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Consider the Lie subring K, the skew-symmetric elements of an associative 
ring R with involution *. I. N. Herstein and W. E. Baxter have investigated 
the Lie structure of K and [K, K] when R IS a simple ring with involution *. 
We extend these results to show that, in prime rings with involution * which 
are 2-torsion-free, any Lie ideal of K or [K, K] contains [J n K, K] for some 
nonzero *-ideal J of R or is contained in the center of R. 

1. INTRODUCTION 

I. N. Herstein [3, 41 has investigated the Lie structure of the skew sym- 
metric elements in a simple ring of characteristic not 2 with involution: 
If R is a simple ring of characteristic not 2 with involution and U is a Lie 
ideal of K, then U C Z the center of R or U >_ [K, K], unless R is at most 
16-dimensional over its center. W. E. Baxter [2, 41 has shown that similar 
results are valid for Lie ideals of [K, K] in simple rings of characteristic 
not 2 with involution. In this paper, we extend both of these results to prime 
rings with involution which are 2-torsion-free. 

THEOREM. If R is a prime ring with involution * zuhich is 2-torsion-free 
and U is a Lie ideal C$ [K, K], then U C 2 the center of R or C 3_ [J n K, K-j 
for some nwaxero *-ideal J of R unless R is an order in a simple ring Q which is 
at most 16-dimensional oaer its center. 

It should be noted that some of Herstein’s and Baxter’s lemmas [4] are 
applicable to the more general case which will be considered here. For 
completeness, we shall include these lemmas and their proofs in the argument. 
In the main theorem, our approach differs from that of Herstein and Baxter, 
since we use results for rings satisfying generalized polynomial identities. 

In order to define generalized polynomial identities for prime rings, 
W. S. Martindale [S] has given a construction for prime rings similar to the 
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construction of the Utumi ring of quotients. If R is any prime ring, let 
T = {f: U, ---f RR) where U is any nonzero two-sided ideal of R and f is 
any R-homomorphism of U into R regarded as right R-modules. Let Q be 
the set of equivalence classes determined by the following equivalence rela- 
tion defined on T: f (acting on U) = g (acting on V) if f = g on some non- 
zero two-sided ideal l#ic U n V. Q is a prime ring with point-wise addition 
defined on the intersection of the ideals and functional composite multiplica- 
tion defined on the product of the ideals; its center C is a field; and R is 
isomorphically embedded in Q as left multiplications. The center C of Q is 
called the extended centroid of R and RC, also a prime ring, is called the 
central closure of R. 

The main theorem by Martindale involves prime rings satisfying a gener- 
alized polynomial identity over this extended centroid. 

THEOREM A (Martindale). Let R be a prime ring and let RC be its central 
closure. Then RC satisjies a generalized polynomial identity over C if and only 
;f RC contains a minimal right ideal eRC zuhere e2 = e f 0 (hence, RC is a 
primitive ring with a nonzero socle) and eRCe is a finite-dimensional division 
algebra over C. 

Of particular interest are two theorems which are corollaries to Theorem A 
above. 

THEOREM B (Kaplansky, [6]). IfR is a primitive ring satisfying a polyno- 
mial identity over its center, then R is a jinite-dimensional simple algebra of 
dimension at most [d/212 over its center. 

THEOREM C (Posner, [9]). If R is a prime ring satisfying a polynomial 
identity over its centroid, then R is a?1 order in a simple ring Q zuhich satisfies 
the same polynomial identity and, therefore, is jnite-dimensional over its center. 

We also need some extensions to rings with involution * made by Martin- 
dale [7] and refined by Amitsur [l]. 

THEOREM D (Amitsur-Martindale). Let R be a prime ring with involu- 
tion *. If the skew-symmetric elements K OY the symmetric elements S satisfy 
a polynomial identity of degree d, then R satis$es a polynomial identity of 
degree ,( 2d. 

Finally, we need the following miscellaneous results found in Herstein [4]. 

