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In this paper we give a characterization of primitivity of Jordan pairs and triple
systems in terms of their local algebras. As a consequence of that local characteri-
zation we extend to Jordan pairs and triple systems most of the known results
about primitive Jordan algebras. In particular, we describe primitive Jordan pairs
and triple systems over an arbitrary ring of scalars in the sense of ‘‘The Struc-
ture of Primitive Quadratic Jordan Algebras’’ by J. A. Anquela, T. Cortes, and´

Ž .F. Montaner 1995, J. Algebra 172, 530]553, 5.1 . Q 1996 Academic Press, Inc.

INTRODUCTION

Primitive Jordan pairs and triple systems appear as a fundamental tool
Ž .in the description of linear over a field of characteristic not two prime

w x w xJordan triple systems given in 21 by E. I. Zelmanov. In 19 , V. G.
Skosyrski obtains a description of linear primitive Jordan triple systems.
Recently, A. d’Amour and K. McCrimmon extended Zelmanov’s result to
arbitrary quadratic Jordan pairs, proving that if a Jordan pair V is

w xprimitive at b, then the local algebra of V at b is primitive 3 . Their aim
was to carry over known facts on Jordan algebras to pairs and triple
systems to show that a homotope]PI primitive Jordan pair or triple system

w xhas nonzero socle. Local algebras are defined by K. Meyberg in 17 and
consist essentially of what remains of a homotope algebra when its
‘‘radical’’ part is cut off. By their very definition, local algebras are related
to the Jacobson radical, hence to primitivity, and examples of their use in

w xthat sense can be found in 8 .
The aim of this paper is to go further in the use of local algebras as a

link between the category of Jordan algebras and the categories of Jordan
pairs and triple systems. We will carry over to the latter categories the

w xwhole structure theory of primitive Jordan algebras given in 5 .
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ŽTo do this we prove in Section 3 the central result of the paper Th.
Ž ..3.6 , a local-to-global inheritance of primitivity result, asserting that a
strongly prime Jordan triple system having a primitive local algebra T isb
primitive at b. The proof, as is usual in Jordan theory, splits into two parts:

Ž .homotope]PI systems and non-homotope]PI also called hermitian sys-
tems. For Jordan triple systems of the first kind the result follows easily
from known facts about Jordan algebras. Zelmanov polynomials are needed
for hermitian systems. Section 2, the most technical section in the paper, is
devoted to constructing these ideals of polynomials which, when evaluated
in an inner ideal of a homotope, ‘‘eat’’ pentads in the triple system and
produce elements inside the inner ideal.

Ž . w xFrom 3.6 and the result of 3 mentioned above, a local characteriza-
Ž .tion of primitivity for Jordan pairs 3.9 is given. Results in Section 4 are

Ž . w xconsequences of 3.9 and 5 , providing generalizations to Jordan pairs of
w xmost of the results of 5 on primitivity of Jordan algebras. In particular, a

classification of primitive Jordan pairs over an arbitrary ring of scalars is
given.

In Section 5 we obtain analogues for triple systems of the results of the
w xprevious section. In particular, we extend the central result of 19 , obtain-

ing a complete description of primitive Jordan triple systems over an
arbitrary ring of scalars. Tight double pairs of a triple system, introduced

w xin 3 , are the main tool here. Finally, in Section 6, we use Zelmanov
Žpolynomials constructed in Section 2 to show that primitivity )-primitiv-

. Ž .ity lifts from a special Jordan pair or triple system to any tight )-tight
envelope.

Apart from the main points outlined above, the paper contains a
preliminary section with some known basic facts and definitions and a
section devoted to the study of primitive and )-primitive associative pairs
and triple systems which will play an important role in the subsequent
description of primitive Jordan pairs and triple systems.

0. PRELIMINARIES

0.1. We deal with Jordan algebras, pairs, and triple systems over an
w xarbitrary ring of scalars F. The reader is referred to 10, 15, 11, 2 for

notation, terminology, and basic results we will use throughout the paper.
However, we will stress some of those required preliminaries in this
section.

}Given a Jordan algebra J, its products will be denoted x 2, U y, forx
x, y g J. They are quadratic in x and linear in y and have linearizations
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denoted by

2 2 2x( y s V y s x q y y x y y ,Ž .x

� 4xyz s U y s V z s U y y U y y U y.x , z x , y xqz x z

Ž q y.}For a Jordan pair V s V , V we will denote the products Q yx
for any x g V s, y g Vys , s s ", with linearizations denoted by Q andx, z
D .x, y

}A Jordan triple system T is given by its products P y, x, y g T ,x
with linearizations denoted by P and L .x, z x, y

0.2. One can view any Jordan algebra as a Jordan triple system by
forgetting the squaring and letting P s U. By doubling any Jordan triple

Ž . Ž .system T one obtains the double Jordan pair V T s T , T of T with
Ž q y.Q y s P y, for any x, y g T. A Jordan pair V s V , V gives rise to ax x

Ž . q y Ž q y.q yJordan triple system T V s V [ V by defining P y [ y sx [ x
y q Ž .q yQ y [ Q y ; those Jordan triple systems isomorphic to T V for ax x

Jordan pair V are called polarized.
0.3. One can obtain Jordan systems from associative systems by sym-

Ž q y.metrization: Given an associative pair R s R , R with products xyz, for
any x, z g Rs, y g Rys , one can construct a Jordan pair denoted RŽq.,
which over the same pair of modules has new products Q y s xyx for anyx
x g Rs, y g Rys . Any Jordan pair which is a subpair of an RŽq. for some
associative pair R is said to be special. A particularly important example of
special Jordan pairs is ample subpairs of an associative pair with involution
w x7, 1.7 . Similar constructions lead to the notions of special Jordan triple
systems and algebras, together with the particular cases of ample sub-

w xspaces of associative triple systems and algebras with involution 2, 7 .
Ž . Ž .As for Jordan systems, one has functors T and V between the

categories of associative pairs and triple systems.
0.4. Associative and Jordan triple systems and pairs can be studied in

terms of associative and Jordan algebras by considering their homotopes
w xand local algebras 3 :

Ž q y. ys}Given an associative pair R s R , R and an element b g R ,
the F-module Rs becomes an associative algebra denoted Rs Žb. and
called the b-homotope of R by defining

x ? y s xby,b

for any x, y g Rs. The set

� s 4Ker b s Ker b s x g R N bxb s 0R
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turns out to be an ideal of Rs Žb. so that the quotient

Rs s Rs Žb.rKer bb

is an associative algebra called the local algebra of R at b.
Ž q y. ys}Given a Jordan pair V s V , V and an element b g V , the

F-module V s becomes a Jordan algebra denoted V s Žb. and called the
b-homotope of V by defining

x Ž2, b. s Q b ,x

U Žb. y s Q Q y ,x x b

for any x, y g V s. The set

Ker b s Ker b s x g V s N Q x s Q Q b s 0� 4V b b x

turns out to be an ideal of V s Žb. and the quotient

V s s V s Žb.rKer bb

is a Jordan algebra called the local algebra of V at b.
� s 4If V is nondegenerate or special then Ker b s x g V N Q x s 0 .V b

}Homotopes and local algebras for associative and Jordan triple
Žsystems have definitions analogous to those in the pair case simply

.without the superscript s .

Ž . Ž .0.5. The notions defined in 0.4 are compatible with the functors V
Ž .and T as well as with symmetrizations and ample subspaces:

}Let T be an associative or Jordan triple system, b g T. Then
sŽ .s bŽb.T s V T ; T s V T , s s ".Ž . Ž . bb

}Let V be an associative or Jordan pair, b g Vys , s s ". Then

V s ( T V .Ž . bb

}Let R be an associative pair, b g Rys , s s ". Then
Ž . Ž .s b q Ž .qsŽq. s Žb. Žq. sR s R , R s R .Ž . Ž . Ž . Ž .b b

If R has a polarized involution ) and b is symmetric then the homotope
Rs Žb. and the local algebra Rs naturally inherit an involution. Then theb
homotope H s Žb. and the local algebra H s of an ample subpair H of Rb
Ž ys . s Žb. sb g H are isomorphic to ample subspaces of R and R , respec-b
tively. Similar results hold for associative triple systems.

In the description of Jordan systems, ideals of so-called Zelmanov or
hermitian polynomials play a central role. We list now some known



ANQUELA AND CORTES´636

properties of these ideals, from which we will construct our own tools in
Section 2.

In particular, we will need some ideals of polynomials for triple systems
Ž .inside the free special Jordan triple system ST X on the infinite set of

Ž . Ž .variables X. Notice that ST X is naturally imbedded in AssT X , the free
associative triple system on X, where we can find n-tads for odd n, the
associative polynomials

� 4x , . . . , x s x . . . x q x . . . x .1 n 1 n n 1

Recall that if A is an associative triple system with involution ) and
Ž .a , . . . , a g H A,) , then1 n

� 4a , . . . , a s a . . . a q a . . . a *,Ž .1 n 1 n 1 n

the trace of the element a . . . a .1 n
Ž . Ž .A TT-ideal HH X of ST X is hermitian if it is n-tad closed for all odd

w xn G 5. To find nonzero hermitian ideals, d’Amour 1 studies hearty n-tad
Ž . Ž . Ž .eater ideals HH X for odd n consisting of those polynomials in ST Xn

which eat adic m-tads from the first and second positions for any odd
m F n. In particular, we recall Theorems 3.16 and 4.5:

Ž .0.6. The set HH X of hearty pentad-eaters forms a nonzero hermitian5
Ž .linearization invariant TT-ideal of ST X .

Ž . w Ž .xThe elements in HH X eat from any position 1, Remark 3.14 3 .5
Indeed, the same argument shows:

Ž . Ž . Ž .0.7. LEMMA. Let I be a semi-ideal of ST X contained in HH X n odd .n
Then the elements of I eat adic m-tads for any odd m F n from any position.

Ž .mFor any odd m we will define the power HH X inductively by5

m1 my2
HH X s HH X , HH X s P HH X .Ž . Ž . Ž . Ž .Ž .5 5 5 HH Ž X . 55

Ž .m Ž .0.8. PROPOSITION. For any odd m, HH X is a semi-ideal of ST X5
Ž .contained in HH X .mq 4

Ž .m Ž . w xProof. The fact that HH X is a semi-ideal follows from 2.12 of 2 .5
Ž .m Ž .We will show that HH X is contained in HH X . The case m s 15 mq4

Ž .follows from 0.6 . Assume that the proposition is true for any odd power
Ž .mq 2less than or equal to m and we will show that HH X is contained in5

Ž . � 4 Ž . Ž .mHH X . Let F be an arbitrary adic family, p g HH X , q g HH X ,mq 6 k 5 5
Ž .m G 1, put T s ST X and y , . . . y g T.1 mq5
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F y , . . . , y , pqpŽ .mq 6 1 mq5

s F y , . . . , y , p , q , pŽ .mq 8 1 mq5

: F y , . . . y , T , T , T , q , p since p g HH XŽ . Ž .Ž .Ý mq 6 1 mq1 5

: F T , T , T , T , p q g HH X by theŽ . Ž .ŽÝ 5 mq4

induction assumption.
: F T , T , T since p g HH X .Ž . Ž .Ž .Ý 3 5

Similarly

F y , . . . , y , pqp, y : F T , T , T .Ž . Ž .Ýmq 6 1 mq4 mq5 3

Ž .We have shown P q s pqp g HH X .p mq6

w xSimilar notions were first given for Jordan algebras in 15 . The free
Ž .special Jordan algebra over the set X will be denoted by SJ X and it is

Ž .contained in the free associative algebra Ass X on X.
Ž . w xFrom 2.3 of 5 one can obtain:

0.9. PROPOSITION. There exists a nonzero, linearization in¨ariant TT-ideal
Ž . Ž .GG X of SJ X such that:

Ž .i For any special Jordan algebra J and any inner ideal K of J,

ˆ̂ ˆGG K JJJK : KŽ .½ 5
Ž .where the pentads are taken in any associatï e en¨elope of J .

Ž . Ž .ii GG X consists of hearty pentad eaters and contains nonzero Clifford
Ž Ž .. Ž .polynomials, indeed GG H F s H F .3 3

Ž .Taking powers of GG X creates more voracious polynomials. Indeed, if
we define inductively

n1 ny21 nGG X s GG X s GG X , GG X s GG X s U GG X ,Ž . Ž . Ž . Ž . Ž . Ž .GG Ž X .

for any odd n, we have

Ž .n0.10. COROLLARY. The set GG X is a nonzero, linearization in¨ariant
Ž .TT-ideal of SJ X for any odd n and

Ž .i For any special Jordan algebra J and any inner ideal K of J,
F n q 2 factors!#"

n
GG K J . . . J K : KŽ .½ 5

Ž .where the m-tads are taken in any associatï e en¨elope of J .
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Ž . Ž .n Ž .ii GG X consists of hearty n q 4 -tad eaters and contains nonzero
nŽ Ž .. Ž .Clifford polynomials, indeed GG H F s H F .3 3

Ž . Ž .Proof. Proposition 0.9 shows the case n s 1. We will show i induc-
Ž . Ž .ny2tively: if g g GG X and h g GG X , then

n q 2 factors!#"
ˆ ˆU h K J . . . J KŽ .Ž .g½ 5

n q 2 factors!#"
ˆ ˆs g K h K g K J . . . J KŽ . Ž . Ž .½ 5

n q 1 factors!#"
ˆ ˆ: g K h K J . . . J K since g is a hearty pentad eaterŽ . Ž . Ž .½ 5

ˆ̂ ˆ: g K JJJK since h is a heartyŽ . Ž½ 5
n q 2 -tad eaterŽ . .

