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ALTERNATIVE AND JORDAN ALGEBRAS
UDC 519.48

K. I. BEIDAR, A. V. MIKHALEV, AND A. M. SLIN'KO

ABSTRACT. The nondegenerate alternative algebra A is prime if and only

if one of the following conditions is satisfied: 1) (aA)b # 0 for all nonzero

elements a,b € A; 2) a(Ab) # 0 for all nonzero elements a,b € 4. The

nondegenerate Jordan algebra J over a ring ® in which the equation 2z = 1

is solvable is prime if and only if {aJb} # O for all nonzero elements a,b € J.
Bibliography: 17 titles.

An algebra A (in general, nonassociative) is called prime if for any two of its
ideals I and J the relation IJ = 0 implies that either I = 0 or J = 0. An algebra is
called semiprime if it contains no nonzero ideal whose square is zero. In view of the
importance of these concepts for the theory of algebras, it is critically important to
obtain various criteria for primeness and semiprimeness. It is well known that an
associative algebra A is semiprime if and only if it is nondegenerate, i.e. aAa # 0
for all nonzero elements a € A. By virtue of the fact that in an alternative algebra
the product aza does not depend on the arrangement of parentheses within it. we
define nondegeneracy of an alternative algebra analogously. The analogue of the
element aza in Jordan algebras is the element {aza}, where {uvw} is the Jordan
triple product of the elements u,v,w (see [10]). A Jordan algebra J is called
nondegenerate if {aJa} # 0 for all nonzero elements a € J.

Kleinfeld (see [10], §9.2) showed that for an alternative algebra A with the condi-
tion 34 = A, semiprimeness is equivalent to nondegeneracy. Shestakov [17] proved
the equivalence of semiprimeness and nondegeneracy for arbitrary finitely-generated
alternative algebras. In the general case the question [of equivalence]* still remains
open. For Jordan algebras, Pchelintsev [15] has recently constructed a subtle series
of examples showing that even in the class of special PI algebras semiprimeness
does not imply nondegeneracy. [In all cases it is easy to see that nondegeneracy
implies semiprimeness.]

It is well known that an associative algebra A is prime if and only if aAb # 0 for
arbitrary nonzero elements a,b € A. The goal of this paper is to prove the following
analogues of this associative result for alternative and Jordan algebras.

THEOREM 1. A nondegenerate alternative algebra A 1s prime +f and only of
satisfies one of the following conditions:
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1) (aA)b # 0 for all nonzero elements a,b € A;
2) a(Ab) # 0 for all nonzero elements a,b € A.

THEOREM 2. A nondegenerate Jordan algebra J over a ring ® in which the
equation 2z = 1 is solvable is prime if and only if {aJb} # O for all nonzero
elements a,be J.

These results were stated at the 17th All-Union Algebra Conference [6]. In the
proof essential use is made of theorems of Slater (see [10], §9.3) and Zelmanov [11]
on the structure of nondegenerate alternative and Jordan algebras.

All undefined concepts may be found in [10] and [12]. We note that in some arti-
cles prime Jordan algebras are defined not as above, but in terms of triple products.
However, for nondegenerate Jordan algebras the two definitions are equivalent.

§1. Alternative algebras

Let K be a Cayley-Dickson algebra over a field F. Then, as is well known,
one has a composition algebra; consequently by definition K possesses a unit and
on K there is defined a quadratic form n(z) relative to which n(zy) = n(z)n(y)
for all =,y € K, such that the bilinear form f(z,y) = n(z +y) — n(z) — n(y) is
nondegenerate. It is well known that the algebra K is quadratic over F'; namely,
each element z € K satisfies the relation

22 —t(zx)z+n(z)-1=0 (1)
where t(z) = f(z,1). Thus for all z,y € K the linearization of this relation is valid,
zy +yz — t(z)y — t(y)z + f(z,y) - 1 = 0. (2)

The mapping z — T = t(z) - 1 — z is an involution of the algebra K ([10], §2.4).