THEOREM E (Herstein). If R is a prime ring which is 2-torsion-free and 
U is a Lie ideal of R, then U > [J, R] for some nonzero ideal J of R or 
U 5 Z. In addition, if U is a subring of R, then U 2 J or U _C Z. 
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LEVITZKI'S LEMMA. Let R be a zing and (0) # p a right ideal qf R. Sup- 
pose that given a E p, a” = 0 .fofor some $fixed integer EZ; then, R has a nonxero 
nilpotent ideal. 

COROLLARP. If R is a prime ring, then R contains no nonxero nil right ideals 
of bounded degree. 

SUBLEMMA (Herstein). Let R be a 2-torsion-free prime ring. If a E R 
commutes with all [a, x], x E R, then a is in the center of R. 

Throughout this paper R will be an associative ring with involution * 
such that 2R = R and R is 2-torsion-free. The involution on R can be 
extended to RC by defining a map c -+ c on the extended centroid as follows: 
EX = (c(x*))* for x E I, a *-ideal of R such that ci C R. This is a well-defined 
involution on C and can be extended to an involudon on RC by linearity. 

DEFIZUITION. An involution is of the $rst kind if the induced involution 
on the extended centroid C is the identity map and is of the second kind 
otherwise. 

2. INVOLUTIONS OF THE SECOND KIND 

We first dispense with the easier case involving involutions of the second 
kind. 

THEOREM 1. Let R be a prime ring which is 2-torsion-free with an inaolu- 
tion * of the second kind. 

(a) If II is a Lie ideal of K, then U _C Z the center of R OY U 2 [J n K, K] 
for sonze nonaero *-ideal J of R. 

(b) If V is a Lie ideal of [K, K], then Y C 2 OY V-2 [In K, K] for 
some nonxero *-ideal I of R. 

Proof. Let C, = (c E C / c = -c} f (0) since the involution is of the 
second kind. Note that if 0 # 01 E CK , then C, = aC, since a: is invertible. 
We claim that CC is a Lie ideal of the ideal KC + S’C where S’ = S r\ I 
and I is a nonzero c-ideal of R such that d C R. Since U is a Lie ideal of K, 

and 

[U, C&T] = [U, aC,s’] C C,[U, cd?‘] C C,[ U, K] C C, U, 
[U, C,K] _C C.&J, 
[U, C,s’] C a-‘CJU, &‘I C C&Y, K] C C,U, 

[U, C,K] _C C,U. 
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Therefore, [UC, (KC + S’C)] _C UC and U’C is a Lie ideal of (K’C + SC). 
(K’C + SC) is a prime ring since it is a nonzero ideal of the prime ring 

RC. By Theorem E, UC C C and, hence, U _C 2 or UC 1 [V, (K’C + S’C)] 
for some nonzero ideal V of (KC + 5°C). H owever, a prime ring is without 
nilpotent ideals; so every nonzero ideal of an ideal contains a nonzero ideal 
of the whole ring. Thus, we may assume that V is an ideal of RC. In order 
to show that CT contains [J n K, K] for some *-ideal J of R, we first note 
that [U, CU] = [CU, CU]. Secondly [[V, V], [V, V]] is a Lie ideal of RC 
and so, by Theorem E, it contains [J, RC] for some nonzero ideal J of RC 
or is contained in C. If [[5’, 17, [V, V]] C C, we claim that R is commutative 
and thus U _C 2. Let a E [V, V], then define 01 = [a, [a, v]] and 
/3 = [a, [a, a~]] for v E V. /3 = ala and 01, ,8 E C since they are elements of 

[[K VI, [VT VI. If a! + 0, then a E C. If 01 = 0, then by the Sublemma, 
a E C. Hence, [V, L’] C C. For U, z, E V, [[u, v], V] E [[by, V], U] = (0). 
Again by the Sublemma, each v E 1’ commutes with all elements of V and 
V _C C. If V_C C, then R is commutative and UC 2. 