: K since g g GG K .Ž .Ž .
Ž .Part ii is straightforward.

1. PRIMITIVE ASSOCIATIVE PAIRS
AND TRIPLE SYSTEMS

This section is devoted to stating some basic facts on primitive associa-
Žtive pairs and triple systems. Although some of these results like

Ž .1.10]1.11 will not be needed later in the paper, they have been included
to allow the reader to compare with similar facts for Jordan pairs and
triple systems proved in the sequel.

Ž q y.1.1. Primitï e associatï e pairs. An associative pair R s R , R is said
Ž . ys Ž .to be left primitï e or left s -primitï e at b g R s s " if there exists

s Ž s s ys .a proper left ideal K of R K / R , R R K : K such that:

Ž . si K is c-modular at b for some c g R , i.e., x y xbc g K for all
x g Rs or, equivalently, K is a c-modular left ideal of the homotope Rs Žb..

Ž . Ž . s sii K complements nonzero s -ideals: I q K s R for any ideal
Ž q y. sI s I , I of R such that I / 0,

Ž . s s Ž ys .and R is s -coreless, i.e., R zR s 0 z g R implies z s 0.

Under the above conditions K is called a primitizer of R with b-
modulus c.

Ž .Analogously one can consider right s -primitï e associative pairs for
which primitizers are right ideals.



PRIMITIVE JORDAN SYSTEMS 639

Ž .1.2. Remark. The s -coreless condition in an associative pair R is
s Ž q y.equivalent to asserting I / 0 for all nonzero ideals I s I , I of R.

Indeed, if I is an ideal of R and I s s 0, then RsIys Rs : I s s 0, hence
Iys s 0 by the coreless condition. The converse readily follows since
Ž q y.I , I is always an ideal for

s ys � ys s s 4I s 0 and I s z g R N R zR s 0 .

Ž . Ž .Therefore ii in the definition 1.1 can be replaced by

Ž . Ž . s sii 9 K complements the s -part of nonzero ideals: I q K s R
Ž q y.for any nonzero ideal I s I , I of R.

We can now define left and right primitive associative triple systems
identically to left and right primitive associative pairs, i.e., as those having

Ž .Ž . Ž .a proper left or right ideal which satisfies 1.1 i and ii 9 without the
superscript s .

Ž .Every left right primitive associative pair or triple system is prime.
Otherwise let I, L be nonzero orthogonal ideals of R. Since Rs s Ls q K,
for a primitizer K : Rs with b-modulus c, we can write c s y q k, where
y g Ls, k g K. Now, for any x g I s,

x s x y xbc q xbc s x y xbc q xbkŽ .

since xby g I sRys Ls s 0. We have shown I s : K ; hence Rs s I s q K s
K, which is a contradiction.

1.3. )-Primitï e associatï e pairs and triple systems. An associative pair
Ž q y. Ž .R s R , R with involution ) is said to be )-primitï e or s -)-

Ž ys . Ž .primitï e at the element b g H R , ) s s " if there exists a proper left
s Ž .Ž . Ž .Ž .ideal K of R satisfying 1.1 i and 1.2 ii 9 with the word ideal replaced

by )-ideal.
Under the above conditions K is called a )-primitizer of R with

b-modulus c. Notice that unlike for the notion of primitivity there is no
need to distinguish between left and right )-primitivity: since the antiauto-
morphism ) provides right primitizers from left primitizers and vice versa
the notions of left )-primitivity and right )-primitivity coincide.

As above, )-primitive associative triple systems are defined identically
to )-primitive associative pairs without the superscript s .

Ž .Replacing ideals by )-ideals in the argument given in 1.2 shows that
every )-primitive associative pair or triple system is )-prime.

The next result is devoted to studying primitivity and )-primitivity
Ž .through the functor T . We will skip its proof since it is just a direct

Ž .translation with obvious changes of the corresponding result for Jordan
w x w xpairs and triple systems given in Section 5 of 2 and Th. 5.5 of 3 .
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Ž q y. Ž1.4. PROPOSITION. Let R s R , R be an associatï e pair resp. an
associatï e pair with in¨olution ), in which case we also write ) for the

Ž ..induced in¨olution in T R .

Ž . Ž . Ž . Ži R is prime resp. )-prime if and only if T R is prime resp.
.)-prime .

Ž . Ž .ii If R is left, respectï ely right, primitï e resp. )-primitï e with
Ž . s Ž . Ž ysprimitizer resp. )-primitizer K : R s s " of b-modulus c b g R

Ž Ž ys .. s . Ž .resp. b g H R , ) , c g R then T R is a left, respectï ely right,
Ž . Žprimitï e resp. )-primitï e associatï e triple system with primitizer resp.
. ys)-primitizer K [ R of b-modulus c.

Ž . Ž . Ž .iii If T R is left, respectï ely right, primitï e resp. )-primitï e at b
Ž . Ž q y Ž .with primitizer resp. )-primitizer K of b-modulus c b s b [ b g T R

Ž q y Ž Ž . .. q y Ž ..resp. b s b [ b g H T R , ) , c s c [ c g T R then, for some s
� 4 Ž . Ž .g q,y , T R is also left, respectï ely right, primitï e resp. )-primitï e at

ys ys ys sŽ .b with primitizer resp. )-primitizer K s K q R of b -modulus c
Ž . ysand R is left, respectï ely right, primitï e resp. )-primitï e at b with

s s ys sŽ . Ž . Ž .primitizer resp. )-primitizer p K s p K of b -modulus c .

Ž .Primitivity does not flow so smoothly through the functor V , due to
Ž .the fact that V R can have more ideals than those coming from ideals of

the triple R. The situation is presented in the next result, whose proof is
w xpatterned after the proof of Theorem 6.2 of 3 .

Ž1.5. PROPOSITION. Let R be an associatï e triple system resp. an associa-
tï e triple system with in¨olution ), in which case we also write ) for the

Ž .. Žinduced in¨olution in V R , left, respectï ely right, primitï e resp. )-primi-
. Ž .tï e at b with primitizer resp. )-primitizer K of b-modulus c.

Ž . Ž . Ž . Ž .i If V R is prime resp. )-prime , then V R is left, respectï ely
Ž . Ž Ž . .right, s -primitï e resp. s -)-primitï e for both s s " as an associatï e

Ž . Ž Ž . .pair with s -primitizer resp. s -)-primitzer K of b-modulus c.
Ž . Ž . Ž . Ž .ii If V R is not prime resp. not )-prime , then V R is a subdirect

Ž . Ž Ž . .product of a left, respectï ely right, s -primitï e resp. s -)-primitï e
Ž Ž .associatï e pair V and its opposite which is left, respectï ely right, ys -

Ž Ž . ..primitï e resp. ys -)-primitï e . Indeed V can be obtained as the quotient
Ž . Ž . Ž .V R rI, where I is an ideal resp. )-ideal of V R , maximal under the

condition Iql Iys 0.

Proof. Assume that R is a left or right primitive associative triple
system.

Ž . Ž q y. Ž .i Notice that for any ideal I s I , I of V R , we have the ideal
Ž y q. Ž . Ž .I , I of V R so that the fact that V R is prime provides a nonzero
ideal Iql Iy of R whenever I is nonzero. This readily implies that any
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primitizer of R complements the q and y parts of nonzero ideals of
Ž . Ž . Ž . Ž .V R . Hence V R is q - and y -primitive with the same primitizer

as R.
Ž . Ž .ii We claim that there exists a nonzero ideal I of V R such that

q y Ž .I l I s 0. Otherwise V R would be prime since R is prime and nonzero
Ž .orthogonal ideals I, L of V R give rise to nonzero orthogonal ideals

Iql Iy, Lql Ly of R. By Zorn’s lemma we can find a nonzero ideal I of
Ž . q y Ž .V R maximal under the condition I l I s 0. Let V s V R rI. It is

Ž . Ž . Ž y q.clear that V R is a subdirect product of V and V R r I , I , the latter
being the opposite of V.

Ž .Let us show, for example, that V is left s -primitive for some s g
� 4q,y whenever R is left primitive. Take K a primitizer of R with

Ž q. q q Ž y. yb-modulus c. We claim that either K q I rI / V or K q I rI /
Vy. Otherwise R s K q Iqs K q Iy and the modulus c of K can be
written

c s k q zqs k q zy,1 2

where k , k g K, zqg Iq, zyg Iy. Now1 2

zyy zybzqs zyy zyb c y k s zyy zybc q zybk g KŽ . Ž .1 1

since K is a left ideal of R and K is c-modular at b. But zybzqg Iql
Iys 0, which implies zyg K ; hence c s k q zyg K, which contradicts2
properness of K.

Ž q. q qAssume, for example, that K q I rI / V . It is straightforward that
Ž q. q q yK q I rI is a c q I -modular left ideal of V at b q I . Moreover
Ž q. qK q I rI is also a primitizer of V since any nonzero ideal of V comes

Ž .from an ideal M of V R strictly containing I, thus providing a nonzero
ideal Mql My of R which is complemented by K.

ŽThe above arguments apply with obvious changes replacing ideals by
.)-ideals when a )-primitive associative triple system with involution ) is

considered.

1.6. We remark some basic facts on the generation of ideals for associa-
tive pairs and triple systems:

q y Ž q y.}Given a set S : R j R , where R , R is an associative pair,
Ž .the ideal Id S of R generated by S is just the pair of spans of allR

monomials in R containing elements of S. Indeed, we can generate ideals
with elements that do not properly exist inside R but make sense in an

Ž w x.‘‘algebra envelope’’ of R see 17; 2, 1.13 : as an example, we can consider
q y Ž .a g R , b g R and talk about the ideal Id ab of R generated by ab,R

which is just the pair of spans of monomials in R having ab as a subword.
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Ž .}Similarly, given an associative triple system R, the ideal Id S isR
just the span of all monomials in R containing elements of S, and S can
be any subset of R or, more generally, any subset in an ‘‘algebra envelope’’
of R.

This smooth way of generating ideals dealing with associative monomials
provides elemental characterizations of semiprimeness and primeness.

Ž .1.7. LEMMA. i An associatï e triple system R is semiprime if and only if
bRb s 0 implies b s 0.

Ž . Žii Let R be a prime associatï e triple system resp. a )-prime associa-
. Ž Ž ..tï e triple system with in¨olution ) , b g R resp. b g H R,) , I be an ideal

Ž .resp. a )-ideal of R such that bIb s 0. Then either b s 0 or I s 0.

Ž . w xProof. i This assertion is just a part of 2, 1.18

Ž . Ž . Ž .ii The fact that I is an ideal of R implies that IbR R IbR s
Ž . Ž .Ib RRI bR : IbIbR s 0; hence IbR s 0 by i since R is semiprime.

Similarly

RIb R RIb s RIb RRI b : RIbIb s 0 implies RIb s 0Ž . Ž . Ž .

and

IRb R IRb s IRb RIR b : IRbIb s 0 implies IRb s 0.Ž . Ž . Ž .

Ž . Ž .Therefore I is orthogonal to Id b . By primeness resp. )-primeness ofR
Ž .R, either I s 0 or Id b s 0 and b s 0.R

Next we characterize primitivity and )-primitivity of associative pairs
and triple systems in terms of their local algebras:

Ž . Ž1.8. THEOREM. i An associatï e pair resp. an associatï e pair with
. Ž .in¨olution ) R is left, respectï ely right, primitï e resp. )-primitï e at

ys Ž Ž ys .. sb g R resp. b g H R , ) if and only if R is left, respectï ely right,b
Ž . Ž .primitï e resp. )-primitï e and R is prime resp. )-prime .

Ž . Žii Let R be an associatï e triple system resp. an associatï e triple
. Ž Ž ..system with in¨olution ) , b g R resp. b g H R, ) .

Ž . Ž .a If R is prime resp. )-prime and R is left, respectï ely right,b
Ž . Žprimitï e resp. )-primitï e then R is left, respectï ely right, primitï e resp.
.)-primitï e at b.

Ž . Ž .b If R is left, respectï ely right, primitï e resp. )-primitï e at b,
Ž . Ž Ž ..then R is prime resp. )-prime and there exists b9 g R resp. b9 g H R, )

Ž .such that R is also left, respectï ely right, primitï e resp. )-primitï e at b9
Ž .and R is left, respectï ely right, primitï e resp. )-primitï e .b9
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Ž .Ž .Proof. ii a Assume R is prime and R is a left primitive algebrab
˜ Žb.Žwith primitizer K s KrKer b K is a proper left ideal of R containing

.Ker b . Take

˜� 4C s c g R N c q Ker b is a modulus for K

and, for any c g C, define

� 4K c s x y xbc N x g R .Ž .

