; D® has no such
subalgebras (see [Kr]). Thus vy is not Hamiltonian.

Suppose vy is improper. Then g[y] = W(1; 1), by the previous step, and
t acts on W(1;1) as F(1 + x)d ((Dem 70]). Let M denote the image of M
in W(1;1). Then M is invariant under (1 + x)d and hence has the form
M=Y%,_,FQ1 +x)9 for some .7 C F,. By our assumption, M has codi-
mension < 2 in W(1; 1). Therefore there are i,, i, €.% such that i, i;, 1
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are pairwise different. Then M contains (with s such that s(i, — 1) =
1—1ip)

(ad(1 +x)"3) ((1 +x)"a) € F(1 +x)a\ {0}
Then M is not solvable. This contradiction shows that y is proper. |

LEMMA 3.4.  Suppose that d(L,)) # 0. Then S, = 3((2).

Proof. (a) By Lemma 3.1, d(L,)) = 1. Suppose S, # 3[(2). Then S,
W(1; 1) (as mentioned at the beginning of this section) and S_, = A(1; 1) /F
as W(1; 1)-modules (see [P-St 99, Corollary 3.4 and Theorem 3.5(3)]). So all
iB,j€ [y, are weights of S_,. Recall that ®(7) is spanned by 4, ® 1 and
k6® 1+ Id ® t,. It is easﬂy seen that dim G_ Liavjp = 1 forall i € F,
and j € [F. Since dimG_, , < dim L,/R < 2dim L ,/K, for any y € F
(by [P-St 99 Lemma 1.4 and Theorem 8 6]) all proper roots inF,a+ [F*B
are Hamiltonian and, furthermore, (F,a + F¥g) N T, = & unless p=>5.

(b) Suppose ¢, & W(1; 1), In this case we may assume that k = 0 and
ty = (1 +x,)d, (see our remarks at the beginning of the section). As
d(L ) = 1 we therefore have, for any i € [,

Ly(ia+ B)/rad(Lg,(ia + B))

= Gy(ia + B) /rad(G,(ia + B))
Ay(G)(ia + B)/rad Ay(G)(ie + B)
D sy 50 (1+x)" =8, =w(l;1).

JELE,

I

Lemma 3.1 tells us that I contains at least p?> — p proper roots. There-
fore, there is s € F, such that n := sa + B is proper. Since n is Hamilto-
nian and dim L, < 3p for all y € I" (see Lemma 3.1(4)), Lemma 3.2 shows
that either L(n) = L(n) + rad L(n) or L(O)(n)/rad L(O)(n) € {(0), 31(2)}.
By the choice of 7, neither of these two cases can occur. This contradic-
tion shows that ¢, € W(1; 1)y,. But then @ can be chosen so that

O(T)=F(hy®1) ® F(kd® 1 + 1d ® x3).

In other words, we may assume that ¢, = xJ.

(c) Let S, denote the standard maximal subalgebra of S, = W(1; D).
There is i, € [ such that S, = S, ) ® FS,; 5. Rescaling &, if necessary
we may assume that i, = —1. For all i € [} and all j € [, there exist
nonzero e_; ; € S_; and ¢, ; € §y, such that §_, ;5= Fe_, , and S, ;5 =
Fe, ;. For 0 <a < p — 1, the vectors

a 3 ES a 3
e_;;®x‘ i€l ,ande, ; ®x"jEF,
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form bases of the root spaces
(Sfl ® A(17 l))(a—K)a+iB and (SO ® A(ls l))aa+jﬁ7
respectively. Since d(L,) = 1 and

p—1

(Sy®A(L;D)(B) = D Fey;®1=§,=W(1;1)
j=0

we must have L (B)/rad Ly(B) = (S, ® AX1; DX B) = W(1; D).

Suppose B is proper. Then B is Hamiltonian, by (a); hence L(B) #
Ly ﬁ) + rad L( B). By the preceding rernark,. .L(O)( B)/ rad. Lo(B) &
{(0), 3((2)}. This contradicts Lemma 3.2. Thus B is improper. Since [F;j‘ BC
I' and T contains at least p?> — p proper roots, each element in Fre + B
must be a Hamiltonian proper root of L. By (a), this forces p = 5. Given
ielF¥ and j e Fs there is n(i,j) €{0,1,...,p — 1} such that (§, ®
A(1;1);104 ) = Fey ; ® x"D. Clearly, n(i, j) = ij (mod(5)). As a conse-
quence,

(So @ A(1;1))(ia + B) CFep g ® 1 + 8, @ A(1;1),
is solvable (i # 0). For i € F¥, let 7; denote the canonical homomorphism
L(ia +B) » L(ia + B)/rad L(ia + B) = H(2;1).

Set L(ia + B, = m; '(H(2; 1)). Since Gylia + B) = (S, ® A(1; DXi
+ B) is solvable, so is L(ia + B). Since dim L;;,+ 5)/L) jtia+p) = 1
for all i, j € F#, Lemma 3.2(2) applies to each y € F¥a + B showing that

Lo(ia+ B) =L(ia+ B)y + H Vi € F.

Since i + B is proper (for i € F¥), T stabilizes L(ia + B),,, hence each
subspace L(ia + B), (I = —1). From this it is immediate that there is
jo = jo(i) € FZ such that

L(ia+ B)wo) = Ljasp) + L_jiarp T Llia+ B)oy + H
= Ljia+p) t Lojiiarpy T Lolia + B).
It follows that there are u; . € L, ; ;.4 p, \ {0} such that
L(ia+ B)o =Fu; ,® Fu; _® L, (ia+ B).
Since H(2;1)®,, is an ideal of H(2; D® one has

[ui, + L(O),j(ia+ﬁ)] CLg(ia+ B)VjEFs. (2)
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Given i,j € F¥ let I(i,j) €{0,1,2,3,4} be such that Fe , ; ® x'")) =
(S_; ® A1 1));;04 p)- Then

I(i,j) = k +ij (mod(5)). (3)

Clearly, the root vectors u; , can be chosen so that the images of u; , and
u, _inG_; =G_, are

ey, ®@x'“Wande_; ; ®x-, (4)

It follows from Eq. (2) that these two elements of G annihilate (S, ®
A D)0

Now e, _, €S8, _5 and e, | & S, = W({; Dy, Since §_, =
A1; D /F as W1, 1) modules we must have anng e, _; = S_; 5. There-
fore,

— . 4
anng_ o 4q,1y(€, -1 ®x) =S_; @ A(L;1) +5_; ®x".
Observe that ¢, _, ® x € (S, ® A(1;1),_,. Then
ann ( ®x)=Fe_, , ®x"“!"D 4+ Fe_, ®x*
(S @A DX-at+p) €0, -1 X ~1,1 —1,r ;

where r € F has the property that /(—1,r) = 4 (mod(5)). The subspace
on the right i 1s at most 2-dimensional and hence must coincide with Fe_, ;

®x'" 1) + Fe | . ®x'"" v, the span of the imagesof u_, , in G_,.
Thus {1, r} = {+]0} forcmg r= —1 By Eq. (3), 4 =1(—1, —1) =k+ 1.
Thus « = 3.

Next ¢, ; ® x* € (S, ® A(1;1)),, , and

anng o 4.1)(€, 1 ®X°)=8_,5®A(L;1) +85_,0x’ +5_, ®x*.
As a consequence,
2
AN o 401020+ 5)( €0, -1 @ X7)
=Fe_ , , ®@x'"*V+Fe | ®x’+Fe , ®x',

where r,r, € F¥ satisfy I(=2,r) =3 (mod(5) and I(—-2,r,) =4
(mod (5)). The subspace on the right should contain e_, ,; ® x'">*/
(we set i = —2 in Eq. (4)). But then {+j,} < {1,r,r,}; hence one of the
following must hold:

(i) r,= -1, (i) r,=—1, (iii) r, = —r,

If (i) holds, then 3 =1(—2, —1) = « + 2 (by Eq. (3)). If (i) holds, then
4=x+2, in a similar fashion. If (iii) holds, then 3 = k — 2r, and
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4 =k + 2r;. As k = 3 each of the three cases leads to a contradiction,
completing the proof. ||

In proving the main result of this section we elaborate on the arguments
used in [P-St 99, Lemmas 4.9 and 8.4].

PropPOSITION 3.5, Let (T, p, L)) be admissible. Then d(L ) = 0.

Proof. (a) Suppose d(Lg,) # 0. Then d(L,) =1 and §,=3((2)
(Lemmas 3.1, 3.4). By remark (iv) at the beginning of this section, M(G) =
G_, = (0). Thus G = G. The grading of S is as in case 3 of [P-St 99,
Corollary 3.4] yielding dim §_; = 2.

(b) Recall that ® can be chosen so that ¢, € {xd,(1 + x)d}. If ¢, = x4,
set T' =T, k' ==k, ' :== D,

Suppose ¢, = (1 + x)d. By [P-St 99, Lemma 4.9], we can find w €%, ,,,
where i € [, such that (7, o ®)(w) & W(1;1),. One has (7, o ®)w) €
F(1 + x)/9 for some j # 1, whence (1, ° @)(w[pf) = 0. It follows that

mw)—1 )
(o @)t —ia(t) -:20 MWl = (0 @) (1) — Ae(t) (7,0 @) (W)

forall t € T, A € F (see also the proof of Lemma 3.1(2)). From this it is
immediate that one can switch T by a multiple of w so that the new torus
T’ will satisty the condition

O (T'Y=Fhy® 10 F(«k'6®1+1d®xd)

(for a suitable embedding ®’ and «' € ).

(c) If B’ is a proper root, set T" == T'.

Suppose B’ is improper. If k' = 0, then G(B') = AGX B') + C(T")
—S®1+Cy(T"). Since §=H2;D?, S, =35(2), and dimS_, = 2,
[P-St 99, Corollary 3.6] yields that 8’ € I'(L,T’) is proper Hamiltonian,
which contradicts our assumption. Hence ' # 0. Choose k € {1,...,p —
1} with k = k' (mod p). Choose nonzero u , € S_, , 5. There exist e’ €
So.25» [ € Sy, _»5 such that (e’, iy, f') forms an &[(2)-triple. Then

G | p=Fu,®x"G_ |, ;5 =Fu ®xF,
and
A(G)(B) =F(e' ® 1) ® (Flly ® 1) ® (Ff' ® 1) = 5((2).

Therefore, [G_,(B"),G,(B)] c AG)(B) NS ® A(1; 1)y, = (0). This
means that L (') is an ideal of L(B'). As L (') has codimension 5
in L(B'), B’ cannot be Hamiltonian. As B' is improper, it is neither
solvable nor classical. Hence B’ is improper Witt and p = 5. Choose root
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vectors z,,z_€ L(B") such that ®'(z,) =e¢’ ® 1and ®'(z_) =f' ® 1.
Let ¢ : L(B') = W(1;1) be a Lie algebra epimorphism. If both ¢(z, ) and
#(z_) were in W(1;1), they would generate a solvable subalgebra in
W(1; 1). Then z, and z_ would generate a solvable subalgebra in L,(3")
(as ker ¢ is a solvable ideal of L(B'). As ®'(z,), ®'(z_) generate an
[(2) this is false. Thus there is z € {z,, z_} such that ¢(z) & W(1; 1),
Note that

[@(217), A(G)] = [@'(2)"”, H(2: 1) ® A(1;1)]
= (ad¢")’(H(2: 1)) ® A(1:1) = (0).

Hence ®'(z!?1) = 0. Let u' € {+28'} be the weight of z. For A € F, we
consider the torus
t e T'}.

By the preceding remark, ®'(7)) = {®'(¢1) — w'(OADP'(2) |t € T'}.

Let L(B"), denote the p-envelope of L(B")in L,. It is a homomorphic
image of the universal p-envelope L( B") € U(L(B")) ([St 97]. As W(1;1)
is restricted, ¢ extends to an epimorphism of restricted Lie algebras
§:L(B")— W(1;1). As W(1;1) is simple, C(L( B")) C ker . It follows
that ¢ induces an epimorphism of restricted Lie algebras ¢, : L(B"), —
W(1; 1) such that b lrcpy =W ([St 97, Theorem 1.2]). It is easy to see that
ker ¢y, = rad L(B’ ) Also, ¥, (zIP1") = y(2)P" = 0 for any k > 1. This
means that z[?] efZ (B") N ker ¢s,. Consequently, ¢,(T)) = {¢,(t) —
wWOAY(2) 1t e T} As #,(T") is a 1-dimensional torus in W(l; 1) and
w'(Hy ® Di(z2) sticks out of W(1; 1)), there is A, € F such that (T} )
c W(l D) Put T" == T} and let I'" denote the root system of L relative
to T". As u'(k'8 ® I'+1d® ty) = 0 we obtain (7,0 ®'NT") =
(77, o ®')T"). In other words,

m(z)—1

T = {t—u'(t) X AP
i=0

O(T")=F(hy®1l) @ F(k'6®1+1d®x79)

for some toral element A} € S,.

(d) First observe that 8” € I’ (by the choice of T").

Let y € I'" \ (F,a@" U F,B"). Each T"-weight of G_; has multiplicity 1
and |F,y N T(G_,,T")| = 2 (as dim §_, = 2). After rescaling A, possibly,
I(G_,,T") = £B" + F,a" and I'(G,,T") = Fia" U{£2B" + F,a"}.
Choose nonzero e” € §; ,5 and f” € §; _,5.. Then

" a __ " a __
Fe" @ x" = G yp0 140 a0d Ff" @ x* =Gy _yp0 1 40r
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for any a € {0,1,..., p — 1}. We deduce that A(G),(y) CFh, ® 1 + S,
® A(1; 1), is solvable. Then so is L (y) + rad L(y). It follows that L[y]
contains a solvable 7"-invariant subalgebra of codimension < 2. By
Lemma 3.3, y is proper and non-Hamiltonian.

Next observe that L(a") = L,(a") (for this is true for the non-dashed
entities), and the kernel Fh{, ® A(1;1) of the epimorphism m, : G (a") =
9 is a solvable ideal of G (a"). Thus either a” is solvable or classical
(hence proper) or & = W(1;1). By the choice of T" (m, ®'NT") =
(my 0 ®'XT") = Fxd normalizes W(1; 1)y,. Therefore, a” is proper in all
cases.

Summarizing, all roots in T'(L, T") are proper. Lemma 2.1 and Proposi-
tion 2.3 now show that 7" is standard, nonrigid, and optimal.

Since T is optimal, all 7-roots must be proper as well. But then 7 = T”
if t, =x4.

(e) If t, = xd (resp., t, = (1 + x)d), then Lemma 3.1(1) (resp., [P-St 99,
Lemma 4.9]) shows that there is an element w € L, ,,, where i € F¥,
such that (7, o ®)(w) & W(1; 1),y In (b), we switched T to T' by use of w.
Let z be the element which we have used in (c) to switch 7' to T". Fix
£ € Homg (F F) and let E, , . be the generahzed Wlnter exponential
assomated to (Ayz, &) (see [P- St 99, Sect. 2]). Set w" == E, , (W) € Ly, ;0
As z € A(G),, one has (m,° ®)w") = (7, ®')w) ¢ W(l Dy Thus
(71, o @) W") = Ayd, where A, € F*, and

D(w') =Hy@f, +88f, + A 1d ® .

Since ®’'(w") is an eigenvector for Id ® #j and A, # 0 we obtain f; =
A,xP~1 for some A, € F, i = 1, 2. By Jacobson’s formula,

D' (WP = ' (w") =hy @ N\ 9P I f) + 8@ AT 9PTI(fy)
= =M NH + A,08) ® 1.

This proves that 1,8 ® 1 € ®'(T"). Asdim T" = 2 we get A, = 0. There-
fore,

[d® de Gy,
(f) We have already mentioned in (d) that
T(G_,,T") = £ + F,a", T(G,,T") = Ffa” U {£2B8" +F,a"}.

Arguing as in the proof of [P-St 99, Lemma 4.9] one derives that the Lie
product in L induces nonzero (7" + G (a"))-invariant bilinear mappings

ANG_ (| XG_| > Gy, Ay=m,°A:G_, XG_| > CcW(1;1)
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(here one uses the simplicity of L and the structure of the graded algebra
G). Choose nonzero u € S_; g and u' €S_, 5. As Z is a trivial
Fhy ® A(1; 1)-module we have

A(uox,u ©x)=A(uex',u ®1)Vi,je{0,...,p — 1}.
Setting in [St 98, 4.6(2)] f = x gives
A(u®x"u ®x)
=(i—-2)xA(u®l,u ®1)+ (1 —i)x "A,(u®x,u ®1)
+(2-)x" Ay (u® ,u' ®x) + (i — 1)x""*Ay(u ® x,u’ ®x)
+xA(uex"u ®1)

for all i €{1,2,..., p — 1}. Induction on i shows that

. (i—-1)(i-2) .
A (u®xi,u' ®1) = fx’j\z(u ®1l,u" ®1)
+i(2-i)x"" A (u®x,u’ ®1)
i(i—1) .
+ %x’zjb(u ®x’u ®1)

for all i €{0,1,..., p — 1}. Since A,(u ® x’,u’ ® 1} is an eigenvector for
t; = xd there are s, € F, and [, € N (/; < p — 1) such that A,(u ® x',u’
® 1) = s,x". Since & acts on S_, as —Id we must have

ly=1-2k' (mod p)
l, =2 -2k’ (mod p) (5)
l, =3 -2k’ (mod p).

Applying Id ® ¢ € G (a") shows that iA,(u ® x'"',u’ ® 1) =s,1,x"" 1.

This gives 0 = sylyx" !, syx'o =s,/,x""1, 25, x"" =s5,,x>'. Conse-
quently,

Soly = 0,80 = 5101,28, = s5,1,. (6)
Moreover,

either [, =1, —1ors, =0,
and

either [, =1, — lors, = 0.
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It is immediate from Eq. (6) that 0 € {/,, [,, [,} (otherwise, s, = s, =5, = 0
forcing A, = 0).

Suppose I, = 0. Then s, = 0 (by Eq. (6)) and ' = 1 (by Eq. (5)). Hence
I, = 1 (by Eq. (5)). By Eq. (6), 2s, = s,. In this case

4 i(i—1 , ,
A(udx,u' ®1)=[i(2—-i)s + %sz X' =is,x'7 .

Since A, # 0 we have s, # 0. It follows that A,(G_,,G_,) = L. }? Fx¥
c m(Gy(a”). As p >3, this implies x% € m,(Gy(a”)). However,
YPo 2 Fx% is not x%-stable. This contradiction shows that [/, # 0 and
1012 = 0.

(g) Suppose /, = 0. Then 2k’ = 1, by Eq. (5), whence [, = 1, [, = 2. By
Eq. (6), s, = s; = s5,. As a consequence,

A (uex,u ®1)

i—1)(i—2 i(i—1 A .
= #+i(2—i)+% Syx9 = 5,x9

O<i<p—1.Ass,+#0weget Z=W({;D.Since L(a) = L, (a)we
obtain L[a]l=2.If t; = (1 + x)d then « is improper Witt. However, we
mentioned in (d) that all T-roots are proper. Thus 7, =xd and, as a
consequence, 1 = T".

As k = k' = 3 we have that

G psa=Fu®x?',G_, g5, =Fu ®x°.
Then
(G 1 g 2a:Gr pra] ©(So@x"") N ®(H) Cnil D(H).
Since L, g4 10 © L, we have that [Lg_ 3, L, _ g 3,] € nil H. Now
Au®x? ' u' ®x*) € Fladhy ® x)* (A(u ® x?~ ", u’ ® 1))
< (ad by ® x)*(Gy(@)) = (0).

Choose v € Lg_;, with gr_(v) = u ® x?~'. The above yields
[v,L_g, :,] Cnil H. But then v € R(L,T) C L, a contradiction.
(h) It follows now that I, = 0. By Eq. (6), s, = s, = 0, so that

i(i — 1)

A(u®x,u ®1) = Tszxi_zc?,o <i<p-1
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Then Ay (G_|,G ) = X5 Fx9 C (7,0 @)L (a”)). So AyG_,G ;)
being Z-invariant, we must have p =5 and 9 = (7, c ') L (a")) =
30(2). As L=L_,, and I'(G_,,T") = £B" + F,a", all root spaces
L,gr .o With a €{0, £2} are contained in L . Choose T"-invariant
subspaces

VoCH+ Y Lypijer + L Logpijer + X Lio
j€F, j€F, JjeFy
and
V—l - Z LB”+ja” + Z L—B”+jzx”
JjEk, Jjek,
such that
g“%)=%®Aug)+FM®QWf¢quw)mwugMg

and
gr(V_y) =8_1 @ A(1;1)

(here gr;: L;, — G; stands for the canonical homomorphism). Properties
of the associated graded algebra G ensure that

[L.Ly)] SV + Loy, [Veu Vol €V + Ly,
while properties of T(G_,,T") yield
[V_1,V_1] S L.

Finally, properties of G show that gr_,(V_,) is (gr,(V,))-invariant. This
means that

VoVl X X Ligyjur | N (Voy+ L) SV + Vo + L,

ieFy jeF,

Observe that A,(u ® x",u' ® x") = A,(u ® x" ", u’ ® 1) € W(; 1),,,
whenever m + n > 4. Therefore, [V_;,V_,] €V, + L ;, (one should take
into account that V_, N L, €L, and L =L._,). Therefore, L, =
V_i+Vy+ Ly is a Lie subalgebra of L. By construction, Ly, is a
T"-invariant subalgebra of codimension 5.

By Eq. (5), k' = —1 (as p = 5). From this it follows that the vectors
u®l, u®l, u®x, u’ ®x € G_, belong to the root spaces Gy ors
G_grios Ggringrs G_prin,, rtespectively. Pick v, € Lgoy 0, v, €
L_ gy, U3 € Lg iy, and vy € G_go 5, such that

gry(v) =u®l, gr (v,)=u"®1,

gr_(vy)=uox, gr_(v,) =u ®x.
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It is easy to see that
L =Ly ®Fuv, ® Fvo, ® Fvo, ® Fv, & Fw",

where w"” € L (a") is as in (e).
Next we observe that for i > 2

A(uexi,u ®x)=A(u®x,u ®x') e W(l;1)q,
and
A(u®x,u’ ®x) =A(u®x*,u ®1) =s,0.

Passing to the corresponding root vectors we conclude that L, == Ly, +
Fvs + Fu, is Lgy-invariant, and [v3,v,] = s,w" (mod L _,,). It is also clear
that

[w", 03] = v, [W",0,] = v, (mod Lig,).

Moreover, V;, + T" acts on L_, /L, as gl(2). Thus L has a standard
filtration

L=L_3>L_,>L_;D>Ly> - DL, =(0),

with s > 4 such that the associated graded algebra G’ has the property
that GB 0 G = ,<o a(1, 1), where the grading of g(1, 1) is the standard
depth 3 gradmg Since G satisfies (g3), [St 97, Theorem 3.38] shows that
G' = g(ny, n,) is a Melikian algebra with its standard depth 3 grading (see
also [Ku 91]). Thus L is a depth 3 deformation of g(n,,n,). By [St 97,
Theorem 4.14], L = g(n,, n,). Since TR(L) = 2, Lemma 2.5 yields L =
a(1, 1) contradicting our choice of L and thereby completing the proof of
the proposition. [

4. PROPERTIES OF §

In this section, we work with a fixed admissible triple (T, u, L)) and a
chosen standard filtration

L=L_,,2 " 2Ly > DLy, =1(0).

We have established in Section 3 that the grading of G = gr L is nonde-
generate in Weisfeiler’s sense and the unique minimal ideal A(G) of
G = G/M(G) is simple (Proposition 3.5). More precisely, there is a graded
simple Lie algebra § = @, S, such that ad § € G c Der S and A(G), =
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ad §; for all i. As before, we identify S and ad S and endow Der § with a
natural Z-grading induced by that of S. Since G_, is an irreducible
G -module (by (g1)) we derive that S_, is (Der, S)-irreducible (for G_, =
A(G)_)). Since G satisfies (g2), S"== @,_ S, is generated by S_,.

We frequently use the notation introduced in Section 3, especially the
homomorphism & : Z, — Der, S. The goal of this section is to show that
the simple Lie algebra S is not listed in Theorem 1.1.

Let & denote the p- enXelope of G in Der §. It is straightforward that

C(Z) = (0). Therefore, £ is a minimal p- envelope of G (see [St-F,
Theorem 2.5.8)).

LEMMA 4.1. The Lie algebras L, [G_,G,], G, and G, are nonsolv-
able.

Proof. If one of the exposed algebras is solvable, then so is [G_,, G,]
C G,. Since G, # (0), Skryabin’s result [Sk 97, Theorem 7.4] (which
generalizes earlier work by Weisfeiler (We 84]) and Kuznetsov ([Ku 76])
applies yielding L = 3[(2) or L = W(1; n) for some n € N. As TR(L) = 2
we must have L = W(1;2) (Lemma 2.5). This contradicts our choice of L.

LEMMA 4.2. 1. dim &(T) = 2.

2. Let V be a composition factor of the G-module M(G)' /M(G)'*" and let
p:G — ql(V) be the corresponding representation. Then there exists a re-
stricted representation p: € — (V') whose restriction to G coincides with p.

Proof. (1) Let t € T N ker ®. Then [®(2), (_;i] =(0) for all i € Z;
hence [¢, L ;] CL(H]) for all i> —1. As L_ ) generates L this gives
t = 0 (for ad ¢ is semisimple). Hence ®(T) = T is 2-dimensional.

(2) Let G and G be the universal, p-envelopes of G and G, respectively.
The universal property of G and G ensures that there is a commutative
diagram

A Oy )

G HGS Z
| T\"

where 7 is the canonical homomorphism and all o, o,, p are restricted
homomorphisms. Since 7 is surjective so is o,. Since & is a minimal
p-envelope of G, o, is surjective. Let D € ker(o, © o). By definition,
(00 o (DIXS) = (0). Since S_, = A(G)_, = G_, this implies [D,G _,]
Cc M(G). As M(G) Cc ¥, _, G,, easy induction on i based on (g2), (g3)
shows that [D,G;] c X, _; G; for all i. Hence [D?,G] = (0) for e > 0.
This shows that ker(cr2 o gy) acts p-nilpotently on G. As V is an irre-
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ducible fagtor of the G-module G this implies ( 5 ° o Xker(o, ° 7)) = (0).
As Z = G /ker(o,° g,), p induces a restricted representation p:Z —
a (), and this representation has the property that p |z = p. |

The next lemma starts our investigation of the structure of S.

