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In this paper we give a characterization of primitivity of Jordan pairs and triple
systems in terms of their local algebras. As a consequence of that local characteri-
zation we extend to Jordan pairs and triple systems most of the known results
about primitive Jordan algebras. In particular, we describe primitive Jordan pairs
and triple systems over an arbitrary ring of scalars in the sense of “The Struc-
ture of Primitive Quadratic Jordan Algebras” by J. A. Anquela, T. Cortés, and
F. Montaner (1995, J. Algebra 172, 530-553, 5.1).  © 1996 Academic Press, Inc.

INTRODUCTION

Primitive Jordan pairs and triple systems appear as a fundamental tool
in the description of linear (over a field of characteristic not two) prime
Jordan triple systems given in [21] by E. I. Zelmanov. In [19], V. G.
Skosyrski obtains a description of linear primitive Jordan triple systems.
Recently, A. d’Amour and K. McCrimmon extended Zelmanov’s result to
arbitrary quadratic Jordan pairs, proving that if a Jordan pair 1V is
primitive at b, then the local algebra of I at b is primitive [3]. Their aim
was to carry over known facts on Jordan algebras to pairs and triple
systems to show that a homotope—PI primitive Jordan pair or triple system
has nonzero socle. Local algebras are defined by K. Meyberg in [17] and
consist essentially of what remains of a homotope algebra when its
“radical” part is cut off. By their very definition, local algebras are related
to the Jacobson radical, hence to primitivity, and examples of their use in
that sense can be found in [8].

The aim of this paper is to go further in the use of local algebras as a
link between the category of Jordan algebras and the categories of Jordan
pairs and triple systems. We will carry over to the latter categories the
whole structure theory of primitive Jordan algebras given in [5].
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To do this we prove in Section 3 the central result of the paper (Th.
(3.6)), a local-to-global inheritance of primitivity result, asserting that a
strongly prime Jordan triple system having a primitive local algebra T, is
primitive at b. The proof, as is usual in Jordan theory, splits into two parts:
homotope—PI systems and non-homotope—PI (also called hermitian) sys-
tems. For Jordan triple systems of the first kind the result follows easily
from known facts about Jordan algebras. Zelmanov polynomials are needed
for hermitian systems. Section 2, the most technical section in the paper, is
devoted to constructing these ideals of polynomials which, when evaluated
in an inner ideal of a homotope, “eat” pentads in the triple system and
produce elements inside the inner ideal.

From (3.6) and the result of [3] mentioned above, a local characteriza-
tion of primitivity for Jordan pairs (3.9) is given. Results in Section 4 are
consequences of (3.9) and [5], providing generalizations to Jordan pairs of
most of the results of [5] on primitivity of Jordan algebras. In particular, a
classification of primitive Jordan pairs over an arbitrary ring of scalars is
given.

In Section 5 we obtain analogues for triple systems of the results of the
previous section. In particular, we extend the central result of [19], obtain-
ing a complete description of primitive Jordan triple systems over an
arbitrary ring of scalars. Tight double pairs of a triple system, introduced
in [3], are the main tool here. Finally, in Section 6, we use Zelmanov
polynomials constructed in Section 2 to show that primitivity (= -primitiv-
ity) lifts from a special Jordan pair or triple system to any tight (:-tight)
envelope.

Apart from the main points outlined above, the paper contains a
preliminary section with some known basic facts and definitions and a
section devoted to the study of primitive and =-primitive associative pairs
and triple systems which will play an important role in the subsequent
description of primitive Jordan pairs and triple systems.

0. PRELIMINARIES

0.1. We deal with Jordan algebras, pairs, and triple systems over an
arbitrary ring of scalars ®. The reader is referred to [10, 15, 11, 2] for
notation, terminology, and basic results we will use throughout the paper.
However, we will stress some of those required preliminaries in this
section.

—Given a Jordan algebra J, its products will be denoted x?2, U, y, for
x,y € J. They are quadratic in x and linear in y and have linearizations
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denoted by

xoy=Vy=(x+y) —x2—y2
{oz} = U, .y =V, ,z2=U..y — Uy - Uy.

—For a Jordan pair V' = (VV*,V~) we will denote the products Q. y
forany x € V7, y € V7, o = 4, with linearizations denoted by Q, , and
D

X, y*
—A Jordan triple system T is given by its products Py, x,y € T,
with linearizations denoted by P, , and L, ,.

0.2. One can view any Jordan algebra as a Jordan triple system by
forgetting the squaring and letting P = U. By doubling any Jordan triple
system T one obtains the double Jordan pair V(T) = (T,T) of T with
Q.y =P,y forany x,y € T. A Jordan pair V= (VV*, V") gives rise to a
Jordan triple system T(V) = V*® IV~ by defining P, -(y"@®y )=
Q,+y~® Q,-y"; those Jordan triple systems isomorphic to 7(}') for a
Jordan pair V" are called polarized.

0.3. One can obtain Jordan systems from associative systems by sym-
metrization: Given an associative pair R = (R*, R™) with products xyz, for
any x,z € R% y € R™“, one can construct a Jordan pair denoted R‘*),
which over the same pair of modules has new products Q,y = xyx for any
x € R° y € R™“. Any Jordan pair which is a subpair of an R*) for some
associative pair R is said to be special. A particularly important example of
special Jordan pairs is ample subpairs of an associative pair with involution
[7, 1.7]. Similar constructions lead to the notions of special Jordan triple
systems and algebras, together with the particular cases of ample sub-
spaces of associative triple systems and algebras with involution [2, 7].

As for Jordan systems, one has functors 7( ) and V( ) between the
categories of associative pairs and triple systems.

0.4. Associative and Jordan triple systems and pairs can be studied in
terms of associative and Jordan algebras by considering their homotopes
and local algebras [3]:

—Given an associative pair R = (R*, R™) and an element b € R™°,
the ®-module R° becomes an associative algebra denoted R°» and
called the b-homotope of R by defining

X+, y = xby,
for any x, y € R”. The set

Kerpb = Kerb = {x € R” | bxb = 0}
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turns out to be an ideal of R°® so that the quotient
Ry = R°® /Ker b

is an associative algebra called the local algebra of R at b.

—Given a Jordan pair V' = (V*,7) and an element b € V77, the
®-module V7 becomes a Jordan algebra denoted 177 and called the
b-homotope of V' by defining

XD = Q b,

UPy = 0,0,y
for any x, y € VV°. The set
Ker,b =Kerb={xeV’|Q,x=0,0,b =0}
turns out to be an ideal of V7 and the quotient
Ve =1ve® /Ker b
is a Jordan algebra called the local algebra of V at b.

If I/ is nondegenerate or special then Ker,,b = {x € V7| Q,x = 0}.

—Homotopes and local algebras for associative and Jordan triple
systems have definitions analogous to those in the pair case (simply
without the superscript o).

0.5. The notions defined in (0.4) are compatible with the functors 1'( )
and T( ) as well as with symmetrizations and ample subspaces:

—Let T be an associative or Jordan triple system, b € T. Then

T =y, T,=W(T)], o=*=.

—Let IV be an associative or Jordan pair, b € V"7, 0 = +. Then
Vy=TV),.

—Let R be an associative pair, b € R"?, 0 = +. Then

(R = (R7™)™, (RO)7 = (R,

If R has a polarized involution * and b is symmetric then the homotope
R?® and the local algebra R¢ naturally inherit an involution. Then the
homotope H°® and the local algebra HZ of an ample subpair H of R
(b € H™7) are isomorphic to ample subspaces of R7® and R{, respec-
tively. Similar results hold for associative triple systems.

In the description of Jordan systems, ideals of so-called Zelmanov or
hermitian polynomials play a central role. We list now some known
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properties of these ideals, from which we will construct our own tools in
Section 2.

In particular, we will need some ideals of polynomials for triple systems
inside the free special Jordan triple system ST(X) on the infinite set of
variables X. Notice that ST(X) is naturally imbedded in AssT(X), the free
associative triple system on X, where we can find n-tads for odd n, the
associative polynomials

{x1,..oox,} =x.0.x, +x,... x4

Recall that if A4 is an associative triple system with involution * and
a,...,a, € H(A,+), then

{ay,....a)} =ay...a, + (ay...a,)%,

the trace of the element a,...aq,.

A J-ideal A X) of ST(X) is hermitian if it is n-tad closed for all odd
n > 5. To find nonzero hermitian ideals, d’Amour [1] studies hearty n-tad
eater ideals /Z(X) (for odd ») consisting of those polynomials in ST(X)
which eat adic m-tads from the first and second positions for any odd
m < n. In particular, we recall Theorems 3.16 and 4.5:

0.6. The set Z(X) of hearty pentad-eaters forms a nonzero hermitian
linearization invariant g-ideal of ST(X).

The elements in #Z(X) eat from any position [1, Remark 3.14(3)].
Indeed, the same argument shows:

0.7. LEMMA. Let I be a semi-ideal of ST(X) contained in Z(X) (n odd).
Then the elements of I eat adic m-tads for any odd m < n from any position.

For any odd m we will define the power . Z(X)™ inductively by

A =#(X), A" = P (A(X)" 7).

0.8. PROPOSITION.  For any odd m, Z(X)" is a semi-ideal of ST(X)
contained in Z,, , (X).

Proof. The fact that Z(X)" is a semi-ideal follows from (2.12) of [2].
We will show that Z(X)™ is contained in Z,,,(X). The case m =1
follows from (0.6). Assume that the proposition is true for any odd power
less than or equal to m and we will show that Z(X)™*?2 is contained in
Z,.(X). Let {F,} be an arbitrary adic family, p € Z(X), g € Z(X)™",
m>1putT=ST(X)and y,,...y,. s €T.
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Fm+6(yl""’ym+5’pqp)
= Fpie(¥1r-- Ymss: PG, D)
S Y Fe(yi Vs, T.T,T,q.p) (since p €7( X))

c Y F(T,T,T,T,p) (q €%,,,(X) by the
induction assumption)
C Y Fy(T,T,T) (since p €Z(X)).
Similarly

Fovo(Yire s Ymsas PAPs Ymss) © 2 Fo(T, T, T).
We have shown P,q = pgp €%, ((X). |

Similar notions were first given for Jordan algebras in [15]. The free
special Jordan algebra over the set X will be denoted by SJ(X) and it is
contained in the free associative algebra Ass(X) on X.

From (2.3) of [5] one can obtain:

0.9. PROPOSITION. There exists a nonzero, linearization invariant F-ideal
Z(X) of SIX) such that:

(i)  For any special Jordan algebra J and any inner ideal K of J,
(#(K) K} c K

(Where the pentads are taken in any associative envelope of J).

(i) 2(X) consists of hearty pentad eaters and contains nonzero Clifford
polynomials, indeed Z(Hy(®)) = Hy(D).

Taking powers of £(X) creates more voracious polynomials. Indeed, if
we define inductively

FHX)=2(X) =9(X), Z"(X)=2(X)" =UnZ(X)" ",
for any odd n, we have

0.10. COROLLARY. The set £(X)" is a nonzero, linearization invariant
F-ideal of SIX) for any odd n and

(i)  For any special Jordan algebra J and any inner ideal K of J,
<n + 2 factors

{?(K)" 7. K} cK

(where the m-tads are taken in any associative envelope of ).
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(i) 2(X)" consists of hearty (n + 4)-tad eaters and contains nonzero
Clifford polynomials, indeed Z"(Hy(®)) = Hy(®).

Proof.  Proposition (0.9) shows the case n = 1. We will show (i) induc-
tively: if g € 2(X) and h € £(X)" 2, then

n + 2 factors
{(Ugh)(K) J..J K}
n + 2 factors
= {g(K)h(K)g(K) J...T K}
n + 1 factors

c {g(K)h(K) T...T K} (since g is a hearty pentad eater)

C {g(K)jffK} (since 4 is a hearty
(n + 2)-tad eater)
cK (since g € (K)).
Part (ii) is straightforward. |

1. PRIMITIVE ASSOCIATIVE PAIRS
AND TRIPLE SYSTEMS

This section is devoted to stating some basic facts on primitive associa-
tive pairs and triple systems. Although some of these results (like
(1.10-1.11) will not be needed later in the paper, they have been included
to allow the reader to compare with similar facts for Jordan pairs and
triple systems proved in the sequel.