If U g 2, then UC 2 [V, V] and therefore 

U2 [U, K] 

2 [U, UCn K] 

= [U, UC] n K (since U C K) 

=[UC, UCJnK 

2 [[V, V], [V, V]] n K 

3 [J, RC] n K 

1 [JnK,K]. 

The proof of part (b) is similar except that it requires a theorem analogous 
to Theorem E for Lie ideals of [R, R] in prime rings. (These results are 
given in Chapter II of my dissertation [lo].) 

3. THE SUBRINGS GENERATED BY K AND [K,K] 

In the remainder of this paper, we shall assume that the involution c on R 
is of the first kind, even though many of the results are valid irrespective of 
the nature of the involution. We first include a lemma by Herstein. 

LEMMA 1 (Herstein). Let R be any ring with invoHtion * such that 
R = S + K. Then K2, the addition subgroup genemted by all products k,k, , 
for k, , k, E K, is a Lie ideal of R. 
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Proof. Let k, k, , R, E K. Then [krk, , k] = k,[k, , ii] f [K1 , k} k, E K”. 
Thus, [P, K] C P. On the other hand, if s E S, 

[k,k, , s] = k,(k,s + sk,) - (k,s + sk,) k, E K” 

since S 0 KC K. Thus [K”, S] C K”. Since R = S + K, [K”, R] _C k’” and 
K2 is a Lie ideal of R. 

THEOREM 2. If R is a prime ring with inaolution L, then K, the sub&g 
generated by K, contains a nonzero +ideaE qf R unless R is an order in a simple 
ring Q which is at most 94imensional over its center. 

Proof. By Lemma 1 above, K2 is a Lie ideal of R. By Theorem E, 
K2 1 [J, R] for some nonzero ideal J of R or K” G 2, the center of R. 

Suppose K” Z [J, R], then k’3 R” 2 [J, R]. But [J, R] is a Lie ideal and 
a subring of R. By Theorem E, [J, R] 2 I a nonzero ideal of R or [II R] C Z. 
If [J, R] c 2, then [j, [j, R]] = (0) f ‘or all j E /. By the Sublemma, J Z Z. 
Since J is a nonzero ideal of R, R must be a commutative integral domain 
and therefore has a field of quotients. If [J, R] Z I, then 

K>_[J, R]lI>InI* f (0) 

since R is a prime ring. 
Suppose K2 C 2. Then K satisfies a polynomial identity of degree 3 over 

the center. Thus, by Theorem D, R satisfies a polynomial identity of degree 
< 6. Finally, by Theorem C and Theorem B, R is an order in a simple ring 
Q which is at most 9-dimensional over its center. 

By adapting Theorem 2.2 in Herstein [4], we can show that Q is at most 
4-dimensional over its center. 

A result analogous to Theorem 2 holds true for [K, K]. To arrive at this 
result we first need 

LEMMA 2 (Herstein). Let R be a prime ring with involution *. If U is a 
Lie ideal of K such that u2 = 0 fey all u E U, then U = (Oj. 

Proof. Linearizing 21 2 = 0, we have uv + zu = 0 for u, v E 0. Thus 
*vu z -zru” = 0. For k E K, 2okv = [a, [zl, k]] since v$ = 0. Hence, 
2vkv E U and 2uvkvu = 0. But zcv E K since WV = -VU. Therefore, 
UVKUV = (0). For s E S, suvs E K and hence wvsu’~~suv = 0. uvR is a nil right 
ideal of degree 3. Levitzki’s Lemma implies that uv = 0. Again for k E K, 
uku = u(uk - ku) = 0. So ususu = 0 and uR is a nil right ideal of degree 3. 
Therefore, U = (0) by Levitzki’s Lemma. 

Secondly, we require the following theorem which does the basic work 
necessary for the remainder of the results. 
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THEOREM 3. Let R be a prime Gag .with involution *. If U is a nonzero Lie 
ideal of K stlch that u2 E Z for all 21 E U, then R is an order in a simple &zg Q 
which is at most If$dimensionaZ over its center. 