LEMMA 43. 1. TR(S) = 2 = TR(Z).
2. The p-envelope of S, in Der S contains ®(T).

Proof. (1) By [St 89 /1, Propositions 2.2, 2.3] and [Sk 98, Theorem 5.1]
one has

0+ TR(S) < TR(G) < TR(G) < TR(L) = 2.
Then
1 < TR(S) < TR(%) < TR(G) < 2.

Suppose TR(S) = 1. Then S € {3[(2), W(1; 1), H(2; 1)®} (by [P 94, Theo-
rem 2]). By Lemma 4.2(1), S admits a 2-dimensional torus of derivations.
Hence S = H(2;1)®. The gradings of S are then ruled by [P-St 99,
Corollary 3.4]. By Lemma 4.1, G, C Der, S is nonsolvable. It follows that
the grading of S is as in cases 2 or 3 of [P-St 99, Corollary 3.4]. Setting in
[P-St 99, Theorem 3.5(3)] K = S one obtains that the parameter a, of the
grading (involved in [P-St 99, Corollary 3.4]) is positive. Keeping in mind
that S_, # (0) one deduces that S_, = (0) and S, € {3[(2), W(1; D}. Let
& denote the degree derivation of the graded Lie algebra S. Setting in
[P-St 99, Corollary 3.4(2), (3)] M = Der S we get Der0 S=358,9 F8. As
[5, D(T)] = (0), the torus ®(T) c Der, S contains (otherwme Der S
would contain a 3-dimensional torus, contrary to [St-F]). Therefore,
D(Z,,) = S, ® Fb and there is a toral element & € S, such that &(T) =
Fh © Fé.

We identify T and ®(T) (see Lemma 4.2). Let «, 8 € T* be such that

a(8) =0,a(h) =1,B(8) =1,B(h) =0.

Then G, = G,(a). As a consequence,
Ly =Lo(@) + Ly (7)

Similarly, G_, = &,.;, G_, ,.;, and

P

L(—l) = @ L(—1),—B+ia + L(O)' (8)
lE[Fp

We claim that G_, does not contain 1-dimensional G -submodules. Sup-
pose the contrary. Recall that the image of H in G, generates a 2-dimen-
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sional torus in G, (under the pth power map of G,). It follows that there
are y€I' and U € G_,,\(0) such that [G(l),v] = 0. It follows from
Eq. (8 that G_, = &,_; G_, ,45.;,. Observe that [G_,, M(G)] C
Y« ,G_;;hence G_, = (f <_2G_l)/(2‘,l< , G_,)is a G-module. Now
h € S, = G{"; hence y(h) = 0 and therefore y = —2B.Let v € L, _,,
be such that gr_,(v) = 0. Since G_, € M(G) we have that [G_,,G,] = 0.
This forces

[0, Lay)] € Ly 9)

By the choice of v,

[Lo(a),v] cFve E% L1y 2ptia-
14

€y

However, Eq. (8) shows that L_, _,5,;, €L, for any i € F,. Thus
[L(O)(a), vlc Fv & L - Combining this inclusion with Egs. (7) and (9) we
derive that [L),v] € Fv @ L. Then Fv & L, is a proper T-invariant
subalgebra of L, contrary to the maximality of L. Our claim follows.

Our next goal is to show that G_, = (0). First suppose S, = 3[(2).
Then it follows from the description given in [P-St 99, Corollary 3.4(3)]
that dim §_,; = 2 (one should keep in mind that S_, = (0) and S_, # (0)).
Since G_, =S_, and G_, =[G_,,G_,], we have dimG_, < dim A?
S_,=11If G_, # (0), then G_, is 1-dimensional. By the previous step,
no such G -submodules exist. Thus §, = 3((2) implies G_, = (0).

Now suppose S, = W(1;1). As S_, = (0) and S_, # (0), it follows from
the description given in [P-St 99, Corollary 3.4(2)] that Der_; S is a
p-dimensional (Der, §)-module with (p — 1)-dimensional irreducible so-
cle. Since S_, is irreducible over Der, § it should coincide with the socle
of Der_, S. Since Der, § = S, ® F8, the S,-module S_, is irreducible of
dimension p — 1. By [Chal, §_; = A(1; 1D /F as W(1; 1)-modules. By [Dem
70], one can find an isomorphism » : S, — W(1;1) such that v(h) € F*xd
U{(l +x)d}. Set g = v Y(F9 @& Fxd ® Fx%). Obviously, g = 3((2) and
h € g. Since A(1;1)/F is v(g)-irreducible, S_, is an irreducible g-mod-
ule.

Let V(i) denote the irreducible restricted g-module of dimension i + 1,
where i €{0,1,...,p —1}. Then S_, = V(p — 2). Clearly, G_, =
[G_,,G_,]is a homomorphic image of the G;-module G_; ® G_,. Now
G, contains an isomorphic copy of g and G_, = §_, as g-modules. So
the g-module G_, is a homomorphic image of the g-module V(p — 2) ®
V(p — 2). In the course of the proof of [P-St 99, Proposition 7.7(3)] it
was established that V(p — 2) is not a composition factor of V(p — 2) ®
V(p — 2). It follows that V(p — 2) is not a composition factor of the g-
module G _,
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Let M = M(G)/M(G)*. Then M = ®,_ _, M, is a graded G-module,
and M_, = G_, as G,-modules. Suppose G _, #(0), and let W be an
irreducible submodule of the G,-module M_,. By the previous step,
dim W > 1. Recall that S, ¢ G, € S, & F. From this it is immediate that
W is Sy-irreducible. If W = A(1;1)/F as S,-modules, then W = V(p — 2)
as g-modules. By our preceding remark, this is impossible. Then by
Chang’s theorem [Chal, dim W > p.

Using the description of Der H(2; 1)® given in [B-W 88, Proposition
2.1.8] it is easy to see that any subalgebra of Der H(2; 1)® containing
t + H(2;1)®, where t is a 2-dimensional torus, is restricted. In particular,
®(T) + G is a restricted subalgebra of Der S. Let W denote the (®(T) +
G)- submodule of M generated by W. It is immediate from Lemma 4.2(2)
that W is a restricted (®(T) + G)-module. Also W is a graded submodule
of the graded (®(T) + G)-module M. Note that G, W = (0) for any i > 0
(because W < G_, € M(G)). As G_,is abelian and W is (d(T) + G-
stable, W = U(G )-W.Let W_=X,__, W, Any submodule of W not
contained in W_ commdes with W (this follows from the fact that W is
(®(T) + Q )-irreducible and G_, acts nilpotently on W). As a conse-
quence, W contains a unique maximal submodule W_, Moreover W,

a graded subspace of W contained in W_. Let V= W/W,,.. Then
V=@ __,V, is a composition factor of M and V_, = W as (®(T) +
G,)- modules

As dimW > 1 and W is S irreducible, the ideal S = H(2; D@ acts
nontrivially on V. As C/(T) C L,, all ®(T)-weights of " are nonzero.
According to [P-St 99, Theorem 3.1], the (®(T) + G)-module V is then

isomorphic to
A(2;1)'/F = span{xix§ |i,j <p—1,(i,j) # (p — 1,p — D}/F

or its dual ((A(2;1)' /F carries a Der H(2; 1)®)-module structure induced
by an embedding Der H(2; 1)®) = W(2; 1)). When restricted to H(2; D®,
both A(2;1) /F and (A(2;1)' /F)* are isomorphic to the adjoint module
H2; 1)@ (see, e.g., [P-St 99, Theorem 3.1]). It follows that V =S as
S-modules. In particular, dim(ann, S*) = dim C¢(S*), where S§*=
&, S, Using [P-St 99, Corollary 3.4(2)], it is easy to see that §,_, is a
(p — D-dimensional irreducible S,-module and S, = (0) for k > p — 1.
The simplicity of S yields the equality C;(S™) = S,_,. Therefore, ann;, §*
is (p — 1)-dimensional. On the other hand, V_, C ann, (S*)and V_, = W
as S,-modules. Since dim W > p this is impossible. So G_, = (0) in all
cases.

Thus L = L._,,. Let t € H, be such that ®(¢) = h. Let y € I'(L, T).
First suppose that {+y} N (— ,8 + F,@) =. Then L, CLg (see Eq.
(8)). Properties of G = gr L ensure that [L L_ ] c L(O)( )N HcCFt+
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nil H,. Now suppose that y€ —B + F,a. Then —y & I'(G_,,T) U
I'(G, T), whence L_., C L. Once again properties of G ensure that
[Ly,L,y] C Ft + nil H,. It follows that [Ly,L,y] C Ft + nil H, for any
y € I'(L, T). But then H C Ft + nil H,, whence B(H) = 0. This contra-
dicts Lemma 2.1 thereby proving (1).

(2) Let . denote the p-envelope of S in Der S. Then . is a restricted
ideal of Z. Since TR(Z) = 2 and Z is semisimple, £ does not contain tori
of dimension > 3. As TR(S) = 2, .% contains a 2-dimensional torus. From
this it is immediate that the quotient algebra Z/7 is p- nilpotent. It
follows from Lemma 4.2(1) that &(T) c & is 2-dimensional. As £ /% is
p-nilpotent, the image of ®(T) under the canonical homomorphism & —
%/ is zero. In other words, ®(T) C.#. Now .= @, . is a graded
subalgebra of Der S, and

F=Y LS+ LSt

i#0 j>0 j=0

(by Jacobson’s formula). Clearly, S?’ C#;, for all i, j. Comparing degrees
now shows that % coincides with the p-envelope of S, in .. Since
®(T) &, the second assertion follows. |

LeEmMA 4.4. S is not isomorphic to a classical Lie algebra.

Proof. Suppose S is a classical Lie algebra. By Lemma 4.3(1), TR(S) =
2. Let G be a simple algebraic group such that § = LieG /3, where 3 is the
center of Lie G. Since p > 3 it follows from [Ho] (for example) that
dim 3 < 1. Hence Lie G has no tori of dimension > 3. Clearly, this implies
that G has rank < 3. Again applying [Ho] we obtain 3 = (0). As a
consequence, G is a group of rank 2, i.e., has type A,, C,, or G,. In each
of these cases, the Killing form of Lie G = § is nondegenerate (because
p > 3). Therefore, Der § = ad S yielding § = G.

Since T is nonrigid, L contains a nonzero 7-homogeneous sandwich c.
In view of [P-St 97, Theorem 6.3, Lemma 6.1], ¢ € L, Let d € N be such
that ¢ € L, and ¢ & L, Put gr(c) ==c + L., Then gr(c) is a
nonzero element of G, = gr,(L). For every k € Z, [c,lc, L(k)]] =(0) c
L 12441y Therefore, [gr(c),[gr(c), G, ]l = (0). In other words, gr(c) is a
nonzero sandwich of G. Let ¢ denote the image of gr(c) in G = S. Since
d > 0and M(G) C X;_ _,G;, we have that ¢ # 0. Obviously, (ad ¢)* = 0.
So ¢ is a sandwich of S. But then

(ad¢)e(ad x)o(adc) =0

for every x € S forcing ((ad ¢)<(ad x))* = 0. So ¢ lies in the radical of the
Killing form of §. Since the Killing form of § is nondegenerate, ¢ = 0.
This contradiction proves the lemma. [
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Next we are going to show that
sz853; )", H4; 1), K(3;1).

Each of these cases is quite involved and requires detailed information on
gradings and representations of the respective Cartan type Lie algebras.
The relation

x“=a! " alx90<a,<p-—1,

links our present truncated-polynomial notation with the divided-power
notation used in [St-FJ.

We recall (very briefly) the description of contact Lie algebras. Since
6 # 0 (mod p) the Lie algebra K(3;1) is simple and Der K(3;1) = K(3; 1)
(see [St-F, (4.5.5), (4.8.8)]). Recall that K(3;1) is the image of A(3;1)
under the linear isomorphism Dy : A(3;1) — K(3; 1) such that

a+1 .a, .a;—1 aya,—1,.a
Dy (x) = (azx{*'x52x57" — ayx{ixg>'x43) 4,
a)yar+1 a;—1 a;—1 a _ _ a
+(ax{x2 xp ! +agx T x2x§3) 9, + (2 - ay — ay)x9,

for all a = (a,,a,,a;) with 0 < a; < p — 1. Using [St 97, p. 95] it is easy to
deduce that

[DeCxpagag), Dy(xfrats)]
= (a,b, — a,b, )DK(xa1+b1 1x§zz+b,—1x§3+b3)
+(a3(b1 + b2 - 2) — b3(611 + a, — 2))

ay+byar,+b, as+bs—1
X Dy (xfrtPixgatbaxgatha=l),

(10)

PROPOSITION 4.5. Let M be one of the restricted Cartan type Lie algebras
SG; DY, H@4; DD, K(3; 1), t a 2-dimensional torus of M, and W a nonzero
restricted M-module. Then anny, t # (0).

Proof.  (a) Our arguments rely on the following (well-known) commuta-
tor formula valid in an arbitrary associative algebra .o over F:

if z,x,...,x, €& and s,,...,5, € N, then
S1 Sn
S1wee xSn = S1=k ooy Sa Ky
zxy! Xt = Z (k ) (k Xt Xn
0<k;<s; \ 1 n
X[ [ [z, 6] %] = x,] x,]
- -
kl kn

(see [St-F, Lemma 5.7.1]).
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(b) Let M,;, denote the kth component of the standard filtration of M.
In proving the proposition we may (and will) assume that the M-module W
is irreducible. Let W, be an irreducible M;-submodule of W. Since M,
is a p-nilpotent ideal of M, it annihilates W. There is an M-module
homomorphism

Viu(M) 8y, Wo =W
such that W(1 ® w) = w for any w € W,. Due to the irreducibility of W,
W is surjective. By [Dem 70], [Dem 72], M has no tori of dimension > 2.

As M is restricted it follows from [P-St 99, Corollary 2.11] that in proving
the proposition we may assume that

t=F(x,0, — x,0,) ® F(x,0, — x535) if M = 8(3;1)%,
t = FDy(x,x5) ® FDy(x,x,) it M =H(4;1)",
t = FDg(x,x,) ® FDg(x3) if M =K(3;1)

(\ye use the standard realization of M described, e.g., in [St-F, Sect. 4]). Set
W= u(M) &,y Wo.

Since t € M, W, is a restricted t-module, in particular y(¢) € [,
holds for all y € I'"(W,, t) and all toral elements ¢ € t. Let w € W, be
an arbitrary f-weight vector of weight vy.

(c) Suppose M = S(3; DV. Then M = M, ® Fd, ® Fd, ® Fd,. Choose
j,ke{0,1,...,p — 1} such that y(x,d, —x,d,) = —j and 7y(x,d, —
x;d;) =j — k (mod p). Then w = 9j9% ® w € ann; t. If w & ker W, then
anny, t # (0). So assume that w € ker W. Then

a9 ' @w e ker ¥
as well. Using (a) and the fact that
[Di,j(x?lxﬁlzx?)"?k] = =D, j((x{'x532x5°) )
for all admissible i, j, k, and a,, a,, a,, one obtains
Dl,z(xlzxzp_lxg_ l)‘?zp_]af_]

=D],2(x12)+ by )\iz,i35£2a§3D1,2(X%x52x53)-
iy tis>0

Since M;,-w = (0) (see (b)) we get

ker W 2 D, ,(x{x{ " 'xf7") - (9f 790" @ w) =1 ® D, ,(x7) - w.
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This means that D, ,(x{)-w = 0. As W, is a semisimple t-module and w
is an arbitrary weight vector of W,, D, ,(x7) annihilates W,. Since
My, /M, = 31(2) is a simple Lie algebra, we derive M, - W, = (0). But
then W, C anny, t.

(d) Suppose M = H(4; D)". Then M = M, ® ¥!_, Fd,. As in the for-
mer case there are j,k €{0,1,..., p — 1} such that 4{95 ® w € ann; ,
and we may assume that 97~ 9! ® w € ker W. Using (a), the equality
M, -w = (0), and the fact that

[ Dy (x{'x52x5%), 6, ] = =Dy (9p(x'x52x5)),
one obtains
ker W = Dy (xf~'x5~'x3) - (o9 @ w) =1 ® Dy (x3) - w.

Then D;,(x3)-w = 0. As M, /M, = $p(4) is a simple Lie algebra and w
is an arbitrary weight vector of W, we derive My, - W, = (0). In particular,
W, C anny, t.

(e) Suppose M = K(3;1). Then M = My, @ FDy(x,) @ FDy(x,) ®
FDg(1). Note that Dy(x,) and Dy(1) are root vectors relative to t.
Moreover, the corresponding roots span t*. As before there are j, k €
{0,1,..., p — 1} such that D (1)'Dy(x)* ® w € annjt. Since
[ Dy (1), Dy (x,)] = 0, reasoning as in (c) shows that no generality is lost by
assuming

Dy(1)” 'Dy(x,)" " @ w € ker V.
It follows from Eq. (10) that
[Dic(x1x32x5%), Dic(D)] = =245 Dy (x71x52x57")
and
[Dic(xfx2x5), Dye(x,)]
= —a, Dy (x{1x527 " x§3) — a; Dy (x{ " x52xg7h).

Combining these relations with the commutator formula in (a) we obtain
that

DK(xlzxﬁ’*le*I) ‘D1,<(1)"71D1,(()cl)1371 Qw—-1® (DK(xIZ) -w)

lies in X, . Dg(1)'Dy(x,) ® My, -w =(0). So anny, t =(0) implies
Dy (x7)-w = 0 for any weight vector w € W,. Now My, /M, = g[(2) and
the image of Dy (x?) in M,/M, is noncentral. In other words, we may
assume (without loss of generality) that M) + M, annihilates . As a
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consequence, Di(x;x,) - W, = (0). As [Dyg(x,x,), Dg(D)] = 0 and
[Di(x3), D(D] = —2D (1), there is s {0,1,...,p — 1} such that
Dy (1)) ® w € annpt. Now [ Dy (x,x3), D(D] = —2sDg(x,x5~"); hence

Dy (x,x3) - (DK(l)s ® W) - (_Z)SS!DK(XI) ®w

€ Y Dg(1) ® My,-w = (0).

0<i<s
So Dy(x,) annihilates W,. But then
0 = [Dg(x,), Dg(xyx3)] - w = Dg(x3) - w + Dy (x,x,) - w
= Dy (x3) -w.
Therefore, anny, t # (0). |

LEMMA 4.6. Suppose S is one of the restricted Cartan type Lie algebras
SG; DY, H4; DD, K(3;1). Then M(G) = (0).

Proof. Suppose M(G) # (0) and let V' be a composition factor of the
(nonzero) G-module M(G)/M(G)*. By Lemma 4.2(2), V is a restricted
%—module. Since (ad S)p C ad S we regard S as a restricted subalgebra of
Z C Der S. Then V' is a restricted S-module. Because § is restricted the
p-envelope of S, in Z is contained in S; hence ®(T) is a 2-dimensional
torus in S (Lemma 4.3(2)). But then Proposition 4.5 yields ann, ®(T) # (0)
contradicting the inclusion C,(T) € L. |

In what follows we need detailed information on Z-gradings of Cartan
type Lie algebras. Let ¢ = X(m;n)®, where X € (W, S, H,K}, and H =
Aut g. By [Hu], Lie H is canonically identified with a restricted subalgebra
of Der g. Any automorphism of g preserves the standard maximal subal-
gebra g, of g. More precisely, it is proved in [Kr] (see also [St 97,
Theorem 3.20]) that for p >3, g, is the only proper subalgebra of
minimal codimension in g. It follows that Lie H preserves g,; that is,
Lie H can be identified with a restricted subalgebra of Der, g. Using [St
97, Corollary 3.23] it is readily seen that Derg, g coincides with Fr, &
X(m; n),, where t; = XL, x,;D; if X €{S, H} and t, = 0 otherwise. By
[St 97, Corollary 3.24], X(m; 11)(0) is a restricted subalgebra of Der g. Set

Ty :=X(m;n) N

ZinDi) if Xe{W,S,H},
i=1
and

;
Ty = )2 FDy(x;x;,,) + FDg(x,,), m =2r + 1.
i=1



276 PREMET AND STRADE

Using our preceding remark it is not hard to observe that Ft, ® Ty is a
torus of maximal dimension in Der, g. Let d(g) = dim(Ft, ® Ty), where
X =X(g). Then d(q) =m if X {W,S}, d(g)=r+ 1 if X=H and
m=2r,orif X=K and m = 2r + 1.

Given t = (¢y,...,t,) € (F*)" define the continuous automorphism
A(#) of the linearly compact Lie algebra W((m)) by setting

)\(!)(XESO xﬁ;n,)Dk) = (tlsl t"il/ntlzl)x:(lsl) x’(;m)Dk

for all s; > 0 and all 1 <i, kK < m (the notation here is standard, see [St
97, Sect. 2] for more detail). We say that ¢ is X-admissible if

LW, 1= " =11, when X = H and m = 2r,
Lt = " =tt,, =t,,,;, when X=Kandm=2r+ 1.

Any t € (F*)™ is X-admissible when X € (W, S}. For X € {W, S, H, K},
set

Ty = {A(t) |t € (F*)" is X-admissible}.

By construction, T, preserves both X(m;n) = X((m)) N W(m; n) and
g =X(m; Q)(z). By [St 97, Theorem 3.21] it can be viewed as an algebraic
torus in Aut W(m;n). It is clear from the definition that dimT, =
d(X(m; n)®). Let €, denote the rational character of Ty given by €,(A(¢))
=t,(1<i<m).Notethat e, +€,.,= - =€ + ¢, if X=H,m=2r,
and €, + €., = " =€+t €,=¢,,, f X=K, m=2r+1.

Restricting automorphisms from Ty to g = X(m;n)® one obtains a
rational homomorphism Ty - H. Now D,, D,,..., D, € X(m; n)® are
weight vectors for T, when X # K, and Dg(x,),..., Dx(x,,), D) €
K(m; n)" are weight vectors for Ty. Moreover, in both cases the corre-
sponding weights generate the whole lattice of rational characters of Ty.
As a consequence, the homomorphism T, — H is injective. So we may
(and will) identify T, with a d(g)-dimensional algebraic torus in H. Since
Lie Ty is a d(g)-dimensional torus of Lie H (see, e.g., [Hu]) the above
discussion shows that Ty is a maximal torus of the algebraic group H. (One
can show that Lie Ty, = Ty, but we do not require this here.)

We now fix a Z-grading

g = @ Q> [gi7 Qj] Cqiyy
ieZ

of the Lie algebra g. For t € F*, define A(¢) € H by setting A(t)(v,) = t'v;
for all v; € g, and i € Z. Clearly, A == {A(¢) | t € F*} is a 1-dimensional
algebraic torus in H. By [Hu] (for example), there is g € H such that
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gAg' ©Ty. Set A, =gAg™'. There exist a,...,a, € Z such that
(A (1) =1t% 1 <i <m. It is readily seen that

Ag(t)(x(lsl) xipf'")Dk) — (ta1s1+ '-~+smam—ak)xgsl) x;f"')Dk,

for all s, > 0 and all 1 < i, k < m (we identify T, with its image in H).

By [St 97, Theorem 3.21], there is a continuous automorphism o of the
divided power algebra A((m)) which stabilizes A(m;n) and has the
property that

o 'eDog=g(D)forany D € gq.
Set u; = o(x;), 1 <i <m, and define D{*> € W((m)) by setting
D :=goeD,eo ! 1<i<m.
For f € A((m)) and 1 <i <j < m, define
DE(F) = DI(f) DI = DI f) DL

and

r

DP(f) = X (DO(F)DLY, = DO(S)DY). m = 2.

i=1

Given (s) = (sy,...,s,) with s, > 0 put u® =yl -y, For m =
2r + 1, define

:
D) = X (D (s, ) + DI () DL
i=1

,
£ X (DL (i) = D)) DL
i=1

+

2r
2- ) S,-)u(”D‘z%l-
i=1

Straightforward calculations show that
oD, (x)s 0! = DEY(u)
and
A(t)(Di("‘j)(u(f))) = hat +S"’a"’7a‘7a/D,<(f'j-)(u(s)) (11)
if X=2;

oDy (x)o o™ = DI(u)
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and
A()(DEI(u)) = forort = Fomtatima DIOLO) (1)
if X=H,
0o Dg(x*) oo™t = D@ (u)
and

A(t)(DE(u®)) = g9t Fomtn=an D (1)) (13)

if X = K. We mention for completeness that W(m;n) is spanned by
u®D, where 0 <s5; <p" — 1,1 <i,j <m, and

A(t)(u(J)D;u)) — 1‘5101Jr +5mam*5’ju(5)Dj(”). (14)

The grading of g defined by formulas (11)-(14) is called the grading of type
(ay,...,a,) with respect to the generating set u,, . ..,u,, € Aim;n).

It is clear from the above description of D{"), Dfj’, D¢’ that in our
further deliberations we may suppress o by setting u = x.

We summarize as follows.

THEOREM 4.7. Let q = X(m;n)®, where X € (W, S, H, K}. For any
Z-grading of g there are a continuous automorphism o of the divided power
algebra A((m)) satisfying o(A(m;n)) = A(m;n) and o ogoo ' =g, and
a,...,a, € Z such that the grading of g has type (a,, ..., a,,) with respect

to the generating set o(x,),..., o(x,,).
If X=H and m =2r, then a, +a, = - =a, + a,,. If X=K and
m=2r+1,thena, +a,.,= " =a,+a, =da, .