1.1. Primitive associative pairs. An associative pair R = (R*, R™) is said
to be left primitive or left (o )-primitive at b € R™7 (o = +) if there exists
a proper left ideal K of R (K # R?, R°’R™?K c K) such that:

(i) K is c-modular at b for some ¢ € R, i.e., x — xbc € K for all
x € RY or, equivalently, K is a c-modular left ideal of the homotope R
(i) K complements nonzero (o )-ideals: I + K = R” for any ideal
I =% 1)of Rsuchthat I # 0,
and R is (o)-coreless, i.e., R7zZR° = 0(z € R™7) implies z = 0.

Under the above conditions K is called a primitizer of R with b-
modulus c.

Analogously one can consider right (o )-primitive associative pairs for
which primitizers are right ideals.
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1.2. Remark. The (o )-coreless condition in an associative pair R is
equivalent to asserting 77 # 0 for all nonzero ideals I = (I*, 1) of R.
Indeed, if I is an ideal of R and I = 0, then R7I"“R? C I’ = 0, hence
177 =0 by the coreless condition. The converse readily follows since
(I*,I7) is always an ideal for

I7=0 and [ “={z€R "|R%zR" =0}.

Therefore (ii) in the definition (1.1) can be replaced by

(i)’ K complements the (o )-part of nonzero ideals: 1 + K = R”
for any nonzero ideal I = (I",I7) of R.

We can now define left and right primitive associative triple systems
identically to left and right primitive associative pairs, i.e., as those having
a proper left or right ideal which satisfies (1.1)(i) and (ii)’ without the
superscript o.

Every left (right) primitive associative pair or triple system is prime.
Otherwise let I, L be nonzero orthogonal ideals of R. Since R = L° + K,
for a primitizer K € R with b-modulus ¢, we can write ¢ =y + k, where
y € L’ k € K. Now, for any x € I°,

x =x — xbc + xbc = (x — xbc) + xbk

since xby € IR™ L% = 0. We have shown /? C K; hence R =7+ K =
K, which is a contradiction.

1.3. =-Primitive associative pairs and triple systems. An associative pair
R = (R*, R7) with involution = is said to be =-primitive or (o)-*-
primitive at the element b € H(R™7, =) (o = +) if there exists a proper left
ideal K of R satisfying (1.1)(i) and (1.2)(ii)" with the word ideal replaced
by =-ideal.

Under the above conditions K is called a x*-primitizer of R with
b-modulus c. Notice that unlike for the notion of primitivity there is no
need to distinguish between left and right =-primitivity: since the antiauto-
morphism = provides right primitizers from left primitizers and vice versa
the notions of left *-primitivity and right *-primitivity coincide.

As above, *-primitive associative triple systems are defined identically
to *-primitive associative pairs without the superscript o .

Replacing ideals by =-ideals in the argument given in (1.2) shows that
every =-primitive associative pair or triple system is *-prime.

The next result is devoted to studying primitivity and =-primitivity
through the functor 7'(). We will skip its proof since it is just a direct
translation (with obvious changes) of the corresponding result for Jordan
pairs and triple systems given in Section 5 of [2] and Th. 5.5 of [3].
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1.4. PRoOPOSITION. Let R = (R*, R™) be an associative pair (resp. an
associative pair with involution *, in which case we also write * for the
induced involution in T(R)).

(i) R is prime (resp. *-prime) if and only if T(R) is prime (resp.
* -prime).

(i) If R is left, respectively right, primitive (resp. *-primitive) with
primitizer (resp. *-primitizer) K C R” (o = +) of b-modulus ¢ (b € R™°
(resp. b € H(R™7, %)), ¢ € R?) then T(R) is a left, respectively right,
primitive (resp. *-primitive) associative triple system with primitizer (resp.
*-primitizer) K & R™7 of b-modulus c.

(iii) If T(R) is left, respectively right, primitive (resp. *-primitive) at b
with primitizer (resp. *-primitizer) K of b-modulus ¢ (b =b"® b~ T(R)
(resp. b=b"® b e H(T(R), *)),c = c*® ¢~ € T(R)) then, for some o
€ {+,— }, T(R) is also left, respectively right, primitive (resp. * -primitive) at
b~ with primitizer (resp. *-primitizer) K = K + R~ of b~ "-modulus c’
and R is left, respectively right, primitive (resp. *-primitive) at b~° with
primitizer (resp. *-primitizer) 7w°(K) = 77 (K) of b~ “-modulus c°.

Primitivity does not flow so smoothly through the functor 7(), due to
the fact that I(R) can have more ideals than those coming from ideals of
the triple R. The situation is presented in the next result, whose proof is
patterned after the proof of Theorem 6.2 of [3].

1.5. PROPOSITION.  Let R be an associative triple system (resp. an associa-
tive triple system with involution *, in which case we also write * for the
induced involution in V(R)), left, respectively right, primitive (resp. *-primi-
tive) at b with primitizer (resp. *-primitizer) K of b-modulus c.

() If V(R) is prime (resp. =-prime), then V(R) is left, respectively
right, (o )-primitive (resp. (o )-*-primitive) for both o = + as an associative
pair with (o )-primitizer (resp. (o )-*-primitzer) K of b-modulus c.

(i) If V(R) is not prime (resp. not *-prime), then V(R) is a subdirect
product of a left, respectively right, (o )-primitive (resp. (o )-*-primitive)
associative pair V and its opposite (which is left, respectively right, (— o )-
primitive (resp. (— o )-*-primitive)). Indeed V can be obtained as the quotient
V(R) /I, where I is an ideal (resp. *-ideal) of V(R), maximal under the
condition "N I~ = 0.

Proof. Assume that R is a left or right primitive associative triple
system.

(i) Notice that for any ideal I = (I*, I") of V(R), we have the ideal
(I7,I") of V(R) so that the fact that I/(R) is prime provides a nonzero
ideal I*N I~ of R whenever I is nonzero. This readily implies that any
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primitizer of R complements the + and — parts of nonzero ideals of
V(R). Hence V(R) is (+)- and (—)-primitive with the same primitizer
as R.

(i) We claim that there exists a nonzero ideal I of V(R) such that
I"n I~ = 0. Otherwise VV(R) would be prime since R is prime and nonzero
orthogonal ideals I, L of V(R) give rise to nonzero orthogonal ideals
I'nI~,L*n L~ of R.By Zorn's lemma we can find a nonzero ideal I of
V(R) maximal under the condition I*N I =0. Let V=V(R)/I. It is
clear that V(R) is a subdirect product of V and V(R)/(I~, I"), the latter
being the opposite of V.

Let us show, for example, that 7 is left (o )-primitive for some o
{+,—} whenever R is left primitive. Take K a primitizer of R with
b-modulus c. We claim that either (K +I*)/I"+ V' or (K+17) /I +
V-. Otherwise R=K+ I"=K + I~ and the modulus ¢ of K can be
written

c=k +z"=k,+ 2z,
where k;, k, e K,z"e ", z" e I". Now
27 —z"bz"=z"—z"b(c—ky)=(z7—2z"bc) +z bk, €K

since K is a left ideal of R and K is c-modular at b. But z"bz" € I N
I~ =0, which implies z~ € K; hence ¢ = k, + z~ € K, which contradicts
properness of K.

Assume, for example, that (K + I7)/I"+# V*. It is straightforward that
(K+T1)/I" is a ¢ + I"-modular left ideal of V' at b + I~. Moreover
(K +I")/I'" is also a primitizer of J since any nonzero ideal of I comes
from an ideal M of V(R) strictly containing I, thus providing a nonzero
ideal M*n M~ of R which is complemented by K.

The above arguments apply with obvious changes (replacing ideals by
x-ideals) when a =-primitive associative triple system with involution = is
considered. 1

1.6. We remark some basic facts on the generation of ideals for associa-
tive pairs and triple systems:

—Given a set S € R*U R, where (R*, R7) is an associative pair,
the ideal 1d4(S) of R generated by S is just the pair of spans of all
monomials in R containing elements of S. Indeed, we can generate ideals
with elements that do not properly exist inside R but make sense in an
“algebra envelope” of R (see [17; 2, 1.13]): as an example, we can consider
a € R",b € R~ and talk about the ideal Idz(ab) of R generated by ab,
which is just the pair of spans of monomials in R having ab as a subword.
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—Similarly, given an associative triple system R, the ideal Idz(S) is
just the span of all monomials in R containing elements of S, and S can
be any subset of R or, more generally, any subset in an “algebra envelope”
of R.

This smooth way of generating ideals dealing with associative monomials
provides elemental characterizations of semiprimeness and primeness.

1.7. LEMMA. (i) An associative triple system R is semiprime if and only if
bRb = 0 implies b = 0.
(i) Let R be a prime associative triple system (resp. a *-prime associa-
tive triple system with involution =), b € R (resp. b € H(R,*)), I be an ideal
(resp. a *-ideal) of R such that bIb = 0. Then either b = 0 or I = 0.

Proof. (i) This assertion is just a part of [2, 1.18]

(i) The fact that I is an ideal of R implies that (/bR)R(IbR) =
Ib(RRI)bR C IPIBR = 0; hence IbR =0 by (i) since R is semiprime.
Similarly

(RIb)R(RIb) = RIb(RRI)b < RIbIb = 0 implies RIb = 0
and
(IRb) R(IRb) = IRb(RIR)b < IRbIb = 0 implies IRb = 0.

Therefore I is orthogonal to Idz(b). By primeness (resp. *-primeness) of
R, either I=0orIdz(b) =0and b =0. |

Next we characterize primitivity and *-primitivity of associative pairs
and triple systems in terms of their local algebras:

1.8. THEOREM. (i) An associative pair (resp. an associative pair with
involution =) R is left, respectively right, primitive (resp. *-primitive) at
be R 7 (resp. b€ H(R™ 7, %)) if and only if Ry is left, respectively right,
primitive (resp. *-primitive) and R is prime (resp. *-prime).

(i) Let R be an associative triple system (resp. an associative triple
system with involution %), b € R (resp. b € H(R, *)).

(@ If R is prime (resp. *-prime) and R, is left, respectively right,
primitive (resp. *-primitive) then R is left, respectively right, primitive (resp.
* -primitive) at b.

(b) If R is left, respectively right, primitive (resp. *-primitive) at b,
then R is prime (resp. *-prime) and there exists b’ € R (resp. b’ € H(R, *))
such that R is also left, respectively right, primitive (resp. *-primitive) at b’
and R, is left, respectively right, primitive (resp. *-primitive).
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Proof. (iiYa) _Assume R is prime and R, is a left primitive algebra
with primitizer K = K/Ker b (K is a proper left ideal of R containing
Ker b). Take

C = {c € R|c + Ker b is a modulus for K}
and, for any ¢ € C, define

K(c) = {x —xbc |x € R}.

Clearly K(c) is a left ideal of R such that K(c) c K. Hence K, =
Y.< cK(c) is a proper left ideal of R, since K; € K and K is proper, and
K, is c-modular at b for any ¢ € C. Let I be a nonzero ideal of R. Hence
I =(I+ Ker b)/Ker b is an ideal of R,. Moreover, I is nonzero by
(L.7)Gi). Thus T contains a modulus ¢ + Ker b for K with ¢ € I. Now
¢ € C, hence it is a b-modulus for K,, which implies R =1 + K.

(i) Assume, for example, the R is left primitive at b € R™. It is
known that R is prime. Let K be a primitizer of R with b-modulus
c €R".

Let us show that R; is primitive. Since K is a left ideal of (R*)®),
= (K + Kerb)/Kerb is a left ideal of R;. Moreover K is proper:
otherW|se R*=K+ Kerb and ¢ = k + z, where k € K and z € Kerb;
since K is a c-modular left ideal of (R*)®), it is also z-modular (z = ¢ — k
and k € K) and hence it is also z®”-modular; but z®” = zbzbz = 0,
obtaining K = R™, which is a contradiction. The left ideal K is also
¢-modular in R} if ¢ =c + Kerb since K is c-modular in (R*)®. Now,
any nonzero ideal T of R} has the form I/Kerb, where I is an ideal of
(R™)® strictly containing Kerb. Thus there exists x € I such that y = bxb
# 0. Consider the ideal L = Id,(y) of R. Since L # 0,L"+ K = R*. But

L*=R'yR*=R*'bxbR*=R* -, x -, R"C I.

Hence R*=1+ K and I + K = R}.