Pyoof. Consider RC the central closure of R. There are elements of u 
which are not zero-divisors. If not, then u2 = 0 for all zc E U, since the center 
of a prime ring contains no nontrivial zero-divisors. By Lemma 2 above, 
U = (0) which is a contradiction. Thus RC satisfies a nontrivial generalized 
polynomial ide n I y t‘t over C. By Theorem A, RC is a primitive ring with a 
minimal right ideal eRC and eRCe is a finite-dimensional division algebra 
over C. The Structure Theorem for primitive rings with nonzero socles [5, 
p. 751 yields that the socle, sot, of RC is the set of all linear transformations 
of finite rank in RC; moreover, sot is a simple ring which is contained in 
every ideal of RC. Since the involution on RC is of the first kind, KC is the 
set of skew elements of RC and UC is a Lie ideal of RC such that lb2 E C 
for all u E UC. 

If U n sot # (0), then sot contains a Lie ideal of KC n sot such that 
u2 E C for all u E UC n sot. From the proof of Theorem 2.12 in [4, p. 391, 
we have sot at most 16-dimensional over C since sot is a simple ring with 
involution. Thus RC would be a dense ring of linear transformations of a 
finite-dimensional vector space eRC _C sot and RC = sot would be a simple 
ring at most 16-dimensional over C. If UC n sot = (0), then for 
K E sot n KC and u E UC, [u, k] E UC n sot = (0). If sot n KC # (0), 
then [u, K-J = 0 for all K- E sot n KC. By Theorem 2, sot n KC = sot 
unless sot and hence RC is at most 4-dimensional over C. Thus 
[UC, sot] = (O), and UCC Cn KC = (0). If sot n KC = (0), then 
sot C SC. Since (s, t] E sot n KC = (0) for s, t E sot, sot and RC are 
fields. 

In all possible cases above, we have RC at most 16-dimensional over C. 
Using the argument given in Martindale’s proof of Theorem C as a corollary 
to Theorem A [8, p. 5831, we see that R is an order of RC. 

THEOREM 4. Let R be a prime ring with involution *. Then [K, K] contains 
a nonzuo *-ideal of R unless R is an order in a simple ring Q which is at most 
1 &dimensional over its center. 

Proof. Let u E [K, K], then for s E S, u4s - .su2 = [u, us + su] E [K, K]. 
For K E K, u2k - Ku2 = zr(uk - ku) + (uk - ku)u E [K, K]. For Y E R, 
write Y = s + R, s E S, K E K, then [ti2, R] _C [K, Kj. In particular for 
k E [K, KJ, [G, kr] E [K, K]. [u2, KY] = [u2, K]T + k[uz, r]. Since 

k[u2, r,l E [K, K], [u2, k]r E [K, K]. 
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;c’est [K, [G, RJR] Z [K, [K, K]] C [K, K]. Thus K[u”, k]R C [K, K]. By 
induction, suppose that K”-l[zG. k]R C [K, K]. Then 

[K, Kyu~, k]R] c [K, K], 

forcing K”[u”, k]R L [K, K]. By Theorem 2, 8? = C K” contains a nonzero 
x-ideal I of R unless R is an order in a simple ring Q which is at most 
g-dimensional over its center. Therefore, [K, K] I Z[u%]1= J. J is a nonzero 
*-ideal of R unless [u’, k] = 0 for all u, k E [K, K]. 

Suppose [z?, k] = 0 for all k E [K, Kj; then [G, k-1 = 0 for all k- E [KY, K]. 
Recall above [u’, ~1 E [K, K]. Hence [$, [~a, Y]] = 0. Furthermore zi2 E Z 
for all u E [K, K] by the Sublemma. Finally by Lemma 2 and Theorem 3, 
[K, K] = (0) unless R is an order in a simple ring Q which is at most 
16dimensional over its center. If [R, K] = (0), then K satisfies a polynomial 
identity of degree 2 over the centroid. By Theorem D, R would satisfy a 
polynomial identity of degree 4 and Theorem B and C imply that R is an 
order in a simple ring Q which is at most 4-dimensional over its center. 

