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Consider the Lie subring K, the skew-symmetric elements of an associative
ring R with involution *. I. N. Herstein and W. E. Baxter have investigated
the Lie structure of K and [K, K] when R is a simple ring with involution *.
We extend these results to show that, in prime rings with involution * which
are 2-torsion-free, any Lie ideal of K or [K, K] contains [J N K, K] for some
nonzero *-ideal J of R or is contained in the center of R.

1. INTRODUCTION

I. N. Herstein [3, 4] has investigated the Lie structure of the skew sym-
metric elements in a simple ring of characteristic not 2 with involution:
If R is a simple ring of characteristic not 2 with involution and U is a Lie
ideal of K, then U C Z the center of R or U 2 [K, K], unless R is at most
16-dimensional over its center. W. E. Baxter [2, 4] has shown that similar
results are valid for Lie ideals of [K, K] in simple rings of characteristic
not 2 with involution. In this paper, we extend both of these results to prime
rings with involution which are 2-torsion-free.

TreoreM. If R is a prime ring with involution x which is 2-torsion-free
and U is a Lie ideal of [K, K], then U C Z the center of Ror U2 [J N K, K}
for some nonzero x-ideal | of R unless R is an order in a simple ving Q which is
at most 16-dimensional over its center.

It should be noted that some of Herstein’s and Baxter’s lemmas [4] are
applicable to the more general case which will be considered here. For
completeness, we shall include these lemmas and their proofs in the argument.
In the main theorem, our approach differs from that of Herstein and Baxter,
since we use results for rings satisfying generalized polynomial identities.

In order to define generalized polynomial identities for prime rings,
W. 8. Martindale [8] has given a construction for prime rings similar to the
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524 ERICKSON

construction of the Utumi ring of quotients. If R is any prime ring, let
T = {f: Ur — Ry} where U is any nonzero two-sided ideal of R and f is
any R-homomorphism of U into R regarded as right R-modules. Let Q be
the set of equivalence classes determined by the following equivalence rela-
tion defined on 7" f (acting on U) = g (acting on V) if f = g on some non-
zero two-sided ideal W C U N V. Q is a prime ring with point-wise addition
defined on the intersection of the ideals and functional composite multiplica-
tion defined on the product of the ideals; its center C is a field; and R is
isomorphically embedded in Q as left multiplications. The center C of Q is
called the extended centroid of R and RC, also a prime ring, is called the
central closure of R.

The main theorem by Martindale involves prime rings satisfying a gener-
alized polynomial identity over this extended centroid.

Tareorem A (Martindale). Let R be a prime ring and let RC be its central
closure. Then RC satisfies a generalized polynomial identity over C if and only
if RC contains a minimal right ideal eRC where ¢ = e 5= 0 (hence, RC is a
primitive ring with a nonzero socle) and eRCe is a finite-dimensional division
algebra over C.

Of particular interest are two theorems which are corollaries to Theorem A
above.

TraeoreM B (Kaplansky, [6]). If R is a primitive ring satisfying a polyno-
mial identity over its center, then R is a finite-dimensional simple algebra of
dimension at most [d|2)? over its center.

Traeorem C (Posner, [9]). If R is a prime ring satisfying a polynomial
identity over ils centroid, then R is an order in a simple ring Q which satisfies
the same polynomial identity and, therefore, is finite-dimensional over its center.

We also need some extensions to rings with involution x made by Martin-
dale [7] and refined by Amitsur [1].

THEOREM D (Amitsur-Martindale). Let R be a prime ring with involu-
tion *. If the skew-symmetric elemenis K or the symmetric elements S satisfy
a polynomial identity of degree d, then R satisfies a polynomial identity of
degree < 2d.

Finally, we need the following miscellaneous results found in Herstein [4].
TueoreM E (Herstein). If R is a prime ring which is 2-torsion-free and

U is a Lie ideal of R, then U D[], R] for some nonzero ideal | of R or
UC Z. In addition, if U is a subring of R, then U2 Jor UC Z.
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Levitzer's LemMa. Let R be a ring and (0) # p a right ideal of R. Sup-
pose that given a € p, a" = 0 for some fixed integer n; then, R has a nonzero
nilpotent ideal.

COROLLARY. If R is a prime ring, then R contains no nonzero wil right ideals
of bounded degree.