Recall that any Z-grading of a Lie algebra induces a natural Z-grading
of its derivation algebra. Let g be a Cartan type Lie algebra and § a
subalgebra of Der g containing g. Suppose in addition that § is Z-graded.
Let §;, denote the ith graded component of §. It is immediate from [St
97, Corollary 3.23] that §® = g. This means that g is a graded subalgebra
of §; ie, g= @, g,;, where g,==8d,, Ng. Let DEg,, and k € Z.
Then D(g,) =1[D,q,]1 € §py Mg =G,y In other words, §,, C
Der,; g for any i € Z; that is, § is a graded subalgebra of the graded Lie
algebra Der g = @, Der; g. Together with Theorem 4.7 this yields

PROPOSITION 4.8. Let § be a Z-graded Lie algebra such that ¢ C § C
Der g, where g is as in Theorem 4.7. Then there is a Z-grading of g of type
(a,...,a,) with respect to a generating set u,, ..., u,, € A(m;n),, such that
d is a graded subalgebra of Der g, where the Z-grading of Der g is induced

by that of g.
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Now we are going to apply Theorem 4.7 and Proposition 4.8 to § and G.
LEMMA 4.9. § # SG; DD,

Proof. (a) Suppose S = S(3; DV. By Lemma 4.6, G can be identified
with a subalgebra of Der S containing S. By Proposition 4.8, G = &, G; is
a graded subalgebra of Der § = ©, Der; S, where the grading of Der § is
induced by that of S. According to Theorem 4.7, the grading of S has type
(ay, a,,a,) for some a,,a,,a; € Z and some generating set u,, u,,u; €
A(2; 1)). To simplify notation we assume (without loss of generality) that
u,=x;,1<i<3.

Since § is a restricted subalgebra of Der S, so is S,. Then &(T) = T is a
2-dimensional torus of S contained in S, (Lemma 4.3). Let t = F(x,d; —
X,3,) & F(x,9, —x39;). Then t also is a 2-dimensional torus of S con-
tained in S,. Define a, B € t* by setting

a(x,d; —x,d,) =1, a(x,9, —x39;) = 0;
B(x,9; —x,d,) =0, B(x,9, —x39;) = 1.

Since S, is a restricted subalgebra of DerS, ® '(S,) is a restricted
subalgebra of .#,. There is a 2-dimensional torus in %, which maps onto
t under the natural epimorphism ® '(S,) — S,. In what follows we
identify this torus with t and view the root system I'(L, t) as a subset of
F,a + F,B. Since H C L), [P-St 99, Corollary 2.11(1)] shows that Cs(t)
< D S As D ,(x} xzxg) eCythnsS

aytay+az’
a, +a, +a; =0

holds.

By [St 97, Corollary 3.23(2)], Der S3; D™ = CS(3;1) € W(3;1). Let
W(3; 1), denote the kth component of the standard grading of W(3;1)
(this grading has type (1, 1,1) with respect to x;, x,, x3). Let Der ;S =
(Der §) N W(3; 1),;,. Observe that every D, ,(x{'x32x5%) is homogeneous
with respect to both the (a,,a,,as)-grading and the (1,1,1)-grading.
Therefore,

G= €@ G,nDer,,S.
i,keZ

(b) Suppose a,a,a; # 0. Then 9, & G, for 1 <i <3; hence G, N
Der,_,,S = (0). Combining this with [St 97, Corollary 3.23(2)] we get
G CX;.oDer, S Thereis j € Zsuchthat S_, NS, #(0)and S_; N

Sy = (0) for k > j. Recall that S_; = G_, is an irreducible and faithful
Gy-module. As G, C X, ( Der;, S, the subspace S_; N S,y is a G-sub-
module of G_,. Therefore, G_; =S8_; NS ;.
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Suppose j > 0. By property (g2) of the grading, ©, | G, C X, (S -
Hence 9, €S, NS_, CX;.(G;, and —a, >0 for any k < 3. Since
a, +a, +a; >0 and a,a,a, # 0, this is impossible. But then j < 0; i.e.,
j = —1(ince S, = (0) for k < —1).

Note that §_, = (S_* < (S, )* = (0) for k > 2 and D, (x}x,) €
Stk—1ya, # (0) whenever m # n, k = 2,3. Since our grading has only one
component of negative degree we therefore have a,, > 0 for all m. As
o, €8_, and —a, <0 we deduce a; =a, =a; = 1. In other words,
Sy = S, for all k. As a consequence,

3[(3) =8, € G, CDer, S =gl(3).

Since & c Der S has no tori of dimension > 2 (Lemma 4.3(1)) the
equality G, = S, must hold. We have proved that L = L_ ), L, # (0),
Lg/Lyy = 8l(3) and L., /Ly, is a 3-dimensional irreducible
(L /L ,)-module. Wilson’s theorem [Wil 76] now yields L = S(3; n; P,
As TR(L) = 2 Lemma 2.5 says L = S(3; D", This contradicts our choice
of L. Thus a,a,a, = 0.

(c) From now on we may assume (without loss of generality) that a, = 0.
Suppose a,a; # 0. Let W(3;1),, denote the kth component of the
(0,1, D-grading of W(3;1) and Dery, S = (Der §) N W(3; 1), By the
same reasoning as in (a), S = &, _, §; N S}, and

DerS = @ (Der; S) N (Dery,S).
i,keZ

Observe that t C S, N Sj,. It is easily seen that
8,1y = span{x{d,, x{d; | 0 <i < p}and S;_,, = (0) for k > 2.

Using [St 97, Corollary 3.23(2)] it is not hard to observe that Der S =
®,. _, Dery, S and, moreover, Der,_;; S = S;_,;. Now xia, € G_,, and
x1d; € G_, vyielding S;_;;N G, =(0). From this it is immediate that
G, c ®, _, Dery,S. Let j € Z be such that §_; N §;;;# (0) and S_; N
Six; = (0) for all k > j. By our previous remark, S_; N S;;; is a G-sub-
module of G_,. The irreducibility of G_; forces G_; = S§_; N §;;. If
J=0,thenG_; =S_,=(S_)' c &, S, forany i > 0. Since d,, d; €
;-1 we then have —a, > 0 and —a; > 0. However, a, + a; = a, + a, +
a; = 0 and a,a; # 0. This contradiction shows that j < 0. Then j = —1.

Note that §_, = (§_)* c (S,_ " = (0) for k > 2. Then D, (x}x,) €
Stk—1ya, # (0) whenever m # n, k = 2,3. This proves a,, > 0 for m = 2,3.
As g,€S8_, and —a, >0, this gives a, =a; =1. We deduce that
S; =S8y and G, =G N WG 1), = Gy, forall i € Z.

a
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(d) Note that
1
S[O] =S (3; l)

N span{x{d,, xix, d,, xix30,, x{x,0; 10 <i <p,k = 2,3}

span{x{d, — ixi”'x,d,, x{(x,d, — x303), xix, 3,
xix3d, 10 <i <p}.
Define

-1 = ((grl)l( Y Fxio, + ZinéG)

i>0 i>0

N @ L+B+ta

LE[F

(by the above, L =L _,, and G_; =S§_, is spanned by x{d,, where
0O<i<pand k=2, 3) Let Sp, . denote the subalgebra of Sj, spanned
by all xi(x,d, —x39;), x x2a3, xix39,, 0 <i <p, and by the xid, —
ix!'x,d, with i > 1. Obviously, Sio) = Spop, + © F;. Put

V, = (gr,) " (Sg+)and M= V_, + V.
By construction,
Ly € Mand [V,V,] CV,. (15)
Properties of the associated graded algebra G ensure that
[V,,,L(l)] V. (16)

Since I'(Gy, 1) = Ffa U (£28 + F,a)and V_, € &, L, g,;,,wWe also
have

V., N Ly C Ly, (17)
Set Gi_,;=gr_(V_)). Then G;_,, is Sy, ,-stable. As a consequence,
Vo,V 11 € V_, + L. On the other hand, L, =V, + L(a). So, by (16),

[V—nVo] =|V_5 E Z Lkﬁ+ia +L(1)

kef0, +2} ieF,

c ( DY Ligyiat VO) NV_,+Lg)cV_+1.
ke[F;,“ie[Fp

(e) We claim that M is a subalgebra of L. In view of (15) and the
preceding computation it suffices to show that [VV_,,V_,] € M. Note that

V. vilc X > Ligiia © L,
kefo, +2) ieF,
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and

[Vo.V.inLyl <[V 1Lyl €V
(the latter follows from (17) and (16)). As gr_,(V_) =V_,/V_, N L,
the Lie product in L induces a bilinear mapping

A:G_y X Gi_yy = L)/ V) = Fo,.
Since L,/ V) is an S, ., (a)-module, A is an S, , («)-module homomor-
phism. Since x,d,, x\d;, d, have weights 2a — B, ia + B, —a with

respect to t and t € S , (a), we get A(x;d,, x{d;) = O unless i = p — 3.
Also,

0 =x,(x,0, —x395) - A(xlé'z’ xf’74(93)

—A(x70,, xf705) + A(x,0,, x{705),
0= (xf&l — 2X,X,0,) - A(xlé’z,x{’*‘%)
= 3A(x{dy, x{79;) + (p — 4)A(x,0,, x{705).

Therefore, A(x,d,, x;d;) = 0 for i > 1. Since xid, has t-weight (i + Da
— B we have A(x,d,,x]d,) =0 as well. But then A(x,d,,Gj_,) = 0.
Applying xi~'(x,d, — x39;) with i > 1 to both sides of the latter equality
we get A(x{d,,Gj_,)) =0 for i > 1. Playing the same game with x{d,
yields A(x;d3, G_y)) = 0. This implies A = 0; ie., [V_,V_;]1 CV,. The
claim follows.

() Let v, € L, be a root vector with respect to t such that gry(v,) = 4.
Let v,, v; be root vectors with respect to t such that gr_,(v,) = 4, and
gr_,(v;) = d5. Let 0; denote the image of v, in W := L /M. Then {v,, 0, U5}
is a basis of W. Note that for (i, j) € {(1,2),(1,3),(3,2),(2,3),(2,1),(3, 1)},
there are t-root vectors u; ; € M such that

gr(u; ;) =x;d,and k= —1ifi =1,k =0ifi,j# 1,k =1if j = 1.

Let 7 denote the natural representation of M in g[(W). It follows
immediately from the existence of the u; s that s[(W) C 7(M). As a
consequence, L /M is an irreducible M-module. This, in turn, implies that
M is a maximal subalgebra of L. Put M, = M and let M, denote the
kth component of the standard filtration of L associated with the pair
(M), L). Then L =M _,, and (0) # L3, € M,,, (for L, € M,). Since
M, = ker 7 and TR(L) = 2, M, /M,;, = 3((3) necessarily holds. Repeat-
ing the argument presented at the end of (b) we conclude that L =
S(3; DM, Since this contradicts our choice of L, the case we consider does
not occur. Thus a;, = a,a; = 0.
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(g) No generality is lost by assuming that a; =a, =0.AsG_, =S§_, #
(0) and a, + a, + a; = 0, we have that a; = 1. Then

Sy = span{ix|” 'xix;9; — x{x1a,, pxixf 'xy05 — xix{d, 10, <i,j < p}
is isomorphic to W(2; 1),
G_,=8_,=span{x{xid; 10 <i,j<p;(i,j) #(p—1,p—1)}

and G_, = (§_)* = (0) for k > 2. Note that t € S, and ['(G_, ) = F, @
® F, B\ {0}. Moreover, dimG_, , =1 for any u € I'(G_,,t). By él),
®(T) is a 2-dimensional torus of S,. So it follows from [Dem 70] that there
is an isomorphism W : §; — W(2; 1) such that W(®(T)) = Fz,4, & Fz,9, ,
where

(z1,27) € {(1 +y, 1 +y,), (1 +y,9,), (¥, ¥2)}

(in order to avoid confusion we write W(2;1) = ¥ Fy{y}d, ). Define y,, v,
e T* by setting yi(zj&yj) = §;; where i,j € {1,2}. By [P-St 99, Corollary
2.10] it follows that T(G _,, ¥(P(T))) = Foyi © F,v.\ {0}. Combining this
with [P-St 99, Theorem 8.6] and [P-St 99, Lemmas 1.1 and 1.4] we derive
that any root in I'(L,T) is either Hamiltonian or improper Witt. Let
y=1, if z, =y,, and let y be any root in I'(L,T) if z;, =1 +y, and
z, =1+y,. It is well known (and easily seen) that S (y)/rad S,(y) =
W(1; 1), rad S,(y) is abelian, and rad S,(y) = A(1;1) as W(1; 1)-modules.

Now G y] contains a triangulable Cartan subalgebra and TR(G[y] = 1.
So it follows from [P 94, Theorem 2] and [St 89 /1, (4.1), (4.2)] that either
Glyl= w1, D) or H2; D® c Glyl € H2; D).

(h) Suppose Glyl = G(y)/rad G(y) = W(1;1). Since rad G(y) is a
graded ideal of G(y) = @, G,(y) and G[y]is of Witt type (by a previous
remark), we must have ©®,_ , G,(y) C rad G(y). In particular
[S_,(y),G,(y)] is a solvable ideal of S,(y). If [S_,(y), G,(y)] # (0), then
there is k € Fy such that [S_, ,,, G, 1= C(S,(y) (because
[S_,(y),G(y)] Crad Sy(y) and rad S (y) = A(1; 1D as W(1; 1)-modules).
It follows that 8(S_; _,,, S, ;,] # 0 for some 6 € I'(S, W(P(T))). How-
ever, the inclusion S, (y) C rad S(y) implies S, (y) € K ,(y). Then

[K_iy (S, W(D(T))), Kipy (S, W (P(T)))]
= [Sflﬁkv’ Sl,kv] > C(SO('Y))

acts nonnilpotently on S contrary to [P-St 99, Theorem 8.6]. This contra-
diction shows that [G_,(y),G ()] = [S_(y),G (Y] =(0).As L =L _,,
we derive [L(y), L;y(y)] € L;y(y). In other words, L,(y) is an ideal of
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L(y). Recall that Der S(3; D = CS(3; 1), so that dim(Der S)/(ad S) = 4
(see [St-F, (4.8.6)]). Hence

dim L(y)/rad L(y) < dim L('y)/L(l)('y)
— dim S_,(y) + dim Gy(y)
<(p—-1)+dimS,(y) +4
=3(p+1) <p*-2.

So v is not Hamiltonian. Therefore, if G[y] = W(1;1) then y € T'(L, T) is
improper Witt.

(1) Suppose z; =1 +y, for i =1,2. If G[y]l= W(1;1) then vy is im-
proper Witt (by (h)). Suppose H(2;1)® c G[y] c H(2;1). Since T does
not normalize the standard maximal subalgebra of S (y)/rad S,(y) =
W(1; D), [P-St 99, Corollary 3.6] shows that y is Hamiltonian improper.
Thus under the present assumption all roots in I'(L,T) are improper.
However, FP(L, T) # O because T is optimal. This contradiction shows
that z, =y,. So y = v, and T normalizes the standard maximal subalge-
bra of Sy(y),/rad Sy(y) = W(1; ). It Gly] = W(1; 1) then L(y) = L(y)
+rad L(y) (as y is Witt and L(y) maps onto W(I;1) under the
canonical homomorphism L(y) — L[y]. But then there is j € [F;< such
that y([L L_; ]) = 0 (for z, = y,). In view of our discussion in (h) and
[P-St 99, Lemma 1.1(4)], this is impossible. Thus H(2; D® c G[y] c
H(2;1). Then [P-St 99, Corollary 3.6] applies to L(y) showing that vy is
Hamiltonian proper.

The Lie algebra S(3;1) is the kernel of the map

3 3
div:W(3;1) > A(3;1), X fidi—~ XL d.(f).
i=1 i=1

It is easily seen that the map is t-invariant and has the property that
div(W(3;1),) = A(3; 1), for any nonzero u € t*. As dim A(3;1), = p and
dim W(3; 1), = 3p for any u € I'"(A(3; 1), t) we have that dim S(3; 1), =
2p for any nonzero t-weight w. As t and ®(T) are both tori of maximal
dimension in SG3; D™ and G, = S3; 1" for any nonzero u € t*, [P-St
99, Corollary 2.10] and the definition of G imply that dim L, = 2p for any
p e (L,T). Let 5€ (L, T)\F,y and M(8,y) = T;c; Ly, Then
M($) is a 2p*-dimensional L(y)- module Now v is proper Hamiltonian
and L,(y)/rad L(y) = G(y)/rad Go(y) = W(1; 1. It follows that
L(y) + rad L(y) # L(y). It also follows that L (y) does not map into
H(2; 1), under the epimorphism L(y) — L[y]. This contradicts Lemma
3.2 finally proving the lemma. ||
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Next we intend to show that S # H(4; D™, Recall that H(4; 1)V has
basis {D, (x{1x52x53x5) 1 0 < a; < p,0 < L a; < 4(p — 1}. Moreover,

H(4;1) = H(4§l)(1) ® FDH((x1x2x3x4)p_1)
®(Fxf~'9; + Fx{~ 9, + Fx{~'9, + Fx[~9,)

and

Der H(4;1)" = H(4;1) ® F

4
inai)
i=1

(see [St-F, (4.8.7)]). It follows from this description (and Jacobson’s iden-
tity) that any Lie subalgebra of H(4;1) containing H(4; 1)V is restricted.

LEMMA 4.10. Let g be a Lie algebra satisfying H(4; D)V c g € H(4; 1),
and let t be a toral element of § such that H(2;1)® c C (1)/rad C (1) C
H(2; 1. Then (rad C,(1)® # (0).

Proof. As q/H(4; D is p-nilpotent, t € H(4; D™. By [Dem 72], there
is 7€ Aut H4; D™ such that either 7(t) = D,((1 + x)x;) or 7(t) =
ADy(x,x3) + uDy(x,x,), where A, u € F,. Now 7 induces an automor-
phlsm of Der H(4; D)V; hence an automorphlsm of H(4;1) =
(Der H(4; D™)®, So replacing g by its isomorphic copy 7(g) we may
assume in proving the lemma that either ¢ = Dy,((1 + x)x;) or ¢t =
ADy(x,x3) + wDy(x,x,), where A, u € F,. If in the second case A, u # 0
then (X}_, F3,) N C,(t) = (0); hence C (1) € H(4;1), is compostionally
class1cal Slnce this contradlcts our assumptlon on C,(¢), either A = 0 or

= 0 holds. No generality is lost by assuming A = 1 and n=0.

Thus t = Dy (z,x5), where z; € {x;,1 + x,}. Since

[t, Dy (zixbx$xd)] = (¢ — a) Dy (zixhxsxd)
whenever 0 < a,b,c,d < p — 1, we have that CH(4;D(1>(t) =
span{Dy, (z{1x52x§'x§*) 10 < a, <p,0 <a; + a, + a, <3p — 3}.
Note that
1= (Cyaso(1))”
= span{DH(zflxgzxgle*‘) |10<a,<p,Ya,>0,a,+a, <2p— 2}
= H(2;1)? ® A(1;1).

As H(4; D™ is an ideal of g, I is an ideal of C(1).
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If rad I = HQ2; D® ® A(1;1),,, is not C (¢)-stable then I is C (¢)-sim-
ple. But then [ N (rad C,(¢)) = (0) and (p* = 2p = dnn I <
dim C(¢)/(rad C (1)) < dim H(2 1) = p? + 1, a contradiction. Thus

rad I = span{D,, (z{1x5>x§x{*) 10 < a; <p,a, # 0,a, + a, <2p — 2}
is C,(¢)-stable, hence contained in rad C,(¢). Therefore,
4DH(zfx§)
= [[DH(z]x§x3),DH(z]x3x4)],[DH(z]x2x3),DH(z1x3x§)”
e (rad 1)®  (rad C,(1))?.

So (rad C (1)@ # (0) as claimed. [
LEMMA 4.11. S # H(4; D)W,

Proof. (a) Suppose S = H(4; )V. By Lemma 4.6, G can be identified
with a subalgebra of Der S containing S. By Theorem 4.7, the grading of S
has type (a,, a,, a,, a,) for some a; € 7 satisfying a, + a; = a, + a, and
some generating set u,, u,, us, u, € A(4;1),,. To keep the notation simple
we shall assume that u; = x;, 1 <i < 4. By Proposition 4.8, G = @, G, is
a graded subalgebra of Der § = ©, Der; S, where the grading of Der S is
induced by that of §.

Since S is a restricted subalgebra of Der S, so is S,. Then ®(T) is a
2-dimensional torus of § contained in S, (Lemmas 4.2 and 4.3). Let
t = FD,(x,x;) ® FD,(x,x,). Using Eq. (12) one observes that t is a
2-dimensional torus of § contained in §,. Define ¢ € t*, i = 1,2, by
setting

€(Dy(x1x3)) = 1, €(Dy(x,x,)) = 0;

€(Dy(x1x3)) = 0, &(Dy(x,x,)) = 1.
Obviously, Dy, (x¢x5x5x¢) is a weight vector for t correspondlng to weight
(c — e + (d b)e,. This shows that dim S = p* for any y € I'(S, 1).

As HCL(,% [P-St 99, Corollary 2.11(1)] shows that Cy(t) € &, S,.
Since Dy, (xix3) € C, (f) NS, 14, one has

0<a, +ay;=a,+a,. (18)

As before, we let S, denote the kth component of the standard grading
of § (it has type 61,1, 1, 1) with respect to x;, x,, x5, x,). Let Der,S
denote the kth component of the grading of DerS induced by the
standard grading of S. It is easily seen that Fx?~'9; + Fx{~'9, + Fx/ ™9,
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+ Fx[~'9, c Der,, ,,S and D, (x}~'x{~'x{"'x}~") € Dery,_,S. Ob-
serve that § = &, _, S, N S,. As a consequence,

4

DerS = @ (Der;S) N (Dery, S).
i,keZ

(b) Suppose a,a,aza, # 0. Then (L!_, F3,) N Der, S = (0), whence G,
C Dery S ¢ ®,_, Der, S. Let j € Z be such that §_, N S ;, # (0) and
S_y NSy, =1(0) for k>j. Then S_; NS, is a nonzero G,-submodule
of Sy =G_;. As G_, is G-irreducible, S_; = S_; NS .

Suppose j > 0. By property (g2) of our grading, ¥, (G; C X, (S
Hence g, €8,_,,NnS_, €XL;.,G; and —a, >0 for any k <4. As
a, +a; >0 and a,a; # 0, this is impossible. Then j < 0; ie., j = —1
(since S, = (0) for k < —1).

As a consequence, G_, C span{d,,...,d,} and G_, = (G_))* = (0) for
k > 1. Since Dj(x7x;) € S,, (by (12)) we now get S, # (0), S,, # (0).
Then a, > 0 since there is only one graded component of negative degree.
Looking at Dy, (x,x}), D, (x,x3) and D, (x3x,) we deduce that a; > 0 for
all i. Looking at d, € §_,,1 <i < 4, we eventually obtain a; = 1 for all i.
Thus Der, § = Der,;, S for all k € Z. Therefore,

3p(4) =S,cGycDer, S =3p(4) ©F.

Since & < Der S contains no tori of dimension > 2 we must have G, = S,,.
Properties of G, = gr L ensure that L =L, Ly # (0), L, /Ly, =
p(4) and L_,/Ly, is isomorphic to the natural 4-dimensional
$p(4, F)-module. Applying Wilson’s theorem [Wil 76] we now get L =
H(4;n; W), As TR(L) = 2 Lemma 2.5 yields L = H(4; D™ contrary to
the choice of L. Hence a,a,aza, = 0.

(¢) Renumbering the a; if necessary we may assume that a, = 0.
Suppose a,aza, # 0. By [St 97, Corollary 3.23], Der H(4; D'V’ = CH(4; 1)
C W(4; D). Let W(4; 1)y, denote the kth component of the (0, 1,2, 1)-grad-
ing of W(4; 1) with respect to xy, X,, X3, X;, and G, = G N W(4; Dy, It
is easily seen that

S = span{DH(x{‘x3), Dy (x5x3), Dy (xfx,x,), Dy (xfx3) 10 <k <p},

n
|
Il

span{D, (xfx,), Dy (xfx,) 10 <k < p},

Si_y = span{Dy (xf) I 1 < k < p}

and §;_; = (0) for i > 2. It is straightforward that x/~ 9, € Der;_ S,
x§7'9, € Dery, S, x{7'9,, x{ 79, € Der,_S, and Dy ((x,x,x;x,)7" ")
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€ Der, S. Hence Dery,S = S, + FX/_,x,0, and

S=3S5

[4p—6] [0]

Der;_

Der_,S = 8;_, ® Fx{™9;,

-1

Der;_;;S = (0) for i > 2.

Since Dy (x{) € S_, , Dy(x{x,) €S

Dy(x{x) € S_, for0 <k <p,
and xf~'9; € Der_, S we obtain

—ay

(Der, §) N (Dery;; S) = (0) for i <O0.

Then Der, S = ®,_, Der, S N Der;; S ¢ &, Der,;S. Let j€Z be
such that S_; N S; 9& (0) and S_; NSy, = (O) for k >] Because G, C
Der, S our preceding remark shows that S ~1 N §};; is a nonzero Go-sub-
module of G_; = S_,. Therefore, G 4= S_1 N Sj.

If j>0 then G, =(S_)' c ®_, 8, for all i>0. As Dy(x,),
Dy(x,) € §;_, we obtam that D, (x,) and D, (x,) have positive degrees.
Then —a, > 0 and —a, > 0 contrary to (18). So j < 0. If j = —2 then
S_; ©§_y for all i > 0. Again this implies that —a, > 0 and —a, > 0.

This case being impossible we must have j = —1. Then G_, C §;_,, and
= (0). Since Dy(x,) € S_, \S;_5 and Dy(x,) € S_, \ S;_, we
have that —a, > —1 and —a2 > —1. Since 0 <a, +a, =a;# 0 and

a,a, # 0 one obtains a, = a, = 1 and a; = a, + a, = 2. But then §; = §;
for any i € Z. Therefore, S, is isomorphic to a semidirect product of

Sy = span{D, (xfx;) 10 <k < p} = W(1;1)
and the ideal
I, = span{Dy, (xfx3}), Dy (xfx,x,), Dy (xfx3) 10 < k < p}
= 3((2) ® A(1;1)

with S; = W(1; 1) acting as derivations on the second tensor factor of /.
Moreover, G_; = §;_;; = V(D) ® A(; D, [1;,G_,]1 =0, and G_, = §,_,,
= A(1;D/F as (S,/[))-modules (recall that V(1) denotes the natural
2-dimensional $((2)-module). Since S, € G, < Dery,S = S, ® FX{_, x,4,
and & contains no tori of dimension > 2 we have that G, = §,.