Rmmk. In Theorem 4, as in Theorem 2, me could show, by adapting the 
proof of Theorem 3, that Q is at most 4-dimensional over its center; however, 
we do not need this stronger result. 

4. THE LIE STRUCTURE OF [K, K] 

The remainder of the lemmas and theorems in this paper follow the general 
outline and proofs used by Baxter to study the Lie structure of [K, K] in 
simple rings with involution. Furthermore, we shall study only the Lie ideals 
of [K, K], since any Lie ideal of K intersected with [K, K] is a Lie ideal of 

[K Kl. 
We shall assume that R is not an order in a simple ring Q which is at most 

16-dimensional over its center; thus [K, K] contains a nonzero *-ideal of R 
and R contains a nonzero *-ideal of R. 

LEIWA 3 (Baxter). Let R be a prime ring with imolution ;k and fi be a 
nonxero Lie ideal of [K, K]. Then xc’ = (0) implies x = 0. 

Proof. Suppose sLr = (0). For 0 # u E U and k E [K, K], 0 = x[u, k] = xku. 
Thus s[K, KjU = (0). Repeating the above argument we have, by induction, 
x[K, K]“U = (0). Since [K, K] = 2 [K, K]” contains a nonzero r-ideal 1 
of R, ~1c.F = (0). Hence, .xRIRU = (0) which implies xRl = (0) and finally 
x = 0. 
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LEMMA 4. If R is a prime ring with involution t and U is a Lie ideal of 
[K, K] such that u” E Zfor all u E U, then U = (0). 

Proof. The proofs of Lemma 2 and Theorem 3 can be adapted to prove 
this lemma. 

LEnmA 5. Let R be a prime ring with involution c. If U is a Lie ideal of 
[K, K], then [U, U] = (0) or u contains a nonzero *-ideal of R. 

Proof. Let a E [U, U]. By the Jacobi identity, [a, K] C U, since U is a 
Lie ideal of [K, K]. Thus [a2, K] _C a[a, K] + [a, K]a C 0. For s E S, 
[a2, s] = a(as + sa) - (as + sa)a E U since as + sa E K and [a, K] C U. 
Therefore, [aB, R] C 0. 

For v E U and T E R, [a?;, w] E a. Rewrite 

aa - (zlr)a” = (a% - va2)r + v(a% - rae). 

Since v[aS, I] E i7, [a4, v]R _C u. But U is a Lie ideal of [K, K]; so 
[[K, K], [a”, v]R] C u forcing [K, K][a”, v]R _C g. Inductively, we have 
[K, K][a”, v]R C u. By the assumption on R, [K, K] contains a nonzero 
*-ideal I of R; hence, .?? 1 I[a2, zj]1. Note that I[a2, ~1.7 is a nonzero *-ideal 
of R unless [aa, v] = 0 for all a E [U, U] and v E U. Recall that [a2, R] C 8, 
so [a2, [ae, R]] = (0). By the S u bl emma, aa E Z for all a E [U, U]. Finally, 
by Lemma 4, [U, U] = (0). 

THEOREM 5. Let R be a prime ring with involution *, and let U be a Lie 
ideal of [K, K]. Then [[U, U], [U, U]] = (0) or U 2 [J n K, K] for some 
~onzero *-ideal J of R. 

Proof. We first note that if B is an additive subgroup of R and B is the 
subring generated by B, then [g, R] = [B, R]. Obviously [B, R] C [B, R]. 
The reverse containment is proved by induction. Suppose [P-l, R] C [B, R]. 
For 6, ,..., b,,2 E B, r E R, 

[b, ... b, ,1.] = b1(b2 ... b,,r) - (6, ... b,r) b, + (b, .‘. b,)(rbl) - (Fb,)(b, ... b,). 