SuBLemMA (Herstein). Let R be a 2-torsion-free prime ving. If ac R
commautes with all [a, x], x € R, then a is in the center of R.

Throughout this paper R will be an associative ring with involution *
such that 2R = R and R is 2-torsion-free. The involution on R can be
extended to RC by defining a map ¢ — ¢ on the extended centroid as follows:
&x = {c(w*))* for x €I, a x-ideal of R such that e/ C R. This is a well-defined
involution on C and can be extended to an involution on RC by linearity.

DreFmNrTioN.  An involution is of the first kind if the induced involution
on the extended centroid C is the identity map and is of the second kind
otherwise.

2. INVOLUTIONS OF THE SEcoxp KiIND

We first dispense with the easier case involving involutions of the second
kind.

TaeoreM 1. Let R be a prime ving which is 2-torsion-free with an involu-
tion * of the second kind.

(2) If Uis aLieideal of K, then U C Z the center of Ror U2 [] N K, K]
Jor some nonzero x-ideal | of R.

(b} If V is a Lie ideal of [K, K], then VC Z or V2 [IN K, K] for
some nongero x-ideal I of R.

Proof. Let Cx ={ceC|¢ = —c} 5= (0) since the involution is of the
second kind. Note that if 0 55 o € Cy, then Cy = aCy since « is invertible.
We claim that UC is a Lie ideal of the ideal KC - §'C where &' = SN 7
and I is a nonzero *-ideal of R such that of C R. Since U is a Lie ideal of K,

[U, CeST=1[U, aCeSTC CU, «STC Cy[U, K} C CiU,
[U, C¢K] C CU,
[U, CS87 C o 10U, aS1 C Cy[U, K1 C CU,
and
{U, C4K] C CU.
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Therefore, [UC, (KC+ 8'C)] C UC and U’Cis a Lie ideal of (K'C -+ S'C).

(K'C + S§'C) is a prime ring since it is a nonzero ideal of the prime ring
RC. By Theorem E, U'C C C'and, hence, UC Z or UC 2 [V, (K'C + S'C)]
for some nonzero ideal 1" of (K'C + S'C). However, a prime ring is without
nilpotent ideals; so every nonzero ideal of an ideal contains a nonzero ideal
of the whole ring. Thus, we may assume that I is an ideal of RC. In order
to show that U contains [J N K, K] for some *-ideal J of R, we first note
that [U, CU} = [CU, CU]. Secondly [[V, V], [V, V]] is a Lie ideal of RC
and so, by Theorem E, it contains [/, RC] for some nonzero ideal J of RC
or is contained in C. If [[V, V'], [V, V]] € C, we claim that R is commutative
and thus UCZ. Let ae[V, V], then define « = [a,[a, v]] and
B =[a, [a, av]] for ve V. B = aa and «, B € C since they are elements of
(v, v}, [V, V]]. If a %0, then ae C. If « =0, then by the Sublemma,
acC. Hence, [V, V]CC. For u,veV, [[u, o], vje[[V, V], ] =(0).
Again by the Sublemma, each v € I” commutes with all elements of V" and
VCC.If VCC, then R is commutative and U C Z.

If UL Z, then UC D [V, V] and therefore

U2 U K]
D [U, UC N K]
— [U, UC] 0 K (since U C K)
—~[UC, UCIN K
D[V, VLIV, VIInK
Q[ RCINK
D [JNK, K]

The proof of part (b) is similar except that it requires a theorem analogous
to Theorem E for Lie ideals of [R, R] in prime rings. (These results are
given in Chapter I of my dissertation [10].)

3. Tue SuBrINGs GENERATED BY K AND [K, K]

In the remainder of this paper, we shall assume that the involution % on R
is of the first kind, even though many of the results are valid irrespective of
the nature of the involution. We first include a lemma by Herstein.

Lemma 1 (Herstein). Let R be any ring with involution * such that
R = 8 + K. Then K2, the addition subgroup generated by all products kk, ,
Jor ky , ky € K, is a Lie ideal of R.
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Proof. Let k, k,, kye K. 'Then [kk,, k] = ki[ks , k] -+ [R, , k] ks € K2
Thus, [K?, K]C K2 On the other hand, if s€ S,

[hikey , s] = hy(Ros + sky) — (kus + ki) Ry € K2

since So K C K. Thus [K?, S]C K2 Since R = S + K, [K? R]C K? and
K?is a Lie ideal of R.