(d) We continue assuming that (a,, a,, as,a,) = (0,1,2,1). There is a
2-dimensional torus in %, which maps onto t under the homomorphism
& #, — Dery § O 8. As before, we identify this torus with t and view
the root system I'(L, t) as a subset of F,€; & [F,¢,. Using our discussion in
(c) it is easy to observe that I'(G_,, t) = Fe;, (G_,,t) = F €, + €, and
['(Sy, 1) = Fre; U (F e, + 2€).
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Let y € I'(L, )\ (F,€; U F,¢€,). Then L (y) is a solvable subalgebra
of codimension 2 in L(y). By Lemma 3.3, y is proper. Next we observe
that

span{Dy; (x{x4) 10 <a,b <p,0 <a+b <2p — 2}

is a subalgebra of G(e,) isomorphic to H(2;1)®. As a consequence,
Gle,] = G(e))/rad G(e)) & {(0), 3((2), W(1; 1)}). But then H(2; D@ c
Gle ]l cH2;1D (see [St 89/1, (4.1), (4.2)]. Besides, t stabilizes both
rad G,(e;) = I,(e;) and the standard maximal subalgebra of
G, (€)/rad G,(e,) = W(1;1). Applying [P-St 99, Corollary 3.6] we now
derive that €, is a proper Hamiltonian root of L.

Similarly, span{D,(x5x}) 10 <a,b <p,0 <a +b <2p — 2} is a sub-
algebra of G(e,) isomorphic to H(2; 1)®. Arguing as before we derive that
€, is proper. Thus all roots in T'(L, t) are proper. As T is an optimal torus
all roots in T'(L, T) are proper as well (for [T'(L, t)| = |T'(L, T)| by [P-St
99, Corollary 2.10].

As S,/I, = W(1;1) and [, = 3[(2) ® A(1;1) contain no tori of dimen-
sion > 1, there is a nonzero toral element ¢ € ®(T') such that ®(7) N I,
= Ft. As [, annihilates G_, (see (c)) there is a € T'(G, ®(T)) such that
a(®) =0 and G_, = G_,(a). Because [t,S,] CI, we also have that
Sy = Sy(a) + I,. Now any 1-dimensional torus in 3[(2) ® A(1; 1) is conju-
gate under Aut(5[(2) ® A(1;1) to Fh, ® 1, where h, € 3[(2) (by [P 94,
Lemma 2.5] for example). From this it is immediate that I,(a) is an
abelian ideal of S;(@). By our preceding remark, S,(a)/I,(a) = W(1; D).

Suppose [G_,(a), G,(a)] € I,(a). Then

[G_,.G,] = [G_y(a),G,] chy(a) + X S, ,=1.

y&F,a
However,
[ Dy (x)), Dy (xfx3)| = 2Dy (xfx3) € 1,, 0 <k <p — 1.
This contradiction shows that

[G—z(a)’Gz(a)] +I(a) = Sy(a)

yielding G_,(a) ¢ rad G(a). As rad G(a) is a graded ideal of G[«] and
G, N rad G(a) C I,(a) we obtain dim G[ @] > p. Hence H(2; D)® c Gl «]
C H(2; 1) (by [St 89/1, (4.1), (4.2)]. Since G,(a)/rad Gy(a) = W(1; 1),
applying [P-St 99, Corollary 3.6] shows that « is a Hamiltonian root of L.
Recall that « is proper and Lg(a)/rad Ly, = Gy(a)/rad Gy(a) =
W(1;1). The latter yields that L(a) # L(a) + rad L(«) and L (a) is
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not compositionally classical. Since all t-root spaces of S are p>-dimen-
sional, [P-St 99, Corollary 2.10] implies that for any § € I'(L, T) \ F,a,

Y. dim Lsijo = 2. dim Ss+ja =p’.
JjeF, JjEF,
Lemma 3.2 now says that each M(3, a) = X, g, L with § € I'(L,T)
\ F,a is an irreducible L(a)-module.

As Gy =Sy(a) + 1, and [1,,G_,]1=(0), G_, = G_,(a) is an irre-
ducible S,(a)-module. Besides, [G_,,G,(a)] ¢ rad G (a). From this it
follows that rad G(a) C I)(a) + £,. , G(a). As gr(rad L(a)) is a solvable
ideal of gr(L(a)) = G(«) and I («) is abelian we must have

S+ja

rad L(«) € L @), (rad L(a))" € L(a).

As a consequence, (rad L(a))" acts nilpotently on L. But then
(rad L(a))” annihilates each M(8, «) with & € I'(L,T)\ F,a. There-
fore, (rad L(a))V annihilates L (by Schue’s lemma). This means that
rad L(a) is abelian. By the toral rank considerations rad G(«) is nilpo-
tent. By dimension arguments gr(rad L(«)) is an ideal of codimension at
most two in rad G(«)) (for a« € I'(L, T) is Hamiltonian and H(2,1)® c
Gla] € H(2,1) and dim L(a) = dim G(«)). Then rad G(a)/gr(rad L(a))
is nilpotent of dimension < 2, hence abelian. Then (rad G(a)® = (0)
contrary to Lemma 4.10.

(e) Suppose a, = ayasa, = 0. First we assume that a,a, # 0. Then
a;=0and a, +a, =a, +a,=0;ie, (a,a,,as,a,) = (0,m,0, —m) for
some nonzero m € Z. It follows that

Der, S = span{D,, (x{x5xtxf) 10 <a,b,k <p,a + b+ k > 0}

4
leal
i=1

+ FxP 9, + Fx{ 9, + F

From this it is immediate that
J = span{Dy (x{x} " 'xbxf" ") 10 <a,b <p,0<a+b<2p—2}

is an ideal of Der, S contained in §,. Since J consists of nilpotent
elements of S it must annihilate the irreducible G,-module S_;. This,
however, is impossible as S_; is a faithful G, ,-module. Hence either
a,=0ora, =0.

Renumbering x, and x, if necessary we may assume that a, = 0. Then
(aj,a,,ay,a,) =(0,0,n,n), where n€ Z. As S_, #(0), n e {£1}. As
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a, +a; > 0(see (18) n = 1; i.e., (a,, a,, a;,a,) = (0,0,1,1). So we have
Sy = span{Dy, (x{x3x3), Dy (x{x5x,) 10 < a,b < p},
Sy =span{Dy (x{x}) 10 <a,b <p,a+b>0},

and S_, = (0) for k > 2. It is a matter of routine that S, = W(2;1) as Lie
algebras and S_; = A(2;1)/F as W(2; -modules. Also, L =L_,, (as
G =8_,=0for k>1 and I'(G_,, 1) = (F, e, & [Fpez)\{O}. More-
over, dimG_, ;=1 for any 6 € I'(G_,t). By [Dem 72], there is an
isomorphism W¥:S, - W(2;1) such that W(®(T)) = Fz,dy, & Fz,dy,,
where

(z1,27) €{(1 +y, 1 +y,), (1 +y,9,), (¥, ¥2)}

(in order to avoid confusion we write W(2;1) = ¥ Fy! yé(?yk). Define y,,
¥, € W(O(T)* by setting y,(z;d) = §,;, where i,j €{1,2}. One has
I(G_,, ¥ (d(T)) = ([pr1 ® I]:pyz)\{O} and dimG_, , =1 for any y €
T(G_,,¥(D(T))) (by [P-St 99, Corollary 2.10] and the above remarks). It
follows that any root in I'(L,T) is either Hamiltonian or improper Witt
(by [P-St 99, Theorem 8.6 and Lemmas 1.1, 1.4]).

Suppose z; =1 +y,;, i = 1,2. Then any root in I'(S,, ¥(®(T))) is im-
proper Witt ([B-W 88, Lemma 5.8.2]). Repeating verbatim the arguments
presented in parts (h) and (i) of the proof of Lemma 4.9 we obtain a
contradiction. Therefore, z, = y,. Arguing as in part (i) of the proof of
Lemma 4.9 we derive that vy, is a proper Hamiltonian root of L and
HQ2; D® c Gly,] € H(2;1). By the above discussion, dim G _ (y,) =p —
1. Combining this with [P-St 99, Corollary 3.4(2)] one deduces that G_; N
rad G(y,) = (0). A straightforward computation shows that x/~'9;, x{ ™,
€ Der_,S, x{~'9,, x{7'9, € Der, ,S, and Dp(xf~'x{~ 1x3p xp hHe
Der,,_; S. Therefore, S, € G, C S + F(X!_, x,;9,). On the other hand,
the p-envelope of G, in DerS does not contain 3-dimensional tori. This
yields G, = S,. As a consequence rad G(y,) Crad S)(y,) + L,. , G;- We
observe that rad So(y,) = W~ (span{z,y54d, | 0 <i < p}) is abelian. As a
consequence, (rad G(y,)) c ¥, , G,. As gr(rad L(vy,)) is a solvable ideal
of gr(L(y,)) = G(y,) we now obtain

(€8]
rad L(y,) € Ly (72), (rad L(7,)) Ve Ly(7v2)-

As vy, is proper Hamiltonian and L(y,)/ rad L(y,) = Sy(v,)/
rad S,(y,) = W(1; 1), Lemma 3.3 (which applies to L(y,)) says that each
M(8,y,) with & € I'(L, T)\ F,y, is an irreducible L(y,)-module (see the
final part of (d) for a similar argument) Since (rad L(y,))" acts nilpo-
tently on L, Schue’s lemma shows that rad L(y,) is abelian. From this it
follows as in (d) that (rad G(y,))® = (0), contrary to Lemma 4.10. This
contradiction finally proves the lemma. [



292 PREMET AND STRADE

LEmMMA 4.12. S # K(3;1).

Proof. (a) Suppose the contrary. By Lemma 4.6, G can be identified
with a subalgebra of Der S containing S. Since Der S = S ([St-F, (4.8.8)])
we have G = §. According to Theorem 4.7, there exists a generating set
u,, uy, uy € AB3;1) and ay,a,,a; € Z with a, + a, = a; such that the
grading of S has type (a,, a,, a;) with respect to u,,u,,u;. To simplify
notation we shall assume (without loss of generality) that u, = x;, 1 <i < 3.
So in the present grading of S,

deg Dy (x¢) = (¢; + ¢ — 1)a; + (¢, + ¢ — 1)a, (19)

(see Eq. (13)). Let t = FDy(x,x,) ® FD;(x;) (this is a 2-dimensional
torus in ). By Eq. (19), t € S,. Let f) :== C4(t). Since Cy(P(T)) C X, S,

we have that ) c X, S; (by [P St 99, Corollary 2.11)). Using the commu-
tator relations (10) and Eq. (19) we obtain D, (x,Tx,Tx,"T) € h N

S (a,+a,- This implies that a; + a, > 0. Renumbering x; and x, if neces-

sary we may assume that a, > a,. Hence a, > |a,| > 0. Obviously, (a,, a,)
# (0,0). As a consequence, a; > 0.
(b) Suppose a, = 0. Then

Sy = span{Dy (x,x}), Di(xbx;) 10 < i < p}
and

Y. S, =58, =span{Dy(x3) 10 <i<p}.

i<0

As S_, # (0) we must have a, = 1. Using the commutator relations (10)
one readily verifies that

Sy = span{Dy (x,x4) 10 < i < p}
is a subalgebra of S, isomorphic to W(1; 1),
Iy = span{Dy (xix; — x,x5"1) 10 < i < p}

is an abelian ideal of S, isomorphic to A(1;1) as a module over Sj, and
Sy = Sy @ I,,. In particular, C(S,) = FDy(x,x, — x;). Define «', 8’ € t*
by setting

a'(Dg(x1x,)) = 1, @'(Dg(x3)) = 0;

B'(Dk(x,x,)) = 0, B'(Dg(x3)) = 1.

Then S_, = ®7,' §_ ~Liga+ 82" with dim S_ ;- +B) ,p = 1 for each
i€fl, Moreover Sy = Sy(a’ + B') and S(a’ + B) CL,., S, Since S,
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= Der, S, the restricted Lie algebra £, contains a 2-dimensional torus
which maps isomorphically onto t under the natural homomorphism
Zoy = Der,, S. As before, we identify this torus with t. By our remarks
carlier in the proof, Ly = L(a’' + B') + L, and a' + B’ is a proper
Witt root in T'(L, t). Furthermore, L, ., g+ ;5 C L, if j & {0, —2} and

dim Lo -2/ Loicar+py-26" = 1-

As a consequence, for any w € I'(L,t)\ F (a’ + B"), the subalgebra
L(w) is t-invariant, solvable, and has codimension 1 in L(w). This
implies that any root in I'(L,t)\ F (a’ + B’) is proper. As a’' + B’ is
proper Witt, all t-roots of L are proper. Since T is an optimal torus in L,
all roots in T'(L, T) are proper as well. We now identify T with ®(T) C
Der, S = §,. By the maximality of 7, C(S;) C T. In other words, T = Ft
® FDy(x,x, — x5), where

t= 3 /\iDK(xlxé) + ) :U«iDK(xéxs _xlxéﬂ)'

i>0 i>0

Since Dy (x,x, — x3) acts invertibly on S_, =L /L, and trivially on
Sy = Ly /Lg, there is y € T(L,T) such that L(y) = Lg(y) and
Lo(y)/Lqfy) =S,. Since y is proper, T stabilizes the preimage of
span{Dy(x,;x5) | 1 <i < p} under the canonical projection S, =S, & I,
— 8. This implies A, = 0. Let S, denote the kth component of the
standard grading of § = K(3;1) with respect to x,, x,, x; (it has type
(1,1,2)) and S, = ¥;. 4 S;, denote the kth component of the standard
filtration of the Cartan type Lie algebra S = K(3;1). Note that r € §; N
Sy and S_; N S(p_% = Dy (x4~ ). Then [t, D (x4~ D] € FDi(x$~1). Tt
follows that Dy (x§~"') is a root vector of § relative to 7. As a conse-
quence, there exist 86 € I'(L,T) and u € Ly such that u + L, =
Dy(xy~H. As [T(S_,, DI =p, [P-St 99, Corollary 2.10] yields that
IT"(L /L), T)l = p as well. As dim L /L, = p we must have (L/L)); =
F(u + L). As Di(x,x, —x;) actson S_; = L /L, as 21d we also have
L(8) = Fu + H + L;(8), so that L_; c L, This means that
v({u, L_sD) = v((Dx(x571),8,D) =0 for any v € ['(L,T); ie., u €R;.
However, R; C L, as L, is admissible. This contradiction shows that
a, # 0.

(c) Suppose a; # la,|. In this case none of Dy(1), Dy(x,), Dx(x,),
Dy (x1), Dy(x3) has degree 0. Then S, C FD(x,x,) + FD(x;) + S,
This implies that S, = G, is solvable, contrary to Lemma 4.1. Thus either
a, =a, or a, = —a,.

(d) Suppose a; = —a,. Then

Sy = span{Dy (xixix%) 10 < i,k < p}.
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The commutator relations (10) show that

[ Dy (xixbx5), Dy (x{xixt)]
= 2(k(j ~ 1) — (i — 1)) Dy (x5 k=1,
Hence
Jo == span{Dy (xf x5~ 'x4) 10 < i < p}

is an ideal of §,. As J, C S, it acts nilpotently on §. By Engel’s theorem,
J, must act trivially on S_,, contrary to the fact that S_, is a faithful
Sy,-module. So the case a, = —a, is impossible.

(e) It remains to consider the case a; = a, > 0. Since S_, # (0) we have
a; = 1; that is, S, = S, for all i. But then L satisfies the conditions of
Wilson’s theorem [Wil 76] which gives L = K(3; n; W) (for L, #L_,
and Lg,/L, = gl(2)). Since TR(L) = 2 Lemma 2.5 yields L K(3 D.
As K(3;1) is listed in Theorem 1.1, this is impossible. Therefore, S %
K(3;1) as claimed. |

Next we are going to rule out the possibility that S is one of the Lie
algebras W(2;1), W(1;2), H2;1;A), HQ2;1; ®(r))V. We start with a
subsidiary result.

LEMMA 4.13. If dim G, < 2 for all y € T(G, ®(T)) then T(M(G), T)|
<p?-3.

Proof.  Suppose y € T'(L,T) is Hamiltonian proper. Then there is
k € [ such that dim L, /R, <2 (see [P-St 99, Lemmas 1.1, 1.4 and
Theorem 8.6]). Since all root spaces of H(2;1)® with respect to a
1-dimensional torus in Der H(2; 1)® are p-dimensional, we obtain

p<dimL, <dimL, /R, + dim ka <4.

This contradiction shows that each Hamiltonian root in I'(L,T) is im-
proper. As T is optimal, T'(L,T) contains a proper root, say §. By the
above, & is not Hamiltonian. Combining [P-St 99, Theorem 8.6] with [P-St
99, Lemmas 1.1, 1.4] we now obtain that there is i, € F such that
dim L;;/R;5 = 0 whenever i € F,\{0, £ i,}. As R(L,T) c L‘S this im-
phes that for i # +i, M(G),; = (0). Hence IT(M(G), )l < (p>—p) +2
<p*-3. 1

LEmMMA 4.14.  Suppose g is one of the Lie algebras

W(2;1), W(1;2), H(2;1; A), H(2;1; ®(7))"
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and let g, denote the minimal p-envelope of g in Der g.

1. Let V be a nontrivial restrlcted q ,-module and t a 2-dimensional
torus in g ,. Then (v, Hl = p? — 2.

2. IfS = g then M(G) = (0).

Proof. (1) If g = W(2;1), then [B-W 82, Corollary 4.11.2] shows that
IT"(V, )| = p? — 2. Suppose g € {(W(1;2), H2; 1; A), H2; 1; P(r)V}. It
is well known (see, e.g., [B-W 88, Sect. 2] or [St 92]) that g , contains a
2-dimensional toral Cartan subalgebra t’ such that dimt’' N g < 1. Ac-
cording to the corrected version of [B-W 82 Corollary 4.12.1] (see [B-W
88, p. 185]), the g,-module V" has at least p? — 2 weights w1th respect to
t’. By [P-St 99, Corollary 2.10], we then have |[I'"(V, t)| > p? — 2.

(2) Identifying A(1;2) with A(2; 1) one can regard W(1;2) as a subalge-
bra of W(2;1). Thus in all cases S can be identified with a subalgebra of
W(2;1). As a consequence, the semisimple p-envelope S, of § can be
identified with a homomorphic image of a restricted subalgebra of W(2; 1)
(in fact, it is always a restricted subalgebra of W(2;1) but we do not
require this here). It is well known (and easy to see) that all root spaces of
W(2; 1) relative to the self-centralizing torus Fx,d, ® Fx,d, are 2-dimen-
sional. Combined with [P-St 99, Corollary 2.10] this yields that dim S, <2
for any y € I'(S,T). As T = ®(T) C S, (Lemma 4.3(2)) and G C DerS
we have that G =S8, for all p < I‘(G T). Then Lemma 4.13 apphes
showing that the S, ‘module M = M(G)/M(G)? has less than p* —2
T-weights.

Suppose M(G) # (0). Then M # (0). Let V' be a composition factor of
the G-module M. Recall that S, is a restricted subalgebra of &, and there
is a restricted representation ? — g (V) whose restriction to S coincides
with the natural action of § on V' (Lemma 4.2(2)). Thus V is a restricted
S,-module. Now 0 & I'"(V,T) (as H C L,). It follows that §-V = (0)
(otherwise S, V= (0) as V is restricted; hence T-V =(0) as T C Sp).
Our second claim now follows from (1). ||

LEMMA 4.15. S = W(2; D).

Proof. (a) Suppose S = W(2;1). Then M(G) = (0) (Lemma 4.14),
whence G = G. It is well known (see, e.g., [St-F, (4.8.5)]) that all deriva-
tions of S are inner. Since S € G < Der S we then have G = S. Moreover,
since Dery G = S, we may (and will) identify 7 with a 2-dimensional torus
of S contained in S,. According to Theorem 4.7, there exists a generating
set u,u, € A2;1) and a,,a, € Z such that the grading of S has type
(a,, a,) with respect to u,u,. To simplify notation we assume (without
loss of generality) that u; = x;, i = 1, 2. Then

S, = span{xixid, lia, + ja, —a, =m,0 <i,j <p,k=1,2}.
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(b) As S # §,, either a; # 0 or a, # 0. Suppose 0 # a, # a, # 0. Let
Sy denote the ith component of the standard filtration of S§. Since
31, 0y, X104, X, 91 € U, S;, we must have S, C Fx;d, + Fx,d, + S,
But then S, = G, is solvable, contrary to Lemma 4.1.

Now suppose 0 # a, = a,. Then S, = span{x,d,, x,d,, x,d,, x,d,} is
isomorphic to g{(2). As S_; # (0), a; €{+1}. If a; = —1 then §_, =
span{xid,, x,x,d, X3, Xid,, X,X,0,, X539,} is a reducible S,-module.
Since S, = G, and G satisfies (g1) this is impossible. Therefore, a, = 1, so
that S_, = F9, ® Fd, is a 2-dimensional irreducible S,-module and S_,
= (0) for k > 2. Then L) /L, = gl(2), dim L/Lg, =2 and L, # (0).
Applying Wilson’s theorem [Wil 76] we get L = W(2;n) for some n =
(ny,n,y). As dim L = dim § = dim W(2; 1) we must have L = W(2;1) con-
trary to our choice of L. As a consequence, either a; =0, a, # 0 or
a, #0,a,=0.

(c) Renumbering x, and x, if necessary we may assume that a, = 0.
Then

S, = span{xid,, x{x,d, | 0 < i < p}.

AsS_, #(0),a,e{+1}.If a, = —1then S_, = span{xix,d,, xix3d, 10
< i <p}is a reducible S,-module. As G satisfies (g1) this is impossible.
Therefore, a, = 1, S_, = span{x{d, | 0 <i < p}and S_, = (0) for k > 2.
Let t be a 2-dimensional torus in %4, which maps onto Fx,d; & Fx,d,
under the homomorphism ® : %, — Der, S (in the case under considera-
tion this homomorphism is surjective, as S, = Dery G = G, = L, /L)
As before, identify t with Fx,d, ® Fx,d, and define o', 8’ € t* by
setting

a'(x,9,) =1,a'(x,09,) =0; B'(x,9;) =0,B'(x,9,) = 1.

It is easy to see that I'(S_,,t) = F,a’ — B' and I'(S,, t) = Fa'. More-
over, dim§_, =1 for any y € I'(S_,,1). It follows that for any y €
I'(L, )\ F,a’, the subalgebra L(O)(y) is solvable, t-invariant, and has
codimension 1in L(y). Then each y € I'(L, t) \ F,a" is solvable, classical
or proper Witt (see [P-St 99, Sect. 1] for more detail). Besides, L(a') =
Lp(a’)and Ly(a')/L,(a’) =S, With this in mind it is easily seen that
a’ is a proper Witt root of L. Thus all roots in I'(L, t) are proper. As T is
an optimal torus, all roots in I'(L,T) are proper as well (note that
(L, T)| = |T'(L, 1)| by [P-St 99, Corollary 2.10]).

(d) Note that C(S,) = Fx,d, € ®(T), by the maximality of ®(T). Let ¢
be a nonzero toral element of ®(T) such that ®(T) = Ft & Fx,d,, and
define a € ®(T)* by setting

a(t) =1, a(x,d,) =0.
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If y € T'(S,, T) then and y(x,4d,) = 0. Hence S, = S,(@). Since x,d, acts
on §_; as —Id we also have that I'(S_,,T) c I'(S,T) \ [, a. As a conse-
quence, L(a) = Lg(a) and Ly (a)/Ly(a) =S, Let ¥ denote the
natural Lie algebra epimorphism S, — W(1; 1) whose kernel is spanned by
{xix,d,10 <i <p}. As all roots in I'(L,T) are proper the subalgebra
W(1; 1), is W(t)-stable. This implies W(¢) € W(l; 1), forcing T §; N
S(0)- Using our discussion in (c) and [P-St 99, Corollary 2.10] one observes
that each weight in I'(S_;, 7) has multiplicity 1. Let S, denote the kth
component of the standard grading of the Cartan type Lie algebra S (it has
type (1, 1) with respect to x;, x,). Then S, == ¥,. ; §,;, is nothing but the
kth component of the standard filtration of the S. Note that S_; NS, 2
is spanned by xf~'9,. Since S_, N Sip-2 18 SN S(O)-mvarlant there is
y€ (L, T)\F,a such that §_, , = Fx1 '9,. Smce Xx,d, actson S, as
+1d, we have that reS_,,7n F,y ={y} and T'(S,T)NF 'yC{ v}.
Therefore,

[G1(v).Gi(v)] = [S-1(7). $i(v)]
= [Sfl,v’slry] < CI)(T) N S(p73)'

However, ®(T) N S ,_; acts semisimply and nilpotently on S. Then
D(T)IN S, 3 (0) whence [L(y) La(y)]cLy(y). So L(l)(y) is an
ideal of L(y) Since L(y) =L_, + H + L;,(y), the 1-section L(y) is
solvable. Combining [P-St 99, Theorem 8.6] with [P-St 99, Lemmas 1.1 and
1.4] we now obtain L_, = R__ C L. This contradiction completes the
proof of the lemma. [

LEMMA 4.16. S & {W(1;2), H(2;1; A), H(2; 1; ®(7)) V).

Proof. (a) Suppose the contrary and let S, denote the p-envelope of §
in Der S. It is well known (see [B-W 88, Sect. 2] or [St 92]) that Der § = S »
and there is a 2-dimensional self-centralizing torus t C §, such that
S,=t+5, all root spaces of S relative to t are 1-dimensional, and
IT(S, )l = p> — 1. Also, dim S, = p> + 1. Keeping all this in mind and
using [P-St 99, Corollary 2.10] We deduce that S, = d(T) + S, dim S, =1
for any y € I'(S, ®(T)) and |['(S, ®(T))| = p> — 1.

By Lemma 4.14, G = G; that is, we may assume S € G € ®(T) + S.
Recall that [®(T), S,] € S,. Let d denote the degree derivation of the
graded Lie algebra § = @, S,. Since [d, ®(T)] = 0 and ®(T) is a maximal
torus of §, = Der S we must have d € ®(T). Choose independent roots
a, B € O(T)* satistying a(d) = 0 and B(d) = 1. Then G, = G (a) and
GCGB G,Bﬂa for any i € Z.