PROPOSITION 1.1. Let the elements a,b € K be such that (aK)b = 0 or
a(Kb) =0. Thena=20 orb=0.

PROOF. [Assume a # 0 and b # 0.] Let (aK)b = 0. It is obvious that ab =
(a-1)b=0. Now in view of (2) we have for all z € K

0 = (az)b + (ab)z = a(bz + zb) = t(z)ab + t(b)ax — f(z,b)a
= t(b)az — f(z,b)a.

If t(b) = 0 then f(z,b) = 0 for all £ € K [assuming a # 0], which contradicts the
nondegeneracy of the form [assuming b # 0]. If ¢(d) # 0 then ax = Xa for all z,
with A € F, from which it follows that the 1-dimensional subspace with basis {a}
is a right ideal in K. However, in K there are no nontrivial one-sided ideals ([10],
§10.11). We obtain a contradiction, proving the assertion.

Further, if a(Kb) = 0 then (bK)d = 0, and everything is reduced to the previous
case. 0O

PROOF OF THEOREM 1. Let A be a prime nondegenerate alternative algebra
such that (aA)b = 0 for some elements a,b € A. By a theorem of Slater, A is either
associative or is a Cayley-Dickson ring. The first case is not difficult. In the second
case, if Z is the center of A then Z # 0 and the central closure C = (Z*)" 1A is a
Cayley-Dickson algebra over a field Z;, the field of fractions of the center Z. For
the algebra C we have (aC)b = 0, from which, in view of Proposition 1.1, either
a=0or b=0. Theorem 1 is proven. 0O
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REMARK. The condition of nondegeneracy in Theorem 1 is unnecessary if 34 =
A or if 3a = 0 implies ¢ = 0 for a € A.

§2. Jordan algebras

We consider the classical Jordan algebras.

PROPOSITION 2.1. LetJ = F-1+V be a simple Jordan algebra of a symmetric
nondegenerate bilinear form f: V XV — F over a field F' of characteristic # 2.
Then JUgzp =0 impliesa =0 or b=0.

PROOF. Put z =« -1+ v € J. Then, as is well known,
z? — t(z)z +n(z) -1 =0,

where t(z) = 2« and n(z) = a? - f(v,v). LetalsoT=t(z) - 1 —z=a-1—-2. We
consider the bilinear form ¢(z,y) = n(z +y) —n{z) —n(y). fy = F -1+ u then it
is easy to see that g(z,y) = 208 —2f(v, u); hence the form ¢ is also nondegenerate.
The equation
zUs p = ¢(a,T)b + q(b,Z)a — q(a,b)Z

is easy to verify immediately (cf. relation 2.1.11 in [8]). Since a nondegenerate
2-dimensional [simple] Jordan algebra of a bilinear form is a field, we may assume
that dimp J > 3. Let 2U, = 0 for all z € J. Since we may find in J a vector
linearly independent of a and b, it is clear that g(a,b) = 0. In view of this and
q(a,Z) # 0 for some z [assuming a # 0], we obtain the linear dependence of a and
b. This means that either one of them is 0, or (in view of the condition U,y = 0)

that both of them are absolute zero divisors, which contradicts nondegeneracy o
J. O

THEOREM 2.2. Let J be a simple finite-dimensional Jordan algebra over a field
F of characteristic £ 2. Then JU,p = 0 tmpliesa =0 or b=0.

PROOF. In view of the linearity of the condition JU, = 0, the field F' may be
taken to be algebraically closed. The algebra J is then characterized by a theorem
of Albert ([9], p. 204); if J has degree 1 then J = F; if the degree of the algebra J
is 2, then J = F - 14V (the algebra of a symmetric bilinear form); if the degree n
of the algebra is larger than 2, then J = H(Cy), where C is a composition algebra
over F, which may be nonassociative, i.e. a Cayley-Dickson algebra, but then only
for n = 3.