Conversely, let R be a prime associative pair such that R; is left
primitive, b € R™. By (1.4)(i), T(R) is prime. Moreover, T(R), is isomor-
phic to R}, as noted in (0.5); hence it is left primitive. Using (ii)@), T(R) is
left primitive at b and R is primitive at b by (1.4)ii).

(ii)(b) If R is left or right primitive, we know that R is prime. To
prove the remaining assertion we will follow the proof of the correspond-
ing fact for Jordan triple systems given in [3]. Let R be an associative triple
system, left primitive at b, with primitizer K of b-modulus c.

If V(R) is a prime associative pair, then I'(R) is a left (+)-primitive pair
at b by (1.5)(i); hence V(R); is left primitive by (i) and R, is primitive
since R, = V(R); (see (0.5)).
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If T(R) is not prime we can take a nonzero ideal I of V(R) maximal
under the condition I*N I~= 0 as in (1.5) and we have that K + I*# R
or K+ I # R. Suppose, for example, that K, = K + I is proper. Notice
that K, is a left ideal of R:

RRK, C RRK + RRI*= RRK + V(R) V(R) I'CK +I*,

since K is a left ideal of R and I is an ideal of V(R). Moreover, K, is
modular at b with b-modulus c, i.e., K, is a c-modular left ideal of R®
and a primitizer of R since K K;. Now, R=K, + U"+ 1) =K, + I~
since I+ I~ is a nonzero ideal of R, and ¢ = m + ¢', where m € K, and
¢’ €1 . Hence ¢’ =c — m is also a modulus for K, in R®, ie., ¢ is a
modulus for K, at b. Let

b'=bc'b €RITR=V(R) I'V(R) cI".
We claim that ¢’ is also a modulus for K; at b’: for any x € R,
x —xb'c’ =x —xbc'bc’ =x — xbc’ + (xbc") — (xbc')bc’ € K,

by c¢’-modularity of K, at b.

We have proved that R has primitizer K, containing I* with modulus
c’el atb' eI,

Let us show that R, is primitive. To do that, consider the pair
V = V(R) /I, which, as in the proof of (1.5), is primitive at b’ + I~ with
primitizer K, /I of modulus ¢’ + I*. Now R, and V. ,- are isomorphic
algebras. Indeed the natural algebra epimorphism p: R, — Vj.,,- given
by

p(x +Kerb')=(x+1")+Ker(b' +17)

is also injective: indeed, p(x + Kerb') = 0 implies x + I < Ker(b' + I7);
hence b'xb’ € I~,and b'xb’' € I* since b’ € I*. Thus b'xb’ €I*N I =
0, x € Kerb’, and x + Kerb’ = 0. Finally, V}/., ;- is left primitive by (i).

The above arguments apply verbatim replacing ideals by =-ideals, when
an associative pair or triple system with involution is considered. Only one
change is needed at the end of the proof of (ii)(b) since, in general, we
cannot assume that b’ = bc'b € H(R, *). To overcome that difficulty, let
¢" =c' +c"™*—=c'*bc’. It is clear that ¢" € I” since I is a =-ideal of
V(R) and ¢’ € I and also ¢” € H(R, *). Moreover c¢” is a modulus for
K, at b,

x —xbc" =x — xbc’ — xbc'* + xbc' = bc’
= (x —xbc'*) — (x —xbc'*)bc’ € K,

since ¢’ is a modulus for K, at b. Thus ¢” can replace ¢’ and we can
assume ¢’ € H(R, =), which implies b’ = bc’'b € H(R, ). |
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We finish this section by listing some properties which show how
associative pairs and triple systems behave as associative algebras concern-
ing the relations between primitivity and =-primitivity and the transfer of
those properties between an algebra and its ideals (cf. [5, 4.6]; [18, Vol. I,
p. 308).

1.9. PropPosITION. (i) Let R be a +-(o )-primitive associative pair (o =
+). Then R is a subdirect product of a (o )-primitive pair P and its polarized
opposite P°° (obtained from P by reversing products). If R is prime then it is
(o )-primitive.

(ii) Let R be a =*-primitive associative triple system. Then R is a
subdirect product of a primitive pair P and its opposite P°° (obtained from P
by reversing products.). If R is prime then it is primitive.

Proof. The proof of (4.6) of [5] applies here with obvious changes. |

1.10. ProrosITION. (i) Let R be an associative pair (resp. an associative
pair with involution *), I a nonzero ideal (resp. *-ideal) of R. Then:

(@ If R is left, respectively right, primitive (resp. *-primitive) at
bel ? (resp. be HUI 7, %)) (o= +) then I is left, respectively right,
primitive (resp. *-primitive) at b.

(b) If R is prime (resp. *-prime) and I is left, respectively right,
primitive (resp. *-primitive) atb € I"7 (resp. b € HI™ 7, %)) (o = +) then
R is left, respectively right, primitive (resp. *-primitive) at b.

(ii) Let R be an associative triple system (resp. an associative triple
system with involution *), I a nonzero ideal (resp. *-ideal) of R. Then:

(@ If R is left, respectively right, primitive (resp. *-primitive) at
b el (resp. b € H(I, *)) then I is left, respectively right, primitive (resp.
* -primitive) at b.

(b) If R is prime (resp. =-prime) and I is left, respectively right,
primitive (resp. *-primitive) at b € I (resp. b € H(I, %)) then R is left,
respectively right, primitive (resp. *-primitive) at b.

Proof. We first consider the case without involution.

(i@ Let K be a left primitizer of R at b € I with modulus
¢ € R. By primitivity of R, R=1+ K and ¢ = ¢’ + k, where ¢’ €I and
k € K. Hence ¢’ is also a modulus for K at b and it is readily seen that ¢’
is also a modulus for the proper left ideal K NI of I at b in 1.

We just need to show that K N I complements nonzero ideals of I: Let
L be a nonzero ideal of I. By (1.7)(ii), S = LIL # 0. Notice that S c L c I
since L is an ideal of I. Now, SSS # 0 since

(SIS)I(SIS) = LILILILILILILIL
= LIL(ILI)L(ILI)(LIL)IL C LILLILLIL = SSS
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and (SIS)I(SIS) # 0 by (1.7)(ii). Consider
M = 1d4(SSS) = SSS + RRSSS + RSSSR + SSSRR + RRSSSRR.

We claim that M c L. Indeed
SSScILICL,
RRSSS = (RRS)SS C (RRI)LI CILI C L,
SSSRR = SS(SRR) c IL(IRR) cILI C L,
RSSSR = RLILSLILR = (RLI)LSL(ILR) C ILLLI C L,
RRSSSRR = (RRS)S(SRR) C (RRI)L(IRR) CILIC L.

By primitivity of R, R=M + K C L + K; hence I € L + K, which readily
implies I = L + (KN 1).

(ii)(b) Assume that R is prime and I is primitive at 5 € I with
primitizer K of modulus ¢ at b. Consider

K, ={xeR|Ibx CK}.
We claim that K, is a left ideal of R®: x € K, implies R -, x € K, since
Ib(R -, x) = IbRbx = (IbR)bx C Ibx C K.

Moreover, K C K, which implies that K, is ¢’-modular in R® for any
modulus ¢’ of K at b in I:

yb(x — xbc") = (ybx) — (ybx)bc' € K,

since ybx € I for any x € R and y € I. We also have that K, is proper:
otherwise ¢ € K, and, for any y € I,

y=(y —ybc) +ybc € K

by modularity of K and the definition of K,; hence K = I, which contra-
dicts properness of K.
Let

C = {d € R |d is amodulus for K, in R®)}.
For any d € C, define
K(d) = {x —xbd |x € R}.

Clearly K(d) is a left ideal of R such that K(d) c K, # R. Hence
K=Y ,.K(d)is a proper left ideal of R and it is d-modular at b for any
deC.
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We just need to show that K complements nonzero ideals of R: If L is
a nonzero ideal of R, then L N I is a nonzero ideal of I by primeness of
Rand I=(I NL)+ K.Wecan find ¢’ €I N L such that ¢’ is a modulus
for K at b in 1. Hence ¢’ is also a modulus for K, in R®), ie., ¢’ € C.
Thus, for any x € R,

x =xbc' + (x —xbc') €L + K(c¢') cL +K,

obtaining R =L + K.

(i) If R is an associative pair and I is a nonzero ideal of R, both
assertions follow from (ii) applied to T(B) by using (1.4)(i). Both assertions
can also be obtained from the well known corresponding facts for associa-
tive algebras by using (1.8)(i) and the easy fact that local algebras of prime
associative pairs are prime.

The above argument apply with obvious changes when associative pairs
and triple systems with involution are considered. |

1.11. Remark. By using our knowledge about how primitivity and
*-primitivity are inherited by local algebras of associative algebras we can
change the element at which an associative pair is primitive or -primitive.

(iX@) If an associative pair R = (R™, R™) is left (resp. right) primi-
tive at b € R™7, (o = +) then it is also left (resp. right) primitive at bch
for any ¢ € R? such that bcb # 0.

(iXb) If an associative pair R = (R™, R™) with involution = is -
primitive at » € H(R™?, *) (o = +) then it is also *-primitive at bcb for
any ¢ € H(R?, ) such that bcb + 0.

Indeed if R is an associative pair (resp. an associative pair with involution
), then R is prime (resp. *-prime) and R is primitive (resp. *-primitive)
by (1.8). Using [22, Lemma 1] (resp. [8, 1.1]), (R})., e, IS again a
primitive (resp. =-primitive) algebra. Now (a) (resp. (b)) follows from (1.8)
and the natural isomorphism

(Rg)c+Kerb = Rl(;cb'

(ii)@) Given a nonzero ideal I of a left (resp. right) (o )-primitive
associative pair R there exists an element b’ € I~ 7 at which R is also left
(resp. right) (o )-primitive.

We just need to take an element ¢ € I” such that b’ = bcbh # 0 and apply
(iX@). The existence of such an element ¢ follows from (1.7) applied to
T(R), which is prime by (1.4)().

(ii)(b) Similar results can be obtained for associative pairs with
involution and for associative triple systems with and without involution
with a different argument.
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For example, let R be an associative triple system which is =-primitive at
b € H(R, =), I anonzero =-ideal of R. Let K be a left =-primitizer of R
and ¢ € I be a modulus for K at b. By the comments in the proof of (1.8),
we can assume that ¢ € H(I, *). Now ¢®? = cbc is also a modulus for K
at b, which is equivalent to saying that ¢ is a modulus for K at b’ = bcb €
H(I, +):

x —xb'c = x — xbchc = x — xbc?®? € K,

for any x € R.

2. MAIN TECHNICAL RESULTS

In this section we develop the tools which will be needed in the proof of
the central result of the paper: sets of algebra polynomials which “eat”
inside any special Jordan triple system 7' whenever they are evaluated in
an inner ideal of a homotope of T. We will be able to skip some of the
combinatorial difficulties by appealing to previously constructed objects.
Namely, to some ideals used in the description of primitive Jordan alge-
bras [5] which are mentioned in Section 0 and hearty eater ideals for
Jordan triple systems constructed in [1]. Some of the manipulations at the
beginning of (2.3) follow the pattern of A. d’Amour’s calculations in [1].

Given f(x,...,x,) € SI(X) and z € ST(X) define f(z; x;,..., x,):

f(zixrx,) = fO(xr 0 x,) = (5 x,)),

where o0,:SJ(X) — ST(X)® is the unique algebra homomorphism such
that o, (x) =x for any x € X. Given C(X) c SJ(X) and z e X, let
Cz; X) ={f(z; X) = flz; xq,..., x,) | f(xy,...,x,) € C(X)}.