Since’ CI)(T ) is a Cartan subalgebra of S,, we have that C,(®(T))
®(T). Also, G, c S for any (nonzero) root vy (this follows from the
inclusion [SP,G] c §). Therefore, G, € S, + ®(T). By Lemma 4.3(2),
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Sy + ®(T) is contained in the p-envelope of S, in DerS. Recall that
G_, =8_, is an irreducible G,-module. Our preceding remark then
shows that S_, is Sj-irreducible. This, in turn, means that [P-St 99,
Theorem 7.5] is applicable to the graded Lie algebra S. Since S, is
nonsolvable (Lemma 4.1) and all root spaces of S, relative to ®(7') are
1-dimensional, S, is as in case (¢) of [P-St 99, Theorem 7.5]; that is,
Sy =1 @ C(Sy), where v € {3[(2), W(1; 1)}. Note that [v + Fd,C(S))] =
(0). Then C(S,) € Cg(P(T)) € O(T). Now C(D(T)) + (0); otherwise
would be nilpotent by the Engel—Jacobsen theorem. So if C(S,) # (0)
then dim Cy(®(T)) > 2, whence dim § > p® + 1 = dim §,. This contra-
dicts the fact that S is nonrestricted. Thus C(S,) = (0) and ¢ s(P(T)) = Fh
for some h € ®(T) satisfying a(h) € F}. Moreover, cither 4 and A7l
span ®(T') or there exists x € S ;, (for some k € F*) satisfying B(x!"))
#+ 0 (otherwise S, would be a restricted subalgebra of Der § contrary to
the fact that ®(T) ¢ S,).

Let i € Z be such that G, # (0) and i # 0 (mod p). Since dim G, = 1
for each ®(T)-root y and I‘(Gl,(I)(T)) Cip + F,a, we have that dlrnG
<p. If B(xt*)) +# 0 for some x € U ke S0 ka then (G, ®(T) =ip +
F,a (for a(x!?1) = 0). If A and Al?) span ®(T) then APl — h € F*d, so
that B(h) & F,. Since h € S it follows that 0 = trace ad; h =
iB(h)dim G,. Then dim G, = p. We obtain that T'(G,, &(T)) =i + F,a
in all cases.

(b) Suppose G_, # (0). Then I'(G_, d(T)) = —B + F,a and
I(G_,,®(T)) = =28 + F,a. Since dim L, = dim G, = 1 for any root v,
I'(L,T) consists of non-Hamiltonian roots. Let y € I'(L,T)\ [, a. Then
F¥y intersects with both I'(G_,, ®(T)) and I'(G_,, ®(T)). Recall that it
follows from [P-St 99, Theorem 8.6] that dim L;/R;, <2dim L; /K, for
all j € F¥. Combining this inequality with [P- St 99 Lemma 1. 1] and the
1nclu510n R(L,T) c L, it is easy to observe that vy is neither solvable nor
classical nor proper Witt. Therefore, all roots y € I'(L,T)\ F,a are
improper Witt. Since G, # (0), I'(G,, ®(T)) = B + [, a.

We claim that G, = (0). If this is not the case, then T'(G,, ®(T)) =28
+F,a Let ye F(Gz,d)(T)) Then + 3y € (G, ®(T)). Since y is
unproper Witt, (ad L, )?~*(L,) # (0). Since dim L;, = 1 for any j € F,
(ad L, )" *(L,) = L 1y But then L ., cC L(l) whence — 3y &
rG_,, CI)(T)) (for dim L _ 1, = 1). This contradiction proves the claim.

Since L is simple, L = (0), whence L) = &, g, Lay pejar Since
R(L, T) contains a nonzero T-homogeneous sandwich (sée Sect. 3) there is
s € F, such that (ad Lg,,,)*(L_,z ) =(0) (as dim Lg,;, =1 for all
Jj € F)). This, however, is impossible because B8 + sa is improper Witt.

(c) Thus G_, = (0); i.e., L = L _,,. It follows that L = (ZjE[Fp L_gijo)
+Lg and Ly, = L(a) + L. Recall that C;(®(T)) € O(T). Therefore,
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H N L, = (0). Combining this with Schue’s lemma we get

H= Y [L,L_,]
vEF,a

X [LopijerLpje] + 2 [Layys Lay -]
jE[Fp 765[F[,a

= X [L pijarLpja] +Lay

j€F,

Each subspace [L_z, ., Lg_;jo] € [L_y), L] maps under the epimor-
phism

[L(—l)’L(l)] - [G_,G]=[5_,,5]

into Fh € S,. As H N L, = (0) we obtain dim H = 1. Recall that H, > T
(Lemma 2.1). Since dim L, = 1 for any root y, no nonzero element in H,
is nilpotent. Hence H, = T.

Thus we have established that L, contains a self-centralizing torus H,
such that dim(H, N L) = 1. This means that L is not restricted (since
dim T = 2). Then L satisfies the conditions of [B-W 82, Lemma 4.8.2].
That lemma is proved in [B-W 82] under the assumption that p > 7. The
argument used in the proof is as follows:

(1) first one shows that L, contains another self-centralizing torus,
say H', such that dim H' N L =1 and (H' N L)' = H' N L (this part
employs toral switchings only and goes through for any p);

(2) next one shows that C;(H' N L) is a Cartan subalgebra of L and
L has toral rank 1 with respect to C;(H’ N L) (this part requires a few
elementary facts on modular Lie algebras but still goes through for any p);

(3) finally one uses [Wil 78] to identify L with a Cartan type Lie
algebra. It follows from this discussion that by substituting in step 3) [Wil
78] by [P 94, Theorem 2] one generalizes [B-W 82, Lemma 4.8.2] to the
case p > 3. Applying this generalized version of [B-W 82, Lemma 4.8.2] to
our case we obtain that L is one of 3[(2), W(1;n), or HQ2; n; ¥). As
TR(L) = 2, Lemma 2.5 yields that L is one of the algebras listed in
Theorem 1.1. This contradicts our choice of L completing the proof of the
lemma. |

We now consider the case where S = H(2;(2,1))®.

PROPOSITION 4.17.  Let M, denote the p-envelope of M = H(2;(2,1)®
in Der M, and t a 2-dimensional torus in M,. Let W be a nonzero restricted
M ,-module. Then anny, t # (0).
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Proof. We modify the argument used in [P 94, Proposition 1].
(a) By [B-W 88, Proposition 2.1.8], M has basis

{Dy(x{™x{") 10 <m <p*,0<n <p,
(m,n) #* (O’O)a(pz - LP - 1)}7

M, =M + FD}, Der M is isomorphic to a restricted subalgebra of W(3; 1),
and (Der M)/M,, is not p-nilpotent. It follows that M, has no tori of
dimension b1gger than 2. By [Re], there exists an invertible q < span{x{” |
0 <i < p?} such that gD, is a semisimple derivation of A(1;2). Clearly,
(gD,)? = uD? + gD, for some u € F* and some g € span{x{) | 0 <i <
p?}. It follows that the restricted subalgebra generated by gD, is a
2-dimensional torus in Der A(1;2) = Der A(2;1) = W(2;1). So there are
a, b € F such that

(¢D,)"" = a(qD,)" + b(¢D,).

Let t = —Dy(gx,) = gD, — D,(¢)x,D,. Easy induction on k (based on
Jacobson’s formula) shows that

= (CID1)pk = P x, D,
for some ¢, € span{x{” | 0 < i < p?}. Therefore,
7" —at? — bt = (— i, + ap, + b, x,D
On the other hand, tP —ath — bt € M,, whence
(=W + agpy + bipy)x, D, = AD{ + D\(f) D, — Dy(f) Dy

for some A € F and fe€ A(2;(2,1)). But then D,(f) = 0 yielding f e
span{x{) | 0 <i < p?}. As a consequence, — i, + ay, + by = 0. This
means that Fr + Ft? is a 2-dimensional torus in M, and 7" — at? — bt = 0
for some a,b € F.

(b) Since M, has no 3-dimensional tori it suffices to prove the lemma
for t = Ft ® Ft? ([P-St 99, Corollary 2.11]). In other words, it suffices to
show that anny, ¢t # (0). No generality is lost by assuming that W is
Mp-irreducible

Let M, denote the kth component of the standard filtration of M.
Since M(O) is a restricted subalgebra of M ([St 97, Corollary 3.24]) and
M, = nil M, is a restricted ideal of M, Engel’s theorem shows that
anny, M, # (0). Let W, be an irreducible submodule of the M -module
anny, M. It follows from the irreducibility of W that there exists an
epimorphism ¥ :u(M,) ®, Moy Wo = W which maps 1 ® W, onto W, C
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W. Suppose anny, ¢t = (0). Then
(17" —atP ' —b) ® w, € ker ¥

for all w, € W,. As q is invertible, t = ¢D, + t, for some ¢ € F* and
ty € M. As ker W is an M-submodule of u(M,) &,y , Wy and M, - W,
= (0), one has (see [St-F, (5.7.1)])

ker ¥ = DH(xﬁpz’l)xgz)) (P —atr = b)) ® w,
= (ad t)”z_l(DH(xﬁpzfl)x(zz))) ® w,
= c”z‘l(ad Dl)”Ll(DH(x&”z_l)x(zz))) ® w,

= e 1D, (x2)(wy).

Thus D, (x$) annihilates W,. Since D,(x$) & M, and M, /M, =
31(2) is simple we obtain W, C anny, M, . But then

ker ¥ 5 DH(xﬁ”z_l)xz) (T —atPT = b) @ w,
= c”zfl(ad Dl)le(DH(ngLl)xz)) ® w,

=c” 7D, (x,) ® w.

As Dy(x,) and M, generate M, as a restricted Lie algebra we get
W, € anny, M. In particular, anny, t # (0) contrary to our assumption.

This contradiction proves the proposition. [
LEmMma 4.18. S = H(2;(2,1)?.

Proof. (a) Suppose S = H(2;(2,1)®. We first show that M(G) = (0).
Indeed, suppose the contrary and let W denote a composition factor of the
G-module M(G)/M(G)?. By Lemma 4.2(2), W is a restricted Z-module.
As S, is a restricted subalgebra of Z, W is then a restricted S ,-module. By
Lemmas 42,43, d(T) c S, is a 2-dimensional torus. But then ann,, ®(T)
# (0) (Proposition 4.17). From this it is immediate that C,(T) & L), a
contradiction. Thus M(G) = (0). As a consequence, we can identify G
with a subalgebra of Der § containing S.

(b) By Theorem 4.7, the grading of S has type (a;,a,) for some
a,,a, € 7 and some generating set u,, u, € A(2;(2, 1)),,. For simplicity of
notation we assume that u, =x;, i=1,2. By [B-W 88, Proposition
2.1.8(viD)],

Der§S = H(2;(2,1))" + D (7"~ 0x D) + FDy, (x(7))

+ FDy, (x$?) + FD{ + F(x,D, + x,D,).
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We denote by Der; S (resp., Der ,, S) the kth component of the (a;, a,)-
grading (resp., (1, 1)-grading) of Der S.

Suppose a, = a,. As S_, # (0) we then have that a, € {£1} and
Sy = FD,(x{?) + FD,(x xz) + FD,(x8) = S,. As H(2;(2,1)?, and
H(2; (2, 1))(2 are restrlctable (see, e.g., [St 97 Corollary 3.24), Sy = S,
= H(2; (2, 1)) 20/H2;(2,1)P, is a restricted subalgebra of Der S. Then
d(T) S, (Lemma 4.3(2)). As S, = 31(2) this is impossible.

Suppose a, =0. Then §, = span{DH(x x) 10 <i<ph=Ww;1) (see
Eq. (12)). Note that DH(xl)p = = 0 and

span{Dy; (x,x9) | 1 < i < p} = (Der, ) N H(2;(2,1))?,,

is a restricted subalgebra of Der S. So it follows from Jacobson’s formula
that S, is a restricted subalgebra of Der S. Then again ®(T) C §,, by
Lemma 4.3(2). But W(1; 1) has no 2-dimensional tori.

Suppose a, # a, and O & {a,,a,}. Then D,(x,), D,(x,), Dy(x}
Dy (x3) have nonzero degrees in DerS. Hence S, C FD,(x,x,) +
H(2;(2,1)®,, is solvable. But then so is [G _,, G,] contrary to Lemma 4.1.

(c) It follows from our discussion in (b) that a; = 0. As S_; # (0) we
must have a, € {+1}. In any event,

Sy = span{Dy (x{"x,) 10 <i < p*} = W(1;2).

By Lemma 4.3(2), T = ®(T) lies in the p-envelope S, of SO in Der S. Let
t = —Dy(gx,) be the semisimple element introduced in the proof of
Proposition 4.17, and t = Ft + Ft”. Then t is a 2-dimensional torus in S,
and anng = anng 1 As S_ 1 is a restricted S -module [P-St 99, Corol-
lary 2. 11(1)] shows that anng t = (0).

Suppose a, = —1. Then DH(q x) e S_,| and

[DH(qxz),DH(qzx(zz))] =DH(D1(qx2)D (q x(zz)) 2(qx2)D1(‘12x(22)))
= DH(qur(CI)xzxz - 2q2D1(q)x(22)) = 0;

that is, anng ¢+ (0) (for g is invertible). In view of the preceding
discussion this is impossible.

Thus a, = 1, so that S_, = span{D,(x"), | 1 <i < p*} and S_, = (0)
for k> 2. It follows that G_, =(0) for k>2 (e, L =L_,) and
S_, = A(1;2)/F as S;-modules. Note that A(1;2) = A(2;1) as algebras
and the p-envelope of W(1;2) in Der A(1;2) = W(2;1) contains a 2-di-
mensional torus. On the other hand, it is well known (and follows easily
from [P-St 99, Corollary 2;10]) that for any 2-dimensional torus 7 < W(2; 1)
one has [T"(AQ2;1)/F,T)| = p*> — 1. This implies that [T'(S_,, ®(T))| =
p® — 1. As a consequence, ['""(L/L,T) > Fyy for any ye I'(L,T).
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Therefore, 0 # dim L, /R;, < 2dim L, /K, for all i € F} (by [P-St 99,
Theorem 8.6] and [P-St 99, Lemmas 1.1 and 1.4]). We deduce that any root
in T'(L, T) is either Hamiltonian or improper Witt.

(d) Let 8 € I'(L,T) be such that S,(8) = W(1; D). If [S_,(5),G(d)] #
(0) then [S_,(8), G(8)] = §,(5), whence S_,(8) ¢ rad G(5). As rad G(§)
is a graded ideal of G(8) we then have dim G[8] > p. Using [St 89/1,
(4.1), (4.2)] (combined with [P 94, Theorem 2]) we derive that H(2;1)® c
G[8] € H(2;1). Now [P-St 99, Corollary 3.6] yields that & is Hamiltonian
and, moreover, § is proper if and only if S,(8) is a proper section of S,,.

If [S_1(8),G(8)] = (0) then L () is an ideal of L(§) (for L(5) =
L _,(8) by (c)). As S has codimension 5 in Der § (see (b)),

dim L(8)/rad L(8) < dim L(8) /L ()
=dim S_,(8) + dimGy(5)
<(p—-1)+dimSy(8) +5
=2p+4<p?-2.
In view of the final remark in (c), § is improper Witt. Then
(Ly(8) +rad L(5))/rad L(5)
=5,(8) =W(1;1) =L[6] =L(58)/rad L(4);

hence L(8) = L,(8) + rad L(8). Therefore, the equality [S_ (8), G,(8)]
= (0) implies that S,(8) is an improper section of .

(e) We now view ®(T) as a 2-dimensional torus in S, = W(1; 2),.
According to [St 92, Sect. 5], [T(S,, ®(T))| = p* — 1, dim So., = 1 for any
v e T(S,, ®(T)) U {0}, and one of the following occurs:

(D all roots in T'(S,, ®(T)) are improper Witt;

(2) all roots in T'(S,,®(T)) are proper, dim ®(T) N S, = 1, and
each y € T'(S,, (7)) satistying y(P(T) N S,) # 0 is Witt.

First suppose that (1) holds for ®(7). Then any 8 € I'(L,T) has the
property that S,(8) = W(1; D). If [S_,(8),G,(8)] # (0) then 6§ € I'(L,T)
is improper Hamiltonian by our discussion in (d). If [S_,(8), G,(8)] = (0)
then & is improper Witt (again by (d)). But then all roots in T'(L, T) are
improper contrary to the optimality of T. Therefore, (2) holds for ®(7).

Let a € T'(S,, ®(T)) be such that a(P(T) N S,) # 0. Then Sy(a) =
W(1; 1) is a proper section of S,. Now «a is a root of L. By the final remark
in (d), we must have [S_,(a), G,(a@)] # (0). Then « € I'(L, T) is Hamilto-
nian proper. Let B € I'(L,T) \ F,« and let W be a composition factor of
the L(a)-module ¥, g, L Clearly, dimW < ¥, ¢ dim G

B+ja: B+ja
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Tjer, dim Sp 5, < dim § = p*® — 2. As L(a)/rad Ly(a) =
G,(a)/rad G (@) contains an ideal isomorphic to W(1;1) we have that
L(a) # L(a) + rad L(a) (otherwise Lla] = L (a)/rad L (a) which
is false since « is Hamiltonian). It also follows that L,(«) does not map
into H(2;1), under the epimorphism L(a) — L[a]. Since this contra-
dicts Lemma 3.2 we conclude S # H(2;(2,1)® as desired. |

Finally we are going to use some deformation theory to show that § is
not isomorphic to the restricted Melikian algebra g(1,1). Our arguments
employ a 1-parameter family of restricted Lie algebras introduced in [Sk
98, Sect. 5] and the main theorem of [P 87].

PROPOSITION 4.19. Let W be a nonzero restricted §(1,1)-module, and let
t be a 2-dimensional torus in §(1,1). Then anny, t # (0).

Proof. Recall that g(1,1) is a restricted Lie algebra. According to [P
94, Lemma 4.4], TR(g(1,1)) = 2. Therefore, it suffices to prove the propo-
sition for any particular 2-dimensional torus in g(1,1) ([P-St 99, Corollary
2.11(1)]D. We use the description of g(1,1) given in [St 97, (3.6)] (the
notations of [P 94, Sect. 4] and [Ku 91] are slightly different). We have that

a(1,1) = w(2;1) ® 4(2;1) @ W(2;1),

where the direct summands on the right are the homogeneous components
of the natural (Z /37)-grading of g(1,1). We assume that

t = Fx,d, ® Fx,d, Cc W(2;1) c g(1,1).

Let g(1, 1), denote the ith component of the standard filtration of g(1,1)
(it has depth 3). Obviously, g(1, 1), is a restricted p-nilpotent subalgebra
of g(1,1). By Engel’s theorem, the subspace W, = {w € W | g(1,1)y,-w
= (0)} is nonzero. Suppose {94~ '-w = 0 for some nonzero w € W,,.
Note that x{"x’géj € g(1, 1), whenever m + n > 1, j € {1,2}. So using the
definition of W, and the multiplication formula on [St 97, p. 145] it is easy
to see that

0= (xp~ g~ )ap g~ e w

= (=" =) ((ad 22)" (ad )" (e e 7)) w

g-w (j=1,2).
As AQ; l)(l) c g, 1)(1), one obtains
0= [xi, aj] w=(x,0)w

for all i, j € {1,2}. Hence w € anny, t.
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Thus from now on we may assume that ¢/ %94~ '-w # 0 for any
nonzero w € W. Note that t normalizes g(1, 1), hence stabilizes W,. As
W, # (0) there is w € W\ {0} such that ¢-w = AM#)w for any ¢ € t,
where A is a linear function on t. As W is a restricted t-module,
Mx;d,) € F, (i =1,2). Choose a,b <{0,1,...,p — 1} such that a =
Mx,d,), b = Xx,d,) (mod p). Then 0 # 9%92-w € ann, t. |

LeEmMA 4.20. S z g(1, 1).

Proof. (a) Suppose S = q(1,1). By [Ku 91], all derivations of S are
inner (see [St 97, Theorem 3.37] for a shorter proof of this result). Since
ad § ¢ G ¢ Z c Der S we have that G = & = §.

Suppose M(G) # (0). Let W be a composition factor of the nonzero
G-module M(G)/M(G)?. Using Lemma 4.2(2) it is easy to see that W is a
restricted S-module. As before, we identify 7" with its image under the
homomorphism %, — Der, G = S,. By Proposition 4.19, ann,, T # (0).
However, T has no zero weight on L /L, (as C,(T) C L,). This contra-
diction shows that M(G) = (0) and G = S.

Given i € Z define

Der L == {D € Der L | D(L(;)) € L, ;, forall j}.

(i)
Then (Der;,L),., is a filtration of Der L. The associated graded Lie
algebra gr(Der L) injects into Der(gr(L)) = Der G = S. It follows that
dimDer L < dim S. On the other hand, dimad L = dim L > dim §. We
deduce that all derivations of L are inner. Then L carries a restricted Lie
algebra structure.

Thus L is a filtered restricted Lie algebra, and gr(L) = S. Since the
filtration of L is exhaustive and separating, Skryabin’s result [Sk 98,
Lemma 5.5] shows that there exists a restricted Lie algebra & over the
polynomial ring F[¢] such that # is a free module of finite rank over F[¢]
and there are isomorphisms of restricted Lie algebras £/t¥ =S and
Z/(t — VZ = L for any nonzero A € F.

(b) Following [P 90] we say that a Cartan subalgebra §) of a finite
dimensional restricted Lie algebra g over F is regular if the subspace [
of all [ p]-semisimple elements in §) is a torus of maximal dimension in g.
It is proved in [P 87, Theorem 1] that for any regular Cartan subalgebra
of g, one has

dim ) = rk(g) = min{dim g% | x € g},
where g ={y € g | (ad x)™9(y) = 0} is the nilspace of the adjoint en-

domorphism ad x. We mention that for any y € g such that dim g° y =
rk(g), the nilspace g° y is a Cartan subalgebra of g (this is a standard fact
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of Lie theory). Write the characteristic polynomial of ad u, where u € g,
in the form

det(X— ad u) = i l/jl-(Lt)Xi,
i=0

where m = dim g and (1) € F. By linear algebra, ¢, is a homogeneous
polynomial function of degree m — i on g. Then the rank of g has the
following description:

rk(q) = minf{i | ¢, # 0}.

From this it follows that rk(q) = rk(q ®, F) for any field extension F/F.
(¢) Now let E denote the algebraic closure of the field of rational
functions F(¢) and %, =% &,; E. We claim that

k(L) =rk(L) = rk(S).

Since TR(L) = 2, T is a torus of maximal dimension in L = L,. There-
fore, H = C,(T) is a regular Cartan subalgebra of L. Identifying 7" with
its image in S, = Der, S we obtain in a similar manner that Cy(T) is a
regular Cartan subalgebra of S (for TR(g(1,1)) = 2). Since S = gr(L) and
T normalizes all components L, of our filtration, we also have that
dim H = dim C(T). So applying [P 87, Theorem 1] now yields

rk(L) = dim H = dim C4(T) = rk(S).

Let ey,...,e, be a basis of the free F[¢]-module &, u = ¥ x,e;, and

L

det(X —adu) = Y V(x,,...,x,) X",

i=r

where W, # 0. By our remarks earlier in the proof, r = rk(Z &, F(1)) =
k(). Given X € F let u'M denote the image of u under the epimor-
phism

L& Flx,,....,x,] > (Z/(t = N)Z) & F[xy,...,x,].

Since .Z is free over F[¢], u™ can be viewed as a generic element of the
Lie algebra #/(t — M. Now each ¥, is a homogeneous polynomial in
X,...,%, with coefficients in F[¢]. Let ¥ denote the polynomial ob-
tained from ¥, by specializing ¢ to A. It is easy to see that the characteris-
tic polynomial of the endomorphism ad u of #/(t — \)Z equals

det( X —adu™) = Y ¥MV(x,...,x,) X"

i=r
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Since F is infinite there is a nonzero A, € F such that ¥(* + (. But then
k(L) = r = rk(Z/(t — 2y)F) = rk(L). The claim follows.

(d Let ¢, : ¥ —Z/(t — M2 denote the canonical epimorphism. By [P
94, Lemma 4.4], S = ¢,(¥) contains a nontriangulable regular Cartan
subalgebra. It follows that there is & €% such that (¢,(£))] ,, is a
r-dimensional Cartan subalgebra of ¢,(#) whose derived subalgebra
contains an element acting nonnilpotently on ¢,(#). Obviously, % is an
F[t]-submodule of Z, and it is not hard to see that the quotient module
Z/%) is torsion-free. But then % is a direct summand of the F[¢]-mod-
ule .7 and a free F[¢]-module (see, e.g., [B1, Ch. VII, Sect. 4, and Sect. 2,
Theorem 1]). Clearly,

rkF[t](%o) =dim, /(¢ — 1))

for any A € F. Moreover, % /(1 — M), embeds into (¢,(£)) ;). On
the other hand, . ® E = (Z,)) as vector spaces. Therefore,

rhp(Z0) = dim( %)y = min{dim( %)} |x € 4} = k(%) =r.
By the choice of 4,
. 0 .
r= dlm( QDO(’(Z))sz(h) > dim Z,O/fa%o = rkF[t](“%zO)'

We deduce that 7k, (Z)) =r.
There exist gy,...,q, € F[t] such that & = ¥ g;e,. Clearly, det(X —
ad h) = X, V¥(q,,...,q,)X". From this it follows that

det(X — ad ¢(h)) = i:‘l’i“)(ql(/\),...,qn()\))Xi,

for any A € F. Since r = rk(Z/t.%) we have ¥"(q,(0),...,q,(0)) # 0 (by
our choice of h). But then ¥(q,,...,q,) is a nonzero polynomial in ¢,
hence there is a finite subset , C F such that ¥M(g,()),...,q, () =0
if and only if A € Q,.