In the algebra J of degree n

l=e1+ex+ - t+én,

where E = {e;|1 <1 < n} is a system of absolutely primitive orthogonal idempo-
tents. If E' ¢ E and card(E') = m, then for the idempotent e = }_, cp €: the
Peirce 1-component Ji (¢) is a simple Jordan algebra of degree m [14]. In view of
Proposition 2.1 we may assume that n > 2, i.e. our Jordan algebra is a Jordan
matrix algebra H(Cy). Moreover, we denote the elements of this algebra as in 8]
and [9]:

afit] =oes; (a € F) (3)
clig] =cei; + Cey; (ce C), (4)
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where the e,; are the matrix units. An arbitrary element of the algebra may be

written in the form .
=3 oqfii] + Y eiglisl. (5)
=1 <7
where a; € F and ¢;; € C. The nonzero triple products of elements of the form (3)
and (4) are listed below (cf. [8], p. 5.12):

Blit)Uppug) = o Ble1]; (6)

alid)Uqpiy) = afa@a)(s7]: (7)

blif)Usayij) = a(ba)[es]: (8)
{e[ti]alif]blji]} = aab + ba)[7]; (9)
{a[i]Blit]alis]} = (aB)alis]; (10)
{alit]alig] Bls]} = (aB)alts]; (11)
{a[i]alis]bl7k]} = c(abd)[ik]; (12)
{a[islalislblik]} = a(ad)[ik]; (13)
{alij]b[silelik]} = a(be)[ik]; (14)
{alij)blsk]clki]} = [a(be) + E(ba)][41]; (15)
{alej]blsk]e[kl]} = (ab)clal]. (16)

Here 7,7, k, ! are all distinct, @ and 8 are in F, and a,b, and ¢ are in C. We note
that if I C {1,2,...,n} and e; = }_,; &, then an element of the form (5) belongs
to the Peirce 1-component J;(ey) if and only if o; = 0 for ¢ & I and ¢;; = 0 for
i¢lorjél.
We now remark that in view of Macdonald’s identity, if U, = 0 then for any
idempotent e € J
0= UeUa,bUe = UaUc,bUe = Ual,bls

where a1 and b; are the Peirce 1-components of the elements a and b relative to e.

Let
a"Zazzz +§:aw 17), b—Zﬂz[m +wa [27].

1<y 1<y

We consider three cases.

I. For some indices 7 and j one of the following four situations holds: (a) a; #
0,8; # 0; (b) ;i # 0,085 # 0; (¢) B # 0,ai; # 0; (d) ai; # 0,b;; # 0. In these
cases, in view of the remark made above, for the idempotent e = 1[i7] + 1[57] and
simplicity of the subalgebra JU, of degree 2 we have U,, 5, = 0 but a; = aU, # 0
and b; = bU, # 0, which contradicts Proposition 2.1. This case is impossible.

II. For some indices ¢, 7,k we have one of the following three cases: (a) o; #
0,b5k # 0; (b) Br # 0,a:; # 0; (c) a;; # 0 and by, # 0, but the situation of Case I
does not occur.

Considering the subalgebra J; = JU, for the idempotent e = 1[i1] + 1[77] + 1[kk]
and its elements a; = aU, % 0 and by = bU, # 0, we may assume with the
same basic hypotheses that n = 3. Since situations (a) and (b) are equivalent we
may assume bj; 7 0, i.e. [writing ¢+ = 1,7 = 2,k = 3 for convenience, we have
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aUi[22)+1(33) = 0 or else we would be back in Case I, s0]
a= all[ll] + a1o[12] + a13[13];

[lf (251 7é 0 or both aig,013 -‘,é 0 we have bU1[11]+1[22] = bU1[11]+1[33] = 0 or else we
would be back in Case 1, so]

b = by3[23].