2.1. LEMMA. For any f(x,,...,x,) € SI(X), z,t € X,
f(Z;Ptxll"thxn) =P,f(Ptz;x1,...,xn) =P,f(t;x1,...,xn,z),

for somefe S X). Indeed, f(P,z; x4,...,x,) =ﬂt; Xiyeer Xy Z)

Proof. Let J = ST(X). It is straightforward that P:J"? — J* is an
algebra homomorphism, which proves the first equality. The remaining
one is immediate. |

2.2. PROPOSITION.  For any odd n > 5 there exists a linearization invariant

F-ideal ##/(X) of SN X) containing Clifford identities (indeed Z#7#(H(®,))

= H(®,)) such that #7%(b; X) c#Z(X) for any b € ST(X) and
27, (X)) czZ(X).
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Proof. Define ZZ(X) = {f € SAX) | f(b; ...) €Z(X) for any b €
ST(X)}. Now, that Z#Z(X) is a linearization invariant J-ideal of SJ(X)
follows from the fact that Z(X) is a linearization invariant J-ideal of
ST(X) (see 3.16 of [1]). From d’Amour’s construction of elements in
Z.(X) (see page 176 of [1]) one can find an element in ZZ(X) which is a
Clifford identity; indeed one can show that u,; = e,; + e, € ZZ(H(D,)),
which readily implies the equality ZZ(H(®,)) = H(d,) since ZZ(H(P,))
is an ideal of H(®,). This takes care of the case n = 5.

Now we can define inductively the linearization invariant 7-ideals

ZZ(X) = Uy x %%, - (X)) CZZ,_,(X)

of SI(X). The equality Z7Z(H(®;)) = H(®,) follows inductively from
Uno, H(®;3) = H(®y). Now, using the fact that #(X) is an ideal of
ST(X) allows us to prove that Z#Z(b; X) C (#(X))"~*, where the odd
powers of #Z(X) are defined by ZA(X)' = #Z(X) Z(X)" =
P, x\(Z(X)""?). The fact that Z(X)" * c.Z,(X) by (0.8) finishes the
proof. 1

Remark. We indeed have shown that ZZ(b; X) c#(X)"~*, which is
a semi-ideal of ST(X) contained in .Z,(X) by (0.8). Hence the elements of
Z%(b; X) “eat” adic m-tads for any odd m < n from any position by
©.7).

2.3. Let T be a Jordan triple system, K an inner ideal of T. Assume
that T is special so that T is a subsystem of H(R, =) for an associative
triple system R with involution *. Let b € T be a fixed element.

Take a € (2(b; K))*"*! c K. Notice that

< 2n + 3 times

{abm1<} cK (1)
by (0.10) since K is an inner ideal of the algebra T, subalgebra of
H(R®, ). Let k € K, x,y, z, x;, x, € T. By expanding the brackets { }

{kx {abxbx,}ba} — {k{bxbax,}x,ba}
= {kx,x,bxbaba} — {kbxbax,x,ba}
= {k{bxbx,x,}(P,b)} — {kbxbx,x,aba} — {kbxbax,x,ba}
= {k{(Pyx)xpx,}(P,b)} — {kbxb{x,x,a}ba} € K,

using the fact that K is an inner ideal of T and (1) for an arbitrary n. If we
denote L (¢) = {abxbt} = {a(P,x)t} = L,p.t €T, L*(t) = {bxbat} =
{(P,x)at} € T forany t € T and by = we mean congruence modulo K,
we have shown

{fory L, (x;) ba} = {kL% (x,) x, ba}. (2)
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We also have
{k{bxbax,}x,ba} — {{abxbk}x,x,ba}
= {kbxbax,x,ba} + {kx,abxbx,ba} — {abxbkx,x,ba} — {kbxbax,x,ba}
= {kx,abxbx,ba} — {abxbkx,x,ba}
{{kx,a} bxbx,ba} — {ax,kbxbx,ba} — {abxbkx,x,ba}
{{ kx,a} bxbx,ba} — {af bxbkx,}x,ba}
{{kx,a} bxbx,ba} — P{{( P,x)kx,}x,b}
e {{KIK)bTbTba) + P{TTT} c K

by (1) for an arbitrary n and the fact that K is an inner ideal of T. We
have proved

{kL*(x,)x,ba) = {L, (k)x,x,ba}. (3)
Now
{ke, L (L,(x,))ba} = {kL*(x,)L,(x,)ba} (by (2))
= {L,(k)x,L,(x,)ba}  (by(3))
= {L,(k)L*(x;)x,ba}  (by (2) since L (k) € K)
= {kL%(L%(x,))x,ba)  (by (3) since L,(k) € K)
= {kLj(x,) Ly(x,)ba}  (by(2))
= {ke,L (L,(x,))ba}  (by(2)).
If we denote
S0z = [La pper Lapy|2 = [Lar Ly ]2
we have obtained
{Fery(80)x, ) ba) = 0. (4)

Similar computations show
{kley(xz)ba} — {kx,x,bybaba}
= {kx,abybx,ba} + {kx,x,bybaba} — {kx,x,bybaba}
= {kx,abybx,ba} = {{kx,a}bybx,ba} — {ax kbybx,ba}
€ {KbTbTha) + P{TTTyTTT)
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and the above is contained in K by (1) for an arbitrary n and the fact that
K is an inner ideal if y € Z#,(b; T) C#/(T).

Moreover, let u be a word of length m in elements of T inside the
associative algebra R,y € #%,,, ,,(b;T),n such that 2n + 1 > m. We
claim

{kley(xz)buba} = {kx,x,bybabuba} (5)
including the case ub = J true as shown before. Indeed,
{kxy L,(x,) buba} — {kx,x,bybabuba)
= {kx,abybx,buba} + {kx,x,bybabuba} — {kx,x,bybabuba}
= {kx,abybx,buba} = {{kx a}bybx,buba} — {ax,kbybx,buba}

m + 2 times 2m

S {KbTbT. . bTba} + Pa{TTTyTTTT. . T} cKk,

using (1), since a € (Z(b; K)*"*!, and y € 7%, ,,(b;T) €%, . (T).
Now, for m = 2, if a € (£(b; K))° and x,y €.7%,(b; T),

{kleX(Ly(xZ))ba} = {kley(xZ)bxbaba}
by (5), and if we denote u = xba we can use (5) again to obtain
{kley(xz)bxbaba} = {kley(xz)buba} = {kx,x,bybabuba}
= {kx,x,bybabxbaba) = {kx;x,b(y “(p,0) X “(p,a) @) }-

Therefore
{kxlxzb([y, T, a)}
= {lrx2b(Y “(pyay X (pray @ = X () V(2 @)} (6)
= {kx,S")(x,)ba} = 0
by (4).

We will construct a specific polynomial for particular choices of a, x,
and y. Let

(Pya) (Pya)
] ]

p=p(x,y ab) =a°(p,a [y, x '(Pba)[ylx (Pya) @
for

a €Z%b;K) N##y(b;T),



652 ANQUELA AND CORTES
and
X,y €EZ%,4(b;T).

Notice that p is an element of T, indeed p € K, since

(Pya) (Pya) a (Pya)\@ Pr®)

p=a'(Pba) [y’x]P .(Pba)[y’x]P '(Pba)a = Ua(Pb )(([Y,X]P ) )

= U (U)o 0 = U 10) = U0 (5@ 00)

EPT CPTCK.

We claim

{KTTbhp} Cc K. (7)
Indeed, if ¢ = [y, xI"** -, , a, we have
{kx,x,bp} = {kx,x,bababybabxbabc} — {kx,x,bababxbabybabc}

and both summands are congruent with zero. The term {KTTbababybabx-
babc} has the form {KT(Thaba)buba}, where

u = ybabxbabybabxba — ybabxbabxbabyba

is a sum of words of length m =8 in R"; since a €.#%,(b;T) and
L(T)cT,(5)yields

{ KTTbababybabxbabc} = { KTTbybabxbabc} ,

which now has the form {KT(Tbyba)buba) for u = xbabybabxba —
xbabxbabyba, a sum of words of length m = 6 in R®; since y € ##,,(b; T)
and L (T) c T, (5) gives

{ KTTbybabxbabc} = { KTTbxbabc} = { KT (Tbxba)buba},

where u = ybabxba — xbabyba of length 4, and since x € Z%,,(b;T) C
Z#,(b;T)and L (T) C T, we get

{KTTbxbabc} = {KTTbc} =0

by (6). A completely symmetric argument applies to the second summand
with the roles of x and y interchanged.
Finally, we claim

(KTTTpbp) K. (8)
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Indeed
{kxyx, x5 pbp} = {kxl{xzxsp}bp} — {kx, px3x,bp}
= —{kx; pxyx,bp}
since {kx{x,x; p}bp) € {KTTbp} < K by (7); but
{kx, px3x,bp} = {{kxlp}x3x2bp} — { px,kxyx,bp)
= —{ px,kx;x,bp}

since {{kx; p}x;x,bp} € {KTK}TTbp} C {KTTbp} € K by (7); now, notice
that p = P,z for some z € T yields

{ px,kxyx,bp} = {azax,kxyx,baza}
= P{zax,kx;x,baz} = P{TTT}

since a €. 7%,,(b; T) c#(T), and P{TTT} c P,T C K since a € K.
Define

a(a,x,v) = UL[(Ux) o ¥ = U@(20) = U@(3@ )] € $)(x, y,a)
so that q(b;a, x,y) = p,

r(a,x,y) =q(a, x,y)2 € SJ(x,y,a),
so that r(b; a, x, y) = pbp, and let

S(X) ={r(a,x,y)la € Z%(##u(X)), x,y E#%,4(X)} CSIX).
What we have shown in (8) gives
{s(b; K)TTTK} c K (9)

for any s(x,, ..., x,) € S(X), any special Jordan triple system T, any inner
ideal K of T,and any b € T.

2.4.  We will show that S(X) contains Clifford identities. Indeed, notice
that Z°(7%,,(Hy(P))) = Hy(P) by (2.2) and (0.10) and #7,o( Hy(P)) =
Hy(®) by (2.2). Then, if u;; = ¢;; + e;; denote the usual hermitian matrix
units, there is a suitable evaluation of Clifford polynomials x, y, and a so
that r(a, x, y) is a Clifford polynomial which, under this evaluation, takes
the value

2
r(Lugg, upp) = ([”121”23] ) = ey T €3,
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hence showing that
ey + ez € S(Hy(P))

(indeed, we can find evaluations of X such that suitable Clifford polynomi-
als a, b, c take the values 1, u,;, u,,, respectively; then use the fact that X
is infinite to assume that «, b, ¢ have pair-wise non-overlapping variables
to get 1, u,q, u;, With a single evaluation).

We put (2.3) and (2.4) together to obtain the following technical result:

2.5 THEOREM. Let X be an infinite set of variables. There exists a
linearization invariant J-ideal &(X) of ##,(X) such that for any special
Jordan triple system T € H(R, %), where R is an associative triple system with
involution, any b € T and any inner ideal K of the Jordan algebra T” such
that Kerb C K,

{&.(b; K)bTTTbK} C K. (1)

Moreover, if &(X) = (&(X)*), which is also a linearization-invariant
F-ideal of ##,(X), and K is modular in T'®) with modulus e then

{&(b; K)bTTTbK} c K (2)
and
{&(b; K)bTTT(1 — be)} < K (3)

(in the sense that {pbx,x,x5} — {pbx,x,x3be} € K for any x;,x,, x4 € T
and any p € &(b; K)).
The sets &(X) and &(X) contain nonzero Clifford polynomials. Indeed

g(Hs(q))) = gl(HS((I))) = Hy(P).

Proof. Let &,(X) be the set of polynomials p € ##,(X) satisfying
{p(b; K)bTTTbK} c K

for any special Jordan triple system T, any b € T, and any inner ideal K
of T® containing Kerb.
It is clear that &,(X) is a submodule of SJ(X) contained in Z#(X). We
will show that &,(X) is an ideal of Z7,(X): Let p € &(X), g € Z#,(X).
We have, for any special Jordan triple system T, any b € T, and any inner
ideal K of T containing Kerb,
{p*(b; K)bTTTDK)
={p(b; K)bp(b; K)bTTTbK}
c {p(b; K)bTTTbK} (since p(b; K) c#z#(b;T) cZ(T))

K (since p € &,(X)).

N
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Similarly,
{(U,q)(b; K)bTTTLK}
= {p(b; K)bg(b; K)bp(b; K)bTTTHK)

c {p(b;K)bq(b; K)bTTTbK} (since p(b; K) cZ(T))
c {p(b; K)bTTTbK} (since q(b; K) c#(T))
cK.