Ž . Ž .Clearly K c is a left ideal of R such that K c : K. Hence K s1
Ž .Ý K c is a proper left ideal of R, since K : K and K is proper, andcg C 1

K is c-modular at b for any c g C. Let I be a nonzero ideal of R. Hence1
˜ Ž .I s I q Ker b rKer b is an ideal of R . Moreover, I is nonzero byb

˜ ˜Ž .Ž .1.7 ii . Thus I contains a modulus c q Ker b for K with c g I. Now
c g C, hence it is a b-modulus for K , which implies R s I q K .1 1

Ž . yi Assume, for example, the R is left primitive at b g R . It is
known that R is prime. Let K be a primitizer of R with b-modulus
c g Rq.

q Ž q.Žb.Let us show that R is primitive. Since K is a left ideal of R ,b
˜ q ˜Ž .K s K q Kerb rKerb is a left ideal of R . Moreover K is proper:b
otherwise Rqs K q Kerb and c s k q z, where k g K and z g Kerb;

Ž q.Žb. Žsince K is a c-modular left ideal of R , it is also z-modular z s c y k
. Ž3, b. Ž3, b.and k g K and hence it is also z -modular; but z s zbzbz s 0,

q ˜obtaining K s R , which is a contradiction. The left ideal K is also
q Ž q.Žb.c-modular in R if c s c q Kerb since K is c-modular in R . Now,˜ ˜b

˜ qany nonzero ideal I of R has the form IrKerb, where I is an ideal ofb
Ž q.Žb.R strictly containing Kerb. Thus there exists x g I such that y s bxb

Ž . q q/ 0. Consider the ideal L s Id y of R. Since L / 0, L q K s R . ButR

Lqs RqyRqs RqbxbRqs Rq ? x ? Rq: I.b b

q ˜ ˜ qHence R s I q K and I q K s R .b
Conversely, let R be a prime associative pair such that Rq is leftb

y Ž .Ž . Ž . Ž .primitive, b g R . By 1.4 i , T R is prime. Moreover, T R is isomor-b
q Ž . Ž .Ž . Ž .phic to R , as noted in 0.5 ; hence it is left primitive. Using ii a , T R isb

Ž .Ž .left primitive at b and R is primitive at b by 1.4 iii .
Ž .Ž .ii b If R is left or right primitive, we know that R is prime. To

prove the remaining assertion we will follow the proof of the correspond-
w xing fact for Jordan triple systems given in 3 . Let R be an associative triple

system, left primitive at b, with primitizer K of b-modulus c.
Ž . Ž . Ž .If V R is a prime associative pair, then V R is a left q -primitive pair
Ž .Ž . Ž .q Ž .at b by 1.5 i ; hence V R is left primitive by i and R is primitiveb b

Ž .q Ž Ž ..since R s V R see 0.5 .b b
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Ž . Ž .If V R is not prime we can take a nonzero ideal I of V R maximal
q y Ž . qunder the condition I l I s 0 as in 1.5 and we have that K q I / R

or K q Iy/ R. Suppose, for example, that K s K q Iq is proper. Notice1
that K is a left ideal of R:1

q yq q qRRK : RRK q RRI s RRK q V R V R I : K q I ,Ž . Ž .1

Ž .since K is a left ideal of R and I is an ideal of V R . Moreover, K is1
modular at b with b-modulus c, i.e., K is a c-modular left ideal of RŽb.

1
Ž q y. yand a primitizer of R since K : K . Now, R s K q I q I s K q I1 1 1

since Iqq Iy is a nonzero ideal of R, and c s m q c9, where m g K and1
c9 g Iy. Hence c9 s c y m is also a modulus for K in RŽb., i.e., c9 is a1
modulus for K at b. Let1

q qy y qb9 s bc9b g RI R s V R I V R : I .Ž . Ž .
We claim that c9 is also a modulus for K at b9: for any x g R,1

x y xb9c9 s x y xbc9bc9 s x y xbc9 q xbc9 y xbc9 bc9 g KŽ . Ž . 1

by c9-modularity of K at b.1
We have proved that R has primitizer K containing Iq with modulus1

c9 g Iy at b9 g Iq.
Let us show that R is primitive. To do that, consider the pairb9

Ž . Ž . yV s V R rI, which, as in the proof of 1.5 , is primitive at b9 q I with
primitizer K rIq of modulus c9 q Iq. Now R and V y

q are isomorphic1 b9 b9qI
algebras. Indeed the natural algebra epimorphism p: R ª V y

q givenb9 b9qI
by

p x q Ker b9 s x q Iq q Ker b9 q IyŽ . Ž . Ž .
Ž . q Ž y.is also injective: indeed, p x q Kerb9 s 0 implies x q I g Ker b9 q I ;

hence b9xb9 g Iy, and b9xb9 g Iq since b9 g Iq. Thus b9xb9 g Iql Iys
q Ž .y0, x g Kerb9, and x q Kerb9 s 0. Finally, V is left primitive by i .b9qI

The above arguments apply verbatim replacing ideals by )-ideals, when
an associative pair or triple system with involution is considered. Only one

Ž .Ž .change is needed at the end of the proof of ii b since, in general, we
Ž .cannot assume that b9 s bc9b g H R, ) . To overcome that difficulty, let

c0 s c9 q c9* y c9*bc9. It is clear that c0 g Iy since I is a )-ideal of
Ž . y Ž .V R and c9 g I and also c0 g H R, ) . Moreover c0 is a modulus for

K at b,1

x y xbc0 s x y xbc9 y xbc9* q xbc9) bc9

s x y xbc9* y x y xbc9* bc9 g K ,Ž . Ž . 1

since c9 is a modulus for K at b. Thus c0 can replace c9 and we can1
Ž . Ž .assume c9 g H R, ) , which implies b9 s bc9b g H R, ) .
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We finish this section by listing some properties which show how
associative pairs and triple systems behave as associative algebras concern-
ing the relations between primitivity and )-primitivity and the transfer of

Ž w x wthose properties between an algebra and its ideals cf. 5, 4.6 ; 18, Vol. I,
x.p. 308 .

Ž . Ž . Ž1.9. PROPOSITION. i Let R be a )- s -primitï e associatï e pair s s
. Ž ." . Then R is a subdirect product of a s -primitï e pair P and its polarized

op Ž .opposite P obtained from P by re¨ersing products . If R is prime then it is
Ž .s -primitï e.

Ž .ii Let R be a )-primitï e associatï e triple system. Then R is a
op Žsubdirect product of a primitï e pair P and its opposite P obtained from P

.by re¨ersing products. . If R is prime then it is primitï e.

Ž . w xProof. The proof of 4.6 of 5 applies here with obvious changes.

Ž . Ž1.10. PROPOSITION. i Let R be an associatï e pair resp. an associatï e
. Ž .pair with in¨olution ) , I a nonzero ideal resp. )-ideal of R. Then:

Ž . Ž .a If R is left, respectï ely right, primitï e resp. )-primitï e at
ys Ž Ž ys .. Ž .b g I resp. b g H I , ) s s " then I is left, respectï ely right,

Ž .primitï e resp. )-primitï e at b.
Ž . Ž .b If R is prime resp. )-prime and I is left, respectï ely right,
Ž . ys Ž Ž ys .. Ž .primitï e resp. )-primitï e at b g I resp. b g H I , ) s s " then

Ž .R is left, respectï ely right, primitï e resp. )-primitï e at b.
Ž . Žii Let R be an associatï e triple system resp. an associatï e triple

. Ž .system with in¨olution ) , I a nonzero ideal resp. )-ideal of R. Then:
Ž . Ž .a If R is left, respectï ely right, primitï e resp. )-primitï e at
Ž Ž .. Žb g I resp. b g H I, ) then I is left, respectï ely right, primitï e resp.

.)-primitï e at b.
Ž . Ž .b If R is prime resp. )-prime and I is left, respectï ely right,

Ž . Ž Ž ..primitï e resp. )-primitï e at b g I resp. b g H I, ) then R is left,
Ž .respectï ely right, primitï e resp. )-primitï e at b.

Proof. We first consider the case without involution.

Ž .Ž .ii a Let K be a left primitizer of R at b g I with modulus
c g R. By primitivity of R, R s I q K and c s c9 q k, where c9 g I and
k g K. Hence c9 is also a modulus for K at b and it is readily seen that c9
is also a modulus for the proper left ideal K l I of I at b in I.

We just need to show that K l I complements nonzero ideals of I: Let
Ž .Ž .L be a nonzero ideal of I. By 1.7 ii , S s LIL / 0. Notice that S : L : I

since L is an ideal of I. Now, SSS / 0 since

SIS I SIS s LILILILILILILILŽ . Ž .
s LIL ILI L ILI LIL IL : LILLILLIL s SSSŽ . Ž . Ž .
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Ž . Ž . Ž .Ž .and SIS I SIS / 0 by 1.7 ii . Consider

M s Id SSS s SSS q RRSSS q RSSSR q SSSRR q RRSSSRR.Ž .R

We claim that M : L. Indeed

SSS : ILI : L,

RRSSS s RRS SS : RRI LI : ILI : L,Ž . Ž .
SSSRR s SS SRR : IL IRR : ILI : L,Ž . Ž .

RSSSR s RLILSLILR s RLI LSL ILR : ILLLI : L,Ž . Ž .
RRSSSRR s RRS S SRR : RRI L IRR : ILI : L.Ž . Ž . Ž . Ž .

By primitivity of R, R s M q K : L q K ; hence I : L q K, which readily
Ž .implies I s L q K l I .

Ž .Ž .ii b Assume that R is prime and I is primitive at b g I with
primitizer K of modulus c at b. Consider

� 4K s x g R N Ibx : K .1

We claim that K is a left ideal of RŽb.: x g K implies R ? x g K since1 1 b 1

Ib R ? x s IbRbx s IbR bx : Ibx : K .Ž . Ž .b

Moreover, K : K , which implies that K is c9-modular in RŽb. for any1 1
modulus c9 of K at b in I:

yb x y xbc9 s ybx y ybx bc9 g K ,Ž . Ž . Ž .

since ybx g I for any x g R and y g I. We also have that K is proper:1
otherwise c g K and, for any y g I,1

y s y y ybc q ybc g KŽ .

by modularity of K and the definition of K ; hence K s I, which contra-1
dicts properness of K.

Let

C s d g R N d is a modulus for K in RŽb. .� 41

For any d g C, define

� 4K d s x y xbd N x g R .Ž .

Ž . Ž .Clearly K d is a left ideal of R such that K d : K / R. Hence1
Ž .K s Ý K d is a proper left ideal of R and it is d-modular at b for anyd g C

d g C.
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We just need to show that K complements nonzero ideals of R: If L is
a nonzero ideal of R, then L l I is a nonzero ideal of I by primeness of

Ž .R and I s I l L q K. We can find c9 g I l L such that c9 is a modulus
for K at b in I. Hence c9 is also a modulus for K in RŽb., i.e., c9 g C.1
Thus, for any x g R,

x s xbc9 q x y xbc9 g L q K c9 : L q K ,Ž . Ž .
obtaining R s L q K.

Ž .i If R is an associative pair and I is a nonzero ideal of R, both
Ž . Ž . Ž .Ž .assertions follow from ii applied to T B by using 1.4 i . Both assertions

can also be obtained from the well known corresponding facts for associa-
Ž .Ž .tive algebras by using 1.8 i and the easy fact that local algebras of prime

associative pairs are prime.
The above argument apply with obvious changes when associative pairs

and triple systems with involution are considered.

1.11. Remark. By using our knowledge about how primitivity and
)-primitivity are inherited by local algebras of associative algebras we can
change the element at which an associative pair is primitive or )-primitive.

Ž .Ž . Ž q y. Ž .i a If an associative pair R s R , R is left resp. right primi-
ys Ž . Ž .tive at b g R , s s " then it is also left resp. right primitive at bcb

for any c g Rs such that bcb / 0.
Ž .Ž . Ž q y.i b If an associative pair R s R , R with involution ) is )-

Ž ys . Ž .primitive at b g H R , ) s s " then it is also )-primitive at bcb for
Ž s .any c g H R , ) such that bcb / 0.

ŽIndeed if R is an associative pair resp. an associative pair with involution
. Ž . s Ž .) , then R is prime resp. )-prime and R is primitive resp. )-primitiveb
Ž . w x Ž w x. Ž s .by 1.8 . Using 22, Lemma 1 resp. 8, 1.1 , R is again ab cqKer b

Ž . Ž . Ž Ž .. Ž .primitive resp. )-primitive algebra. Now a resp. b follows from 1.8
and the natural isomorphism

Rs ( Rs .Ž .b bcbcqKer b

Ž .Ž . Ž . Ž .ii a Given a nonzero ideal I of a left resp. right s -primitive
associative pair R there exists an element b9 g Iys at which R is also left
Ž . Ž .resp. right s -primitive.
We just need to take an element c g I s such that b9 s bcb / 0 and apply
Ž .Ž . Ž .i a . The existence of such an element c follows from 1.7 applied to
Ž . Ž .Ž .T R , which is prime by 1.4 i .