TuroreM 2. If R is a prime ring with involution x, then K, the subring
generated by K, contains a nonzero x-ideal of R unless R is an order in a simple
ring Q which is at most 9-dimensional over its center.

Proof. By Lemma 1 above, K? is a Lie ideal of R. By Theorem I,
K22 [], R] for some nonzero ideal [ of R or K2C Z, the center of R.

Suppose K22 [/, R], then KD K22 [], R]. But [, R] is a Lie ideal and
a subring of R. By Theorem E, [], R] 2 I a nonzero ideal of Ror [, R1C Z.
If [J, R] C Z, then [J, [j, R]] = (0) for all je J. By the Sublemma, JC Z.
Since [ is a nonzero ideal of R, R must be a commutative integral domain
and therefore has a field of quotients. If [], R] 2 I, then

K2[J,RI2I2INTI* + (0)

since R is a prime ring.

Suppose K2 C Z. Then K satisfies a polynomial identity of degree 3 over
the center. Thus, by Theorem D, R satisfies a polynomial identity of degree
< 6. Finally, by Theorem C and Theorem B, R is an order in a simple ring
O which is at most 9-dimensional over its center.

By adapting Theorem 2.2 in Herstein [4], we can show that Q is at most
4-dimensional over its center.

A result analogous to Theorem 2 holds true for [K, K]. To arrive at this
result we first need

Lrmma 2 (Herstein). Let R be a prime ring with involution x. If U is a
Lie ideal of K such that u* = 0 for all u e U, then U = (0).

Proof. Linearizing #*> =0, we have v + vu =0 for u, v& U. Thus
uou = —out =0. For ke K, 2vkv =[v,|v, k]] since 2 =0. Hence,
2okve U and 2uvkvu = 0. But wve K since wuw = —ovu. Therefore,
uvKuv = (0). For s € S, suvs € K and hence uwsuvsuv = 0. uvR is a nil right
ideal of degree 3. Levitzki’s Lemma implies that uv = 0. Again for £ X,
ukuy = u(uk — ku) = 0. So ususu = 0 and uR is a nil right ideal of degree 3.
Therefore, U = (0) by Levitzki’s Lemma.

Secondly, we require the following theorem which does the basic work
necessary for the remainder of the results.
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THEOREM 3. Let R be a prime ring with involution . If U is a nonzero Lie
ideal of K such that u* € Z for all u e U, then R is an order in a simple ring Q
which is at most 16-dimensional over its center.

Proof. Consider RC the central closure of R. There are elements of U
which are not zero-divisors. If not, then #? = 0 for all u € U, since the center
of a prime ring contains no nontrivial zero-divisors. By Lemma 2 above,
U = (0) which is a contradiction. Thus RC satisfies a nontrivial generalized
polynomial identity over C. By Theorem A, RC is a primitive ring with a
minima) right ideal eRC and eRCe is a finite-dimensional division algebra
over C. The Structure Theorem for primitive rings with nonzero socles [5,
p- 75] yields that the socle, soc, of RC is the set of all linear transformations
of finite rank in RC; moreover, soc is a simple ring which is contained in
every ideal of RC. Since the involution on RC is of the first kind, KC is the
set of skew elements of RC and UC is a Lie ideal of RC such that #?e C
forallue UC.

If U N soc + (0), then soc contains a Lie ideal of KC M soc such that
u? e C for all ue UC N soc. From the proof of Theorem 2.12 in [4, p. 39],
we have soc at most 16-dimensional over C since soc is a simple ring with
involution. Thus RC would be a dense ring of linear transformations of a
finite-dimensional vector space eRC C soc and RC = soc would be a simple
ring at most 16-dimensional over C. If UC Nnsoc = (0), then for
kesoc N KC and ue UC, [u, k] e UC Nsoc = (0). If soc N KC # (0),
then [u, k=] = 0 for all &~ esoc N KC. By Theorem 2, soc N KC = soc
unless soc and hence RC is at most 4-dimensional over C. Thus
[UC,soc] =(0), and UCCCnNKC=(0). If socn KC =(0), then
soc C SC. Since [s, t] €soc N KC = (0) for s,tesoc, soc and RC are
fields.