Let v,,...,0, be a basis of the F[t]-module . By the choice of h,
there are wi; € F, where 1 <i <j < r, such that

“d( )» I-Lij[ @o(V:), ‘Po(Uj)])
i<j
acts nonnilpotently on ¢, (%). Set

vi= ) /’Lij[Uh Uj]-

i<j
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Then v €% and @) = X, ; wle(v), ¢(v)] for any A € F. Write
v =X g;e; with g, € F[t]. One has

det( X — ad ¢,(0)) = L ED(g(A).... g,(1)) X',
Since ad ¢(v) is not nilpotent, ¥*(g,(0),..., g,(0)) # 0 for some s. Then
there is a finite subset Q, C F such that ¥M(g,(A),..., g,()) = 0 if and
only if A € 0.

Let § S F\Q U Q, U {0} and §, = (%(3))4: - By the choice of ¢,
b, =% /(t = £)Z is an r-dimensional Cartan subalgebra of /(¢ —
£)Z and ¢.(v) € HY” acts nonnilpotently on Z/(r — £).Z. Recall that
Z/(t— EF=L. By Lemma 2.1, §, contains a 2-dimensional torus of
Z/(t — €)Z. As D, is nontriangulable this torus is not standard. As
L # g(1, 1) this contradicts [P 94, Theorem 1] completing the proof. |

We summarize the results of this section as follows.

PrROPOSITION 4.21. Let (T, p, L) be an admissible triple. Choose
a standard filtration L =L _ D =+ DLy D =+ DL . =(0) such
that L _y /L, is Lgyirreducible and denote by G the associated graded
Lie algebra gr L. Then G is simple and, moreover, a counterexample to
Theorem 1.1.

Proof. Set G = G /M(G). We proved in Section 3 that G has a unique
minimal ideal A(G). Proposition 3.5 yields that A(G) = S is a simple Lie
algebra. Lemma 4.3 shows that TR(S) = 2 while the results of Section 4
prove that S is not listed in Theorem 1.1. By the minimality of dim L,
dim S = dim L; i.e.,, S = G. This proves the proposition. [

5. GRADED COUNTEREXAMPLES

In this section we investigate certain graded simple Lie algebras g =
®._, g; with TR(g) = 2. Most of the graded Lie algebras we encounter
will satisfy the conditions (g1), (g2), (g3). Our first result (based on [P-St
99, Sect. 7] provides some information on the structure of a,- We set
Qo) = Yiso G

PROPOSITION 5.1. Let g = ©,_, q; be a graded simple Lie algebra over
F satisfying (g1)—(g3), and §, the p-envelope of g, in Der g. Suppose
TR(g) = 2 and there is a 2-dimensional torus t C §, such that C (1) C g .
Suppose in addition that g is not a Melikian algebra. Then one of the

following occurs:

@ §o=wl;D e A1), dimg_, =p, W(I; D, ® AQ; 1), acts
nilpotently on g _,, and C(§,) is a 1-dimensional torus;
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b)) §,=Ww1; 1D e C(§y),dim g_; < p, and C(J) is a 1-dimensional
forus;

© a,=3lQ2) & C(§,) and C(§,) is a 1-dimensional torus;

(d HQ;D? cg,/C(§,) cH2;1) and C(§,) is a 1-dimensional
torus;

(e) there exist S,, S, € {3[(2), W(1; 1), HQ2; D®} such that S, ® S, C
ao =3, € (DerS)P @ (Der S,)Y;

® g,=8,= ® A0; D) & (Id;g ® W(; 1), where S €
{512, Ww(1; D};

(@ HQZ;D® ® A(m; 1) c §, € Der(H2; D® ® A(m; 1), m > 1,
t c Der H2; D® ® F and dim G _, = (p* — 2)p™;

(h) HQ; 1; ®(w)P ® A(m; 1) c §, € Der(H2; 1; ®(r)D ®
A(m; 1)) and m > 1,

(i) Scg,cd, cDerS, where S is a simple Lie algebra with TR(S)
= 2.

[N

Proof. (1) Suppose rad §, # (0). Then [P-St 99, Theorem 7.5] applies to
g. If g, is as in case (a) of that theorem then g = W(1;2) and g, =
W(1;2), (see [P-St 99, p. 281] for more detail). Since W(1;2), is a
restricted subalgebra of Der W(1;2) (see, e.g., [St 97, Corollary 3.24]), this
implies that g, = d, is 1-dimensional. So there is no room for t in §,.
Thus g, is nonsolvable. The other possibilities left by [P-St 99, Theorem
7.5] involve restrictable algebras only. Thus §, = g, + C(§,). Let x €
C(q,) be such that [x,g_,] = 0. By (g2), (g3), x must annihilate g; i.e.,
x = 0. Since g_, is g,-irreducible, we conclude dim C(§,) < 1. Suppose
C(d,) = (0). Then there is not enough room in §, = g, for a 2-dimen-
sional torus. Hence dim C(§) = 1. Applying [P-St 99, Theorem 7.5] now
yields that ({,, g_,) is as in cases (a)—(d) of the proposition.

(2) From now on suppose that rad d, = (0). Let Soc d, denote the sum
of all minimal ideals of d,. As each ideal of g, is §,-stable, there are
minimal ideals /,,..., I, of g, such that Soc g, =1, ® -+ @ [, and IV = I,
for each j < I. Note that §, acts faithfully on Soc g,.

(i) Suppose /> 2. As [ < ¥!_, TR(I)) < TR(g) = 2 we then have
[ =2 and TR(I,) = TR(I,) = 1. By Block’s theorem, there are simple Lie
algebras §;, S, and nonnegative integers m;, m, such that [, =S, ®
A(m; 1), j =1,2. Since TR(S)) < TR(I)) = 1, j = 1,2, we must have that
Sl,S e {3((Q,w(; 1), HZ; 1)(2)} (by [P 94, Theorem 2]). Let S denote
the p-envelope of §; ® F in §,. For j = 1,2, let h; € §; be such that
ad s, h; is not nilpotent. Let h; ; # 0 denote the semisimple part of h; ® 1

in §j, and set t' = Fh, @ Fh, . Then t’is a torus in {,, and a torus of
maximal dimension in the p-envelope of g in Der g (as TR(g) = 2). Put
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= C,(1"). By [P 94, Theorem 1], H' acts triangulably on g (otherwise

g would be a Melikian algebra). As t’ ¢ §, + S, we also have that

= (I, ® I,) + H'. This implies that I; is a minimal ideal of I, + H',

j =1,2. As H'Nn(S;® 1) > h; ® 1 acts nonnilpotently on I;, [P-St 99,
Lemma 1.8] shows that m i=0,7=12 Consequently,

S, ®8,cd,c(DerS,) ® (DerS,).

Since S,, S, are restricted Lie algebras (see above), one has S, ® S, =
S, @S, + C(S, ®S,). But {, acts faithfully on S, & S,. Then C(S, ® S,)
=(0) and S, ® S, is a restricted ideal of §,. As §, contains no tori of
dimension > 2, the restricted Lie algebra d,/(S, & S,) is p-nilpotent.
Therefore, if §; = H2;D® then adggq, € H(2;1) = (Der §)". Then
adg g, isa restricted subalgebra of Der S‘ If §;  H2; D? then Der S =

ad S Thus g, = @, in all cases, and we are in case (e).

(11) Suppose I = 1. Then Soc §, = S ® A(m; 1), where m > 0 and S
is a simple Lie algebra with TR(S) < 2. By Block’s theorem, §, can be
identified with a restricted subalgebra of Der(S ® A(m;1)) = (Der §) ®
A(m; 1) & (Idg ® W(m; D).

It m>0, TR(S)=1and S ® A(m;1) € §, < (S ® A(m; 1) ® (Idg ®
W(m; 1)) then [P-St 99, Proposition 7.7] shows that g, = (S ® A(1;1) &
(Idy ® W(1;1)) with S € {3[(2),W(1;1}. Then g, = Der(S ® A(1;1),
whence d, = g,. Then we are in case (f).

If m >0, TR(S) =1 and §, is not as in the former case, then § =
HQ2; D®. As C, (1) N g_; = (0) the semidirect product (Soc §,) ® g_, is
as in case (2b) of [P-St 99, Theorem 3.2] with ¢z, = 0. In particular,
a_, = U ® A(m;1) where U is described in [P-St 99, Theorem 3.1(c)].
Since dim U = p? — 2 we are in is case (g).

Now suppose m > 0 and TR(S) = 2. Let t, be a 2-dimensional torus in
the p-envelope of S in Der S. Then t, ® F is a 2-dimensional torus in {,,.
Set H, = C, (t ® F). Since [t, ®F g,l €8 ® A(m;1) we have that
qQop = S ® A(m 1) + H,. By [P 94, Theorem 1], H, acts triangulably on g.
Applying [P-St 99, Lemma 1.8] yields that H, N (S ® A(m; 1)) consists of
nilpotent endomorphisms of § ® A(m; 1). This, in turn, means that Cy(t,)
acts nilpotently on S. But then any 1-section of S relative to t, is nilpotent
(by the Engel-Jacobson theorem). Combining the Block—Wilson inequal-
ity [P-St 99, Theorem 6.7] with [P-St 97, Theorem 8.3] we deduce that
S = H(2; 1; ®(r))D. This is case (h).

Suppose m = 0 and TR(S) = 1. Then S c §, € Der S. Since the torus
t € g, is 2-dimensional and S € {3((2), W(1; 1), H(2; 1)®} we must have
S = H(2; D). By [P-St 99, Proposition 7.6], C,(t) N g_; # (0) contradict-
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ing one of our initial assumptions on g. Thus the case under consideration
does not occur. In other words, if m = 0 then TR(S) = 2 and we are in

case (). 1

LEmMA 5.2. Let q = @©,_, q; be as in Proposition 5.1. If g, is as in
case (1) of Proposition 5.1 suppose in addition that S is listed in Theorem 1.1.
Then there is a 2-dimensional torus t' C §, such that all roots in T'(q, t') are

proper.

Proof. (1) We first construct a 2-dimensional torus t’ C §, such that
all roots in I'(§,, t') are proper. Since 0 & I'(§,, t') by definition, one has
I'(gy, t") = I'(gy, t).

(a) Suppose §, is listed in cases (a)—(d) of Proposition 5.1. Then C(g,)
is a 1-dimensional torus. Choose a noncentral toral element & € 3,
stabilizing the standard maximal subalgebra of §,/C(d,) (f §,/C(§,) =
3[(2) we allow & to be any noncentral toral element of §,). Let t' = Fh
® C(§d,), then t’ is a 2-dimensional torus of §, and, by construction, all
roots in T'(g,, t") are proper.

(b) Suppose §,, is as in case (e). Then S, S, are restricted subalgebras
of @, = g,. Choose proper tori Fh, and Fh, of S, and §,, respectively,
and set t':=Fh; & Fh,. Since g,=S, + S, + C,(t"), all roots in
I'(g,, t") are proper. Suppose §, is as in case (f). Let Fh be a proper torus
of S and t' = (Fh ® 1) @ (F Idg ® xd /dx). By construction, all roots in
I'(g,, t") are proper. Suppose §, is as in case (g). Then t = t, ® F with
some 2-dimensional torus t, € Der H(2; D®. Set Fh = t, N H(2; D®. By
[Dem 72], we may assume that either Fh = F(x,d, — x,4d,) or Fh = F((1
+ x,)d; — x,3,). A suitable toral switching yields another 2-dimensional
torus t' = t{, ® F such that t) N H(2; D® = Fh' = F(x,d, — x,3,). As
[A', t,] = (0) we obtain that t/, normalizes H(2; l)(z)(o). Then [B-W 82,
Theorem 1.18.4)] shows that t is conjugate to Fx,d, + Fx,d,. [St 92,
Theorem IIT.4] now implies that all t{,-roots are proper. Then all roots in
I'(g,, t") are proper as well.

Suppose {, is as in case (h). Set t' == t, ® F, where t, is a 2-dimen-
sional torus in the semisimple p-envelope S, of § = H(2; 1; (7). We
mentioned in the proof of Proposition 5.1 that every 1-section with respect
to t’ is nilpotent. Define a'(#) = a(t ® 1) for t€t,. Then (S ®
A(m; DXa) = S(a’) ® A(m; 1) is nilpotent as well. As (S ® A(m; D) a) is
an ideal of d,(a) and §,(a)/(S ® A(m; D) a) is nilpotent, every root in
I'(§,, t") is solvable, hence proper.

Finally, suppose that §, is as in case (i). Then S c g, € @, € Der S,
where § is a simple Lie algebra listed in Theorem 1.1.
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If S is a classical Lie algebra of rank two, then §, = S. Let t’ be any
2-dimensional torus of S. A standard argument involving the Killing form
on S shows that all roots in I'(§, t') are classical (hence proper).

Suppose that S is a restricted Cartan type Lie algebra. If § = W(2;1) or
K(@3;1) then DerS = § (see, e.g., [St-F, (4.8.5), (4.8.8)]. If S = S3; DD
then Der § = S(3;1) @ Fx,d, (see [St-F, (4.8.6), (4.3.6)]. As §d, has no tori
of dimension > 2 we must have §, C S(3;1) in that case. If § = H(4; D!
then DerS = H(4;1) & F(Z!_, x,3,) (see [St-F, (4.8.7)]. It follows that
d, C H(4;1) in the latter case. Let t’ be any 2-dimensional torus con-
tained in the zero part of the standard grading of S, and a € T'(§,, t'). If
S is of type W, S or K then using [St 92, Theorems IX.3, IX.4, IX.6] it is
easy to see that §,(a) contains a t'-stable compositionally classical
subalgebra of codimension < 1. As a consequence, « is a proper (and
non-Hamiltonian) root of &,. Suppose § = H(4; D and put &, = @,
N H(4; 1), Adjust t' according to [St 92, Theorem IX.5]. By that theo-
rem, there are Hamiltonian proper roots B;, B, € I'(§,, t') such that for
any y € I'(§, t)\ (F, B, U F,B,) the I-section §,(y) is contained in
To.0) Since g )/1ad §, o, = $p(4) any such y is either classical or
solvable. As a consequence, all roots in T'(g,, t') are proper.

Suppose § = W(1;2) and let S, denote the semisimple p-envelope of S.
According to [St 92, Theorem V.4] or [B-W 88, Lemma 11.1.1], there is a
2-dimensional torus t’ € S, such that all t'-roots of S are proper. As
ao(y) = S(y) + C, (,(t) for any y € T'(g,, t") it follows that all roots in
I'(g,,t") are proper as well.

Suppose § = H(2;1; A). It is mentioned in [B-W 88, Lemma 2.1.8] that
S, =Der H(2;1;A) = H(2; 1; A) + Fx,d,. Set t' = Fx;d, ® Fx,d,. Since
all roots in W(2; 1) with respect to t' are proper, so are all roots in g.

Suppose S = H(2;1; ®(7))'" and let S, be as before. By [St 92, Theo-
rem VII], any 1-section with respect to a 2-dimensional torus in t’' C Sp is
nilpotent. As go(y) = S(y) + C; (") for any y € T'(g,, t"), all roots in
I'(g,, t") are solvable, hence proper.

Suppose S = H(2;(2,1)®. By [B-W 88, Lemma 10.1.1] (which only
requires the classification of simple Lie algebras of toral rank 1, hence is
available for p > 3), there is a 2-dimensional torus t’ such that I'(g,,t’)
= I(g, t").

If S = g(1,1) then the semisimple p-envelope of g contains a nonstan-
dard 2-dimensional torus ([P 94, Lemma 4.1]). As TR(g) = 2 we then have
g =g(1,1) (by [P 94, Theorem 1]). This contradicts one of our initial
assumptions on g.

(2) Thus there exists t' C §, such that all roots in I'(g,,t’) are proper.
We claim that all roots in T'(g, t') are proper as well. Let « € T'(g,t') be
a nonsolvable root. Clearly, g(a) = @,_, g(a) N g; and rad g(a) =

1

@, _,(rad g(a)) N g; (see [P-St 99, p. 285] for more detail). Therefore,
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the quotient algebra g[a] = g(@)/rad g(«a) is Z-graded:

gla] = 2 glali,ala]i=g(a) Nng;/(rad g(a)) N g,.

As explained in [P-St 99, pp. 193, 194], t’ stabilizes rad g(«) and gla] =
(t" + gla)) /(1" N ker @ + rad g(a)), and the image of t' in gla]is a
maximal torus in g[ «] spanned by a nonzero toral element ¢ € g[a]. As
t’" € @, we have that [¢, g[a];] € g[a]; for any i € Z. As a consequence,
t € g[a], (for gla]is centerless).

(a) Suppose a is Hamiltonian. Then H(2; D® c gla] c H(2;1) C
W(2;1) and there is a generating set {u,,u,} C A(2;1),, such that the
grading of g[«]is induced by (a,, a,)-grading of W(2; 1) relative to {u,, u,}
(Proposition 4.8). Suppose a,a, # 0. Then it follows from [P-St 99, Corol-
lary 3.4] that g[a], € H(2; 1) N W(2; l)(oy Then t € H(2; l)(())- As a conse-
quence, t' stabilizes the preimage of gla] N H(2; 1), in g(a). This, in
turn, shows that « is a proper root of g. Now suppose that a, = 0, a, # 0
(the case a, # 0, a, = 0 is absolutely similar). Then g[a], = W(1; 1) (by
[P-St 99, Corollary 3.4(2), (5)]. As « is a proper root of g, applying [P-St
99, Corollary 3.6(2)] now yields that « is a proper root of g. Finally,
suppose a; = a, = 0. Then gla] = g[a], whence g(a) = g(a) N g, +
rad g(a). As « is a proper root of g, we again obtain that « is a proper
root of g. Thus all Hamiltonian roots in I'(g, t') are proper.

(b) Suppose a is Witt. Then gla] = W(; D). If gla] = g[a], then
a(a) = gla) N g, + rad g(a); hence « is a proper root of g. Assume
that g[a] # glal,- Then Theorem 4.7 says that there is an automorphism
o of A(1;1) and a nonzero a € Z such that the grading of g[ @] is nothing
but the a-grading of W(1;1) relative to o (x). In other words, there is an
isomorphism 7 : g[a] = W(1; 1) such that 7(g[«],;) = W(1; 1),, where the
grading of W(1;1) is a canonical one. As ¢ € glaly, it stabilizes the
(unique) standard maximal subalgebra of g[a] Then a € I'(g,t’) must
be proper. This completes the proof of the lemma. |[i

We now begin an investigation of the pairs (G, t), where

(5.1) G is a simple Lie algebra with TR(G) = 2, and a counterexam-
ple to Theorem 1.1;

(5.2) G is Z-graded, and the grading G = ©,_,
the conditions (g1), (g2), (g3);

(5.3) t is a 2-dimensional standard torus contained in the p-en-
velope of G, in Der G, and all roots in T" :== I'(G, t) are proper;

(5.4) the subalgebra R(G,t) == C.(t) ® X,er R(G,1) is con-
tained in Gy, == L;. (G

G, of G satisfies
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(5.5) any simple Lie algebra g with TR(g) = 2 and dim g < dim G
is listed in Theorem 1.1.

We denote by & the set of all pairs (G, t) satisfying (5.1)—(5.5).
PROPOSITION 5.3. © # .

Proof. Let (T, a, L) be an admissible triple. Let L _,, be any L, -in-
variant subspace such that L D L _, 2 Ly, and L_,,/L, is L-irre-
ducible, and let G = gr(L) be the graded Lie algebra associated with the
standard filtration of L induced by (L), L _,,). By Proposition 4.21, G is
simple and a counterexample to Theorem 1.1. We identify 7 with a
2-dimensional torus in the p-envelope of G, in Der G (which we can in
view of Lemma 2.1). The pair (G, T) satisfies the conditions of Lemma 5.2
(for dim G, < dim L in case (i) of Proposition 5.1). Lemma 5.2 says that
there is a 2-dimensional standard torus 7' in the p-envelope of G| in
Der G such that all roots in I'(G, T") are proper. The pair (G, T') satisfies
the conditions (5.1)-(5.3) and (5.5).

Let (g,t) be a pair satisfying (5.1)-(5.3) and (5.5) and such that
dim R(g, t) is maximal possible among all such pairs. We now start all
over again replacing (L, T) by (g, t). Choose an admissible triple (t, a, g )
(we do not require that g, be homogeneous with respect to the Z-grad-
ing), take g _,, as before, and let S denote the graded Lie algebra
associated with the standard filtration of g induced by (g, a.-). By
Proposition 4.21, § is simple. As before, we identify t with a 2-dimensional
torus in the p-envelope of S, in Der S. By construction, the pair (S, t)
satisfies (5.1), (5.2), and (5.5).

We claim that (S, t) satisfies (5.3) as well. According to Lemma 2.1 we
have to show that I'(S, t) = I,(S, t). As (, @, gy)) is admissible, R(g,1)
C g Also, gr(R(g, 1)) is a subalgebra of gr(q) = § contained in gr(g )
=Yi.0S. Let x€gr{R,) and y €S, . If j # —i then [%,7] € S,,;
acts nilpotently on S. Now assume j = —i and choose x € R, N g +
Qo+ and y € g, + G4y such that gri(x) =% and gr_,(y) =
Then [x,y] = gry(x,yD € ([Ry, g_y] N Ggo + g(l))/g(l). Again we ob-
tain that [X, y] acts nilpotently on S. As a consequence,

gr(R(g,1)) CR(S,1).

Note that I'(S, t) = I'(g, t) (as subsets of t*) and I'(q, t) = Fp(g, t). Let
v € I'(g, t) be solvable, classical, or Witt. Combining [P-St 99, Theorem
8.6] with [P-St 99, Lemmas 1.1, 1.4] one observes that there is i € [F; such
that g, = R, (g,1). But then S, = gr(g,,) C R, (S, 1) € K, (S, 1). It fol-
lows that y € Fp(S, 1) (by [P-St 99, Lemma 1.1]).

Let w e T(S,1) be improper. By the preceding remark, u € I'(g, t)
must be (proper) Hamiltonian. Then t stabilizes the standard maximal
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subalgebra g(u)g, of g(w). Note that dim g(w)/g(u)g =2 and
a( ) /rad g(p),, = $0Q2). Clearly, dim S(u)/gr(g(u)g) = 2,
gr(rad g(u),) is a solvable ideal of gr(g(u)y) and gr(g(u)y))/
rad gr(g( w),) is a homomorphic image of the quotient gr(g(u),))/
gr(rad g( w))). The latter is 3-dimensional, hence either solvable or iso-
morphic to 3[(2). As a consequence, t stabilizes a compositionally classical
(or solvable) subalgebra of codimension 2 in S(w). If S(w)® = H(2; 1)?®
then it must be the standard maximal subalgebra. This, however, would
make u a proper root of S. Thus u is a Witt root of S.

As is explained in [P-St 99, pp. 193 and 194], t preserves rad S( w) and
acts as homogeneous derivations on S[ u] = S(u)/rad S( ), where the
Z-grading of S[u] = W(1;1) is induced by the present grading of S.
Suppose the grading of S[ ] is trivial. Then S(u) € S, + rad S( ) forcing

S[p]=W(1;1) = Sg[ n] = Sp( ) /rad Sy( 1).

Recall that S, = a,/aq, and g, is a nilpotent ideal of g . Therefore,
G ) /rad gp(m) = W(151).

By [P-St 99, pp. 193 and 194], there is a Lie algebra epimorphism

mit+a(p) > (t+a(w)/(tNkerp+radg(u))
= g[u] = H2: 1) + 7(Cy(1))

(we identify g[ u]® = H(Q2; D@ with D, (AQ; D)P c W(2;1)). Since u €
I'(g, t) is proper Hamiltonian we may choose 7 such that (1) = F(x,4d,
— x,d,). Then t stabilizes the subalgebra g () N g(w),. Therefore, t
stabilizes the subalgebra

M = Q(o)( /J«) N Q( /J«)(O) + rad g(())( :U“)'

Note that w(M) C w(g(u)g,) € H(2; 1), is solvable or compositionally
classical.

As C (1) € (), w(M) contains Dy, (x{~2x5~?). Suppose 7(g (1))
is a transitive subalgebra of W(2;1); i.e., it contains elements ¢, + E,
9, + E, with E,, E, € H(2;1),. It is routine to check that for p > 3,
the Lie subalgebra generated by d, + E,, d, + E, and D,(xP *x§"?)
coincides with H(2; D®. But then H(2;D® is contained in (g ()
contrary to the fact that g, (u) is of Witt type. As a consequence, the
linear mapping H(2;1) > H(2;1)/H(2;1),, is not surjective when re-
stricted to (g ,( w)). Therefore, the subalgebra (g () N g ) has
codimension <1 in 7(g (). Considering preimages it is immediate
that the compositionally classical (or solvable) t-invariant subalgebra
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o) N glu)g, + rad g,(w) has codimension < 1in g (w). This, in
turn, shows that t stabilizes a compositionally classical or solvable subalge-
bra of codimension < 1 in Sy(w). As S[ ] = Syl nl = S,(w)/rad S;(w)
= W(1; 1), this contradicts our assumption that u < I'(S,1) is improper
([P-St 99, Corollary 3.4(5)]).

Thus the grading of S[ w] is nontrivial. By Theorem 4.7, there are a
nonzero a € Z and an isomorphism 7:S[u]> W(;1) such that
7(S[ nl,;)) = W(1; 1),, where the grading of W(1; 1) is a canonical one. By
our earlier remarks, t acts on S[ u] via a restricted Lie algebra homomor-
phism ¥:t — S,[ u]. Hence 7(¥(t)) € W(1;1),. Then t stabilizes a solv-
able subalgebra of codimension 1 in S(w), forcing w € I,(S,t). This
contradiction shows that (S, t) satisfies (5.3).

We have mentioned above that gr(R(g, 1)) € R(S, t). By the maximality
property of (g, t), we therefore have that R(S,t) = gr(R(g, 1)) C Sy In
other words, (S, t) satisfies (5.4) as well, hence belongs to ©. |

In the next lemma, we assume that § = @,_, S, is a finite dimensional
Z-graded simple Lie algebra over F, and T a 2-dimensional torus in the
p-envelope of S, in Der S. We also assume that TR(S) = 2and S # g(1, 1.
However, we do not require that (g1)—(g3) hold for S and we do not
assume that Cy((T) c X,. S, Let I' =T(S,T) c T*\ {0} be the root
system of § relative to 7, H = Cy(T), and S=H & L . S, the root
space decomposition of S relative to 7. As S # g(1,1), H acts triangulably
on S. So each y € T can be viewed as a linear function on H (see [P-St 99,
p. 191] for more detail). Given i € Z and y € I' set K, , =S, , N K(S,T)
and R, , =S, , N R(S,T), where §; , =S, NS,.