Ž .Ž .ii b Similar results can be obtained for associative pairs with
involution and for associative triple systems with and without involution
with a different argument.
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For example, let R be an associative triple system which is )-primitive at
Ž .b g H R, ) , I a nonzero )-ideal of R. Let K be a left )-primitizer of R

Ž .and c g I be a modulus for K at b. By the comments in the proof of 1.8 ,
Ž . Ž2, b.we can assume that c g H I, ) . Now c s cbc is also a modulus for K

at b, which is equivalent to saying that c is a modulus for K at b9 s bcb g
Ž .H I, ) :

x y xb9c s x y xbcbc s x y xbcŽ2, b. g K ,

for any x g R.

2. MAIN TECHNICAL RESULTS

In this section we develop the tools which will be needed in the proof of
the central result of the paper: sets of algebra polynomials which ‘‘eat’’
inside any special Jordan triple system T whenever they are evaluated in
an inner ideal of a homotope of T. We will be able to skip some of the
combinatorial difficulties by appealing to previously constructed objects.
Namely, to some ideals used in the description of primitive Jordan alge-

w xbras 5 which are mentioned in Section 0 and hearty eater ideals for
w xJordan triple systems constructed in 1 . Some of the manipulations at the

Ž . w xbeginning of 2.3 follow the pattern of A. d’Amour’s calculations in 1 .
Ž . Ž . Ž . Ž .Given f x , . . . , x g SJ X and z g ST X define f z; x , . . . , x :1 n 1 n

f z ; x , . . . , x s f Ž z . x , . . . , x s s f x , . . . , x ,Ž . Ž . Ž .Ž .1 n 1 n z 1 n

Ž . Ž .Ž z .where s : SJ X ª ST X is the unique algebra homomorphism suchz
Ž . Ž . Ž .that s x s x for any x g X. Given C X : SJ X and z g X, letz

Ž . � Ž . Ž . Ž . Ž .4C z; X s f z; X s f z; x , . . . , x N f x , . . . , x g C X .1 n 1 n

Ž . Ž .2.1. LEMMA. For any f x , . . . , x g SJ X , z, t g X,1 n

˜f z ; P x , . . . , P x s P f P z ; x , . . . , x s P f t ; x , . . . , x , z ,Ž . Ž . Ž .t 1 t n t t 1 n t 1 n

˜ ˜Ž . Ž . Ž .for some f g SJ X . Indeed, f P z; x , . . . , x s f t; x , . . . , x , z .t 1 n 1 n

Ž . ŽPt z . zProof. Let J s ST X . It is straightforward that P : J ª J is ant
algebra homomorphism, which proves the first equality. The remaining
one is immediate.

2.2. PROPOSITION. For any odd n G 5 there exists a linearization in¨ariant
Ž . Ž . Ž Ž Ž ..TT-ideal HH HH X of SJ X containing Clifford identities indeed HH HH H Fn n 3

Ž .. Ž . Ž . Ž .s H F such that HH HH b; X : HH X for any b g ST X and3 n n
Ž . Ž .HH HH X : HH HH X .nq2 n
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Ž . � Ž . Ž . Ž .Proof. Define HH HH X s f g SJ X N f b; . . . g HH X for any b g5 5
Ž .4 Ž . Ž .ST X . Now, that HH HH X is a linearization invariant TT-ideal of SJ X5

Ž .follows from the fact that HH X is a linearization invariant TT-ideal of5
Ž . Ž w x.ST X see 3.16 of 1 . From d’Amour’s construction of elements in
Ž . Ž w x. Ž .HH X see page 176 of 1 one can find an element in HH HH X which is a5 5

Ž Ž ..Clifford identity; indeed one can show that u s e q e g HH HH H F ,23 23 32 5 3
Ž Ž .. Ž . Ž Ž ..which readily implies the equality HH HH H F s H F since HH HH H F5 3 3 5 3

Ž .is an ideal of H F . This takes care of the case n s 5.3
Now we can define inductively the linearization invariant TT-ideals

HH HH X s U HH HH X : HH HH XŽ . Ž . Ž .n HH HH Ž X . ny2 ny25

Ž . Ž Ž .. Ž .of SJ X . The equality HH HH H F s H F follows inductively fromn 3 3
Ž . Ž . Ž .U H F s H F . Now, using the fact that HH X is an ideal ofH ŽF . 3 3 53

Ž . Ž . Ž Ž ..ny4ST X allows us to prove that HH HH b; X : HH X , where the oddn 5
Ž . Ž .1 Ž . Ž .npowers of HH X are defined by HH X s HH X , HH X s5 5 5 5

Ž Ž .ny2 . Ž .ny4 Ž . Ž .P HH X . The fact that HH X : HH X by 0.8 finishes theHH Ž X . 5 5 n5

proof.

Ž . Ž .ny4Remark. We indeed have shown that HH HH b; X : HH X , which isn 5
Ž . Ž . Ž .a semi-ideal of ST X contained in HH X by 0.8 . Hence the elements ofn

Ž .HH HH b; X ‘‘eat’’ adic m-tads for any odd m F n from any position byn
Ž .0.7 .

2.3. Let T be a Jordan triple system, K an inner ideal of T. Assume
Ž .that T is special so that T is a subsystem of H R, ) for an associative

triple system R with involution ). Let b g T be a fixed element.
Ž Ž ..2 nq1Take a g GG b; K : K. Notice that

F 2 n q 3 times! # "
ab TbTb . . . Tb K : K 1Ž .½ 5

Ž . Žb.by 0.10 since K is an inner ideal of the algebra T , subalgebra of
Ž Žb. . � 4H R , ) . Let k g K, x, y, z, x , x g T. By expanding the brackets1 2

� 4 � 4kx abxbx ba y k bxbax x ba� 4 � 41 2 1 2

� 4 � 4s kx x bxbaba y kbxbax x ba1 2 1 2

� 4 � 4 � 4s k bxbx x P b y kbxbx x aba y kbxbax x ba� 4Ž .2 1 a 2 1 1 2

� 4s k P x x x P b y kbxb x x a ba g K ,� 4 � 4� 4Ž . Ž .b 2 1 a 2 1

Ž .using the fact that K is an inner ideal of T and 1 for an arbitrary n. If we
Ž . � 4 � Ž . 4 U Ž . � 4denote L t s abxbt s a P x t s L t g T , L t s bxbat sx b a, P x xb

�Ž . 4P x at g T for any t g T and by ' we mean congruence modulo K,b
we have shown

kx L x ba ' kLU x x ba . 2� 4 � 4Ž . Ž . Ž .1 x 2 x 1 2
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We also have

� 4 � 4k bxbax x ba y abxbk x x ba� 4 � 41 2 1 2

� 4 � 4 � 4 � 4s kbxbax x ba q kx abxbx ba y abxbkx x ba y kbxbax x ba1 2 1 2 1 2 1 2

� 4 � 4s kx abxbx ba y abxbkx x ba1 2 1 2

� 4 � 4 � 4s kx a bxbx ba y ax kbxbx ba y abxbkx x ba� 41 2 1 2 1 2

� 4 � 4s kx a bxbx ba y a bxbkx x ba� 4 � 41 2 1 2

� 4s kx a bxbx ba y P P x kx x b� 4 � 4� 4Ž .1 2 a b 1 2

� 4 � 4g KTK bTbTba q P TTT : K� 4 K

Ž .by 1 for an arbitrary n and the fact that K is an inner ideal of T. We
have proved

kLU x x ba ' L k x x ba . 3� 4 � 4Ž . Ž . Ž .x 1 2 x 1 2

Now

kx L L x ba ' kL * x L x ba by 2Ž . Ž . Ž . Ž .Ž .� 4� 4Ž .1 x y 2 x 1 y 2

' L k x L x ba by 3Ž . Ž . Ž .Ž .� 4x 1 y 2

' L k LU x x ba by 2 since L k g KŽ . Ž . Ž . Ž .� 4 Ž .x y 1 2 x

' kLU LU x x ba by 3 since L k g KŽ . Ž . Ž .Ž .� 4Ž .x y 1 2 x

' kLU x L x ba by 2Ž . Ž . Ž .Ž .� 4y 1 x 2

' kx L L x ba by 2 .Ž . Ž .Ž .� 4Ž .1 y x 2

If we denote
Žb.S z s L , L z s L , L zx , y a , P x a , P y x yb b

we have obtained

kx S Žb. x ba ' 0. 4Ž .½ 5Ž .1 x , y 2

Similar computations show

� 4kx L x ba y kx x bybabaŽ .� 41 y 2 1 2

� 4 � 4 � 4s kx abybx ba q kx x bybaba y kx x bybaba1 2 1 2 1 2

� 4 � 4 � 4s kx abybx ba s kx a bybx ba y ax kbybx ba� 41 2 1 2 1 2

� 4 � 4g KbTbTba q P TTTyTTTa
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Ž .and the above is contained in K by 1 for an arbitrary n and the fact that
Ž . Ž .K is an inner ideal if y g HH HH b; T : HH T .7 7

Moreover, let u be a word of length m in elements of T inside the
Žb. Ž .associative algebra R , y g HH HH b; T , n such that 2n q 1 G m. We2 mq7

claim

� 4kx L x buba ' kx x bybabuba , 5Ž . Ž .� 41 y 2 1 2

including the case ub s B true as shown before. Indeed,

� 4kx L x buba y kx x bybabubaŽ .� 41 y 2 1 2

� 4 � 4 � 4s kx abybx buba q kx x bybabuba y kx x bybabuba1 2 1 2 1 2

� 4 � 4 � 4s kx abybx buba s kx a bybx buba y ax kbybx buba� 41 2 1 2 1 2

m q 2 times 2 m! # " !#"
g K bTbT . . . bT ba q P TTTyTTT T . . . T : K ,a½ 5 ½ 5

Ž . Ž Ž ..2 nq1 Ž . Ž .using 1 , since a g GG b; K , and y g HH HH b; T : HH T .2 mq7 2 mq7
Ž Ž ..5 Ž .Now, for m s 2, if a g GG b; K and x, y g HH HH b; T ,11

kx L L x ba ' kx L x bxbabaŽ . Ž .� 4� 4Ž .1 x y 2 1 y 2

Ž . Ž .by 5 , and if we denote u s xba we can use 5 again to obtain

� 4kx L x bxbaba s kx L x buba ' kx x bybabubaŽ . Ž .� 4 � 41 y 2 1 y 2 1 2

� 4s kx x bybabxbaba s kx x b y ? x ? a .Ž .� 41 2 1 2 ŽP a. ŽP a.b b

Therefore

Ž .P abw xkx x b y , x ? a½ 5ž /1 2 ŽP a.b

s kx x b y ? x ? a y x ? y ? aŽ .� 41 2 ŽP a. ŽP a. ŽP a. ŽP a.b b b b
6Ž .

' kx S Žb. x ba ' 0Ž .� 41 x , y 2

Ž .by 4 .
We will construct a specific polynomial for particular choices of a, x,

and y. Let

Ž . Ž .P a P ab bw x w xp s p x , y , a, b s a ? y , x ? y , x ? aŽ . ŽP a. ŽP a. ŽP a.b b b

for

a g GG 9 b; K l HH HH b; T ,Ž . Ž .23
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and

x , y g HH HH b; T .Ž .19

Notice that p is an element of T , indeed p g K, since

Ž .2, P abŽ . Ž . Ž .P a P a P aŽP a.b b bbw x w x w xp s a ? y , x ? y , x ? a s U y , xŽ .ŽP a. ŽP a. ŽP a. a ž /b b b

s U ŽPb a. U ŽPb a.x ( x y U ŽPb a. x Ž2, Pb a. y U ŽPb a. y Ž2, Pb a.Ž . Ž .Ž .ž /a y ŽP a. y xb

g P T : P T : K .a K

We claim

� 4KTTbp : K . 7Ž .

w xŽPb a.Indeed, if c s y, x ? a, we haveŽP a.b

� 4 � 4 � 4kx x bp s kx x bababybabxbabc y kx x bababxbabybabc1 2 1 2 1 2

�and both summands are congruent with zero. The term KTTbababybabx-
4 � Ž . 4babc has the form KT Tbaba buba , where

u s ybabxbabybabxbay ybabxbabxbabyba

Žb. Ž .is a sum of words of length m s 8 in R ; since a g HH HH b; T and23
Ž . Ž .L T : T , 5 yieldsa

� 4 � 4KTTbababybabxbabc ' KTTbybabxbabc ,

� Ž . .which now has the form KT Tbyba buba for u s xbabybabxba y
Žb. Ž .xbabxbabyba, a sum of words of length m s 6 in R ; since y g HH HH b; T19

Ž . Ž .and L T : T , 5 givesy

� 4 � 4KTTbybabxbabc ' KTTbxbabc ' KT Tbxba buba ,� 4Ž .

Ž .where u s ybabxba y xbabyba of length 4, and since x g HH HH b; T :19
Ž . Ž .HH HH b; T and L T : T , we get15 x

� 4 � 4KTTbxbabc ' KTTbc ' 0

Ž .by 6 . A completely symmetric argument applies to the second summand
with the roles of x and y interchanged.