Now [b, , b, ... b,r] E [B, R] and [b, ... b, , rb,] E [B’Z-l, R] 2 [B, R] by the 
inductive assumption. Therefore, [B”, R] = [B, Ii]. Since B = x B”, 
[B, R] = [B, R]. 

Suppose [[U, U], [U, U]] # (0); then by Lemma 5, [U, U] contains a __- 
non-zero *-ideal J of R. Hence, [[U, U], R] = [[U, U], R] 2 [J, R]. Note 
that 

and 

[[u, Llil, RI = [FL Ul, 8 + UC Ulil, Kl 
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since R = S + K. By comparing the skew and symmetric parts we have 
[[U, C’], K] > [J n K, K]. By the Jacobi identity, U 2 [[U, U], K]. There- 
fore, C S [J n K, K], unless [[U, U], [U, U]] = (0). 

In Theorem 5 above, U 1 [J n K, K] f or some nonzero *-ideal J of R 
is a desired result. Consequently, in the remainder of this paper, we will 
concentrate on those Lie ideals U of [K, K] such that [[CT, U], id’, U]] = (0), 

LEMMA 6. Let R Be a prime ring zuith involution +. Tf CT is a Lie ideal of 
[K-, K] such that [U, U] = (0), then U contaim rlo Izontrivial nilpotent elements. 

Proof. Suppose u E U and un = 0. For k E K, [u, [u, k]] E li and 
[u, [u, [u: k]]] = 0. On the other hand, 

0 = [u, [u, [u, k]]] = u3k - 3u”ku + 3uku” - kzt3. 

If the characteristic of R is 3, then [u3, k] = 0. Thus, [u3, R] = (0) and 
u3 E 2 n K = (0) since K contains a nonzero ideal of R. Suppose the char- 
acteristic of R is not 3. We claim that u3 = 0. If n > 3, and u”-r i 0, then 
since u3k - 3u2ku + 3uku’ - ku3 = 0 we have 3u+lku”-l = 0. If n - 1 is 
odd, then u”-l E K and u”-~R becomes a nil right ideal of R of degree 3. By 
Levitzki’s Lemma u”-i = 0, which is a contradiction. If II - 1 is even, then 
consider u’2-1vkun-1v for v E U. Since [u, v] = 0, ~‘~-rv E K and u”-lvkun-lv = 
vU~‘-lktz”-Q,t = 0. Thus 11”- luR is a nil right ideal of degree 3 and again 
ZP-~ZT = 0. By Lemma 3, u”-l = 0 which is a contradiction. 

Let K be the set of nilpotent elements of U,‘. We claim N is a Lie ideal of 
[K, K]. If the characteristic of R is 3, then U = N since u3 = 0 for all u E U. 
If the characteristic of R is not 3, then from above we may assume ua = 0 
for u E IV. 

For k E [K, K], 0 = [u, [u, k]] = -2uku. 
Thus 

[u, k]” = ukukuk + uk%ku _ ukuku - uk%r”k 

- ku”kuk - kukuku + ku”k% + kuku’k = 0. 

Hence, N is a Lie ideal of [K, K]. 
For u E N and Ed [K, K], 0 = [u, [u, r]] = u3/ - 2utzl + Cu2. 
Thus, u”~ca = 0. For k E K, v E N, uzb, k] ua = 0 and 2vku’ = u”kv$. 

Consider u”v~~Z~~V~ = v(u2vW) z.9 = v(u2kvu2) v” = vu2ku%3 = 0. For s E S, 
[.u2, s] E [K, K], so (uz[vz, s] $) $ = 0. Thus ~~~~~~~~~~ = u‘2sv2z12v~ = 

u%u%ud = 0. For r E R, write I’ = s + k, s E S, k E K. u2v2Ru20” = 0. R is a 
prime ring so uQv2 = 0. Linearizing u2, we have for u, W, z’ E NT 
0 = (uw + zuu) z’s = 2usu7,7” since [u, 201 = 0. Similarly 0 = zlw(vx + xv) = 
2uwas for u, w, v, x E N. Applying Lemma 3 three times, we have N = (0). 
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LEMMA 7 (Baxter). If R is a prime ring .with involution c and L’ is a Lie 
ideal of [K, K] such that [U, U] = (0), then 0’ = (0). 