Also,
((p+q)(b: K)bTTTHK)
= {{p(b: K)ba(b: K)}BTTTLK)
= {p(b; K)bq(b; K)bTTTbK} + {q(b; K)bp(b; K)bTTTHK}
c {p(b; K)bq(b; K)bTTTbK} + {q(b; K)b{ p(b; K)bTTTHK})
—{q(b; K)bKbTTThp(b; K))
c{p(b; K)bq(b; K)bTTTbK} + {q(b; K)b{ p(b; K)bTTTbK}}
—{{q(b; K)bK}bTTTbp(b; K)} + {Kbg(b; K)bTTTbp(b; K))}
c {p(b; K)bTTTbK} + {q(b; K)bK} — { KbTTTbp(b; K)}
+{KbTTTbp(b; K)} (since q(b; K) cz(T),
pe&(X),q(biK) CK
and K is a subalgebra of 7")

cK (for the same reasons).
Finally,

{(U,p)(b; K)bTTTHK}
= {q(b; K)bp(b; K)bq(b; K)bTTTbK}

{q(b; K)bp(b; K)bTTTbK} (since g(b; K) cZ(T))

{{q(b; K)bp(b; K)}bTTTbK} — { p(b; K)bq(b; K)bTTTbK}

{(peq)(b; K)bTTTbK} — { p(b; K)bq(b; K)bTTTbK)

K —{p(b;K)bq(b; K)bTTTbK}  (by what we have
already proved)

C K —{p(b; K)bTTTbK} (since g(b; K) cZ(T))

cK (since p € &(X)).

N 1N

N
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We have shown that p?,U,q, p°q,U,p € &(X), i.e, &(X) is an ideal of
Z%#,(X), and consequently, £(X) is also an ideal of Z#%,(X). The fact
that &,(X) and &(X) are linearization invariant readily follows from the
linearity in the definition of &,(X), and they are obviously F-ideals.

We will next show that &,(H,(®)) = Hy(®) (implying &(H (D)) =
Hy(®)). If K is an inner ideal of 7™, then P,K is an inner ideal of T:

Pp T € PPy P,T = P,(U"T)  P,K.
By (2.4), there exists a Clifford polynomial py(x,,...,x,) € S(X) which
under some evaluation of its variables in H,(®) reaches the value e;; + e,s.
Using (2.3)(9) yields
{po(c; P,K)TTT(P,K)} C P,K (4)
forany c € T. Let k,ky,...,k, €K,d;,d,,d; € T and ¢ € T. By (2.1)
po(c; Poky, ... Pok,) = Py(qo(biky, ... K, 0))

for some g, € SI(X). Notice that

Plqo(b;ky,... k,, c)bd,d,dsbk} € P,K (5)
by (4) since
P{qo(b;ky,..., k,,c)bd,d,d;bk}
= {Py(qo(bi ky,... k,,c))d d,ds(Pyk)}
= {po(c; Pyky,..., Pyk,)d d,dy( Pyk)}.
Let

R(X) = {qo(ay,...,a,.1) | a; €77( X))} c#7(X).
We will show that R(X) c &,(X): Let r(x,,...,x,) € R(X). By (5)
P{r(b;ky,... k,)bdyd,d,bk} = Pu
for some u € K. Since r(b; k4, ..., k,,) € #%, (b, T) c#(T), we have
{r(b;ky, ... k,)bdyd,dsbk) € T
and

{r(b;ky,... k,)bd,d,dsbk} — u € Kerb.
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The fact that K contains Kerb yields
{r(b;ky,... k,)bd,d,dsbk} € K,

as desired.
Next we will prove that R(X) contains Clifford identities. By (2.2),
Z#,(Hy(®)) = Hy(®P) and we can find suitable Clifford polynomials

ai,...,a,,, €2%,(X) on non-overlapping variables which, under suitable
evaluations in H,(®), reach the values a,,...,a, so that
po(@y, ..., a,) = e, + ey, ayiq =1

From the definition of g,
%(511 ceey 6_anrl) = Pl(%(l; ap, ..., ‘_’nvl))

=po(L;ay,...,a,) =po(a,....a,) = ey + e,

showing that gy(a,,...,a,.,) is a Clifford polynomial which takes the
value e;; + ez in Hy(®) under a suitable substitution of its variables.
Now, &,(H,(D)) = H,(D) follows from the fact that &,(H,(®)) is an ideal
of Z#,(Hy(®)) = Hy(D).

To finish the proof we just need to show (3): Let &,(X) = (£,(X))%. We
will show first that

{&,(b; K)bTTTTTbK} C K. (6)

Indeed if g, h € &(X), the elements in (U, 4)(b; K) have the form gbhbg,
where g, h € &(b; K). Hence

{gbhbBbTTTTTLK )
c {gbhbTTTPK}  (since § €.#(T))
C {gbTTTHK) (since i € &,(b; K) c##,(b:T)
c#(T) c#(T))
cK (since g € &,(b; K)).

Now let r, s € &,(X). As above, the elements in (U s)b; K) have the
form 7bsbr, where 7,5 € &,(b; K). Using 7 €.#(T), we have, for any
d,, d, d, €T, that

{Fosbrb(dyd,dy — dyd,dsbe))
is a sum of elements of the form

{#Sbe,c,cq) — {FUSbe,cyc5be}
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for ¢,, c,,cy € T. Notice that
{#5bcycyc;} — {FbSbe,c,csbe)
= {/{Sbescoeqb} — {P{Sbescycs) be}
—{Fbeyc, 0,65} + {7beye, e bsbe).
Hence (3) will follow from the fact that the previous expression is in K.
Denoting z = {Sbc,c,c5}, which is an element of T since 5 €.%(T), we
see that the first two summands equal
{Foz} — {fbzbe} = L, ,(F) = L, p.(F) = {(1 - )7 € K

since K is e-modular in T®® and 7 € K.

The third summand lies in {&,(b; K)bTTTbK} since &,(X) c &(X) and
5 € K; hence itis in K by (2).

Finally the fourth summand

{Pbeyc,cibsbe} = {Tbeye,c,b{Sbe}} — {7beyc,cibebs)
e {&,(b; K)bTTTb(L, ,K)} — {&,(b; K)bTTTTTbK)
(since &,(X) c&(X))
c {#,(b; K)bTTTbK} + {&,(b; K)bTTTTTHK)
(since K is e-modular in T)
cK (by (1) and (6)). m

3. LOCAL CHARACTERIZATION OF PRIMITIVITY FOR
JORDAN PAIRS AND TRIPLE SYSTEMS

In this section we will obtain the central result of the paper asserting
that strongly prime Jordan triple systems inherit primitivity from their
local algebras. We begin by recalling some definitions.

3.1. Primitive Jordan pairs. Recall that a Jordan pair V' = (", V") is
said to be primitive at b € V"7 (o = +) if there exists a proper inner
ideal of K of V7 such that:

(i) K is c-modular at b for some ¢ € V7, i.e.,
(@ B, ,V°cK
b)) c—QbekK
() D.,KcK
(d (D,,—-D

c

om)K S K forany x € 1°.

Equivalently, if K is a c-modular inner ideal of the homotope 177,
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(i) K complements all nonzero o-ideals of V:I° + K = V7 for any
ideal 7= (1", I7)of VVsuchthat 1”7 # 0
and V' is (o )-coreless: Qoz = Q. Q, V7 =0,z € V"7, implies z = 0.

Under the above conditions K is called a primitizer of 1V with b-
modulus c.

3.2. Remark. By an argument similar to that concerning associative
pairs (Remark 1.2), the (o )-coreless condition is equivalent to asserting
that 77 + 0 for all nonzero ideals I = (™, I7) of IV and therefore (ii) in
(3.1) can be replaced by

(i)’ K complements the (o )-parts of nonzero ideals: I + K =1"
for any nonzero ideal I = (I*,17) of V.

3.3. Primitive Jordan triple systems. These systems are defined as in the
pair case, deleting the superscript o.

3.4. Remark. In a strongly prime Jordan triple system T, P,1 # O for
any 0 # b € T and any nonzero ideal I of T. Indeed, since T is nondegen-
erate, it follows from [14, 1.7] that b lies in the annihilator Ann,(I) of I if
P,I=0.But Ann,(I) =0 since I # 0 and T is strongly prime (see [14,
1.6]); hence b = 0, which is a contradiction.

Next we proceed with the proof of our main result (3.6). We begin with
the PI situation, which will be a consequence of the following lemma.

3.5. LEMMA. Let T be a strongly prime Jordan triple system, b € T, such
that T, is a simple and unital Jordan algebra. Then T is primitive at b.

Proof. Denote J =T® N = Ker;b,x =x + N, for any x € J. Recall
that N is a nil ideal of J. Indeed

x*=0  forany x € N: (1)

x*=Ux=PP,x=P0=0since x € Ker;b. Now, J/N = T, is a unital
Jordan algebra and its unit element 1, is an indempotent. By 10.9 of
[11], there exists an idempotent e of J such that e = 1, .

Define

K=U_,J=8B,,TCT.
K is an inner ideal of T:
PyT = Py, pyrT € B, yPrB, T<B,,T=K,
by JP26 of [11]. Moreover, K is proper: otherwise K = T implies K = J,

hence J = U,_,J; thus U,J = U,U,_,J = 0 and U,(J/N) = 0, which is a
contradiction since e = 1, .
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We will show that K is e-modular at b in T'; equivalently, that K is
e-modular in J:

U_,J=KCcK,
e—e’=0€Kk,
{(A-e)k} ={(1-e)J(U,_ D)} =U, fJ(1-e)]}cU, J=K.

For any nonzero ideal I of T, (I + N)/N is an ideal of J/N. We claim
that (/ + N)/N # 0. Otherwise I c N and P,I = 0, which contradicts
(3.4). Simplicity of J/N yields J/N = (I + N)/N, thus J =1+ N. Now
wecanwritee—y+n Whereye]nerute—e Uy ly +n) =
y' + n® where y’ € I. But n® = 0 by (1), which shows that e € I. Thus

J=UJ+U, J+U_JcI+U_,J=1+K,

which shows that K complements nonzero ideals of 7. ||

3.6. THEOREM. Let T be a strongly prime Jordan triple system, b € T. If
T, is a primitive Jordan algebra then T is primitive at b.

Proof. (1) Denote J =T®™, N = Ker;b,x =x + N,forany x € J. Let
K=K/N (N C K) be a primitizer of / =J/N =T,, i.e., K is a proper
inner ideal of J which is ¢-modular for some ¢ €J and complements
nonzero ideals of J. We can also assume that K is maximal-modular in J
(see [9, 3.2]. It is clear that

(1) K is a proper inner ideal of J,
(2) K is c-modular for any ¢ € J such that K is ¢-modular in J,
(3) I + K =7 for any nonzero ideal of J strictly containing N

(1) We can assume that T is special: Otherwise it is a prime
nondegenerate exceptional finite dimensional Jordan triple system or a
prime nondegenerate i-special, homotope-PI Jordan triple system [2, 20].
In either case T is homotope-PI, which implies that J is a PI primitive

Jordan algebra. Hence J is simple and unital by [5, 1.2] and the result
follows from (3.5).

(1) 1f £(J) = 0 then J is a primitive P Jordan algebra. Hence J is
simple and unital by [5, 1.2], and the result follows again from (3.5). So, let
us assume &(J) # 0. Notice that &(J) is an ideal of Z%(J) by (2.5),
which is an ideal of J by (2.2). By [5, 0.7], there exists a modulus ¢ of K
lying in £(J) = (£(J) + N)/N. Without loss of generality we can assume
that ¢ € &(J). By (2), ¢ is a modulus for K in J.
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Let R be a *-envelope triple system of T. Define
M = Rb&(K) + R(1 — bc)

(notice that £(K) is meant to be in 7, so that it could also be denoted
&(b; K) in the triple T, as in Section 2).

It is clear that M is a left ideal of R which is c-modular at b, which
implies that K, = M N T is an inner ideal of T also c-modular at b.

(IV) Let I be a nonzero ideal of T. By (3.4), I + N is an ideal of J
strictly containing N and I + N+ K =J by (3). Thus I + K =J since
N C K. Now

ce&(J)=&(I+K)cI+&(K)

since [ is an ideal of J, and we can write ¢ =y + k, where y € I and
k € &(K). Therefore

¢?=Pb=P, . ;b=Pb+P, ,b+Pb
=Pb+ P, b+kbkel+Rb&(K)cI+K,
since I is an ideal of T. But ¢? is a modulus for K, in J by [9, 2.10], and it
is also a modulus for the inner ideal 7 + K, of J. Thus, I + K, is a

modular inner ideal of J containing one of its moduli; hence I + K, =J
by[9,31]and I + K, = T.