LEMMA 5.4. For any u € T, the following are true.
1. Both K(S,T) and R(S,T) are homogenous subalgebras of S; i.e.,
K(S,Ty=He Y, Y K

ijm>
i€Z jely
R(S,T)y=H® oy R; .-
i€Z jeFy

2. Foranyie€ Z,dm$§,; /R, , <2dim$S; /K, ..

L =
Proof. (1) Let x € K (S, T), where j € F*. Then x = X, x,, where
x; €S, ;, (because each S, is t-stable). If k # —i, the subspace [x;, S;] C
S, . consists of ad-nilpotent elements of S, and
[*8_: u] © XlxSInH+ [x,5 ;]
k#i

cnil H+ [x,5_;,] € ker p.
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Hence x; € K, ;, for all i; ie., K(S T) is homogeneous. Arguing in a
similar fashlon one obtains that R(S,T) is homogeneous as well.

(2) Let RK;,,=K,,NRK(S,T) and v € I'(S,T)\ F,u. As
[RK, ,,K_; _,]1Cnil H, composing » with the Lie product of S induces a
linear map of RK; , into Hom(S_, _,/K_, _,F). As[RK; ,,S,] consists
of ad-nilpotent elements of S for k 9& —1i, the kernel of the map contains
R; ,. This gives dim RK; ,/R; , <dim §_, _ /K_, _ . Arguing in a simi-
lar fashlon one observes that p and the L1e product of S induce a
nondegenerate pairing between S; ,/K; , and S_;, _ /K_, _ . By [P-St

99, Theorem 8.6, K, (S,T) = RK (S T) forcing K; , = RK; ,. Therefore,

dimS, /R, , =dim S, ,/K, , + dim RK, ,/R, ,
<dim$, /K, , +dmS_, _,/K
=2dim S, ,/K; ,

—i,—p

as desired. ]

LEMMA 5.5. Let (G,t) € ©, and let uw € I'(G,t) be a Hamiltonian
root. The following are true.

1. IfH2;D® c Gy(w)/rad Gy(p) then G(u) € G,
2. Gy(w)/radGy(p) = W(; D).
3. If Go(w)/rad Go(p) = 3((2) then there are i, € F) and a positive
a € Z such that
@ G, € Gy, foralli+ +tiy;
() dimG,,/G, NG, <2 foralli € F};
© G(wW=G_, _;,+G_,;,+ Gew.
4. If Gy( ) is solvable then there are iy € F and a,, a, € Z such that
a, > a, >a, — a,, and
(@ G, €Gy, foralli+ iy, 2i;
() dimG,,/G, NG, <2 foralli € F};
© G(wW=G_, i, +G_ o _int Gourin T Go W

—ap s @z, —lok

Proof. Set M = G(w)/rad G(w). As rad G(u) is a graded ideal of
G(p) the Lie algebra M is Z-graded: M = ©,_, M;, where M, =
G (/G () Nrad G(w). As u is Hamiltonian, H(2 1)(2) CMcHQ2;.
As before, we identify M with a subalgebra of W(2;1) containing
Dy, (AQ2; l))(l). According to Proposition 4.8 the grading of M is induced
by the (a,, a,)-grading with respect to generators u,, u, of A(2;1). To
keep the notation simple we assume (without loss of generality) that
u,=x;,1=1,2.
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By [P-St 99, pp. 193 /94], t stabilizes rad G( w),
(t+G(wn))/(tNnkerp+radG(u)) =M

and the image of t in M is spanned by a nonzero toral element . As t
acts on G( ) as homogeneous derivations, t € (Dery M) N M = M,,. As
w € T'(G,1t) is proper, Ft is a proper torus of M. By using [P-St 99,
Corollary 3.4(5), (2)] one now easily derives that t € M, N W(2; 1),. The
description of M, given in [P-St 99, Corollary 3.4(2)(c), (5)] forces ¢ =
r(x,d, — x,3,) + D, where r € F¥ and D € M, N W(2; 1),,. Rescaling ¢
if necessary we may assume r = 1.

(1) Suppose H(2; 1)@ c M,,/rad M. Let 7 : G(p) = G(p)/rad G( ).
Then #(G(w) = 7(Gy(w), giving G(u) = G () + rad G(u) C
G + K(w). As K( ) is a homogeneous subalgebra of G( ) (Lemma
5.4(1)), this implies dim G, ;, /K, ;, = 0 whenever i <0 and j € F. Ap-
plying Lemma 5.4(2) we get G, ;. C R(G,t) c G, for all i <0 and all
J € F). Hence G(p) C G, in this case.

(2) Suppose M, /rad M, = W(1;1). Then it follows from [P-St 99, Corol-
lary 3.4] that either a, # 0 and a; = 0 or a, = 0 and a, # 0. By symmetry,
we may assume that a, # 0 and a, = 0. Since C;(t) C G,(w), [P-St 99,
Theorem 3.5(3)] shows that a, > 0.

By [P-St 99, Corollary 3.4Q)d)], Y7} Fxid,cM_, Cc Xr )} F)c'&2
Note that C M(t) C M, It follows that the restricted M0 -module M_,
has no zero weight relative to Ft. But [¢, Fx!~'9,]1 = FID,x!~'9,1n M _,

c W(2 D, ) NM_, =(). As a consequence xP~'%9, & M__ ; that 1s

M_, =Xl " Fxia,. The vectors x;d,, 0 <i <p — 2, have palrw1se dis-
tinct welghts relative to F(x,d, — x,d,) € M,. Applying [P-St 99, Corol-
lary 2.11(2)] shows that all weight spaces of M_, relative to Ft are
1-dimensonal. As [D,x?"%9,] € M_, N W(2; 1)( . 2) = (0) we have that
(4, xP7%0,] = [x,0, — xz&z,x1 9, ]— —xP7%9,; ie, M_, _, =Fx{7%,.
As p>3, [M_, _,,M]cC CM(t) N W(2; 1), consists of ‘ad- nllpotent
endomorphisms of M. Frorn this it is immediate that G_, _ v = K_, .

By Lemma 542 G_, _,=R_, _, G Asa, >0, this is 1mp0551ble
proving (2).

(3) Suppose M,/rad M, = 3((2). Then it follows from [P-St 99, Corol-
lary 3.4] that M, = 3((2) and a, = a, # 0. By [P-St 99, Theorem 3.5(3)],
a, > 0. Applying [P-St 99, Corollary 3.4(3)] now gives M = M_, + M,
and M_, =Fd, ® F9,. This implies that there is i, € [} such that

M., =M_ _,,+M_, . . andasin (1) one concludes
Gjin = Kjiw = Rj iy © Gy

whenever j < 0and i € [F;,*‘ \ {+i,}. But then
G( ,LL) < G—“z’—ioﬂ + G—“z,ioﬂ + G(O)( /‘L)'
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This establishes (a) and (¢). For (b), observe that, in view of Lemma 5.4(2),
dmG_, <2dim G /K 0, sin

s Eigpn = —dy, kg

<2dim M

—ay, tign

(4) Suppose M, is solvable. Then it follows from [P-St 99, Corollary 3.4]
that 0 # a, # a, # 0. Now ad ¢ is semisimple and preserves the factor
spaces H(2; )®/H(2; 1)(2)(0), H(Q2; 1)(2)(0 JH(2; 1)(2)(1), H(; 1)(2)(1)/
H(2;1D®,. By Eq. (12), Dy(x) eM_ a, Dy(x))eM_,, D L (x3) €
M, ., Dy(x3) €M, _,, Dy (x ix,) € M, , and Dy(x,x3) € M, . It fol-
lows that there exist

wy € H(2; l)(Z)(O) nM_,, w,y € H(2; l)(Z)(O) nNM_,,

ws & H(2§l)(2)(1) NM, 4, Wy & H(2§l)(2)(1) NM,, >

ws € H2; )%, N M, , we € H(2;1)% 0 N M,
such that

vy =Dy (x)) +w;, v,=Dy(x,)+w,, vy = DH(xlz) + ws,
vy =Dy (x3) +wy, vs=Dy(x{x;) +ws, V5= Dy(xx3) + ws

are homogeneous eigenvectors for ad ¢ whose respective eigenvalues are 1,
—1,2, =2, 1, —1. Set V== X¢_, Fu,. Clearly, V' is a homogeneous (ad t)
stable subspace of M. By construction, for any i < 6 there is i’ < 6 such
that [v;,v,] = A, i)t (mod C), (1) N H(2; 1)), where A, i") € F*. As a
consequence, V' N K(M Ft) = (0). On the other hand, [P-St 99, Lemma
1.1(5)] shows that K(M, Ft) has codimension 6 in M. This implies that
M=V @& K(M, Ft). Since

VeM , +M , +M, , +M, _,

+M, +M,

we obtain as in (1) that G(u) = K(u) = R(n) C G, whenever i &
{+a,, +£a,, +(a; — a,)}. Therefore,

M=M_, +M_, +M_, .+ My

G(p) = G—w( w) + G—\az\( m) + G—\al—a2|( m) + G(O)( ®)-

Now D,(xf *x$7%) € Cp,(x,9, — xza )N M, 3o +auy As adt is

sem1s1rnple and preserves H(2; D®,, ¢ /H2;DP,, ), there is w €

H2; D@, 5y 0 M, 34 +a, Such that
Dy(xf72x57%) +we Cy(t) N M,

(p—3)a;+az)*
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As C;(1) € G5, we must have Cy, (1) € M, forcing a, + a, > 0. Renum-
bering x, and x, if necessary we may (and will) assume that a; > a,.
Suppose a, < 0. Then a;, > 0 and Dy (x}) € M;_,,,,_, for 1 <i<p.
Since p > 3 and M has no more than three negative components, this is
impossible. Hence a, > 0. Consequently, a, > a, > 0. Then M = Fv, &
Fv, ® Fu, & (M, + K(M, Ft)). By the above, ad ¢ has eigenvalues 1, —1,
-2 on Fv,, Fuv,, Fu,, respectively. Let i,:= —u()”'. Then M =
M., ., +M_, . +M + My, + K(M, Ft). As in (1) this gives

—ay, —lgk —dag, Lok ay—ay,2ipn

Giin=Kjiw=R; 1, € Gy,

unless (j,1) € {(—ay, —iy),(—a,,iy),(a, —a;,2iy)}. In view of Lemma
5.4(2),

dim G,,/Gy,.;, < 2dim G, /K,, = 2dim M,,/K(M, Ft);, <2

for all i € F*. Finally, Dy(x3) € My, _, 5, As aj,a, #0 the pair
Q2a, - a],310§ is not contained in {(—a,, —i,),(—a,,iy),(a, — a;,2i,)}.
Hence 2a, — a; = 0. This completes the proof of the lemma. |

LEMMA 5.6. Let (G,t) € ©, and let n € T(G, t) be a Wiit root. The
following are true.

L IfGy(w)/rad Gy(w) = W(1;1) then G(n) C G,
2. Gy(p)/rad Gy(p) z 50(2).

3. Suppose G( ) is solvable. Then there are i, € FY and a > 0 such
that

(@ G;, € Gy, forall i+ iy
®) dimG,,/G,, N Gy <2 foralli € F¥;
© G(w) =G_, .+ Gelw.

Proof. Set M = G(u)/rad G(w). As rad G( ) is a graded ideal of
G(w) = ®,_, G(p), the Lie algebra M is Z-graded. Namely, M =
®._, M;, where M; = G(u)/G,(n) N rad G(p).

(@) Suppose G,(w)/rad Gy(p) = W(1;1). As rad G,(n) contains

0( w) Nrad G(w) and M = W(1;1) by assumption, we must have M =

Lt follows that G(u) = Go( ) + rad G(u) € G,(w) + K(w). Hence
G,- ju=K;;, forall i <0 and all j €[F}. Applying Lemma 5.4(2) gives
ij R(G t) whenever i <0 and j € [F* Since R(G, 1) C G, state-
ment (1) follows.

(b) From now on suppose that G, (w)/rad G,(w) £ W(1;1). This
implies that M # M. The grading of M induces a nontrivial grading of
W(1;1). By Theorem 4.7, there is a € Z\ {0} and an isomorphism
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7:M = W(1; D such that 7(M,,) = W(1; 1), for all i, where (W(1;1),); . ;
denotes the canonical grading of W(1;1). In other words, no generality is
lost by assuming that M; = (0) for j & aZ and M, = Fx'*'d/dx for
= —1,0,1,...,p — 2.

As a consequence, M, = Fxd/dx, so that dim G,(un)/G,(w) N
rad G(w) = 1. Then G( w) is solvable proving (2). Also,

M

e = Fx?™1d /dx C K(M, F);

hence G(,_, () = K,_»,(w). By Lemma 54(2), G ,_,(n) C
R (r-2a(G> 1) € G). This gives a > 0. Now it is clear that

M=M_,® Y M, and M_, = Fd /dx.

i>0

Now t stabilizes rad G(w) and (t + G(w))/(t N ker u + rad G(w)) = M
and the image of t in M is spanned by a nonzero toral element ¢ (see
[P-St 99, pp. 193 and 194]). Since ¢ € (Der, M) N M, we have Ft =
Fxd /dx. This implies that all weight spaces of M relative to t are
l-dimensional. Choose i, € [ such that M; , = Fd/dx. Then G(u) =
G + G + K(w). Applying Lemma 5 4 we now deduce that

—a,igp
G( :U«) = G—a,w + G(O)( M)
and, moreover,

dimG, /G, N G < 2.

Statement (3) follows completing the proof. |
LEMMA 5.7. Let (G,t) € S, and let n € T'(G,t) be a classical root.

The following are true.
L If Gy(w)/rad Gy(w) = 31(2) then G(n) € G,.

2. Suppose G( u) is solvable. Then there are i, € FY and a > 0 such
that

(@ G;, € Gy, foralli+ iy
® dimG,,/G,, N Gy <2 foralli € F¥;
© G(w) =G_, .+ Gglw.

The proof of this lemma is very similar to the proof of Lemma 5.6 and
will be omitted.

LEMMA 58. Let (G,t) € S, and let uw € I'(G,t) be a solvable root.
Then G(u) = G ().
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Proof.  Since p is solvable, G;, = K;, for any i € F;. Then G;,, =
K;;, for all j€Z and i€ F}. Now apply Lemma 5.4 and use the
inclusion R(G,1) € G). |

Set T' :=T(G, 1). For k € Z, set T, = T(G,, 1), and put T'_= U, _,T.
We summarize as follows.

LEMMA 5.9. Let (G,t) € © and u € T. The following are true.

L FfunT_[<3 and [T(G_;,DI<3(p+D; if [FifunT_|=3
then w is Hamiltonian, G () is solvable, and either I[Fp nN Ll <1 forall
J<0or FyunTy ={—iyu,2iyu} for some iy € by and j, < 0; if [Fyp
ﬂ r_|= 2" then ,u 'is Hamiltonian, G ( w)/rad G ( ,u) = 30(2), and [F*[.L N

= {+i, u} for some 10 € by and j, <0;

2. dimG,/Gg, , <

3. IfGy(u)/rad Go( /.L) = W1, 1), then G( ) = Gy ).

Proof.  All statements follow immediately from Lemmas 5.5-5.8. |

6. CONCLUSION

In this section, we are going to finish the proof of Theorem 1.1. Our
arguments will rely on Kac’s recognition theorem ([Kac 70, B-G-P]). To
apply the recognition theorem we are going to show that for any (G, t) €
S, the graded component G, is classical reductive. Let G, denote the
p-envelope of G, in Der G.

LEMMA 6.1. If (G,1) € & then either G, = g[(2) or G, = G, is classi-
cal simple of type A,, C, or G,.

Proof. (1) Suppose G, is as in cases (a) or (b) of Proposition 5.1. Our
argument is based on the following observation made in [B-W 88, (7.4)].
Let O be a subalgebra of codimension 1 in G, containing t and acting
triangulably on G. Fix k > 1 with G_, # (0), and a nonzero x € G_,
such that [Q, x] C Fx. Since x & R(G, 1) there is a root vector y € G,
such that h =[x, y] € C; (1) acts nonnilpotently on G. Given y € I'_,
with y(h) # 0 one has

Gy, [h G_y. y] < [xs[y’G—k]] + [y’[x’Gfk]]
clx.Gl+ X [»G sl

mET _y

As Q contains t there is a root vector w € G, such that G, = Q + Fw.
Clearly, [x, G,] € Fx + F[x,w]. Therefore,

T_l<{yeT_ ly(h) =0} +2+IT_,l (20)
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Suppose G, is as in case (a) of Proposition 5.1. Then w; D, @
A(1; Dy € Gy acts nilpotently on G_ . It follows that Q = W(1; 1), @
A(1;1) acts triangulably on G_,. As G satisfies (g1), (g2), (g3), Q acts
triangulably on G. As all roots in I" are proper t must normalize Q. From
this it is immediate that t € Q. Thus Q satisfies all the requirements
mentioned above.

Note that C(G,) = F1 c A(1;1) is a 1-dimensional subtorus in t. So
there is & € I such that G, = G,(«) and «(1) = 0. Note that G, = G{",
whence G, = G,. As G,(a)/rad G, () = W(1;1), Lemma 5.9(3) yields
G(a) € G, In other words, 1 € t acts invertibly on each G, with k < 0.
This forces G_, = (0).

Choose s > 1 such that G_, # (0) and G_,, = (0). Then s <p and
1 €t acts invertibly on G_;. By [P-St 99, Theorem 2.6], t is conjugate
under an automorphism of G, to F1 ® FxJ. Note that J and x € A(1;1)
are root vectors with respect to F1 @ Fxd, and Fd @ Fx & F1 is a Heisen-
berg Lie algebra. It follows that there exist u € G ,, and v € G, _,,,, for
some r € [, such that [u,v] = 1. Representation theory of Heisenberg
Lie algebras now yields that I'_{ = B + [, for some g € I'\ F,a. Then
y e T'_ ly(h) = 0} < 1. Setting k = s in (20) gives [T_|<1+2+0<
p- This contradiction excludes case (a).

Now suppose G0 is as in case (b) of Proposition 5.1. Then G0 w(1;1)
®C(G,) and C(G,) = Fz, where z is nonzero toral element. As in the
former case there is @ € I' such that G, = G((a) and a(z) = 0. Since «
is a proper root and G(a) C G, (by Lemma 5.9(3)) we may assume
(without loss of generality) that t = Fxd @ Fz where xd € W(1;1) = G{".

Set Q = W(1; 1), + C(G). Then Q contains t and has codimension 1
in G. As dimG_, < p, [Cha] yields that Q acts triangulably on G _,. As
G satisfies (gl), (g2), (g3), Q acts triangulably on G.

In view of Lemma 5.9(3), G_, = (0). Let B € t* be such that S(xd) =0
and B(z) = —1. Then I'_, c kB + F,a for any k > 1. So Lemma 5.9(2)
implies that dimG_, < 2p for any k > 1. Applying Chang’s theorem
[Cha] one now obtains that any composition factor of the W(1; 1)-module
G_, is either trivial or isomorphic to A(1;1)/F or induced from a
1-dimensional W(1; 1), -module. From this it is easy to deduce that the
number of t-weights of any composition factor of the Go-module G_, is
either 1 or p — 1 or p. Since I' ;, C kB + F,a we have {y e T _, | y(h)
=0}l < 1 for any k > 1.

Let / > 1 be such that G_, # (0) and G _,_; = (0). Setting k = [ in (20)
gives [T'_;| <3 <p — 1. Since G is simple G_, is an irreducible and
nontrivial G,-module ([St-F, (3.3.5)]. Since |T'_,| < p — 1 we must have
IT_,| = 1. From this it is immediate that G{" = W(1;1) acts trivially on
G _,. As a consequence, dimG_; = 1.
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Suppose / > 3. Then setting k=1—1 in (20) gives |T'_,,,| < 3. It
follows that any composition factor of the G-module G_,  has exactly
one t-weight. This means that the perfect Lie algebra G{" annihilates
G_, .. Since G satisfies (g2), there is w € G _,,, such that [w, G _,] # (0).
Recall that [G(",w] = (0). Therefore, there is a surjective G{"-module
homomorphism

G_,-»>G_,x— [w,x].

Since G_, is G{-irreducible and dim G _; = 1, we then have dimG_, = 1
forcing G_, = [G_,,G_,] = (0), a contradiction. So / < 2. Since G, acts
faithfully on G_, and dim G _, = 1, we must have / = 2.

Setting k = 1 in (20) now gives |T'_;| < 4. On the other hand, IT'_,| >
p — 1 (for G_, is a nontrivial irreducible W(1;1)-module). Hence p = 5
and G_, = A(1;1)/F as W(1;1-modules (by Chang’s theorem [Cha]).
Notice that & =[x, y] €t acts noninvertibly on G_, (otherwise (20)
would yield |T'_,| < 3 which is false). Then 4 and xd € G{" span f; i.e.,
G, = G,. As | =2,G _, is a nontrivial G,-module. Since G is simple and
satisfies (g1), (g2), (g3), we have G, = [G_,, G,]. From this it is immediate
that [G_,,[G_,,G 11 =[G _,,[G_,,G 11 =[G _,,G,] # (0).So[G_,,G,]
# (0). Therefore, G is a Lie algebra of contact type (in the terminology of
[Ku 90]). Since G, acts as derivations on the Heisenberg Lie algebra
G_, & G_,, the Lie algebra G satisfies the condition (2.0.1) of [Ku 90]. By
[Ku 90, Proposition 2.2.10], G is isomorphic to the Melikian algebra
a(m, n) for some (m,n) € N?>. As TR(G) =2 Lemma 2.5 yields G =
a (1, 1). Since this contradicts our choice of G, we deduce that G, is not
as in case (b) of Proposition 5.1.

(2) Case (c) of Proposition 5.1 is listed in the lemma.

(3) Next we suppose that G, is as in case (d) of Proposition 5.1. Then
C(G,) = Fz for some nonzero toral element z € t.

Let @ € I'(G, t) be such that a(z) = 0. Then G, € G(«) (in particular
a is Hamiltonian). Note that z acts on G _; as a nonzero scalar multiple of
Id. Therefore, there is 8 € T'(G, 1)\ F,a such that rnG_,t)cp+ F,a.
By Lemma 5.9(2) dimG_, , <2 for any y € I'(G_,,1). This gives the
estimate dim G_; < 2p. By [P-St 99, Corollary 2.10] every t’-weight space
of G_, is at most 2-dimensional, where t’ is any 2-dimensional maximal
torus of G,.

Let M denote the preimage of H(2; 1)® under the restricted homomor-
phism 7 : G, = G,/C(G,). Obviously, M is a restricted ideal of G,. We
let t’ denote the preimage of FD,(x,x,) under 7, a 2-dimensional torus
in G,. Set M;, = {x € M | x + Fz € H(2; D® )}, where i > —1. Let V' be
a faithful irreducible constituent of the M-module G _, (it exists because
MW is perfect and M = t' + MD). We identify D, (x!x}), for i # j, with
a weight vector in M relative to t'. By an earlier remark, dim V' < 2p and
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dimV, < 2 for any y € I'"(V, t'). Since G # g(1, 1) any Cartan subalgebra
of M acts triangulably on M (this follows from [P-St 99, Theorem 1]).
Applying [P-St 99, Lemma 3.8] now shows that the subalgebra [M;), M,;)]

+ [M, M,,)] acts nilpotently on V.

Let V, be an irreducible M,-submodule of V. Notice that [M,), M;)]
+ [M, M,)] is an ideal of M,,, acting nilpotently on M. Hence [M;), M;)]

+ [M, M;)] annihilates V. Let v €V}, be an arbitrary weight vector
relative to t’. The vectors Dy (x,)*D (x2)2 v, Dy(x)Dy(x,) v and v
are in the same weight space, hence linearly dependent. Let

azDH(xl)zDH(xz)z'U + a;Dy(x)Dy(x,) v+ =0, EF

be a nontrivial relation. If a, # 0 we apply D, (x{x3) to obtain D (x?)-v
= 0 (here we take into account [St-F, (5.7.1)] and the fact that D, (x{x3)
€ [M), M)l and [M), My,]-Vy =M, My)]-V, = (0). If @, =0 then
a; # 0 (as the relation is assumed to be nontrivial). We then apply
D,,(x7x,) and again obtain Dy (x{)-v = 0. Since M, /M, = 3((2) this
gives (M ;)" - v = 0; hence (M) -V, = (0). In particular, Dy (x})-V,
=(0) = DH(xz) V, for 2 <i < p. Next observe that D (x,) DH(x2)2
Dy, (x,)’Dy(x,)-v and D,(x,)-v are in the same weight space, hence
linearly dependent. Let

BzDH(x1)3DH(x2)2 Ut BIDH(XI)ZDH(XZ) v+ ByDy(x) v =0,
B EF

be a nontrivial relation. If 8, # 0 we apply Dy (x3) to obtain D, (x,)* - v

= (. Then apply D, (x}) to obtain D, (x,)-v =0.1If B, =0and B, # 0,
we apply D;;(x3) to deduce Dy (x,)*-v = 0. Then apply D, (x}) to obtain
Dy (x))-v =0, again. If 8, = 8, = 0 then B, # 0. Thus D,(x,)-v =01in
all cases. But then M -p = 0. As a consequence, MV -V, = (0) forcing
Vi, = V. This contradicts our assumption that V' is a faithful M-module.
Thus case (d) is impossible.

(4) Next we suppose that G is as in case (e) of Proposition 5.1. Then S,
and §, are restricted ideals of G acting restrictedly on G (as G does so).
Let V' denote a minimal submodule of the (S, ® S, )module G_,. As
ann; o5, V is an ideal of S, ® S,, either [S V]= (0) for some j € {1,2}
or V' is a faithful (S, @ S2) module. In the first case V' ={veG_,|
[S,v]=(0)} is a Gy-module. But G_, is an 1rreduc1ble and faithful
Go—module Thus V is faithful over S; ® S,. As [S;,S,] = (0) there are
irreducible, restricted faithful S,-modules V;, where i = 1,2, such that
V=V, ®V,as (S, &8, )modules

Let t; be an arbltrary nonzero toral element of §;, i = 1,2. Clearly,
= Ftl ® Ft, is a 2-dimensional torus in G0 Given j € F and [ € {1, 2}
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let V;; be the eigenspace for ¢; € EndV; belonging to j. Each weight
space V,, where w € ()%, has the form V, =V, ®V,  for some
m,n € [Fp.