[If, say, a1 = a1z = 0 then a = a;3[13] and again bUjf11)41533) = 0 and b =
B22[22]) + b12[12] + bo3[23], which is just the above case with the roles of a and b,
1 and 2 interchanged. So we may assume a and b are as displayed. Let u be an
arbitrary element from C and z = u[12]. Then in view of (12), (14), and (15),

0= {axb} = all(ub23)[13] +612(ub23)[23] -+ [(Zl_lgu)b23 + Ezg(ﬂa13)][33];

consequently [from u = 1,be3 7# 0] o31 = 0 and @12(Cbaz) = 0, so that, in view of
the assumption boz # 0 and Proposition 1.1, a;2 = 0. However, in our situation
the indices 2 and 3 are on equal footing. Therefore ajz = 0 and a = 0.

II1. For some four indices ¢, 7, k, ! the situation a;; # 0, bg; 7 0 occurs, but Cases
I and II do not occur. We consider the Peirce 1-components for the idempotent
e = 1[22] + 1[57] + 1[kk] + 1[lI]. As previously, we may assume that J has degree 4
and in addition [writing ¢, 7,k,l = 1,2, 3,4]

a=ajz[12] and b= bzs|34].
Then, if v € C and z = u[23], in view of (16),
0 = {azb} = (a12u)bss[14];

consequently (a12C)bsq4 = 0, which contradicts Proposition 1.1.

Since always one of cases I, II, or III must occur if @ # 0 and b # 0, Theorem
2.2 is established. 0O

From now on A will be a prime associative ring, @ = Q(A) the full ring of right
fractions of A, C(A) the center of A, C = C(Q) the center of Q, and § = S(A) the
subring of Q generated by A and C. As is well known, C is a field [13]. By Qo(A)
we denote the totality of all ¢ € @Q for which there exists an ideal I of A, depending
in general on g, such that g U Iq C A. This set forms a subring of ¢, which we
will call the Martindale ring of fractions of the ring A. Let X = {z1,22,...} be
a countable set, C(X) the free C-algebra on X, and @ * C(X) the free product of
the C-algebra Q and C{X). An element f(z) € Q * C(X) is called a generalized
identity of the ring A if o(f) = 0 for all homomorphisms p: Q * C(X) — @ of
C-algebras such that ¢(X) C A and p(g) = g for all ¢ € Q [1], [13].

Now let A be a primitive ring with nonzero socle. Then all irreducible faithful
left A-modules are isomorphic [7]. The ring of endomorphisms of (any of) these
modules will be called the skewfield associated to A.

THEOREM 2.3. Let A be a prime ring satisfying a nonzero generalized identity.
Then (a) Qo(A) is a primitive ring with nonzero socle, and the skewfield associated
to Qo(A) 1s finite-dimensional over its center; and (b) each generalized identity of
A is a generalized identity of Qo(A).

The proof of these assertions is given in [13], Theorem 2, [1], Theorem 1.10, and
(2], Theorem 2.
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Let A be a prime ring with involution * and X = {z1,z37,...}. An element
f{X) € Q * C{X) will be called a generalized identity-with-involution of the ring
A if o(f) = 0 for all homomorphisms @: @ * C(X } — @ of C-algebras such that
o(X) C A, p|Q = 1g, and p(z}) = p(z;)" fort=1,2,....

THEOREM 2.4. Let A be a prime ring with involution ™, satisfying a generalized
identity-with-involution. Then (a) the involution x of A extends to an tnvolution of
the ring Qo(A); (b) Qo(A) is a primitive ring with nonzero socle, and the skewfield
associated to Qo(A) is finite-dimensional over its center; and (c) each generalized
identity-with-involution of A is a generalized identity-with-involution of Qo(A).

The proof of these assertions is given in [3], [4], [5] (Lemma 1.1.1 and Theorem
1.4.1), and [16].

Let D be a skewfield with involution * and V a left vector space over D. A
mapping G: V x V — D is a scalar product if it satisfies the following relations for
all z,71,22,9,41,¥2 €V and a € D:

G(z1 + 22,y) = G(z1,9) + G(z2,Y);
G(:E, W1 + y2) - G(IE, yl) + G(xva);
Glaz,y) = aG(z,y);  G(z,ay) = G(z,y)a”.