(V) We just need to show that K, is proper. Otherwise K, = T;
hence

R=T+TIT+TITIT+...c M+ RRM + RRRRM + ... c M

since M is a left ideal of R, and M = R. In particular, c € M and we can
write

c =Y rbk, + Z(xj—ijc), r.X; €R, k; € &(b;K)

and

I = U0pUs. .. Ugg 1, Xj = WiWoWsa oo . Wopm 419

where the v’sand w'sarein T since R=T + TTT + TTTTT + .... By [5,
0.7, for all odd n, there exists a modulus g, € 7%Z/(J) =#7%(b;T) for K
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in J as in (111). Now

cbg,bc = c*bg, bc
= (Z (kibuzd[+l Lvg) )y (WZm/-+l cee Wy T waZm/-+l . -Wl))
bg,b( L (01 Uy 1bK;)

+2 (Wl o Wome1r T Waee 'W2mj+lbc))
e P.P,T+B,,T
bounded length bounded length

+{é”(b; K)bTTT...T bg,b TTT ... T b&(b; K)}

bounded length bounded length

+{g(b; K)bTTT...Tbg,b TTT...T (1 — bc)}

bounded length bounded length

+{(1 — ¢b) TTT ... T bg,b TTT ... T (1 —bc)}

C Ul + U, J+{&(b; K)bTTTbK} +{&(b; K)bTTT(1 — bc)}
+{(1 — cb)TTT(1 — bc)} (if n is big enough)
cK (since K is c-modular in J =T

and (2.5)).

Thus U, g, = cbg,bc € K and U,g, € K. By maximal-modularity of K and
[5, 0.4], U.g, is a modulus of K since ¢ and g, are moduli for K. By [9,

3.1], K is not proper, which is a contradiction. i

The following result shows an analogue of [9, 5.5] which will be needed
in the subsequent local characterization of primitivity for Jordan triple
systems.

3.7 PROPOSITION. A primitive Jordan triple system is strongly prime.

Proof. Let T be a Jordan triple system which is primitive at b with
primitizer K with modulus ¢ at b.

We will first show that T is nondegenerate: otherwise the nondegener-
ate radical rad T is a nonzero ideal of T and, as in [5, 0.7], there exists a
modulus e of K lying in rad T. By [11, 4.15], rad T is properly nil; hence
e =0 for some n. Thus e"? € K and K =T by [9, 3.1], which is a
contradiction.
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Let us show that T is prime: Let I, L be nonzero ideals of T such that
INnL =0 Byprimitivityof T, T=1+K=L+Kandc=y +k, =z+
k, whereyel,z€ L, k,k, € K. Now

cOP = YDk, +2) = UPk, + U, 2
= Uk, + UPz + UPz + {yzk,}? = Uk, + Uz
since U"z + {yzk,}” € I N L = 0. Clearly
Uz =P Pzc P, TCK
since K is an inner ideal of T, and
Uk, = UC)_ ), 1ky = UL ky + Uk, — {(1 = o) k,1)" e K

since K is a c-modular inner ideal of 7®. We have shown that ¢®? € K;
hence K = T by [9, 3.1], which is a contradiction. |

We put together (3.6), (3.7), and the Jordan version in [3] of (1.8)(ii)(b)
to obtain

3.8. CoroLLARY (Local characterization of primitivity for Jordan triple
systems). A Jordan triple system T is primitive if and only if T is strongly
prime and there exists b € T such that T, is a primitive Jordan algebra.

Recall that, in general, if T is primitive at b, we do not get that 7, is
primitive but T,, for some b’ = P,c € T (cf. [3].

Global-to-local inheritance of primitivity for Jordan pairs [3, 6.1] is
neater than that for Jordan triple systems and provides with (3.6) and (3.7)
a neater version of (3.8) for Jordan pairs:

3.9. CoroLLARY (Local characterization of primivitity for Jordan pairs).
A Jordan pair V = (V*, V") is primitive at b € V= if and only if V is
strongly prime and V) is a primitive Jordan algebra.

Proof. Assume that V' is strongly prime and V; is primitive. By [2,
Sect. 5], T(V) is strongly prime. Moreover, T(}), is primitive since it is
isomorphic to V", as noticed in (0.5). By (3.6), T(V) is primitive at b;
hence V' is primitive at b by [3, 5.5.2].

Conversely, if 77 is primitive at b € V-, then V" is primitive by [3, 6.1].
Moreover T(1') is primitive at b by [3, 5.5.1]; hence T(V) is strongly prime
by (3.7) and V is strongly prime by [2, Sect. 5]. 1

As a corollary of the previous result, we answer a question posed by
O. Loos and E. Neher in [13, 2.8].
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3.10. COROLLARY. Let V = (V*, V™) be a Jordan pair which is primitive
atb€ V™7 Let 0 # M C V™7 be an inner ideal of V, W the subquotient of V
with respect to M (W = V° /KerM, W=7 = M). If b € M then W is primi-
tive at b.

Proof. By (3.9), V, is primitive. But W, is isomorphic to ¥, and the
result follows from (3.9), since W is strongly prime by [7, 3.2]. 1

4. PRIMITIVE JORDAN PAIRS

The aim of this section is to obtain Jordan pair analogues of the results
of [5] for Jordan algebras. We will begin by showing how primitivity is
inherited by nonzero ideals of primitive Jordan pairs and, conversely, how
primitivity is inherited by a prime Jordan pair having an ideal which is a
primitive pair.

4.1. Remark. Let V= (V*, V") be a strongly prime Jordan pair, I =
(I'*,I")anonzeroideal of V,0 #b €V (0= 4+). Then Q, 17 # 0, i.e,
I7 is not contained in Kerb (the proof is similar to that for triple systems

(3.4)).

42 THEOREM. Let V =W* V") be a Jordan pair, I =", 1) a
nonzero ideal of V. If V is primitive at b € "7 (o = +) then I is primitive
at b.

Proof. Assume b [~. By (3.9), V is strongly prime and V; is a
primitive algebra. Notice that I, is nonzero by (4.1). Since I, is naturally
isomorphic to a nonzero ideal of V;/, I is primitive by [5, 3.1]. But [ is
strongly prime by [14, 2.5]; hence I is primitive at b by (3.9). 1

4.3. Remark. (i) If V is a Jordan pair which is primitive at b € V"7
and I is a nonzero ideal of V, then there exists b’ € I~7 such that V' is
also primitive at b’, so that (4.2) applies and I is primitive at b’.

Indeed, this is an immediate consequence of the next assertion together
with (4.1).

(i) If V' is a Jordan pair which is primitive at b € V™7, then V is
primitive at b’ = Q,c for any ¢ € V' such that Q,c # 0.

Notice the natural isomorphism V5 . = (V7). er, given by

x + Ker,Q,c = (x + Ker,b) + Kery-(c + Kerb)

for any x € IV'*. Hence (ii) follows from the local characterization of
primitivity (3.9) since (V). . kerp IS Primitive by [6, 4.1(ii)] applied to V',
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which is primitive by (3.9).

4.4, THEOREM. Let V = (V*,V") be a prime Jordan pair, [ = (I",17) a
nonzero ideal of V. If I is primitive at b € I (o = +) then V is primitive
at b.

Proof. We first show that 1V is nondegenerate: Otherwise the nonde-
generate radical radl” is nonzero. By primeness of 17,0 # rad V' N I. But
this is a contradiction since rad IV N I is the nondegenerate radical rad I of
I by [11, 4.13], and I is nondegenerate by (3.9) since it is primitive.

Assume b € I. By (3.9), I is strongly prime and I; is a primitive
algebra. Now ;7 is naturally isomorphic to a nonzero ideal of ¥,/ which is
a strongly prime algebra by [7, 3.2] since V' is strongly prime. Hence V' is
primitive by [5, 3.2] and V' is primitive at b by (3.9). 1

Next we will study the symmetrizations of associative pairs and ample
subspaces of associative pairs with involution.

4.5. THEOREM. Let R = (R*, R™) be an associative pair.

(i) R is prime if and only if R is strongly prime.
(ii) Letb € R™7 (0= ). Then R is (one-sided) primitive at b if and
only if R™) is primitive at b.
Proof. (i) If R‘) is strongly prime then R is prime since all ideals of
R are ideals of R"). To prove the converse we will use the elemental

characterization of strong primeness for Jordan pairs [7, 1.10]: For in-
stance, let a, b € R~ such that Q,Qr+Q,R"= 0; hence, for any x € R,

(aXb)R+(bxa) = QanQhR+= 0.
By primeness of R, for any x € R™, either axb = 0 or bxa = 0, that is,
R*c{xeR|axb =0} U {x € R|bxa = 0}.

Since both subsets are submodules of R we obtain that R* is contained
in one of them. If, for example, aR*b = 0, primeness of R implies that
either a =0or b = 0.

(ii) Put b € R™. By (1.8)i), R is (one-sided) primitive at b if and
only if R} is (one-sided) primitive and R prime. By (3.9), R**) is primitive
at b if and only if (R‘*)); is primitive and R*’ is strongly prime. Using
(0.5), (R = (R and (ii) follows from (i) and [5, 4.2]. 1

4.6 THEOREM. Let R = (R™, R™) be an associative pair with involution
x, V=", V") be an ample subpair of *-symmetric elements in R.
() IfRis *-prime then V is a strongly prime Jordan pair.
(i) Letb € V™°.Then R is *-primitive at b if and only if R is *-prime
and V' is primitive at b.
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Proof. (i) Assume that R is *-prime. We first show that V" is nonde-
generate: Q"= 0 (r € VV7) is equivalent to

= 0. (1)
Now, forany x e R*,h € IV~
mhx*r = 0 (2)
since xix* € V™. Hence
rryexr = r((xry) + (xry)*)mr — ry*nc*mor = 0

since r((xry) + (xry)*)r = 0 by (1) and rmx*mr = 0 by (2). We have shown
mrR*r = 0, which implies mr =0 by (1.7)(i) applied to T(R). Thus
rR*r =0 and r = 0 again by (1.7)().

Now, the proof of (1.6) of [7] shows that I is elementally prime, hence
strongly prime, by [7, 1.10].

(ii) By (1.8)(i), R is =-primitive at b € V- if and only if R is
x-prime and R} is =-primitive. By (3.9), V' is primitive at b if and only if
I is strongly prime and V" is primitive. Hence (ii) follows from (i) and [5,
4.9] since V7 is naturally isomorphic to an ample subspace of R/ (see
(0.5)), which is readily seen to be a =-prime associative algebra whenever
R is a =-prime associative pair (use the elemental characterization of
x-primeness for associative algebras with involution). |

We finally obtain a description of primitive Jordan pairs in the spirit of
[5, 5.1] for Jordan algebras.

4.7. THEOREM. Let V be a strongly prime Jordan pair. Then V is (o)-
primitive if and only if one of the following holds:

() Vis a simple Jordan pair equaling its socle. In this case V is
(o )-primitive at any 0 # b € V=7 and (— o )-primitive at any 0 + b € V°,

(i) V consists of hermitian elements: V has an ideal I which is an ample
subpair of a (o )-*-primitive associative pair R and it is a subpair of the pair
of symmetric elements of the Martindale associative pair of symmetric quo-
tients Q(R) of R. Moreover, there exists an element b € I~ at which V and I
are both (o )-primitive and R is (o )-+-primitive. Conversely, V is (o )-
primitive at b for any b € I™ at which R is (o )-*-primitive.

Proof. Assume, for example, that V7 is primitive at b € IV". By [2, 5.3;
20; 4, 7.4], since V is strongly prime, either 1V is homotope—PlI, simple,
equaling its socle, of 17 consists of hermitian elements. In the latter case I
has an ideal I which is an ample subpair of a *-prime associative pair R
and it is a subpair of the pair of symmetric elements of the Martindale
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associative pair of symmetric quotients Q(R) of R. Hence, by (4.2) and
(4.3), I is (+)-primitive at an element b’ € I~ at which 1V is also
(+)-primitive. Now R is also (+ )-=*-primitive at b’ by (4.6)(ii).