Proof. Note that in the course of proving Lemma 6 for rings of character- 
istic 3, U = A’ = (0). 

Suppose the characteristic of R is not 3 or 2. Note that u E U and UUU = (0) 
implies u = 0. Since [u, V] = 0, 0 = wuu = z?v for v E U. By Lemma 3, 
~2 = 0; so u E N = (0) and u = 0. 

For u E U and k E K, [u, [a, [u, k]]] = 0 since [C, CT] = (0). Let 
d(k) = [u, k]. Thus d3(k) = 0 for all k E K. For v E C’, 0 = d3(kvk). On the 
other hand 

d3(kvk) = d3(k) vk + 3d”(k) d@k) + 3d(k) d+k) + kd3(ak) 

= 3d’(k) ad(k) + 3d”(k) d(e)k + 3d(k) d2(v)k 

+ 6d(k) d(v) d(k) + 3d(k) vd2(k) + kd3@)k 

+ 3kd?(v) d(k) + 3kd(v) d2(k) + kvd3(k) 

= 3dZ(k) vd(k) + 3d(k) vd”(k). 

Applying d to this, we have 

0 = 3d3(k) vd(k) + 3@(k) d(v) d(k) + 3d’(k) vd”(k) + 3d”(k) vdz(k) 

+ 3d(k) d(v) d2(k) + 3d(k) vd3(k) 

= 6d”(k) zld2(k) 

But d”(k) E U and d”(k) Ud”(k) = (0). Hence, d2(k) = 0. 
Next 

0 = d(kvk) 

= d”(k) vk + 2d(k) vd(k) + 2d(k) d(v) k + kd”(zy) k + 2kd(v) d(k) 

+ kzjd2(k) 

= 2d(k) vd(k). 

If k E [K, K], then d(k) E U. Thus d(k) Ud(k) = (0) implies d(k) = 0. 
Finally [u, [K, K]] = (0) and u E 2 n K = (0) since [K, K] contains a non- 
zero *-ideal of R. Therefore, U = (0). 

The results of the foregoing lemmas and theorems may be expressed as 
follows: 

MAIN THEOREM. If R is a prime ring with an involution * of the jirst kind 
and U is a nonxero Lie ideal of [K, K], then U 2 [J IT K, K] for some nonzero 
*-ideal J of R unless R is an order in a simple ring Q .zchich is at most 16-dimen- 
sional over its center. 
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Proof. If R is not an order in a simple ring Q which is not l&dimensional 
over its center and U 2 [J n K, K] for any nonzero +-ideal J of R, then by 
Theorem 5, [[U, U], [U, Uj] = (0). By Lemma 7, [C;, C] = 0, which in 
turn implies that U = (0). 

COROLLARY. If R is a prime ring with an involution s of the Jirst kind and 
U is a Lie ideal of K, then U 2 [J n K, K] for some ~tonzero *-ideal J of R 
unless R is an 0rde-r in a simple ring Q which is at most 16dimensional over its 

centeY. 
Finally, it should be noted that Herstein [4J gives counterexample for the 

l&dimensional case. 
Let F be a field and F4 be the 4 x 4 matrices over F with * the transpose 

in F3 . Then the set 

u 

is a 3-dimensional Lie ideal of K = [K, K], which does not contain [K, K] 
and is not contained in the center of F4 . It should also be noted that any 
additive subgroup contained in the center is trivially a Lie ideal of K and 
any additive subgroup containing [J n K, K] for a nonzero e-ideal J of R 
is a Lie ideal of K. 
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