Finally, we claim

� 4KTTTpbp : K . 8Ž .
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Indeed

� 4 � 4 � 4kx x x pbp s kx x x p bp y kx px x bp� 41 2 3 1 2 3 1 3 2

� 4' y kx px x bp1 3 2

� � 4 . � 4 Ž .since kx x x p bp g KTTbp : K by 7 ; but1 2 3

� 4 � 4 � 4kx px x bp s kx p x x bp y px kx x bp� 41 3 2 1 3 2 1 3 2

� 4' y px kx x bp1 3 2

�� 4 4 �� 4 4 � 4 Ž .since kx p x x bp g KTK TTbp : KTTbp : K by 7 ; now, notice1 3 2
that p s P z for some z g T yieldsa

� 4 � 4px kx x bp s azax kx x baza1 3 2 1 3 2

� 4 � 4s P zax kx x baz ' P TTTa 1 3 2 a

Ž . Ž . � 4since a g HH HH b; T : HH T , and P TTT : P T : K since a g K.23 9 a a
Define

Ža. Ža. Ža. Ž2 , a. Ža. Ž2 , a.q a, x , y s U U x ( x y U x y U y g SJ x , y , a ,Ž . Ž . Ž .Ž .Ž .a y Ža. y x

Ž .so that q b; a, x, y s p,

2r a, x , y s q a, x , y g SJ x , y , a ,Ž . Ž . Ž .

Ž .so that r b; a, x, y s pbp, and let

S X s r a, x , y N a g GG 9 HH HH X , x , y g HH HH X : SJ X .Ž . Ž . Ž . Ž . Ž .� 4Ž .23 19

Ž .What we have shown in 8 gives

s b; K TTTK : K 9� 4Ž . Ž .

Ž . Ž .for any s x , . . . , x g S X , any special Jordan triple system T , any inner1 n
ideal K of T , and any b g T.

Ž .2.4. We will show that S X contains Clifford identities. Indeed, notice
9Ž Ž Ž ... Ž . Ž . Ž . Ž Ž ..that GG HH HH H F s H F by 2.2 and 0.10 and HH HH H F s23 3 3 19 3

Ž . Ž .H F by 2.2 . Then, if u s e q e denote the usual hermitian matrix3 i j i j ji
units, there is a suitable evaluation of Clifford polynomials x, y, and a so

Ž .that r a, x, y is a Clifford polynomial which, under this evaluation, takes
the value

22w xr 1, u , u s u , u s e q e ,Ž . Ž .23 12 12 23 11 33
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hence showing that

e q e g S H FŽ .Ž .11 33 3

Žindeed, we can find evaluations of X such that suitable Clifford polynomi-
als a, b, c take the values 1, u , u , respectively; then use the fact that X23 12
is infinite to assume that a, b, c have pair-wise non-overlapping variables

.to get 1, u , u with a single evaluation .23 12
Ž . Ž .We put 2.3 and 2.4 together to obtain the following technical result:

2.5 THEOREM. Let X be an infinite set of ¨ariables. There exists a
Ž . Ž .linearization in¨ariant TT-ideal EE X of HH HH X such that for any special1 7

Ž .Jordan triple system T : H R, ) , where R is an associatï e triple system with
in¨olution, any b g T and any inner ideal K of the Jordan algebra T Žb. such
that Kerb : K,

EE b; K bTTTbK : K . 1� 4Ž . Ž .1

Ž . Ž Ž .3.3Moreo¨er, if EE X s EE X , which is also a linearization-in̈ ariant1
Ž . Žb.TT-ideal of HH HH X , and K is modular in T with modulus e then7

EE b; K bTTTbK : K 2� 4Ž . Ž .
and

EE b; K bTTT 1 y be : K 3� 4Ž . Ž . Ž .
Ž � 4 � 4in the sense that pbx x x y pbx x x be g K for any x , x , x g T1 2 3 1 2 3 1 2 3

Ž ..and any p g EE b; K .
Ž . Ž .The sets EE X and EE X contain nonzero Clifford polynomials. Indeed1

EE H F s EE H F s H F .Ž . Ž . Ž .Ž . Ž .3 1 3 3

Ž . Ž .Proof. Let EE X be the set of polynomials p g HH HH X satisfying1 7

p b; K bTTTbK : K� 4Ž .
for any special Jordan triple system T , any b g T , and any inner ideal K
of T Žb. containing Kerb.

Ž . Ž . Ž .It is clear that EE X is a submodule of SJ X contained in HH HH X . We1 7
Ž . Ž . Ž . Ž .will show that EE X is an ideal of HH HH X : Let p g EE X , q g HH HH X .1 7 1 7

We have, for any special Jordan triple system T , any b g T , and any inner
ideal K of T Žb. containing Kerb,

p2 b; K bTTTbK� 4Ž .
s p b; K bp b; K bTTTbK� 4Ž . Ž .
: p b; K bTTTbK since p b; K : HH HH b; T : HH T� 4Ž . Ž . Ž . Ž .Ž .5 5

: K since p g EE X .Ž .Ž .1
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Similarly,

U q b; K bTTTbKŽ .� 4Ž .p

s p b; K bq b; K bp b; K bTTTbK� 4Ž . Ž . Ž .
: p b; K bq b; K bTTTbK since p b; K : HH T� 4Ž . Ž . Ž . Ž .Ž .5

: p b; K bTTTbK since q b; K : HH T� 4Ž . Ž . Ž .Ž .5

: K .
Also,

p( q b; K bTTTbK� 4Ž . Ž .
s p b; K bq b; K bTTTbK� 4� 4Ž . Ž .
s p b; K bq b; K bTTTbK q q b; K bp b; K bTTTbK� 4 � 4Ž . Ž . Ž . Ž .
: p b; K bq b; K bTTTbK q q b; K b p b; K bTTTbK� 4 � 4� 4Ž . Ž . Ž . Ž .

y q b; K bKbTTTbp b; K� 4Ž . Ž .
: p b; K bq b; K bTTTbK q q b; K b p b; K bTTTbK� 4 � 4� 4Ž . Ž . Ž . Ž .

y q b; K bK bTTTbp b; K q Kbq b; K bTTTbp b; K� 4 � 4� 4Ž . Ž . Ž . Ž .
: p b; K bTTTbK q q b; K bK y KbTTTbp b; K� 4 � 4 � 4Ž . Ž . Ž .

q KbTTTbp b; K since q b; K : HH T ,� 4Ž . Ž . Ž .Ž 5

p g EE X , q b; K : KŽ . Ž .1

and K is a subalgebra of T Žb. .
: K for the same reasons .Ž .

Finally,

U p b; K bTTTbKŽ .� 4Ž .q

s q b; K bp b; K bq b; K bTTTbK� 4Ž . Ž . Ž .
: q b; K bp b; K bTTTbK since q b; K : HH T� 4Ž . Ž . Ž . Ž .Ž .5

: q b; K bp b; K bTTTbK y p b; K bq b; K bTTTbK� 4 � 4� 4Ž . Ž . Ž . Ž .
s p( q b; K bTTTbK y p b; K bq b; K bTTTbK� 4 � 4Ž . Ž . Ž . Ž .
: K y p b; K bq b; K bTTTbK by what we have� 4Ž . Ž . Ž

already proved.
: K y p b; K bTTTbK since q b; K : HH T� 4Ž . Ž . Ž .Ž .5

: K since p g EE X .Ž .Ž .1
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2 Ž . Ž .We have shown that p , U q, p( q, U p g EE X , i.e., EE X is an ideal ofp q 1 1
Ž . Ž . Ž .HH HH X , and consequently, EE X is also an ideal of HH HH X . The fact7 7

Ž . Ž .that EE X and EE X are linearization invariant readily follows from the1
Ž .linearity in the definition of EE X , and they are obviously TT-ideals.1
Ž Ž .. Ž . Ž Ž Ž ..We will next show that EE H F s H F implying EE H F s1 3 3 3

Ž .. Žb.H F . If K is an inner ideal of T , then P K is an inner ideal of T :3 b

P T : P P P T s P U Žb.T : P K .Ž .P K b K b b K bb

Ž . Ž . Ž .By 2.4 , there exists a Clifford polynomial p x , . . . , x g S X which0 1 n
Ž .under some evaluation of its variables in H F reaches the value e q e .3 11 33

Ž .Ž .Using 2.3 9 yields

p c ; P K TTT P K : P K 4� 4Ž . Ž . Ž .0 b b b

Ž .for any c g T. Let k, k , . . . , k g K, d , d , d g T and c g T. By 2.11 n 1 2 3

p c ; P k , . . . , P k s P q b; k , . . . , k , cŽ . Ž .Ž .0 b 1 b n b 0 1 n

Ž .for some q g SJ X . Notice that0

P q b; k , . . . , k , c bd d d bk : P K 5� 4Ž . Ž .b 0 1 n 1 2 3 b

Ž .by 4 since

P q b; k , . . . , k , c bd d d bk� 4Ž .b 0 1 n 1 2 3

s P q b; k , . . . , k , c d d d P k� 4Ž . Ž .Ž .b 0 1 n 1 2 3 b

s p c ; P k , . . . , P k d d d P k .� 4Ž . Ž .0 b 1 b n 1 2 3 b

Let

R X s q a , . . . , a N a g HH HH X : HH HH X .� 4Ž . Ž . Ž . Ž .0 1 nq1 i 7 7

Ž . Ž . Ž . Ž . Ž .We will show that R X : EE X : Let r x , . . . , x g R X . By 51 1 m

P r b; k , . . . , k bd d d bk s P u� 4Ž .b 1 m 1 2 3 b

Ž . Ž . Ž .for some u g K. Since r b; k , . . . , k g HH HH b; T : HH T , we have1 m 7 7

r b; k , . . . , k bd d d bk g T� 4Ž .1 m 1 2 3

and

r b; k , . . . , k bd d d bk y u g Kerb.� 4Ž .1 m 1 2 3
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The fact that K contains Kerb yields

r b; k , . . . , k bd d d bk g K ,� 4Ž .1 m 1 2 3

as desired.
Ž . Ž .Next we will prove that R X contains Clifford identities. By 2.2 ,

Ž Ž .. Ž .HH HH H F s H F and we can find suitable Clifford polynomials7 3 3
Ž .a , . . . , a g HH HH X on non-overlapping variables which, under suitable1 nq1 7

Ž .evaluations in H F , reach the values a , . . . , a so that3 1 n

p a , . . . , a s e q e , a s 1.Ž .0 1 n 12 33 nq1

From the definition of q ,0

q a , . . . , a s P q 1; a , . . . , a , 1Ž . Ž .Ž .0 1 nq1 1 0 1 n

s p 1; a , . . . , a s p a , . . . , a s e q e ,Ž .Ž .0 1 n 0 1 n 11 33

Ž .showing that q a , . . . , a is a Clifford polynomial which takes the0 1 nq1
Ž .value e q e in H F under a suitable substitution of its variables.11 33 3

Ž Ž .. Ž . Ž Ž ..Now, EE H F s H F follows from the fact that EE H F is an ideal1 3 3 1 3
Ž Ž .. Ž .of HH HH H F s H F .7 3 3

Ž . Ž . Ž Ž ..3To finish the proof we just need to show 3 : Let EE X s EE X . We2 1
will show first that

EE b; K bTTTTTbK : K . 6� 4Ž . Ž .2

˜Ž . Ž .Ž .Indeed if g, h g EE X , the elements in U h b; K have the form gbhbg,˜ ˜1 g
˜ Ž .where g, h g EE b; K . Hence˜ 1

˜gbhbgbTTTTTbK� 4˜ ˜

˜: gbhbTTTbK since g g HH TŽ .� 4 Ž .˜ ˜ 7

˜� 4: gbTTTbK since h g EE b; K : HH HH b; TŽ . Ž .˜ Ž 1 7

: HH T : HH TŽ . Ž . .7 5

: K since g g EE b; K .Ž .Ž .˜ 1

Ž . Ž .Ž .Now let r, s g EE X . As above, the elements in U s b; K have the2 r
Ž . Ž .form rbsbr, where r, s g EE b; K . Using r g HH T , we have, for any˜ ˜ ˜ ˜ ˜ ˜2 5

d , d , d g T , that1 2 3

rbsbrb d d d y d d d beŽ .� 4˜ ˜ ˜ 1 2 3 1 2 3

is a sum of elements of the form

rbsbc c c y rbsbc c c be� 4 � 4˜ ˜ ˜ ˜1 2 3 1 2 3
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for c , c , c g T. Notice that1 2 3

rbsbc c c y rbsbc c c be� 4 � 4˜ ˜ ˜ ˜1 2 3 1 2 3

s rb sbc c c y rb sbc c c be� 4 � 4� 4 � 4˜ ˜ ˜ ˜1 2 3 1 2 3

y rbc c c bs q rbc c c bsbe .� 4 � 4˜ ˜ ˜ ˜3 2 1 3 2 1

Ž .Hence 3 will follow from the fact that the previous expression is in K.
� 4 Ž .Denoting z s sbc c c , which is an element of T since s g HH T , we˜ ˜1 2 3 5

see that the first two summands equal
Ž .b� 4 � 4rbz y rbzbe s L r y L r s 1 y e zr g K� 4Ž . Ž . Ž .˜ ˜ ˜ ˜ ˜z , b e , P zb

since K is e-modular in T Žb. and r g K.˜
� Ž . 4 Ž . Ž .The third summand lies in EE b; K bTTTbK since EE X : EE X and1 2 1

Ž .s g K ; hence it is in K by 1 .˜
Finally the fourth summand

� 4rbc c c bsbe s rbc c c b sbe y rbc c c bebs� 4� 4 � 4˜ ˜ ˜ ˜ ˜ ˜3 2 1 3 2 1 3 2 1

g EE b; K bTTTb L K y EE b; K bTTTTTbK� 4 � 4Ž . Ž . Ž .1 e , b 2

since EE X : EE XŽ . Ž .Ž .2 1

: EE b; K bTTTbK q EE b; K bTTTTTbK� 4 � 4Ž . Ž .1 2

since K is e-modular in T Žb.Ž .
: K by 1 and 6 . BŽ . Ž .Ž .