In all possible cases above, we have RC at most 16-dimensional over C.
Using the argument given in Martindale’s proof of Theorem C as a corollary
to Theorem A [8, p. 583], we see that R is an order of RC.

TueoreM 4. Let R be a prime ring with involution x. Then [K, K] contains
a nonzero x-ideal of R unless R is an order in a simple ring Q which is at most
16-dimensional over its center.

Proof. Let ue[K, K], then for s S, u® — su? = [u, us + su] € [K, K].
For keK, utk — ku® = u(uk — ku) + (uk — kupue K, K]. For reR,
write # =s -+ &, s€S, ke K; then [u?, R]C[K, K]. In particular for
ke[K, K], [u3, kr]l e [K, K]. [u?, kr] = [u?, k]r + k[u?, r]. Since

K2, #le[K, K], [ ke [K, K.
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Next [K,[#2, KIR] C[K, [K, K]]C[K, K] K]. Thus K[u#? k]RC[K, K]. By
induction, suppose that K»[u2, k]R C [K, K]. Then

[K, K12, R]R] C [K, K],

forcing K*[u2, kK|R C [K, K]. By Theorem 2, K = ¥ K" contains a nonzero
w-ideal I of R unless R is an order in a simple ring O which is at most
9-dimensional over its center. Therefore, [K, K] 2 I[u*k]{ = ]. ] is a nonzero
x-ideal of R unless [#2, k] = 0 for all u, 2 [K, K].

Suppose [#2, k] = 0 for all k € [K, KT; then [#2, k-] = O for all k- € [K, K].
Recall above [u?, r]e€[K, K]. Hence [u? [u?, #]] = 0. Furthermore u?e Z
for all € [K, K] by the Sublemma. Finally by Lemma 2 and Theorem 3,
[K, K] =(0) unless R is an order in a simple ring O which is at most
16-dimensional over its center. If [K, K] = (0), then K satisfies a polynomial
identity of degree 2 over the centroid. By Theorem D, R would satisfy a
polynomial identity of degree 4 and Theorem B and C imply that R is an
order in a simple ring Q which is at most 4-dimensional over its center.

Remark. In Theorem 4, as in Theorem 2, we could show, by adapting the
proof of Theorem 3, that O is at most 4~dimensional over its center; however,
we do not need this stronger result.

4. Tae Lie Srructure oF [K, K]

The remainder of the lemmas and theorems in this paper follow the general
outline and proofs used by Baxter to study the Lie structure of [K, K] in
simple rings with involution. Furthermore, we shall study only the Lie ideals
of [K, K], since any Lie ideal of K intersected with [K, K] is a Lie ideal of
[K, K].

We shall assume that R is #of an order in a simple ring Q which is at most
16-dimensional over its center; thus [K, K] contains a nonzero x-ideal of R
and K contains a nonzero x-ideal of R.

Lemma 3 (Baxter). Let R be a prime ring with involution x and U be a
nonzero Lie ideal of [K, K. Then xU = (0) implies x = 0.

Proof. Suppose xU = (0). For 0 = ue Uand ke [K, K], 0 = x[u, k] = xku.
Thus x{K, K]U = (0). Repeating the above argument we have, by induction,
x[K, K]"U = (0). Since [K, K] = [K, K]* contains a nonzero s#-ideal [
of R, xIU = (0). Hence, xRIRU = (0) which implies xR = (0) and finally
x =0.
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Lemma 4. If R is a prime ving with involution * and U is a Lie ideal of
[K, K] such that v? € Z for all u e U, then U = (0).

Proof. The proofs of Lemma 2 and Theorem 3 can be adapted to prove
this lemma.

LemMA 5. Let R be a prime ving with involution . If U is a Lie ideal of
[K, K], then [U, U] = (0) or U contains a nonzero x-ideal of R.

Proof. Let ae[U, U]. By the Jacobi identity, [¢, K]C U, since U is a
Lie ideal of [K, K]. Thus [¢% K]C a[a, K]+ [a, K]laC U. For se S,
[a% s] = a(as -+ sa) — (as + sa)ac U since as + sac K and [a, K]C U.
Therefore, [a2, R] C U.

For ve U and 7 € R, [a2, vr] € U. Rewrite

a¥(zr) — (or)a? = (a*v — va®yr + v(a’r — ra?).