Conversely, let IV be simple, equaling its socle, and 0 # b € V-, for
example. We will show that V' is primitive at b. Notice that I is von
Neumann regular by [12, Theorem 1]. Hence b can be completed to a
nonzero idempotent pair (e, b). As in the proof of (3.5), K =B, ,(V*)
turns out to be a proper inner ideal of VV, K € V™, which is e-modular at b.
Moreover K is a primitizer of 1V since the only nonzero ideal to comple-
ment is V.

If V satisfies (ii) and R is, for example, (+)-=-primitive at b € I, [ is
primitive at b by (4.6)(ii) and 1 is (+ )-primitive at b by (4.4). 1

5. PRIMITIVE JORDAN TRIPLE SYSTEMS

We will prove Jordan triple analogues of the results of Section 4 for
Jordan pairs. Since the local characterizations of primitivity for Jordan and
associative triple systems are not precise (concerning the element at which
primitivity occurs) we cannot use them directly and repeat the arguments
valid for pairs. To overcome that difficulty we introduce the next tool,
which allows us to extend results from pairs to triple systems, so that this
section will be a consequence of the previous one directly, instead of going
through algebras.

5.1. Tight double pairs of a triple system. Let T be an associative or
Jordan triple system, I = (I*, I7) be an ideal of V(T) = (T, T), maximal
among all ideals satisfying 1N I~ = 0. The quotient pair

V=W(T)/I=(T/I",T/I")

will be called a tight double pair of T. By Zorn’s lemma, an ideal I of V(T)
under the above conditions can be readily found (cf. (1.5) and [3, 6.2]);
hence there always exist tight double pairs for an arbitrary associative or
Jordan triple system. We will stress some obvious facts about this construc-
tion. Under the above conditions:

(i) fO+xeTtheneitherO+x+ITelV  or0+x+I1" V.
(i) If L is a nonzero ideal of T, then (L +I")/I*, (L +17)/I7)

is a nonzero ideal of V.
(i) M= WM"/I*,M /I )isanonzero ideal of IVthen M*N M~

is a nonzero ideal of T.
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A similar notion of *-tight double pair for an associative triple system T
with involution * can be obtained replacing ideals by =-ideals. The *-tight
double pair 1V obtained inherits the involution from T.

The next result shows how tight double pairs are the suitable tool with
which to study primeness and primitivity of triple systems in terms of the
corresponding notions for pairs.

5.2. LEMMA. (i) Let R be an associative triple system (resp. an associa-
tive triple system with involution %) and V = V(R)/I be a tight (resp.
#-tight) double pair of R. Then:

(@) R is semiprime if and only if V' is semiprime.

(b) R is prime (resp. *-prime) if and only if V is prime (resp.
* -prime).

(¢) R is left, respectively right, primitive (resp. *-primitive) at b € R
(resp. b € H(R, *)) if and only if V is either left, respectively right, primitive
(resp. =-primitive) atb + IT€ V" (resp. b + It € H(V™", *)) or left, respec-
tively right, primitive (resp. *-primitive) at b+ 1€V~ (resp. b + I €
H™, *)).

(i) Let T be a Jordan triple system and V = V(T) /I be a tight double

pair of T. Then:

(@) T is nondegenerate if and only if V' is nondegenerate.

(b) T is prime if and only if V is prime.

(¢c) T is primitive at b € T if and only if V is either primitive at
b+ Ite V" orprimitive atb + "€ V™.

that semiprimeness and *-semiprimeness are equivalent notions [2, 1.16]).

(iD@ If V is nondegenerate it is immediate that 7' is nondegener-
ate by using (5.1)(i). Conversely, if T is nondegenerate then it follows that
V' is nondegenerate, as in the proof of 3.4 of [7].

(i)(c) If, for instance, R is left primitive at b then 1 satisfies the
required condition by the proof of (1.5) since VV(R) is the only tight double
pair of R when it is prime. Conversely, if, for example, I is left primitive
at b + I~ V- with primitizer K/I" with modulus ¢ + I, it is readily
checked that K is a left primitizer of R at b with modulus ¢ (use (5.1)(ii)
to show that K complements nonzero ideals of R).

(ii)(c) The proof of (i)(c) applies here with suitable changes (cf. [3,
6.22]). 1

As for Jordan pairs, we begin with the study of the inheritance of
primitivity between a Jordan triple system and its ideals. The next lemma
will allow us to use tight double pairs.
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5.3. LEMMA. Let T be a Jordan triple system, L a nonzero ideal of T such
that L is nondegenerate. There exist a tight double pair W of L and a tight
double pair V of T such that W is isomorphic to an ideal of V. Indeed
V=WV(T)/I and W = V(L)/M such that M = I N V(L).

Proof. Let M =(M*, M) be an ideal of V(L) which is maximal
among all ideals of V(L) such that M"N M~ = 0. We remark that V(L) is
an ideal of V(7). We will show that M is an ideal of V'(T): Let M be the
ideal of V(T') generated by M, so that M c V(L) and M is an ideal of M.
By [11, 4.10], M /M is a radical ideal (in the sense of the nondegenerate or
McCrimmon radical) of V(L)/M. But the fact that L is nondegenerate
implies V(L) /M is nondegenerate by (5.2)(ii)(@) and M /M is nondegener-
ate (i.e., semisimple with respect to the nondegenerate radical) by the
inheritance of the nondegenerate radical for ideals [11, 4.13]. Thus M /M
=0and M =M.

Using Zorn's lemma we can find an ideal I = (I*, I") of V(T') contain-
ing M, such that it is maximal among all ideals of V(T) satisfying
I''nI"=0. We claim that I n V(L) = M: indeed, since M cIn V(L)
the equality follows from maximality of M. Now W = V(L)/M is a tight
double pair of L,V =V(T)/I is a tight double pair of T, and W =
V(L) /(I n V(L)) is isomorphic to (V(L) + I)/I, which is an ideal of 1. |

5.4. THEOREM. Let T be a Jordan triple system, L a nonzero ideal of T. If
T is primitive at b € L then L is primitive at b.

Proof. Notice that L is an ideal of a nondegenerate Jordan triple
system; hence it is nondegenerate by [11, 4.13]. By (5.3), we can find a tight
double pair V' = V(T)/I of T and a tight double pair W = V(L)/M of L
such that M =1 N V(L); hence W is naturally isomorphic to an ideal of
V. Now V is primitive either at b + I™ or at b + I~ by (5.2)(ii)c); hence
W is primitive either at b + M* orat b + M~ by (4.2) and L is primitive
at b again by (5.2)(ii)c). 1

5.5. Remark. If T is a Jordan triple system which is primitive at b € T
and L is a nonzero ideal of T, then there exists b’ € L such that T is also
primitive at b’, so that (5.4) applies and L is primitive at b':

Let V= V(T)/I be a tight double pair of T. It is straightforward that
(V(L) + I)/I is a nonzero ideal of V. Since V is primitive at b + I* or
b+ I~ by (5.2)i)c), thereis b’ + ITe (L +I")/I" or b’ + I (L +
I7)/I- (b’ € L) such that V is primitive at ' +I* or b’ +1~ by
(4.3)(i). Therefore T is primitive at b’ by (5.2)(ii)(c).

5.6. THEOREM. Let T be a prime Jordan pair, L a nonzero ideal of T. If
L is primitive at b € L then T is primitive at b.
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Proof. By (5.3) we can find a tight double pair V= V(T)/I of T and a
tight double pair W = V(L)/M of L such that M = I N V(L); hence W is
naturally isomorphic to a nonzero ideal of 1. Now W is primitive either at
b+M" or at b+ M- by (5.2)ii)c); hence V is primitive either at
b+1I"orb+1 by(44),and T is primitive at b again by (5.2)(ii)(c). 1

Next we will study the symmetrizations of associative triple systems and
ample subspaces of triple systems with involution. As above, auxiliary
results on tight double pairs are needed.

5.7. LEMMA. Let R be a prime associative triple system, V = V(R)/I a
tight double pair of R. Then V*) is a tight double pair of R*.

Proof. First, notice that V' is prime by (5.2)(i)(b); hence V(*) is strongly
prime by (4.5)(). It is clear that I is an ideal of V(R such that
I"Nn I~=0. We just need to show that I is maximal among all ideals of
V(R)) under such a condition. Otherwise, if M = (M*, M~) is an ideal
of V(R™) strictly containing I such that M*N M~ =0, then M, =
MY /I* M~ /I") and M, = (M~ + I")/I*(M*"+ I7)/I") are orthogo-
nal ideals of VV*), Since VV(*) is prime and M, # 0 then M, = 0, which
implies

M-cI*, McI . (1)

Hence I € M implies I"=1" and I = 0. Therefore M =0 by (1) and
M = I, which is a contradiction. |

5.8. THEOREM. Let R be an associative triple system.

(i) R is prime if and only if R is strongly prime.
(i) Let b € R. Then R is (one-sided) primitive at b if and only if R")
is primitive at b.

Proof. (i) If R“) is strongly prime then R is prime since all ideals of
R are ideals of R(*). To prove the converse we will consider a tight double
pair V' = V(R)/I of R. By (5.2)(i)b), V is a prime associative pair. Hence
I7(+) is strongly prime by (4.5)(i). But V(™) is a tight double pair of R")
by (5.7); hence R is strongly prime by (5.2)(ii)X(a, b).

(i) Let V=TV(R)/I be a tight double pair of R.

Assume, for example, that R is left primitive at b € R. In particular, R
is prime and, by (5.7), V() is a tight double pair of R‘*). By (5.2)(i)(c), V
is left primitive either at b + I* or at b + I~; hence V") is primitive
either at b + I* or at b + I~ by (4.5)ii). Thus R™ is primitive at b by
(5.2)(iXc).

Conversely, if R‘*) is primitive at b then R is strongly prime by (3.7)
and R is prime by (i). Thus we can apply (5.7) and V) is a tight double
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pair of R‘"). Now V") is primitive either at b + I" or at b + I~ by
(5.2)(ii)(c); hence V is one-sided primitive either at b + I* or at b + I~
by (4.5)(ii) and we can use (5.2)(i)(c) to obtain that R is one-sided primitive
at b. 1

5.9 LEMMA. Let R be a *-prime associative triple system with involution
%, V' =V(R)/I a *-tight double pair of R, and H be an ample subspace of
*-symmetric elements in R. Then W =V(H)/(I"NH,I "N H) is a tight
double pair of H, naturally isomorphicto W = (H + I*)/I",(H + 17) /1),
which is an ample subpair of V.

Proof. The fact that W is isomorphic to W, which is an ample subpair
of V, is straightforward. -

Notice that V7 is =-prime by (5.2)(i)(b); hence W is strongly prime by
(4.6)(i). It is clear that L =I N V(H) is an ideal of V(H) such that
L™n L™= 0. We just need to show that L is maximal among all ideals of
V(H) under such a condition. Otherwise, if M = (M™*, M~) is an ideal of
V(H) strictly containing L such that M*N M~ =0, then M, = (M*+
I/ (M +1)/")and M, =((M +1")/I",(M"+1")/I") are or-
thogonal ideals of W. Since W is prime and M, # 0 then M, = 0, which
implies

M clI, McI. (1)

Hence L =INV(H) c M implies I'Tn"H=1I"NnH and I N V(H) =0.
Therefore M = 0 by (1) and M = L, which is a contradiction. |

5.10. THEOREM. Let R be an associative triple system with involution *,
H be an ample subspace of *-symmetric elements in R.

() IfRis *-prime then H is a strongly prime Jordan triple system.

(ii) Let b € H. Then R is *-primitive at b if and only if R is *-prime
and H is primitive at b.

Proof. (i) Consider a =-tight double pair V' =V(R)/I of R. By
(5.2)(i)b), V is a =-prime associative pair. By (5.9, W= (H/(I'n
H), H/(I"N H)) is a tight double pair of H, naturally isomorphic to
W=(H+1I")/I",(H+1")/I"), which is an ample subpair of V. Hence
W and W are strongly prime by (4.6)(i) and H is strongly prime by
(5.2)(iiX(a, b).

(i) Let V=V(R)/I be a =-tight double pair of R, W = (H/(I"N
H), H/(I"n H)), which is isomorphic to W= ((H +I1")/I'*,(H +
I7)/I7), the latter being an ample subpair of V.

Assume that R is =-primitive at b € H; hence R is =-prime by (1.3)
and we can apply (5.9) to get that W is a tight double pair of H. By
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(5.2)()c), V is *-primitive either at b + I* or at b + I~; hence W is
primitive either at b + I* or at b + I~ by (4.6)(ii), and W is primitive
either at b+ (/"N H) or at b + (/"N H). Thus H is primitive at b by
(5.2)(i)c).