3. LOCAL CHARACTERIZATION OF PRIMITIVITY FOR
JORDAN PAIRS AND TRIPLE SYSTEMS

In this section we will obtain the central result of the paper asserting
that strongly prime Jordan triple systems inherit primitivity from their
local algebras. We begin by recalling some definitions.

Ž q y.3.1. Primitï e Jordan pairs. Recall that a Jordan pair V s V , V is
ys Ž .said to be primitï e at b g V s s " if there exists a proper inner

ideal of K of V s such that:

Ž . si K is c-modular at b for some c g V , i.e.,
Ž . sa B V : Kc, b

Ž .b c y Q b g Kc

Ž .c D K : Kc, b

Ž . Ž . sd D y D K : K for any x g V .x, b c, QŽb. x

Equivalently, if K is a c-modular inner ideal of the homotope V s Žb..
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Ž . s sii K complements all nonzero s-ideals of V: I q K s V for any
Ž q y. sideal I s I , I of V such that I / 0
Ž . s ys

s sand V is s -coreless: Q z s Q Q V s 0, z g V , implies z s 0.V V z

Under the above conditions K is called a primitizer of V with b-
modulus c.

3.2. Remark. By an argument similar to that concerning associative
Ž . Ž .pairs Remark 1.2 , the s -coreless condition is equivalent to asserting
s Ž q y. Ž .that I / 0 for all nonzero ideals I s I , I of V and therefore ii in

Ž .3.1 can be replaced by

Ž . Ž . s sii 9 K complements the s -parts of nonzero ideals: I q K s V
Ž q y.for any nonzero ideal I s I , I of V.

3.3. Primitï e Jordan triple systems. These systems are defined as in the
pair case, deleting the superscript s .

3.4. Remark. In a strongly prime Jordan triple system T , P I / 0 forb
any 0 / b g T and any nonzero ideal I of T. Indeed, since T is nondegen-

w x Ž .erate, it follows from 14, 1.7 that b lies in the annihilator Ann I of I ifT
Ž . Ž wP I s 0. But Ann I s 0 since I / 0 and T is strongly prime see 14,b T

x.1.6 ; hence b s 0, which is a contradiction.

Ž .Next we proceed with the proof of our main result 3.6 . We begin with
the PI situation, which will be a consequence of the following lemma.

3.5. LEMMA. Let T be a strongly prime Jordan triple system, b g T , such
that T is a simple and unital Jordan algebra. Then T is primitï e at b.b

Žb.Proof. Denote J s T , N s Ker b, x s x q N, for any x g J. RecallT
that N is a nil ideal of J. Indeed

x 3 s 0 for any x g N : 1Ž .

x 3 s U x s P P x s P 0 s 0 since x g Ker b. Now, JrN s T is a unitalx x b x T b
Jordan algebra and its unit element 1 is an indempotent. By 10.9 ofJr N
w x11 , there exists an idempotent e of J such that e s 1 .Jr N

Define

K s U J s B T : T .1ye e , b

K is an inner ideal of T :

P T s P T : B P B T : B T s K ,K BŽ e , b.T e , b T b , e e , b

w xby JP26 of 11 . Moreover, K is proper: otherwise K s T implies K s J,
Ž .hence J s U J; thus U J s U U J s 0 and U JrN s 0, which is a1ye e e 1ye e

contradiction since e s 1 .Jr N
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We will show that K is e-modular at b in T ; equivalently, that K is
e-modular in J:

U J s K : K ,1ye

e y e2 s 0 g K ,

ˆ ˆ ˆ1 y e JK s 1 y e J U J s U J 1 y e J : U J s K .Ž . Ž . Ž . Ž .� 4 � 4� 41ye 1ye 1ye

Ž .For any nonzero ideal I of T , I q N rN is an ideal of JrN. We claim
Ž .that I q N rN / 0. Otherwise I : N and P I s 0, which contradictsb

Ž . Ž .3.4 . Simplicity of JrN yields JrN s I q N rN, thus J s I q N. Now
3 Ž .we can write e s y q n, where y g I, n g N, but e s e s U y q n syqn

3 3 Ž .y9 q n , where y9 g I. But n s 0 by 1 , which shows that e g I. Thus

J s U J q U J q U J : I q U J s I q K ,e e , 1ye 1ye 1ye

which shows that K complements nonzero ideals of T.

3.6. THEOREM. Let T be a strongly prime Jordan triple system, b g T. If
T is a primitï e Jordan algebra then T is primitï e at b.b

Žb.Ž .Proof. I Denote J s T , N s Ker b, x s x q N, for any x g J. LetT
Ž .K s KrN N : K be a primitizer of J s JrN s T , i.e., K is a properb

inner ideal of J which is c-modular for some c g J and complements
nonzero ideals of J. We can also assume that K is maximal-modular in J
Ž w x.see 9, 3.2 . It is clear that

Ž .1 K is a proper inner ideal of J,
Ž .2 K is c-modular for any c g J such that K is c-modular in J,
Ž .3 I q K s J for any nonzero ideal of J strictly containing N.

Ž .II We can assume that T is special: Otherwise it is a prime
nondegenerate exceptional finite dimensional Jordan triple system or a

w xprime nondegenerate i-special, homotope-PI Jordan triple system 2, 20 .
In either case T is homotope-PI, which implies that J is a PI primitive

w xJordan algebra. Hence J is simple and unital by 5, 1.2 and the result
Ž .follows from 3.5 .

Ž . Ž .III If EE J s 0 then J is a primitive PI Jordan algebra. Hence J is
w x Ž .simple and unital by 5, 1.2 , and the result follows again from 3.5 . So, let

Ž . Ž . Ž . Ž .us assume EE J / 0. Notice that EE J is an ideal of HH HH J by 2.5 ,7
Ž . w xwhich is an ideal of J by 2.2 . By 5, 0.7 , there exists a modulus c of K

Ž . Ž Ž . .lying in EE J s EE J q N rN. Without loss of generality we can assume
Ž . Ž .that c g EE J . By 2 , c is a modulus for K in J.
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Let R be a )-envelope triple system of T. Define

M s RbEE K q R 1 y bcŽ . Ž .

Ž Ž . Žb.notice that EE K is meant to be in T , so that it could also be denoted
Ž . .EE b; K in the triple T , as in Section 2 .
It is clear that M is a left ideal of R which is c-modular at b, which

implies that K s M l T is an inner ideal of T also c-modular at b.1

Ž . Ž .IV Let I be a nonzero ideal of T. By 3.4 , I q N is an ideal of J
Ž .strictly containing N and I q N q K s J by 3 . Thus I q K s J since

N : K. Now

c g EE J s EE I q K : I q EE KŽ . Ž . Ž .

since I is an ideal of J, and we can write c s y q k, where y g I and
Ž .k g EE K . Therefore

c2 s P b s P b s P b q P b q P bc yqk y y , k k

s P b q P b q kbk g I q RbEE K : I q KŽ .y y , k 1

2 w xsince I is an ideal of T. But c is a modulus for K in J by 9, 2.10 , and it1
is also a modulus for the inner ideal I q K of J. Thus, I q K is a1 1
modular inner ideal of J containing one of its moduli; hence I q K s J1

w xby 9, 3.1 and I q K s T.1

Ž .V We just need to show that K is proper. Otherwise K s T ;1 1
hence

R s T q TTT q TTTTT q . . . : M q RRM q RRRRM q . . . : M

since M is a left ideal of R, and M s R. In particular, c g M and we can
write

c s r bk q x y x bc , r , x g R , k g EE b; KŽ .Ž .Ý Ýi i j j i j i

and

r s ¨ ¨ ¨ . . . ¨ , x s w w w . . . w ,i 1 2 3 2 d q1 j 1 2 3 2 m q1i j

wwhere the ¨ ’s and w’s are in T since R s T q TTT q TTTTT q . . . . By 5,
x Ž . Ž .0.7 , for all odd n, there exists a modulus g g HH HH J s HH HH b; T for Kn n n
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Ž .in J as in III . Now

cbg bc s c*bg bcn n

s k b¨ . . . ¨ q w . . . w y cbw . . . wŽ . Ž .Ý Ýž /i 2 d q1 1 2 m q1 1 2 m q1 1i j j

bg b ¨ . . . ¨ bkŽ .Ýžn 1 2 d q1 ii

q w . . . w y w . . . w bcŽ .Ý /1 2 m q1 1 2 m q1j j

g P P T q B TK b c , b

bounded length bounded length! # " ! # "
q EE b; K b TTT . . . T bg b TTT . . . T b EE b; KŽ . Ž .n½ 5

bounded length bounded length! # " ! # "
q EE b; K b TTT . . . T bg b TTT . . . T 1 y bcŽ . Ž .n½ 5

bounded length bounded length! # " ! # "
q 1 y cb TTT . . . T bg b TTT . . . T 1 y bcŽ . Ž .n½ 5

: U JqU Jq EE b; K bTTTbK q EE b; K bTTT 1 y bc� 4 � 4Ž . Ž . Ž .K 1yc

q 1 y cb TTT 1 y bc if n is big enough� 4Ž . Ž . Ž .

: K since K is c-modular in JsT Žb.Ž
and 2.5 .Ž . .

Thus U g s cbg bc g K and U g g K. By maximal-modularity of K andc n n c n

w x w5, 0.4 , U g is a modulus of K since c and g are moduli for K. By 9,c n n
x3.1 , K is not proper, which is a contradiction.

w xThe following result shows an analogue of 9, 5.5 which will be needed
in the subsequent local characterization of primitivity for Jordan triple
systems.

3.7 PROPOSITION. A primitï e Jordan triple system is strongly prime.

Proof. Let T be a Jordan triple system which is primitive at b with
primitizer K with modulus c at b.

We will first show that T is nondegenerate: otherwise the nondegener-
w xate radical rad T is a nonzero ideal of T and, as in 5, 0.7 , there exists a

w xmodulus e of K lying in rad T. By 11, 4.15 , rad T is properly nil; hence
Žn, b. Žn, b. w xe s 0 for some n. Thus e g K and K s T by 9, 3.1 , which is a

contradiction.
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Let us show that T is prime: Let I, L be nonzero ideals of T such that
I l L s 0. By primitivity of T , T s I q K s L q K and c s y q k s z q1
k , where y g I, z g L, k , k g K. Now2 1 2

cŽ3, b. s U Žb. k q z s U Žb.k q U Žb. zŽ .c 2 c 2 yqk1

Ž .bŽb. Žb. Žb. Žb. Žb.� 4s U k q U z q U z q yzk s U k q U zc 2 y k 1 c 2 k1 1

Žb. � 4Žb.since U z q yzk g I l L s 0. Clearlyy 1

U Žb.z s P P z : P T : Kk k b k1 1 1

since K is an inner ideal of T , and

Ž .bŽb. Žb. Žb. Žb.U k s U k s U k q U k y 1 y c k 1 g K� 4Ž .c 2 yŽ1yc.q1 2 1yc 2 1 2 2

since K is a c-modular inner ideal of T Žb.. We have shown that cŽ3, b. g K ;
w xhence K s T by 9, 3.1 , which is a contradiction.

Ž . Ž . w x Ž .Ž .Ž .We put together 3.6 , 3.7 , and the Jordan version in 3 of 1.8 ii b
to obtain

Ž3.8. COROLLARY Local characterization of primitivity for Jordan triple
.systems . A Jordan triple system T is primitï e if and only if T is strongly

prime and there exists b g T such that T is a primitï e Jordan algebra.b

Recall that, in general, if T is primitive at b, we do not get that T isb
Ž w x.primitive but T for some b9 s P c g T cf. 3 .b9 b

w xGlobal-to-local inheritance of primitivity for Jordan pairs 3, 6.1 is
Ž . Ž .neater than that for Jordan triple systems and provides with 3.6 and 3.7

Ž .a neater version of 3.8 for Jordan pairs:

Ž .3.9. COROLLARY Local characterization of primivitity for Jordan pairs .
Ž q y. ysA Jordan pair V s V , V is primitï e at b g V if and only if V is

strongly prime and V s is a primitï e Jordan algebra.b

q wProof. Assume that V is strongly prime and V is primitive. By 2,b
x Ž . Ž .Sect. 5 , T V is strongly prime. Moreover, T V is primitive since it isb

q Ž . Ž . Ž .isomorphic to V , as noticed in 0.5 . By 3.6 , T V is primitive at b;b
w xhence V is primitive at b by 3, 5.5.2 .

y q w xConversely, if V is primitive at b g V , then V is primitive by 3, 6.1 .b
Ž . w x Ž .Moreover T V is primitive at b by 3, 5.5.1 ; hence T V is strongly prime

Ž . w xby 3.7 and V is strongly prime by 2, Sect. 5 .