Since v[a% r]e U, [ vJRCU. But U is a Lie ideal of [K,K]; so
[[K, K], [a? v]R]C U forcing [K, K][a? v]R C U. Inductively, we have
[K, K][a?, v]JRC U. By the assumption on R, [K, K] contains a nonzero
x-ideal 7 of R; hence, U D I[a?, v]I. Note that I[a?, 9]l is a nonzero x-ideal
of R unless [4?, v] = 0 for all e € [U, U] and v € U. Recall that [a2, R]C U,
so [a%, [a® R]] = (0). By the Sublemma, 4% € Z for all a e [U, U]. Finally,
by Lemma 4, [U, U] = (0).

THEOREM 5. Let R be a prime ving with involution *, and let U be a Lie
tdeal of [K, K]. Then [[U, U], [U, U]] = (0) or U2[]J N K, K] for some
nonzero x-ideal | of R.

Proof. We first note that if B is an additive subgroup of R and B is the
subring generated by B, then [B, R] = [B, R]. Obviously [B, R]C [B, R].
The reverse containment is proved by induction. Suppose [B*1, R] C [B, R].
For b, ,...,b,€ B, re R,

[By by 7] == bulby -+ br) — (b byr) by + (B = b)rbr) — (rB1)(bs ).

Now [b,, by - b#] €[B, R] and [b, -+ b, , rb;] € [B*L, R] C [B, R] by the
inductive assumption. Therefore, [B?, R] = [B, R]. Since B =Y B?,
[B, R] = [B, R].

Suppose [[U, U], [U, U]l # (0); then by Lemma 5, [U, U] contains a
non-zero *-ideal J of R. Hence, [[U, U], R] = [[U, U], R] 2[], R]. Note
that

[LRI2[JNnK K]+ []NK,S]
and

[[U, U], R] = [[U, U], S]1 + [[U, U], K]
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since R = 8 4- K. By comparing the skew and symmetric parts we have
[[U, U], K1 2[J N K, K]. By the Jacobi identity, U 2 {{U, U], K}. There-
fore, U 2 [J N K, K], unless [[U, U], [U, U]] = (0.

In Theorem 5 above, U2 []J N K, K] for some nonzero *-ideal | of R
is a desired result. Consequently, in the remainder of this paper, we will
concentrate on those Lie ideals U of [K, K]such that [[U, U}, [U, U]] = (0).

Lemyia 6. Let R be a prime ring with involution x. If U is a Lie ideal of
[K, K] such that [U, U] = (0), then U contains no nontrivial nilpotent elements.

Proof. Suppose uelU and u"=0. For keK, [u,{u, kjjec U and
[u, [u, [1, k]]] = 0. On the other hand,

0 = [u, [u, [u, £]]] = vPk — 3uPku + 3uku® — ke,

If the characteristic of R is 3, then [u? k] = 0. Thus, [#3, K] = (0) and
u?* € Z N K = (0) since K contains a nonzero ideal of R. Suppose the char-
acteristic of R is not 3. We claim that 43 = 0. If # > 3, and #"! == 0, then
since w3k — 3u?ku + 3uku® — ku® = 0 we have 3u™Yku" 1t =0.If n — 1 is
odd, then #" 1 € K and »™ IR becomes a nil right ideal of R of degree 3. By
Levitzki’s Lemma u?~! = 0, which is a contradiction. If n — 1 is even, then
consider " lvku"tv for v e U. Since [u, v] =0, u"we K and u* vky v =
v kutlp = 0. Thus #"oR is a nil right ideal of degree 3 and again
u" e = 0. By Lemma 3, 4" = 0 which is a contradiction.

Let N be the set of nilpotent elements of U. We claim N is a Lie ideal of
[K, K]. If the characteristic of R is 3, then U = N since #® = O for allu e U.
If the characteristic of R is not 3, then from above we may assume #* =
forue N,

For ke [K, K], 0 = [u, [u, R]] = —2ukun.

Thus

lu, kR]? = ukukuk - uk*uky — vkuk®n — uk*uk
— kuPkuk — kukuku -+ kuk*u -+ kuku’k = 0.

Hence, N is a Lie ideal of [K, K].