A scalar product is called nondegenerate if the equations G(z,V) = 0and G(V,y) =
0 imply respectively = 0 and y = 0. A scalar product is called Hermatian if
G(z,y) = Gly, z)* for all z,y € V, and skew-Hermitian if G(z,y) = —G(y,z)" for
all z,y e V.

Let S be a subset of the space V with scalar product G. We write S+ = {z €
V|G(S,z) = 0}. By the topology on the space V we will understand that topology
in which a basis of open neighborhoods of each element z € V is the collection of
subsets of the form z+ S+, where S is a finite subset of the space V. We denote by
Lg(V) the ring of all continuous linear transformations on V, and by Fg (V) the
subring of Le(V) consisting of all transformations of finite rank.

THEOREM 2.5. Let A be a primitive ring with nonzero socle and involution
. Then there exist a skewfield D with involution *, a left vector space V over D
forming a faithful irreducible right A-module, and a nondegenerate Hermitian or
skew-Hermitian scalar product G: V XV — D such that (a) Fg(V) CAC Lg(V);
(b) the socle of A equals F(V); (¢) G(za,y) = G(z,ya*) for alla € A andz,y € V;
and (d) for any finite subset {a1,...,an} C Fg(V) there ezists an-idempotent
e € Fg(V) such that G(ze,y) = G(z,ye) and eae = a; forallz,y €V,e=1,...,n.

The proof may be found in [7], Chapter IV, §12, Theorem 2.4, or in [5], Lemma
1.4.2.

*

LEMMA 2.6. Let A be a primitive ring with nonzero socle, and let the skewfield
D associated to A be finite-dimensional over its center. Let also a and b be nonzero
elements of A. Then there exists an idempotent e, contained tn the socle of A, such
that eae # 0, ebe # 0, and the ring eAe is isomorphic to the ring of n X n matrices
over D [for some n].

PROOF. Let Soc(A) be the socle of A, V' a faithful irreducible right A-module,
and D; = End(V4). It is clear that the ring D; is isomorphic to the skewfield
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D. Since a # 0 and b # 0, there exist z,y € V such that za # 0 and yb # 0.
Let W = D1z + D1y + Di(za) + Dy (yd). It is obvious that V is [also] a faithful
irreducible right module over Soc(A). From the density theorem it follows that
there exists an element ¢ € Soc(A) such that we = w for all w € W (cf. [7]). Since
Soc(A) is a simple ring which is a sum of minimal right ideals, it is locally a matrix
ring (cf. [7], Chapter IV, §9, Structure Theorem, and [7], Chapter IV, §15, Theorem
3). Hence there exists an element e € Soc(A) such that ec = ce = ece = c. For
example, ¢ may be taken in particular to be the unit matrix of a matrix subring of
Soc(A) containing the element ¢. If w € W then we = (we)e = w(ce) = we = w.
Thus

z(eae) = (ze)(ae)

= z(ae) [since z € W]
= (za)e

=2za [since za € W)
#0

and eae # 0. Analogously one shows that ebe # 0. Let W; = Ve. It is then clear
that dimp, Wi < oo. Therefore from the density theorem it follows that for any
endomorphism f € End(p,W;) there exists an element d € A such that wf = wd
for all w € W;. Since we = w for all w € W, then wf = wede for all w € Wj.
Hence the canonical ring homomorphism ¢: eAe — End(p, W7) is surjective. For
the second aspect, from the equation W; = Ve it follows that ¢ is a monomorphism.
Therefore the ring eAe is isomorphic to the ring of n X n matrices over a skewfield
D, where n = dimp, W;. 0O

THEOREM 2.7. Let A be a prime associative algebra over a ring ® containing
1/2, and Qo(A) the Martindale ring of fractions. Then for any Jordan algebra J
such that AT C J C Qo(A)T the equation JU,p =0 for a,b € Qo(A) impliesa =10
or b=0.