As a corollary of the previous result, we answer a question posed by
w xO. Loos and E. Neher in 13, 2.8 .
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Ž q y.3.10. COROLLARY. Let V s V , V be a Jordan pair which is primitï e
at b g Vys . Let 0 / M : Vys be an inner ideal of V, W the subquotient of V

Ž s s ys .with respect to M W s V rKerM, W s M . If b g M then W is primi-
tï e at b.

Ž .Proof. By 3.9 , V is primitive. But W is isomorphic to V and theb b b
Ž . w xresult follows from 3.9 , since W is strongly prime by 7, 3.2 .

4. PRIMITIVE JORDAN PAIRS

The aim of this section is to obtain Jordan pair analogues of the results
w xof 5 for Jordan algebras. We will begin by showing how primitivity is

inherited by nonzero ideals of primitive Jordan pairs and, conversely, how
primitivity is inherited by a prime Jordan pair having an ideal which is a
primitive pair.

Ž q y.4.1. Remark. Let V s V , V be a strongly prime Jordan pair, I s
Ž q y. ys Ž . sI , I a nonzero ideal of V, 0 / b g V s s " . Then Q I / 0, i.e.,b

s ŽI is not contained in Kerb the proof is similar to that for triple systems
Ž ..3.4 .

Ž q y. Ž q y.4.2 THEOREM. Let V s V , V be a Jordan pair, I s I , I a
ys Ž .nonzero ideal of V. If V is primitï e at b g I s s " then I is primitï e

at b.
y Ž . qProof. Assume b g I . By 3.9 , V is strongly prime and V is ab

q Ž . qprimitive algebra. Notice that I is nonzero by 4.1 . Since I is naturallyb b
q q w xisomorphic to a nonzero ideal of V , I is primitive by 5, 3.1 . But I isb b

w x Ž .strongly prime by 14, 2.5 ; hence I is primitive at b by 3.9 .

Ž . ys4.3. Remark. i If V is a Jordan pair which is primitive at b g V
and I is a nonzero ideal of V, then there exists b9 g Iys such that V is

Ž .also primitive at b9, so that 4.2 applies and I is primitive at b9.
Indeed, this is an immediate consequence of the next assertion together

Ž .with 4.1 .

Ž . ysii If V is a Jordan pair which is primitive at b g V , then V is
primitive at b9 s Q c for any c g V s such that Q c / 0.b b

q Ž q.Notice the natural isomorphism V ( V given byQ c b cqKer bb

x q Ker Q c ª x q Ker b q Ker q c q KerbŽ . Ž .V b V Vb

q Ž .for any x g V . Hence ii follows from the local characterization of
Ž . Ž q. w Ž .x qprimitivity 3.9 since V is primitive by 6, 4.1 ii applied to V ,b cqKer b b
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Ž .which is primitive by 3.9 .

Ž q y. Ž q y.4.4. THEOREM. Let V s V , V be a prime Jordan pair, I s I , I a
ys Ž .nonzero ideal of V. If I is primitï e at b g I s s " then V is primitï e

at b.

Proof. We first show that V is nondegenerate: Otherwise the nonde-
generate radical radV is nonzero. By primeness of V, 0 / rad V l I. But
this is a contradiction since rad V l I is the nondegenerate radical rad I of

w x Ž .I by 11, 4.13 , and I is nondegenerate by 3.9 since it is primitive.
y Ž . qAssume b g I . By 3.9 , I is strongly prime and I is a primitiveb

algebra. Now Iq is naturally isomorphic to a nonzero ideal of Vq which isb b
w x qa strongly prime algebra by 7, 3.2 since V is strongly prime. Hence V isb

w x Ž .primitive by 5, 3.2 and V is primitive at b by 3.9 .

Next we will study the symmetrizations of associative pairs and ample
subspaces of associative pairs with involution.

Ž q y.4.5. THEOREM. Let R s R , R be an associatï e pair.

Ž . Žq.i R is prime if and only if R is strongly prime.
Ž . ys Ž . Ž .ii Let b g R s s " . Then R is one-sided primitï e at b if and

only if RŽq. is primitï e at b.

Ž . Žq.Proof. i If R is strongly prime then R is prime since all ideals of
R are ideals of RŽq.. To prove the converse we will use the elemental

w xcharacterization of strong primeness for Jordan pairs 7, 1.10 : For in-
stance, let a, b g Ry such that Q Q qQ Rqs 0; hence, for any x g Rq,a R b

axb Rq bxa s Q Q Q Rqs 0.Ž . Ž . a x b

By primeness of R, for any x g Rq, either axb s 0 or bxa s 0, that is,
q � 4 � 4R : x g R N axb s 0 j x g R N bxa s 0 .

Since both subsets are submodules of Rq we obtain that Rq is contained
in one of them. If, for example, aRqb s 0, primeness of R implies that
either a s 0 or b s 0.

Ž . y Ž .Ž . Ž .ii Put b g R . By 1.8 i , R is one-sided primitive at b if and
q Ž . Ž . Žq.only if R is one-sided primitive and R prime. By 3.9 , R is primitiveb

Ž Žq..q Žq.at b if and only if R is primitive and R is strongly prime. Usingb
Žq. q q Žq.Ž . Ž . Ž . Ž . Ž . w x0.5 , R s R and ii follows from i and 5, 4.2 .b b

Ž q y.4.6 THEOREM. Let R s R , R be an associatï e pair with in¨olution
Ž q y.), V s V , V be an ample subpair of )-symmetric elements in R.

Ž .i If R is )-prime then V is a strongly prime Jordan pair.
Ž . ysii Let b g V . Then R is )-primitï e at b if and only if R is )-prime

and V is primitï e at b.
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Ž .Proof. i Assume that R is )-prime. We first show that V is nonde-
q Ž y.generate: Q V s 0 r g V is equivalent tor

rVqr s 0. 1Ž .

Now, for any x g Rq, h g Vy

rxhx*r s 0 2Ž .

since xhx* g Vq. Hence

rxryrxr s r xry q xry * rxr y ry*rx*rxr s 0Ž . Ž .Ž .

ŽŽ . Ž . . Ž . Ž .since r xry q xry * r s 0 by 1 and rx*rxr s 0 by 2 . We have shown
q Ž .Ž . Ž .rxrR rxr s 0, which implies rxr s 0 by 1.7 i applied to T R . Thus

q Ž .Ž .rR r s 0 and r s 0 again by 1.7 i .
Ž . w xNow, the proof of 1.6 of 7 shows that V is elementally prime, hence

w xstrongly prime, by 7, 1.10 .
Ž . Ž .Ž . yii By 1.8 i , R is )-primitive at b g V if and only if R is

q Ž .)-prime and R is )-primitive. By 3.9 , V is primitive at b if and only ifb
q Ž . Ž . wV is strongly prime and V is primitive. Hence ii follows from i and 5,b

x q q Ž4.9 since V is naturally isomorphic to an ample subspace of R seeb b
Ž ..0.5 , which is readily seen to be a )-prime associative algebra whenever

ŽR is a )-prime associative pair use the elemental characterization of
.)-primeness for associative algebras with involution .

We finally obtain a description of primitive Jordan pairs in the spirit of
w x5, 5.1 for Jordan algebras.

Ž .4.7. THEOREM. Let V be a strongly prime Jordan pair. Then V is s -
primitï e if and only if one of the following holds:

Ž .i V is a simple Jordan pair equaling its socle. In this case V is
Ž . ys Ž . ss -primitï e at any 0 / b g V and ys -primitï e at any 0 / b g V .

Ž .ii V consists of hermitian elements: V has an ideal I which is an ample
Ž .subpair of a s -)-primitï e associatï e pair R and it is a subpair of the pair

of symmetric elements of the Martindale associatï e pair of symmetric quo-
Ž . ystients Q R of R. Moreo¨er, there exists an element b g I at which V and I

Ž . Ž . Ž .are both s -primitï e and R is s -)-primitï e. Con¨ersely, V is s -
ys Ž .primitï e at b for any b g I at which R is s -)-primitï e.

y wProof. Assume, for example, that V is primitive at b g V . By 2, 5.3;
x20; 4, 7.4 , since V is strongly prime, either V is homotope]PI, simple,

equaling its socle, of V consists of hermitian elements. In the latter case V
has an ideal I which is an ample subpair of a )-prime associative pair R
and it is a subpair of the pair of symmetric elements of the Martindale
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Ž . Ž .associative pair of symmetric quotients Q R of R. Hence, by 4.2 and
Ž . Ž . y4.3 , I is q -primitive at an element b9 g I at which V is also
Ž . Ž . Ž .Ž .q -primitive. Now R is also q -)-primitive at b9 by 4.6 ii .

Conversely, let V be simple, equaling its socle, and 0 / b g Vy, for
example. We will show that V is primitive at b. Notice that V is von

w xNeumann regular by 12, Theorem 1 . Hence b can be completed to a
Ž . Ž . Ž q.nonzero idempotent pair e, b . As in the proof of 3.5 , K s B Ve, b

turns out to be a proper inner ideal of V, K : Vq, which is e-modular at b.
Moreover K is a primitizer of V since the only nonzero ideal to comple-
ment is V.

Ž . Ž . yIf V satisfies ii and R is, for example, q -)-primitive at b g I , I is
Ž .Ž . Ž . Ž .primitive at b by 4.6 ii and V is q -primitive at b by 4.4 .

5. PRIMITIVE JORDAN TRIPLE SYSTEMS

We will prove Jordan triple analogues of the results of Section 4 for
Jordan pairs. Since the local characterizations of primitivity for Jordan and

Žassociative triple systems are not precise concerning the element at which
.primitivity occurs we cannot use them directly and repeat the arguments

valid for pairs. To overcome that difficulty we introduce the next tool,
which allows us to extend results from pairs to triple systems, so that this
section will be a consequence of the previous one directly, instead of going
through algebras.

5.1. Tight double pairs of a triple system. Let T be an associative or
Ž q y. Ž . Ž .Jordan triple system, I s I , I be an ideal of V T s T , T , maximal

among all ideals satisfying Iql Iys 0. The quotient pair

V s V T rI s TrIq, TrIyŽ . Ž .

Ž .will be called a tight double pair of T. By Zorn’s lemma, an ideal I of V T
Ž Ž . w x.under the above conditions can be readily found cf. 1.5 and 3, 6.2 ;

hence there always exist tight double pairs for an arbitrary associative or
Jordan triple system. We will stress some obvious facts about this construc-
tion. Under the above conditions:

Ž . q q y yi If 0 / x g T then either 0 / x q I g V or 0 / x q I g V .
Ž . ŽŽ q. q Ž y. y.ii If L is a nonzero ideal of T , then L q I rI , L q I rI

is a nonzero ideal of V.
Ž . Ž q q y y. q yiii If M s M rI , M rI is a nonzero ideal of V then M l M

is a nonzero ideal of T.
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A similar notion of )-tight double pair for an associative triple system T
with involution ) can be obtained replacing ideals by )-ideals. The )-tight
double pair V obtained inherits the involution from T.

The next result shows how tight double pairs are the suitable tool with
which to study primeness and primitivity of triple systems in terms of the
corresponding notions for pairs.

Ž . Ž5.2. LEMMA. i Let R be an associatï e triple system resp. an associa-
. Ž . Žtï e triple system with in¨olution ) and V s V R rI be a tight resp.

.)-tight double pair of R. Then:
Ž .a R is semiprime if and only if V is semiprime.
Ž . Ž . Žb R is prime resp. )-prime if and only if V is prime resp.
.)-prime .
Ž . Ž .c R is left, respectï ely right, primitï e resp. )-primitï e at b g R

Ž Ž ..resp. b g H R, ) if and only if V is either left, respectï ely right, primitï e
Ž . q q Ž q Ž q ..resp. )-primitï e at b q I g V resp. b q I g H V , ) or left, respec-

Ž . y y Ž ytï ely right, primitï e resp. )-primitï e at b q I g V resp. b q I g
Ž y ..H V , ) .

Ž . Ž .ii Let T be a Jordan triple system and V s V T rI be a tight double
pair of T. Then:

Ž .a T is nondegenerate if and only if V is nondegenerate.
Ž .b T is prime if and only if V is prime.
Ž .c T is primitï e at b g T if and only if V is either primitï e at

b q Iqg Vq or primitï e at b q Iyg Vy.

Ž .Ž . Ž .Ž . Ž .Ž . ŽProof. Parts i a, b and ii b readily follow from 5.1 ii, iii recall
w x.that semiprimeness and )-semiprimeness are equivalent notions 2, 1.16 .