ForueNand fe[K, K], 0 = [u, [u, £]] = v¥ — 2ulu + (v’

Thus, #?/u?* = 0. For ke K, ve N, u¥v, k] u? = 0 and w?vku® = wkou’.
Consider #?v?ku’o? = v(u?vku?) v2 = v(uPkou?) v* = vi?ku®® = 0. Fors€ S,
[¢% s]€[K, K], so (u%[¢?, s]u?) o2 =0. Thus wuPo?suP0® = ulsv?u?0? =
syt = 0. Forre R, writer =s + k,5€ S, ke K. u*?Ru*? =0. Ris a
prime ring so wu*? =0. Linearizing 2, we have for u, w, veN,
0 = (uw + wu) v® = 2uwe? since [y, w] = 0. Similarly 0 = uw(vx + xv) =
2uwux for u, w, v, x € N. Applying Lemma 3 three times, we have IV = (0}.
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Levma 7 (Baxter). If R is a prime ring with involution x and U is a Lie
ideal of [K, K] such that [U, U] = (0), then U = (0).

Proof. Note that in the course of proving Lemma 6 for rings of character-
istic 3, U = N = (0).

Suppose the characteristic of Ris not 3 or 2. Note thatu € U and uUu = (0)
implies # = 0. Since [u, ¢v] =0, 0 = wou = w?*v for ve U. By Lemma 3,
w?=0;s0ue N =(0)and u =0.

For ueU and keK, [u [u, [u, k]]] =0 since [U, U] =(0). Let
d(k) = [u, k}. Thus d3%k) = 0 for all ke K. For ve U, 0 = d3kok). On the
other hand

d3(kvk) = d¥(k) vk + 3d¥(k) d(vk) + 3d(k) d*(vk) + kd3(vk)
= 3d¥(k) vd(k) + 3d*k) d(v)k -+ 3d(k) d¥(v)k
+ 6d(k) d(v) d(k) + 3d(k) vd®(k) + kd3(v)k
+ 3kd¥(0) d(k) + 3kd(v) d*(k) + kod3(k)
= 3d%(k) vd(k) + 3d(k) vd?(k).

Applying d to this, we have

0 = 3d%k) vd(k) + 3d%(%) d(v) d(E) + 3d3(k) vd2(k) -+ 3d(k) vd*(k)
+ 3d(k) d(v) d*(k) + 3d(k) vd*(k)

= 6d*(k) vd*(k)
But d2(k) € U and d*(k) Ud*k) = (0). Hence, d3(k) = 0.
Next
0 = d(kok)
= d¥(k) vk + 2d(k) vd(k) + 2d(k) d(v) k -+ kd?(v) k -+ 2kd(v) d(k)
+ kovd*(k)
= 2d(k) vd(k).

If 2e[K, K], then d(k)e U. Thus d(k) Ud(k) = (0) implies d(k) = 0.
Finally [4, [K, K]] = (0) and u € Z N K = (0), since [K, K] contains a non-
zero *-ideal of R. Therefore, U = (0).

The results of the foregoing lemmas and theorems may be expressed as

follows:

Main THEOREM. If R is a prime ring with an involution * of the first kind
and U is a nonzero Lie ideal of [K, K], then U D[] N K, K] for some nonzero
x-ideal | of R unless R is an order in a simple ring Q which is at most 16-dimen-
sional over its center.
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Proof. If Ris not an order in a simple ring O which is not 16-dimensional
over its center and U D [J N K, K] for any nonzero *-ideal | of R, then by
Theorem 5, [[U, U], [U, U]] = (0). By Lemma 7, [U, U] =0, which in
turn implies that U = (0).

CoroLLaRY. If R is a prime ring with an involution * of the first kind and
U is a Lie ideal of K, then U2 []J N K, K] for some nonzero *-ideal | of R
unless R is an order in a simple ring Q which is at mosi 16-dimensional over its
center.

Finally, it should be noted that Herstein [4] gives counterexample for the
16-dimensional case.

Let F be a field and F, be the 4 X 4 matrices over F with * the transpose
in F, . Then the set

0 « B ¥

_ e 0 —y B
U= —B ¥ 0 &
—y B —« 0

is a 3-dimensional Lie ideal of K = [K, K], which does not contain [K, K]
and is not contained in the center of F, . It should also be noted that any
additive subgroup contained in the center is trivially a Lie ideal of K and
any additive subgroup containing [J N K, K] for a nonzero x-ideal | of R
is a Lie ideal of K.
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