PROOF. Assume the contrary. Let a and b be nonzero elements of Qg(A) such
that JU,, = 0. We consider f(X) = aXb+ bXa € Q * C(X). Then f(z) =
22U, = 0 for all z € A. If f(X) = O then the elements a and b are linearly
dependent over C, i.e. a = cb, where ¢ € C. In addition it is clear that ¢ # 0 since
a # 0. Therefore f(X) = cbXb+ bXcb = 2¢bXb # 0, and we obtain a contradiction
[to f(X) = 0, since 2¢ # 0 and b # 0]. Hence f(X) # 0 and, consequently, the
ring A satisfies a nonzero generalized identity. In view of Theorem 2.3, Qo(A)
is a primitive ring with nonzero socle, and f(X) is a generalized identity for it.
Consequently Qo(A)TU, s = 0.

We now go back to Lemma 2.6 and choose an idempotent e such that eae #
0, ebe # 0, and eQo(A)e is a ring of n X n matrices over a skewfield which is finite-
dimensional over its center. Further, we have 0 = e[(exe)Usple = (eze)Ueqe,ebe-
However, since (eQo(A)e)t is a finite-dimensional simple Jordan algebra and
(eQo(A)e)TUeqe ebe = 0, from Theorem 2.2 it follows that either eae = 0 or ebe = 0.
We obtain a contradiction, which proves the theorem. O

- THEOREM 2.8. Let A be a prime associative algebra over a ring @ containing
1/2, and Qo (A) its Martindale ring of fractions. Assume that A has an involution ™.
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Then * extends to an involution * on Qo(A), and for any Jordan algebra .J such that
H(A,*) CJ C H(Qo(A),*) from the equation JU,p =0 where a,b € H(Qo(A4),”)
it follows that either a =0 or b = 0.

PROOF. In view of Theorem 2.4 the involution * extends to Qo(A). We assume
that a and b are nonzero elements of H(Qp(A4),*) such that JU,, = 0.

Let f(X,X*)=a(X +X*b+b(X+X%)a e Qx*C(X). If f(X,X*) =0 then
aXb-+bXa = 0, which is not possible (cf. the proof of Theorem 2.7). Consequently
f(X,X*) #£0. Further, f(z,z*) = 2(z+2*)U, s = Oforall z € A. Consequently the
ring A satisfies a generalized identify[-with-involution]. From Theorem 2.4 it follows
that Qp(A) is a primitive ring with nonzero socle, and the skewfield associated to
it is finite-dimensional over its center. Besides, f(X, X*) is a generalized identity|-
with-involution] for the ring Qo(A). Hence H(Qo(A),*)U,p = 0.

Let D,V, and G be as in Theorem 2.5. Since Qg(A) is a primitive ring with
nonzero socle Fg(V), then Fg(V)a # 0 and Fg(V)b # 0. Thus za # 0 and yb # 0
for some z,y € Fg(V). From Theorem 2.5 it follows that there exists an idempotent
e € Fg(V) such that ere = x,eye = y,exae = za, and eybe = yb; G(ue,v) =
G(u,ve) for all u,v € V. Since G(ue,v) = G(u,ve*) and G is a nondegenerate
scalar product, ¢ = e*. Further, e[z(eae)le = e(exe)(ae) = ex(ae) = exae = za # 0.
Thus eae # 0. Analogously it is shown that ebe # 0. As in the proof of Lemma
2.6 we get that the ring eQo(A)e is isomorphic to a ring of n X n matrices over a
skewfield which is finite-dimensional over its center. Since e = €%, the involution
* induces an involution on the ring eQp(A)e, and H{eQo(A)e,*) € H(Qo(A),*).
Further,

0 = e[(eze + ez e)U, ple = (eze + ex"€)Ueqe,ebe

for all z € Qo(A). Thus H(eQo(A)e, *)Ueqe,ebe = 0. But since H(eQo(A)e,*) is a
simple finite-dimensional algebra, in view of Theorem 2.2 we get that either eae = 0
or ebe = 0. This contradicts the inequalities eae # 0 and ebe # 0, and the theorem
is proven. 0O