Suppose S, = H(2; 1)®. By [P-St 99, Theorem 3.1], dimV, = p*> — 2 >
p(p — 1. Tt follows that there is s € F, such that dimV, > p. The
preceding remark now shows that some weight space of G_, relative to t’
has dimension > p. By [P-St 99, Corollary 2.10], there is 8 € T'(G, t) such
that dimG_; ;> p. However, we have established in Lemma 5.9 that
dimG_, , < 2 for any y € I'(G, t). This contradiction shows that S|, 52
{30(2), W(l D}. Then DerS; =S, i =1,2, showing that G, = G =
S, ®8,.

Representation theory of 3((2) and Chang’s theorem [Cha] imply that

i * (0) if and only if V;, i * (0) (one should also take into account [P-St
99 Corollary 2.10]. Since V1 and V, are faithful modules over S, and S,,
respectively, there are m,, m, € [F* such that V; , # (0) for i = 1,2. Let
&' € (1')* be such that 8'(¢,) = = 1,2. The precedlng remark shows
that G_; 5, and G_; ;. are both nonzero. Notice that y(¢,) - y(z,) = 0
for any y € I'(G,, t'). As a consequence, F,8" N T(Gy,t") = &, so that

G,(8') = t'. By [P-St 99, Corollary 2.10] there isédet*withG_, .5+ (0)
and G,(8) = t. Lemma 5.9(1) now shows that case (e) is impossible.

(5) Suppose G, is as in case (f) of Proposition 5.1; i.e.,

Gy =Gy = (SeA(1;1)) ® (F1d ® W(1;1)),

where § is either $((2) or W(1;1). Then G_, is a restricted G,-module.
So [P-St 99, Theorem 3.2] applies to the pair (G,,G_,). Since 0 is not a
t-weight of G_, and S % H(2; 1)® we are in case (c) of [P-St 99, Theorem
3.2]. As a consequence, I'_; = —T'_,.

Since Der § = ad S it follows from [P-St 99, Theorem 2.6] that there is
o€ AutG, such that o(t) =F(h ® 1) ® F(Id ® z9), where h is a
nonzero toral element of S and z € {x,1 + x}. Let t, = o '(h ® 1) and
t, = 0 '(Id ® z9). There are toral elements of t which span t over F.
Define ay, a, € t* by setting a,(#,) = §;;, where i, j € {1,2}.

Note that Gy(a,) = Cg (1)) = o’l(CG '(h ® 1)). As Cs(h) = Fh we have
that

Co(h®1)=(Fh®A(1;1)) ® (F1d ® W(1;1)).

This shows that G(«,)/rad G (a,) = W(1; 1. Applying Lemma 5.9(3) we
now derive that G(a,) = G(a,) and «, is a Witt root of G. Then t
normalizes a solvable subalgebra of codimension 1 in G,(a,) (because «,
is proper). From this it is immediate that z =x. As a consequence,

o '(§ ® A(1;1)) is t-stable.
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Next we observe that Gy(a;) = 0 '(C;(Id ® x9)) =t + o7 (S ® 1).
Also,

Gy=0 ' (§®1) + o ' (S®A(1;1))) + o '(Cs(h ® 1))

Go( ) + Gy @) + 07 '(S ® A(1;1)yy),

and each of the three summands is t-invariant. This implies that G,(y) C
t+ o (S ® A(1; 1)) is solvable for any y € I, \ (F,a; U F,a,).

Let § € I'_; \ F,a, (it exists because G_, is a faithful t-module). Then
8 € Ffa, + Fra, (for F,a, N T'_; = ). By the preceding remark, G(8)
is solvable. Also, G_; , 5 # (0) (for I' | = —I'_). Lemma 5.9(1) shows
that case (f) is impossible.

(6) Suppose G, is as in case (g) of Proposition 5.1; i.e.,

H(2;1)? ® A(m;1)
cG,c (DerH(Z;l)(Z) ®A(m;l)) ® (Id ® W(m;1))

and m > 0. According to Proposition 5.1 dimG_, = (p?> — 2)p™ > (p —
D(p* = 1). Since IT_,| < p> — 1 there is w € '_; such that dimG_, , >
p- This contradicts Lemma 5.9(2) showing that case (g) does not occur.

(7) Now we suppose that G, is as in case (h) of Proposition 5.1. Let M
denote the subalgebra H(2; 1; ®(r))" ® F of G, and M the p-envelope
of M in G,. Then C(M) c rad G, = (0). Hence M = M,, the semisimple
p-envelope of M ([St-F, (2.5.8)]). Let V' be a faithful irreducible con-
stituent of the (faithful) M-module G_;. Then V' is a restricted M,-mod-
ule Let t’ be any 2-dimensional torus in M,. By Lemma 4.14 V has
p? — 2 nonzero f’-welghts Combining this w1th [P-St 99, Corollary 2.10]
we derive that |['_,| > p? — 2. This contradicts Lemma 5.9(1) thereby
excluding case (h).

(8) Finally suppose S € G, C Der S, where S is a simple Lie algebra
with TR(S) = 2. Then S is listed in Theorem 1.1 (for dim § < dim G). As
in (7) one proves that the p-envelope S of S in G, is isomorphic to the
semisimple p-envelope of S. Let W be a faithful irreducible constituent of
the restricted S-module G _,.

Suppose S e (W2; D, w(1;2), HR2; 1; A), H2; 1; ®(r))V. Then
IT(W, ") = p> — 2 for any 2-dimensional torus t' c § (Lemma 4.14). By
[P-St 99, Corollary 2.10], this means that |[I'(G_,, t)| > p?> — 2 contrary to
Lemma 5.9(1).

Next suppose that S is one of SG; D™, H(4; D, K(3; 1), H(2;(2,1)®,
a(1,1), and let t' be any 2-dimensional torus in S. Then anny, t' # (0) (by
Propositions 4.5, 4.17, 4.19). Now [P-St 99, Corollary 2.11(1)] yields
anng t # (0) violating the inclusion Cg(1) C G,.
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Thus § must be classical simple of type 4,, C, or G,. As p > 3, the
Killing form on § is nondegenerate. Then Der § = ad S forcing G, = S.
This completes the proof of the lemma. |

Given (G, t) € © we denote by G’ the subalgebra of G generated by
G_, +G,+ G,. As G satisfies (g2), G’ contains X,_, G;. Let M(G’)
denote the unique maximal ideal of G’ contained in X,  _, G, Set
q=G'"/M(G").

LEmMMA 6.2. Let (G,t) € &. The following are true.

1. M(G’) is a nonzero graded ideal of G'.

2. The graded Lie algebra g is isomorphic to a classical Lie algebra of
type A,, C,, or G, with one of its standard gradings.

3. G, = gl(2). Moreover, the adjoint action of G, on G induces a
restricted representation of q((2) in g((G).

4. All irreducible constituents of the g-module M(G') /M(G')'*!,
where i > 0, are restricted g-modules.

Proof. Recall that by the previous lemma either G, = g((2) or G, = G,
is classical simple of type A,, C,, or G,. It is well known that C; (1) =t
in all cases.

Let u€T'_; and x € G_; ,\ (0). Then [x,G, _,] # (0); for otherwise
x € R,(G,t) contrary to property (5.4) in the definition of ©. As a
consequence, —I'_, CI'.

For k <0, set I ={x € G, | [x,G,] = (0)}. Clearly, I, is an ideal of
G,. If I, =G, then [G,,G,] = (0); hence [t,G,]=(0). As G_, is a
faithful G -module there is 6 € T'_; \ {0}. Then — & € I';, a contradiction.
Suppose I, # (0). Observe that [[,,G_,1=G_, (as G_, is a faithful
irreducible G,-module) and G, = [G_,,G,] (as G is simple and satisfies
(g2)). 1t follows that

I, o [1,,Gy] = [[IO’G—I]’GI] =[G_,,G,] =G,

which is false by the preceding remark. Thus I, = (0).

Since I_, is a G-submodule of G_, and G satisfies (gl), we also have
that 7_, = (0).

(a) Suppose M(G') = (0). Then I, = (0) for all £k < 0. So it follows from
Lemma 6.1 that the graded Lie algebra G satisfies the conditions of Kac’s
recognition theorem [Kac 70] generalized in [B-G] and corrected in [B-G-P]
(for this corrected version see also [St 97, (4.15)]). Applying the recognition
theorem (and keeping in mind the simplicity of G) we obtain that G is
either classical simple or gl(n)/F with p|n or G = X(m;n)®, where
Xe{W,S,H,K} or G = g(m,n). This contradicts Lemma 2.5 thereby
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proving that M(G’) # (0). Since G' satisfies (g1), (g2), (g3), [We 78] shows
that M(G’) is a graded ideal of G'.

(b) As I, =1_, =(0) and M(g) = (0), Kac’s recognition theorem is
applicable to g. It says that g is either classical simple or g{(n)/F with
pln or X(m;n)® c g c CX(m;n), where X € {W, S, H,K} or a Me-
likian algebra g(n,,n,). In particular, ¢ is simple and g c g cC
Der g©®.

Observe that TR(g™) < TR(G) = 2. Since [G_,,G,] = G, and G_, N
Ci(1) = (0) we have that C; (1) = X, [G_, _,,G, ,]. Lemma 2.1 shows
that t is contained in the p-envelope of C; (1) in Der G. Consequently,

G, = Z [G—l,p.’Gl,V] + Z [Ccu(f)’Go,u]

m,v#0 n#0

and G,, ., <[Gy,G,, , Jforall w+0.Since G_,®G,® G, =g_,
® g, ® g, as local Lie algebras we therefore have that

(g,l O g, ® Y, glyu) c g™,

n#0

This yields TR(g®™) = 2. Observe that dim ¢ < dim G'/M(G') <
dim G. Thus property (5.5) in the definition of © shows that g is listed
in Theorem 1.1.

(¢) It is clear by definition that ¢ acts naturally on each factor space
M(G')'/M(G')'*!. Let W be a composition factor of one of the g-mod-
ules M(G')'/M(G')'*!, and let & denote the restricted Lie algebra
generated by ¢ in g((W). By the above discussion, we can identify t
with a 2-dimensional torus in (g*”),, the semisimple p-envelope of g®.
There is a restricted epimorphism ¢: % — (g©), with ker . = C(£). By
Schur’s lemma, C(Z) consists of scalar linear operators. If C(%) # (0)
then + (1) is a 3-dimensional torus in Z. However, this would imply that
the semisimple p-envelope of G contains a 3-dimensional torus. Since the
latter is false C(%) = (0) and & = (g, as restricted Lie algebras. It
follows that W is a restricted (g”),-module.

Suppose g is one of S(3; DD, H(4 DD, KG; 1), H2; (2, 1)@, a(1,1).
Then anny, t # (0) (Propositions 4.5, 4.17, 4.19) which implies that ann t
# (0) for some k < 0. This contradicts the inclusion C;(1) C G,. Sup
pose g is Jone of W(2;1), w(1;2), HQ2;1;A), H(2; 1 (I)(T))(l) Then
IT(W, )| = p* — 2 (Lemma 4.14). This contradicts Lemma 5.9(1).

Thus g is classical of type A,, C,, or G,. As a consequence,
Der g¢® = g™ forcing g = ¢. By Kac’s recognition theorem, the grad-
ing of g must be standard. Then g, = g(a) = g[(2) for some root «a.
Moreover, g, is a restricted subalgebra of g = Der g and its p-structure
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comes from the natural p-structure of gl(2). Since G_; & G, ® G, =
q_, ®g,® q, as local Lie algebras it follows that G, = G, = gI(Z) as
restricted Lie algebras. |

In order to finish the proof of Theorem 1.1 it remains to show that
a = G'/M(G’) cannot be classical simple of type 4,, C,, or G,.

LEMMA 6.3. g % 3[(3).

Proof.  (a) Suppose the contrary and identify g with 3[(3). Since all
2-dimensional tori in g are conjugate under the adjoint action of G =
SL(3, F) we shall assume that t is the Lie subalgebra of diagonal matrices
in g. Then t = Lie T, where T is the group of diagonal matrices in G. As
usual, we denote by ¢; the rational character of T that sends a matrix in T
to its ith diagonal entry. Then the root system R of g (with respect to T) is
the set of all € — ¢ with 1 <i, j <3 and i #j. We choose as simple
roots a; = €, — €, and a, = €, — €;. The corresponding fundamental
weights are then o, = ¢, — 1(¢, + €, + €;) and w, = €, + €, — (¢, +
€, + ).

For @ = ¢ — ¢ with i # j, we choose as root vector e, the matrix E; ;
whose (i, j)th entry equals 1 and all other entries are 0. Given x € g_; &
a, ® g, let X denote the unique preimage of x in G_, ® G, ® G, under
the canonical epimorphism G’ — g. Since the grading of g is standard by

Lemma 6.2, we may assume (without loss of generality) that

9=6,©g8,9q,8=t®Fe_, ®Fe,,q,,=Fe,, ®Fe, o, a,

It follows that G_, € M(G"). For each « € R the tangent mapda :t = F
is a linear function on t = Lie T. In what follows we identify « € R with
da € t*, hence R with I'(g,t) cT.

(b) Since M(G") #+ (0) (Lemma 6.2(1)) and G_, = g_, is 2-dimensional,
G_, is a 1-dimensional subspace of M(G’) spanned by 7, =
[€_4 € o —a,l In particular,

Iy ={-2a; - a)}. (21)

Let hy =le,,e_,l=E,; —E,, and h =le,,e o 1=E,, — E;;.
Note that t—Fh ® Fh, and w(h) 8, where 1 <i, j<2. Since
MG CcY,__, G the g-module V] = M(G")' /M(G')* is generated by
vy, the image of 7, in V;. As M(G') N G_, = (0) we must have

[ea17UO] = [éal’ﬁo] = 0.
AsdimG_, =

[ea, v0] = [&.,. 0] = 0.
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Also, hy - v, = —3v, and A, - v, = 0. Therefore, v, is a primitive vector of
weight (p — 3)w, in V. From this it is immediate that v, = 65;13 ‘v, # 0.
This, in turn, yields that

~ ~ -3~
by = (ad e—al)p (00) €Gpita-a, \ (0)-

Since [e, ,e_, ] =0 we have that [e, ,v,] =0 and [A,,0,] = (p — 3)v,.
Representation theory of $[(2) now shows that (ade_, )'(v,) # 0 for
i=0,...,p — 3. Therefore,

{al_az’--wal_(P_z)az}Cr—pﬂ- (22)

Obviously, G_,,,; # (0) implies G_,,; # (0). Let yEeT'_,.; and u, €
G_,.5,\0). As R/(G,1) c Gy there is w; €G,_;_, such that
[u;, w1 # 0. Note that [u;,w,] € Cg (1) = 1.

Suppose G_,_; = (0). Then [u;,G_,,,]1CcG_,,,, =(0) (as p > 3).
Note that adw; maps G_,,, 5 into G_, 5_.. So it follows from (21) that
ad([u,, w,]) annihilates G_,, , .y, for all but at most one value of
k €T, Due to (22) there are distinct m,n € F, such that (a; —
ma, [u,w,D = (a; — na,)u,w,D =0 (as p > 3). But then [u;,w,] =
0, a contradiction.

(c) Thus G_,_; # (0). Therefore, G_, # (0). The center of G, acts
trivially on G_, ,, hence G_, wplar). As Gyla,) = gl(2) is non-
solvable, Lemma 5. 9(1) 1mphes that F ={+ja,} for some j € [F* But
then h has exactly two eigenvalues on each composition factor of the
G(l)-module G _,. Therefore, +ja,(h,) = +1. As a consequence, I'_,
{+ sa,). Since G =[G_,,G_ ]we have that

r

3 1 1
L, Cl +T_, = {—al - —a,, —a; — —a,, —a; + Eaz}. (23)

2 2
The respective values of these linear functions at 4, are —2, 0, 2. Now it

follows from representation theory of ¢((2) that 0 is an eigenvalue of
ad i, on G_,_,. But then
1
o~ o el_,_,. (24)

Next we observe that G_; = [G_,,G_,]1 = G_, as G{"-modules. It fol-
lows that T'_; cT'_, + T'_,, hence (see (21))

3={-3a; — a,, —3a; — 2a,}. (25)

Note that G_, # (0). Arguing as before we derive that I'_, cT'_; + T'_;
={-4a, — a,, —4a, — 2a,, —4a; — 3a,}, that 0 is an ad h,-eigenvalue
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on G_, and that —(4a; + 2a,) € T'_,. Combining this with (21), (22) and
(24) we obtain that G_; (4, + La, * (0) for k € {2,4,p — 1, p + 1}. Set-
ting u = a, + 3, in Lemma 5.9(1) now yields p = 5.

Let u = a; — a,. By(22)and 25), p € T'_, and 2 € I'_;. So Lemma
5.9(1) shows that w is Hamiltonian and the grading of G( ) is ruled by
Lemma 5.5(4). Then 1,2 € {+i,,2i,}, hence either 1 =i, or 1 = 2i,. If
ip =1then —a;, = —4 and —3 = a, — a, forcing a, = 1. If 2i; = 1 then
—i, = 2 which gives a, —a, = —4and —a, = —3.Butthen a, <a, —a,
in both cases. This contradiction proves the lemma. ||

LEMMA 6.4. g % 3p(4).

Proof. (a) Suppose the contrary and identify g with 3p(4). Since all
Witt bases of the symplectic linear space F* are conjugate under the
natural action of G = Sp(4, F) on F*, all 2-dimensional tori in g = Lie G
are conjugate under the adjoint action on G. Thus no generality is lost by
assuming that t is the Lie subalgebra of diagonal matrices in g. Then
t = Lie T, where T is the group of diagonal matrices in G.

We are going to use Bourbaki’s notation [B2]. The group of rational
characters X(T) will be embedded into an Euclidean space with orthonor-
mal basis €, €,. The root system R of g (with respect to T) is the set
{+e + e, +2¢€, £26,). We choose as simple roots a, = €, — €, and
o, = 2€,. Then &:=2a; + «, is the highest root. The corresponding
fundamental weights are w, = €¢; and w, = € + €,, and X(T) = Zw, +
Zw,. The set of dominant weights Nyw, + Nyw, will be denoted by
X*(T). A dominant weight A = a,w, + a, w, is called p-restricted if 0 < a;
<p—1 for i =1,2. We identify the p-restricted weights A with the
corresponding tangent maps dA: t — F (this will cause no confusion since
the kernel of the linear map d: X(T) — t* equals pX(T)). For any « € R
choose &, €t such that (dA)h,) = (A, a ) (mod p) for all A € X(T).
Choose ¢, € g, such that [eg,e_g]=hg for all B € R. Set h;=h,,
i=1,2and Q.= Nja; + Nja,.

(b) Since all roots having the same length are conjugate under the action
of the Weyl group of R, all Levi subalgebras of g containing t and
isomorphic to g[(2) fall into two conjugacy classes under the adjoint action
of Ng(T). Thus we may assume that either g, =1t @ Fe, ® Fe_, or
gp=t®Fe, @Fe_,.Givenxeg_®g,®0q, welet t€G_; &G,
® G, have the same meaning as in the proof of Lemma 6.3.

We first suppose that g, =t ® Fe, @ Fe_, . Since the grading of g is
standard by Lemma 6.2(2) we may assume further that g, = Fe , &
Fe Fay) Then G_, =Fe_, ®Fe_(, ., G_,=Fe¢_;, where ¢_; =

(6 )@ (a,+ayl and M(G") =X, __;G,. Since M(G') # (0) (Lemma
6.2(1)), we must have G_; # (0). Since G_, is a trivial G{"-module, the



SIMPLE LIE ALGEBRAS 333

G{P-module G_; =[G _,,G_,] is a homomorphic image of G_,. Hence
G_; = G_, as G{P-modules. It follows that T'_; = {-3a, — a,, —3a, —
2a,}. It also follows that &, :==[é_,,é_;] € G_; is nonzero and [¢, , 7]
= 0. As M(G')* C ¥, _G, the g-module V; = M(G")/M(G')* is gener-
ated by v,, the image of 7, in V;. As M(G') N G_, = (0) we must have
[éal, 7,1 = 0. Also,

/ 2¢, | €, — €
[hl’ﬁo] =(=3a; - az,al\/)ﬁo =[-6-2 el & 2) Do
(e, — € 1€ — €)

=(p—4)0,

and

[ﬁz,ﬁo] ={(=3a; —a,,a," )0y =

by = 0.

(61 — € 12¢)
(_6 (2e,12¢,)

Therefore, v, is a primitive vector of weight A = (p — Hw, + w, in V.
Since

v, (M12¢) (P —3)e +612¢)
@ >_2(2€1|251) 2 (2e,12¢) o

the vector v, == e? ;% v, € V, is nonzero and has weight A — (p — 3)a.
Since & — @, & R we have that e, - v; = 0. This implies that e_,, -v; # 0
(because (A — (p — 3@, a,’) = {A, a,’) = 1). Observe that (p — 3)a +
a, =2p — 3¢ + 2€, = 2. It follows that

(ad é’faz)(ad éfa)p_gj(ﬁo) €G_ 5,52\ (0)

(for 5, € G_5, e_;€G_, and e_, € G,). As a consequence, G S F
(0) and G_,,,; _, # (0). Lemma 5.9(1) now shows that A € I 5 is a
Hamiltonian root of G. Since G,(A) = t is solvable the grading of G(A) is
ruled by Lemma 5.5(4), with a; = 2p — 3 and a, = 3. Since p > 3 this is
impossible.

(c) Now suppose g, =1t @& Fe, & Fe_, . Since the grading of g is
standard we may assume that

34 = Feiaz ®Fei(al+a2) ® Fei(2a1+a2)

and g, =(0) for k>2. Since G_, G, ®G,=g_, ®qg,®q, as
local Lie algebras it is easy to see that

G ,=Fé , ®Fé ®Fe_,=V(2)

@3 @y~ ap
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as G{’-modules (recall that V(2) stands for the 3-dimensional irreducible
3[(2)-module). Since M(G") # (0) and G satisfies (g2), G_, = [G_,,G_,]
is a nonzero G -submodule of M(G"). Now V(2) = V(2)* and A*V(2) = F
as G{P-modules. It follows that the G{’-modules A?V(2) and V(2) are
isomorphic. As [G_,, G _,]is a homomorphic image of A>G _, we deduce
that G_, = V(2) as G{"-modules. From this it is immediate that
G,=Flé_,,é ®F[é_,.é ;] ®F[e 4.

7&17(12] —a,’ Y —a —ay—ay?

Moreover, & =[é_, ,é_, _,, ] generates the G;-module G _, and has the
property that [éal, 0] = 0. Since M(G') N G_, = (0) we must have [e"az, 0]

= 0. Also,

(252 l € — 52)

(51_52|51_52)

[f‘uﬁ]=<_0‘1_20‘2>0‘1v>5=(—2—4 )17=25

and
[75.5] = ¢ —a) = 2a,, 0, )5 = (—2

(€ — & 12¢€) -
— — 4|0
(2e;12¢,)

=(p-13)0.

As M(G')* c X, _,G,, the g-module V;, = M(G")! /M(G")* is generated
by v, the image of 0 in V,. Let V] be a maximal submodule of the
g-module V,, and V, ==V, /V]. Since v & V] the g-module V, is gener-
ated by 7, the image of v in V. Let L(v) denote the irreducible rational
G-module with highest weight v = 2w, + (p — 3)w, € X(T). Let p,: G
— GL(L(v)) denote the corresponding representation of G, and

dp,:q =LieG — gl(L(v))

the tangent map at 1 € G. Since v € X*(T) is p-restricted dp, is an
irreducible restricted representation of g in L(v) (see, e.g., [Bo]). By
Lemma 6.2(4), 171 is a restricted g-module. By construction, the g-module
V, is irreducible and generated by a primitive vector of weight » (or rather
dv € t*). Applying Curtis’s theorem we now obtain that ¥, = L(») as
g-modules (see, e.g., [Bo]). By the main result of [P 88], u € X*(T) is a
T-weight of L(v) if and only if v— ue Q,. Since v—-0=a+ (p —
3N e, + a,) € Q,, zero is a T-weight of L(v). But then t = Lie T kills a
nonzero vector of L(v). This implies that anny, t # (0) forcing anng, t #
(0) for some k < 0. This contradicts the inclusion C;(1) € G, and proves
the lemma. |
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LEMMA 6.5. g # Der D.

Proof.  Suppose the contrary and let G be a simple algebraic group of
type G, such that g = Lie G (we may assume that @ = Der © and then
take G = Aut D). Let T be a maximal algebraic torus in G, and t’ = Lie T.
Then t’ is a 2-dimensional torus in g.

Let R be the root system of g with respect to T, B = {«;, @,} a basis of
simple roots in R, {w,, w,} the system of fundamental weights associated
with B, and X*(T) = Nyw,; + Njw, the set of dominant weights. We
denote by L(A) the irreducible rational G-module with highest weight
A € X*(T). The Lie algebra g = Lie G acts on L(A) via the differential at
1 € G of the linear representation G — GL(L(A)). This gives L(A) a
canonical restricted g-module structure.

By Lemma 6.2(1), M(G’) # (0). Then M(G')/M(G')* is a nonzero
g-module. Let W be a composition factor of the g-module M(G")/M(G")>.
By Lemma 6.2(4), W is a restricted g-module. By Curtis’s theorem ([Bo]),
thereis n = a,w, + a,w, € X" (T)with 0 < a,, a, < p such that W = L(n)
as g-modules.

Let O,=Nja; + Nya,. A special feature of the present case is the
inclusion {w;, w,} € Q, which yields X*(T) € Q. (see [B2]). Hence
n—0e Q,. But then zero is a T-weight of L(n) (see [P 88]); hence
anny, t' # (0). By [P-St 99, Corollary 2.11(1)], anny, t # (0). This contra-
dicts the inclusion C;() € Gy,. Thus g # Der ©. |

The proof of Theorem 1.1 is now complete.
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