Conversely, if H is primitive at b and R is =-prime then we can apply
(5.9) and W is a tight double pair of H. Now W is_primitive either at
b+ U"nH)orat b+ (I"n H) by (5.2)ii)c), and W is primitive either
at b+ 1" or at b+ 1. Hence V is =-primitive either at b + I* or at
b+ I~ by (4.6)ii) and we can use (5.2)(i)(c) to obtain that R is =-
primitive at b. |

5.11. THEOREM. Let T be a strongly prime Jordan triple system. Then T is
primitive if and only if one of the following holds:

(i) T is a simple Jordan triple system equaling its socle. In this case T is
primitive at any 0 # b € T.

(i) T consists of hermitian elements: T has an ideal I which is an ample
subspace of a *-primitive associative triple system R and it is a subtriple of the
triple of symmetric elements of the Martindale associative triple system of
symmetric quotients Q(R) of R. Moreover, there exists an element b € I at
which T and I are both primitive and R is *-primitive. Conversely, T is
primitive at b for any b € I at which R is *-primitive.

Proof. Assume that T is primitive at b € T. By [2, 4.1; 20; 4, 7.4], since
T is strongly prime, either T is homotope—PI, simple, equaling its socle, or
T consists of hermitian elements. In the latter case T has an ideal I which
is an ample subspace of a =-prime associative triple system R and it is a
subtriple of the triple of symmetric elements of the Martindale associative
triple system of symmetric quotients Q(R) of R. Hence, by (5.4) and (5.5),
I is primitive at an element b’ € [ at which T is also primitive. Now R is
also *-primitive at b’ by (5.10)(ii).

Conversely, let T be simple, equaling its socle, and 0 # b € T. We will
show that T is primitive at b. Notice that T is von Neumann regular by
[12, Theorem 1] applied to V(7). Hence b can be completed to a nonzero
idempotent pair (e, b). As in the proof of (3.5), K = B, ,(T) turns out to
be a proper inner ideal of T which is e-modular at 5. Moreover K is a
primitizer of T since the only nonzero ideal to complement is T.

If T satisfies (ii) and R is =-primitive at b € I, I is primitive at b by
(5.10)Gii) and T is primitive at b by (5.6). 1

5.12 AN OpPEN QUESTION. Most of our problems when dealing with
Jordan triple systems come from the fuzziness in their local characteriza-
tion of primitivity regarding the element at which primitivity occurs.



PRIMITIVE JORDAN SYSTEMS 673

Indeed, if we forget about the element b at which a triple system is
primitive we could get all the results in this section in the same way the
corresponding results were obtained for pairs in Section 4. On the other
hand, results like (5.5) show some possibility of movement concerning the
element at which primitivity holds. The natural question to ask is:

(i) Let T be a Jordan triple system, primitive at b. Is T then
primitive at b’ for any 0 # b'?

By using tight double pairs, an affirmative answer to (i) is related to an
affirmative answer to

(i) Let V' be a Jordan pair, primitive at b V"7 (o= +). Is VV
then primitive at b’ forany 0 # b’ € 77?2

Concerning Jordan pairs, one may ask also whether (+)-primitivity and
(—)-primitivity are connected notions.

6. TIGHT ASSOCIATIVE ENVELOPES OF PRIMITIVE
JORDAN PAIRS AND TRIPLE SYSTEMS

In this section we prove Jordan triple system and pair analogues of [5,
4.1, 4.8] on how tight (resp. *-tight) envelopes of primitive Jordan algebras
inherit primitivity (resp. *-primitivity). Since local algebras of an envelope
(pair or triple system) R of T are not generally envelopes of the corre-
sponding local algebras of T we will not be able to use our local
characterizations of primitivity, (3.8) and (3.9), and will have to use directly
the polynomial tools developed in Section 2.

6.1. THEOREM. Let T be a Jordan triple system which is primitive at
b € T. Then any tight associative triple envelope R of T is one-sided primitive
at b.

Proof. (1) We first claim that we just need to prove that R is one-sided
primitive at b’ = bch for some ¢ € T (even ¢ € R) such that 0 # b'.
Indeed, if, for instance, K is a left primitizer of R at b’ with modulus ¢’,
then x —xb'c’ =x — xbcbc' € K for any x € R and therefore K is a left
primitizer at b with modulus cbc’.

Thus we can use the Jordan version in [3] of (1.8)(ii)(b) and assume that
T, is primitive. As in the proofs of (3.5) and (3.6), denote J = T”, N =
Kerb,x =x + N, forany x € J,J =J/N = T,.

(1) If J is PI then it is simple and unital by [5, 1.2] and , as in the
proof of (3.5), there exists an idempotent element ¢ € J such that e is the
unit element in J. Define

M = {x —xbe|x €R}.
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It is clear that M is a left ideal of R which is modular at b with modulus
e. Moreover, M is proper: otherwise for any y € R, there exists x € R
such that y = x — xbe and

bebybeb = bebxbeb — bebxbebeb = bebxb( e —ebe) b = bebxb(e —e?)b =0

since e is an idempotent of J; thus bebRbeb = 0, hence bebTbeb = Pp ,
T =0and P,e =0, since T is nondegenerate by (3.7); therefore e € N,
which is a contradiction. We just need to show that M complements
nonzero ideals of R. If L is a nonzero ideal of R then I=L N T is a
nonzero ideal of T by tightness, hence (I + Kerb)/Kerb is a nonzero
ideal of J by (3.4). By simplicity of J, I + Kerb = T and, as in the proof of
(3.5), we can write e =y + n,where ye I and n € N, but e = e® =y’ +
n®, where y’ € I since I is an ideal of 7. But n® = 0 because n € N =
Kerb (see (3.5)(1)) and we obtain e € I € L. Now, for any z € R,

z=(z—zbe) +zbe €M + L

by e-modularity of M at b and the fact that e € L, which is an ideal of R.
Thus R=M + L.

(111)  Assume that J is not PI. Now, T cannot be exceptional since
any exceptional strongly prime Jordan triple system is homotope—PIl by
[20, Th. 5; 2, 4.1]. Thus, T is special and, in particular, £(J) # 0; hence
gb;T)=&) # 0.

(IV) Let K = K/Kerb be a primitizer of J such that K is maximal-
modular (cf. [9, 3.2D. As in the proof of (3.6), it is clear that (3.6),
assertions (1), (2), and (3) hold.

Now 0 # &(J) is an ideal of #%,(J) by (2.5), which is an ideal of J by
(2.2). Hence, there exists a modulus ¢ of K lyingin £(J) = (£(J) + N)/N
by [5, 0.7] and we can assume that ¢ € &(J). Define

M =Rb&(K) + R(1 — bc)
and notice that £(K) is calculated in T, so that it can also be denoted
&(b; K) in the triple system T, as in Section 2. It is clear that M is a left
ideal of R which is c-modular at b.

(V) We will show that M complements nonzero ideals of R: Let L
be a nonzero ideal of R. By tightness of R, I = L N T is a nonzero ideal
of T. By (34), I + N is an ideal of J strictly containing N; hence
I+N+K=1J by@). Thus I + K =1J since N c K. But

ce&(J)=&(I+K)cI+&(K)
since I is an ideal of J, and we can write ¢ =y + k, where y € [ and
k € &(K). Now,

¢bc =c*=Pb=P, ,b=Pb+P, b+ Pb=Pb+P,, b+ kbk
€ElI+RVE(K)cI+McCL+ M.
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Hence, for any x € R

x = (x —xbc) + ((xbc) — (xbc)bc) + xb(cbe)
EM+M+RR(L+M)cM+L,
using the definition of M and the facts that M is a left ideal of R and L is

an ideal of R. We have shown R =M + L.
(V1) Similarly, we define

M =&(K)bR + (1 - cb)R,
which is a right ideal of R, c-modular at b, and complements nonzero
ideals of R.

(VI1) We just need to show that either M or M’ is proper. Other-
wise R = M = M' and we can write

c=zk,lbsl+2(ym_6bym)’ Sl'ymeR’k,leg(b;K)’

¢ =2 bk, + ), (x; — x;bc), 1, X, €ER k; € &(b;K),
where
Sp = 212223+ 224,410 Ym = Uyl ..ty 11,
Py = U303+ Upg y1s Xj = WiWoWsa .o . Wap 410

where the z’s, t's, v’s, and w’s are in T since R=T+TTT +TTTIT +
. . By [5, 0.7], for all odd n, there exists a modulus f, € Z7Z(J) =
Z%Z,(b; T) for K in J as in (IV). Now
a, = cbf,bc
= (X (k'bzy o 2y 1) + X (tr ity o1 = bty oty 1))

bfnb(Z (V1. Vg 10K;) + 3 (wl...wzle - wl...wzpj+1bc)).

By reversing products we can construct in R the element

b, = (Z (klbUZdﬁrl Lvg) >z (szj+1 s Wy wazp,+1---W1))

bfnb(Z (22,41 Lzibky) + Y (faup 111~ w1 - "tlbc))'
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It is clear that
bounded length bounded length

a,+b, € {g(b; K)b TTT...T bf,b TTT...Tbé”(b;K)}

bounded length bounded length

+{é;"(b; K)bTTT...Tbf,b TTT...T (1 — bc)}

bounded length bounded length

+{(1 —¢b) TTT...Tbf,b TTT ... T (1 —bc)}

c {&(b; K)bTTTbK} + {&(b; K)bTTT(1 — bc)}
+{(1 — cb)TTT(1 — bc)} (if n is big enough)
cK (since K is c-modular in

J=T® and (2.5)).

Analogously, a,bb, € K and a,bTbb, < K if n is big enough. Notice
that a, is a modulus for K in J by [5, 04] since @, = U.f, and ¢, f, are
modull for K. Now

a,ba,bb, + a,bb,ba, = a,-(a,bb,) € K

since a,bb, € K and a,, is a modulus for K. Now, a,ba,bb, € a,bTbb, C
K, so0 a,bb,ba, € K. But

a, +a,bb,ba, =U,(a,+b,) €U, KK

since a, is a modulus for K, showing that a2 € K. This contradicts
properness of K by [9; 3.1]. 1

6.2. THEOREM. Let T be a Jordan triple system which is primitive at
b € T. Then any *-tight associative triple envelope R of T is * -primitive at b.

Proof. Parts (1)-(V) of the proof of (6.1) apply here verbatim, replacing
ideals of R by =-ideals of R and tightness by =-tightness. Then, the proof
of (3.6), part (V), can be used to establish the properness of M. |

6.3 LEMMA. If V = (V*,V7) is a special Jordan pair and R = (R*, R™)
is an envelope of V, then T(R) is an envelope of T(V'). Moreover, if R is tight
(resp. =-tight) over V and V is strongly prime, then T(R) is equally tight (resp.
* -tight) over T(V).

Proof. The fact that T(R) is an envelope of T(}) readily follows from
the definition of the products in T(R) and T'(7V). Assume that R is a tight
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(resp. =*-tight) envelope of V" and V' is strongly prime. Let I be a nonzero
ideal (resp. =-ideal) of T(R). Hence L =(INR*, I N R7) is an ideal
(resp. =-ideal) of R. If L + 0 then L NV # 0 by tightness (resp. =-
tightness) of R and 0 = T(L N V) cI N T(V). Otherwise L = 0 and, by
polarization of T(R), w°(I) € Ann R? (o = +), where Ann R? is the
set of elements of R? which annihilate any monomial of R containing
them. But R is prime (resp. *-prime) since it is a tight (resp. =-tight)
envelope of IV which is strongly prime; hence R is semiprime and Ann
R =0 (o= ). Therefore #7(I) =0 (o= +) and I =0, which is a
contradiction. |

6.4. THEOREM. Let V be a Jordan pair which is primitive at b € V=7
(0= +). Then any tight associative pair envelope R of V is one-sided
primitive at b.

Proof. Use (6.3), [3, 5.5], (6.1) and (1.4)Gii). 1

6.5. THEOREM. Let V be a Jordan pair which is primitive at b € V™7
(o= 1). Then any *-tight associative pair envelope R of V' is *-primitive
at b.

Proof.  Use (6.3), [3, 5.5], (6.2) and (1.4)Gii). 1
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