PROOF OF THEOREM 2. In view of a Theorem of Zel’'manov ([11], Theorem
3), each prime nondegenerate Jordan algebra over a ring ® containing 1/2 is either
a central order in an algebra of a bilinear form, or in a simple 27-dimensional
exceptional algebra H(Cg), or for some prime associative algebra A we have one of
the inclusions

AT C T CQo(A)T or H(A,*)CJ C H(Qo(A),")

Since the condition JU, ; = 0 on a central order of an algebra carries over to that
algebra, Theorem 2 holds in view of Proposition 2.1 and Theorems 2.2, 2.7, and
28. 0O

BIBLIOGRAPHY

1. K. L. Beidar, Rings with generalized identities. 11, Vestnik Moskov. Univ. Ser. I Mat. Mekh.
1977, no. 3, 30-37; English transl. in Moscow Univ. Math. Bull. 32 (1977).

2. ., Rings with generalized identities. III, Vestnik Moskov. Univ. Ser. ] Mat. Mekh. 1978,
no. 4, 66-73; English transl. in Moscow Univ. Math. Bull. 33 (1978).

3. » Rings with generalized identities, Third All-Union Sympos. Theory of Rings, Algebras
and Modules, Abstracts of Reports, Tartu. Gos. Univ., Tartu, 1976, pp. 12-13. (Russian)




PRIMENESS OF ALTERNATIVE AND JORDAN ALGEBRAS 137

4. K. 1. Beidar, A. V. Mikhalev, and K. Salavova, Generalized identities and semiprime rings
with involution, Uspekhi Mat. Nauk 35 (1980), no. 1(211), 222; English transl. in Russian Math.
Surveys 35 (1980).

5. s Generalized identities and semiprime rings with involution, Math. Z. 178 (1981), 37-62.

6. K. 1. Beidar, A. V. Mikhalev, and A. M. Slin’ko, Criteria for primeness and nondegeneracy
of Jordan algebras, Seventeenth All-Union Algebra Conf., Abstracts of Reports, Part I, Inst. Mat.
Akad. Nauk BSSR, Minsk, 1983, p. 20. (Russian)

7. Nathan Jacobson, Structure of rings, Amer. Math. Soc., Providence, R.I., 1956.

8. , Structure theory of Jordan algebras, Univ. Arkansas Lecture Notes in Math., vol. 3,
Univ. of Arkansas, Fayetteville, Ark., 1981.

9. , Structure and representations of Jordan algebras, Amer. Math. Soc., Providence, R.I.,
1968.

10. K. A. Zhevlako et al., Rings that are nearly associative, “Nauka”, Moscow, 1978; English
transl., Academic Press, 1982.

11. E. 1. Zel'manov, On prime Jordan algebras. II, Sibirsk. Mat. Zh. 24 (1983), no. 1, 89-104;
English transl. in Siberian Math. J. 24 (1983).

12, Joachim Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966.

13. Wallace S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra
12 (1969), 576-584.

14. Kevin McCrimmon, Petrce ideals in Jordan algebras, Pacific J. Math. 78 (1978), 397-414.

15. S. V. Pchelintsev, Ezample of prime Jordan algebras generated by absolute zero divisors, Sev-
enteenth All-Union Algebra Conf., Abstracts of Reports, Part I, Inst. Mat. Akad. Naunk BSSR,
Minsk, 1983, p. 158. (Russian)

16. Louis Halle Rowen, Structure of rings with involution applied to generalized polynomial identities,
Canad. J. Math. 27 (1975), 573-584.

17. 1. P. Shestakov, Absolute zero divisors and radicals of finitely generated alternative algebras,
Algebra i Logika 15 (1976), 585-602; English transl. in Algebra and Logic 15 (1976).

Translated by K. MCCRIMMON