Ž .Ž .ii a If V is nondegenerate it is immediate that T is nondegener-
Ž .Ž .ate by using 5.1 i . Conversely, if T is nondegenerate then it follows that

w xV is nondegenerate, as in the proof of 3.4 of 7 .
Ž .Ž .i c If, for instance, R is left primitive at b then V satisfies the

Ž . Ž .required condition by the proof of 1.5 since V R is the only tight double
pair of R when it is prime. Conversely, if, for example, V is left primitive
at b q Iyg Vy with primitizer KrIq with modulus c q Iq, it is readily

Ž Ž .Ž .checked that K is a left primitizer of R at b with modulus c use 5.1 ii
.to show that K complements nonzero ideals of R .

Ž .Ž . Ž .Ž . Ž wii c The proof of i c applies here with suitable changes cf. 3,
x.6.2.2 .

As for Jordan pairs, we begin with the study of the inheritance of
primitivity between a Jordan triple system and its ideals. The next lemma
will allow us to use tight double pairs.
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5.3. LEMMA. Let T be a Jordan triple system, L a nonzero ideal of T such
that L is nondegenerate. There exist a tight double pair W of L and a tight
double pair V of T such that W is isomorphic to an ideal of V. Indeed

Ž . Ž . Ž .V s V T rI and W s V L rM such that M s I l V L .

Ž q y. Ž .Proof. Let M s M , M be an ideal of V L which is maximal
Ž . q y Ž .among all ideals of V L such that M l M s 0. We remark that V L is

˜Ž . Ž .an ideal of V T . We will show that M is an ideal of V T : Let M be the
˜ ˜Ž . Ž .ideal of V T generated by M, so that M : V L and M is an ideal of M.

w x Ž˜By 11, 4.10 , MrM is a radical ideal in the sense of the nondegenerate or
. Ž .McCrimmon radical of V L rM. But the fact that L is nondegenerate

˜Ž . Ž .Ž .Ž .implies V L rM is nondegenerate by 5.2 ii a and MrM is nondegener-
Ž .ate i.e., semisimple with respect to the nondegenerate radical by the

˜w xinheritance of the nondegenerate radical for ideals 11, 4.13 . Thus MrM
˜s 0 and M s M.

Ž q y. Ž .Using Zorn’s lemma we can find an ideal I s I , I of V T contain-
Ž .ing M, such that it is maximal among all ideals of V T satisfying

q y Ž . Ž .I l I s 0. We claim that I l V L s M: indeed, since M : I l V L
Ž .the equality follows from maximality of M. Now W s V L rM is a tight

Ž .double pair of L, V s V T rI is a tight double pair of T , and W s
Ž . Ž Ž .. Ž Ž . .V L r I l V L is isomorphic to V L q I rI, which is an ideal of V.

5.4. THEOREM. Let T be a Jordan triple system, L a nonzero ideal of T. If
T is primitï e at b g L then L is primitï e at b.

Proof. Notice that L is an ideal of a nondegenerate Jordan triple
w x Ž .system; hence it is nondegenerate by 11, 4.13 . By 5.3 , we can find a tight

Ž . Ž .double pair V s V T rI of T and a tight double pair W s V L rM of L
Ž .such that M s I l V L ; hence W is naturally isomorphic to an ideal of

q y Ž .Ž .Ž .V. Now V is primitive either at b q I or at b q I by 5.2 ii c ; hence
q y Ž .W is primitive either at b q M or at b q M by 4.2 and L is primitive

Ž .Ž .Ž .at b again by 5.2 ii c .

5.5. Remark. If T is a Jordan triple system which is primitive at b g T
and L is a nonzero ideal of T , then there exists b9 g L such that T is also

Ž .primitive at b9, so that 5.4 applies and L is primitive at b9:
Ž .Let V s V T rI be a tight double pair of T. It is straightforward that

Ž Ž . . qV L q I rI is a nonzero ideal of V. Since V is primitive at b q I or
y Ž .Ž .Ž . q Ž q. q y Žb q I by 5.2 ii c , there is b9 q I g L q I rI or b9 q I g L q

y. y Ž . q yI rI b9 g L such that V is primitive at b9 q I or b9 q I by
Ž .Ž . Ž .Ž .Ž .4.3 i . Therefore T is primitive at b9 by 5.2 ii c .

5.6. THEOREM. Let T be a prime Jordan pair, L a nonzero ideal of T. If
L is primitï e at b g L then T is primitï e at b.
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Ž . Ž .Proof. By 5.3 we can find a tight double pair V s V T rI of T and a
Ž . Ž .tight double pair W s V L rM of L such that M s I l V L ; hence W is

naturally isomorphic to a nonzero ideal of V. Now W is primitive either at
q y Ž .Ž .Ž .b q M or at b q M by 5.2 ii c ; hence V is primitive either at

q y Ž . Ž .Ž .Ž .b q I or b q I by 4.4 , and T is primitive at b again by 5.2 ii c .

Next we will study the symmetrizations of associative triple systems and
ample subspaces of triple systems with involution. As above, auxiliary
results on tight double pairs are needed.

Ž .5.7. LEMMA. Let R be a prime associatï e triple system, V s V R rI a
tight double pair of R. Then V Žq. is a tight double pair of RŽq..

Ž .Ž .Ž . Žq.Proof. First, notice that V is prime by 5.2 i b ; hence V is strongly
Ž .Ž . Ž Žq..prime by 4.5 i . It is clear that I is an ideal of V R such that

Iql Iys 0. We just need to show that I is maximal among all ideals of
Ž Žq.. Ž q y.V R under such a condition. Otherwise, if M s M , M is an ideal

Ž Žq.. q yof V R strictly containing I such that M l M s 0, then M s1
Ž q q y y. ŽŽ y q. q Ž q y. y.M rI , M rI and M s M q I rI , M q I rI are orthogo-2
nal ideals of V Žq.. Since V Žq. is prime and M / 0 then M s 0, which1 2
implies

My: Iq, Mq: Iy. 1Ž .

q y Ž .Hence I : M implies I s I and I s 0. Therefore M s 0 by 1 and
M s I, which is a contradiction.

5.8. THEOREM. Let R be an associatï e triple system.

Ž . Žq.i R is prime if and only if R is strongly prime.
Ž . Ž . Žq.ii Let b g R. Then R is one-sided primitï e at b if and only if R

is primitï e at b.

Ž . Žq.Proof. i If R is strongly prime then R is prime since all ideals of
R are ideals of RŽq.. To prove the converse we will consider a tight double

Ž . Ž .Ž .Ž .pair V s V R rI of R. By 5.2 i b , V is a prime associative pair. Hence
Žq. Ž .Ž . Žq. Žq.V is strongly prime by 4.5 i . But V is a tight double pair of R
Ž . Žq. Ž .Ž .Ž .by 5.7 ; hence R is strongly prime by 5.2 ii a, b .
Ž . Ž .ii Let V s V R rI be a tight double pair of R.

Assume, for example, that R is left primitive at b g R. In particular, R
Ž . Žq. Žq. Ž .Ž .Ž .is prime and, by 5.7 , V is a tight double pair of R . By 5.2 i c , V

is left primitive either at b q Iq or at b q Iy; hence V Žq. is primitive
q y Ž .Ž . Žq.either at b q I or at b q I by 4.5 ii . Thus R is primitive at b by

Ž .Ž .Ž .5.2 ii c .
Žq. Žq. Ž .Conversely, if R is primitive at b then R is strongly prime by 3.7
Ž . Ž . Žq.and R is prime by i . Thus we can apply 5.7 and V is a tight double
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pair of RŽq.. Now V Žq. is primitive either at b q Iq or at b q Iy by
Ž .Ž .Ž . q y5.2 ii c ; hence V is one-sided primitive either at b q I or at b q I

Ž .Ž . Ž .Ž .Ž .by 4.5 ii and we can use 5.2 i c to obtain that R is one-sided primitive
at b.

5.9 LEMMA. Let R be a )-prime associatï e triple system with in¨olution
Ž .), V s V R rI a )-tight double pair of R, and H be an ample subspace of

Ž . Ž q y .)-symmetric elements in R. Then W s V H r I l H, I l H is a tight
˜ q q y yŽŽ . Ž . .double pair of H, naturally isomorphic to W s H q I rI , H q I rI ,

which is an ample subpair of V.

˜Proof. The fact that W is isomorphic to W, which is an ample subpair
of V, is straightforward.

˜Ž .Ž .Ž .Notice that V is )-prime by 5.2 i b ; hence W is strongly prime by
Ž .Ž . Ž . Ž .4.6 i . It is clear that L s I l V H is an ideal of V H such that
Lql Lys 0. We just need to show that L is maximal among all ideals of
Ž . Ž q y.V H under such a condition. Otherwise, if M s M , M is an ideal of
Ž . q y ŽŽ qV H strictly containing L such that M l M s 0, then M s M q1

q. q Ž y y. y. ŽŽ y q. q Ž q y. y.I rI , M q I rI and M s M q I rI , M q I rI are or-2
˜ ˜thogonal ideals of W. Since W is prime and M / 0 then M s 0, which1 2

implies

My: Iq, Mq: Iy. 1Ž .

Ž . q y Ž .Hence L s I l V H : M implies I l H s I l H and I l V H s 0.
Ž .Therefore M s 0 by 1 and M s L, which is a contradiction.

5.10. THEOREM. Let R be an associatï e triple system with in¨olution ),
H be an ample subspace of )-symmetric elements in R.

Ž .i If R is )-prime then H is a strongly prime Jordan triple system.
Ž .ii Let b g H. Then R is )-primitï e at b if and only if R is )-prime

and H is primitï e at b.

Ž . Ž .Proof. i Consider a )-tight double pair V s V R rI of R. By
Ž .Ž .Ž . Ž . Ž Ž q5.2 i b , V is a )-prime associative pair. By 5.9 , W s Hr I l
. Ž y ..H , Hr I l H is a tight double pair of H, naturally isomorphic to

˜ q q y yŽŽ . Ž . .W s H q I rI , H q I rI , which is an ample subpair of V. Hence
˜ Ž .Ž .W and W are strongly prime by 4.6 i and H is strongly prime by
Ž .Ž .Ž .5.2 ii a, b .

Ž . Ž . Ž Ž qii Let V s V R rI be a )-tight double pair of R, W s Hr I l
y ˜ q q. Ž .. ŽŽ . ŽH , Hr I l H , which is isomorphic to W s H q I rI , H q

y. y.I rI , the latter being an ample subpair of V.

Ž .Assume that R is )-primitive at b g H; hence R is )-prime by 1.3
Ž .and we can apply 5.9 to get that W is a tight double pair of H. By
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q y ˜Ž .Ž .Ž .5.2 i c , V is )-primitive either at b q I or at b q I ; hence W is
q y Ž .Ž .primitive either at b q I or at b q I by 4.6 ii , and W is primitive

Ž q . Ž y .either at b q I l H or at b q I l H . Thus H is primitive at b by
Ž .Ž .Ž .5.2 ii c .

Conversely, if H is primitive at b and R is )-prime then we can apply
Ž .5.9 and W is a tight double pair of H. Now W is primitive either at

q y ˜Ž . Ž . Ž .Ž .Ž .b q I l H or at b q I l H by 5.2 ii c , and W is primitive either
at b q Iq or at b q Iy. Hence V is )-primitive either at b q Iq or at

y Ž .Ž . Ž .Ž .Ž .b q I by 4.6 ii and we can use 5.2 i c to obtain that R is )-
primitive at b.

5.11. THEOREM. Let T be a strongly prime Jordan triple system. Then T is
primitï e if and only if one of the following holds:

Ž .i T is a simple Jordan triple system equaling its socle. In this case T is
primitï e at any 0 / b g T.

Ž .ii T consists of hermitian elements: T has an ideal I which is an ample
subspace of a )-primitï e associatï e triple system R and it is a subtriple of the
triple of symmetric elements of the Martindale associatï e triple system of

Ž .symmetric quotients Q R of R. Moreo¨er, there exists an element b g I at
which T and I are both primitï e and R is )-primitï e. Con¨ersely, T is
primitï e at b for any b g I at which R is )-primitï e.

w xProof. Assume that T is primitive at b g T. By 2, 4.1; 20; 4, 7.4 , since
T is strongly prime, either T is homotope]PI, simple, equaling its socle, or
T consists of hermitian elements. In the latter case T has an ideal I which
is an ample subspace of a )-prime associative triple system R and it is a
subtriple of the triple of symmetric elements of the Martindale associative

Ž . Ž . Ž .triple system of symmetric quotients Q R of R. Hence, by 5.4 and 5.5 ,
I is primitive at an element b9 g I at which T is also primitive. Now R is

Ž .Ž .also )-primitive at b9 by 5.10 ii .
Conversely, let T be simple, equaling its socle, and 0 / b g T. We will

show that T is primitive at b. Notice that T is von Neumann regular by
w x Ž .12, Theorem 1 applied to V T . Hence b can be completed to a nonzero

Ž . Ž . Ž .idempotent pair e, b . As in the proof of 3.5 , K s B T turns out toe, b
be a proper inner ideal of T which is e-modular at b. Moreover K is a
primitizer of T since the only nonzero ideal to complement is T.

Ž .If T satisfies ii and R is )-primitive at b g I, I is primitive at b by
Ž .Ž . Ž .5.10 ii and T is primitive at b by 5.6 .

5.12 AN OPEN QUESTION. Most of our problems when dealing with
Jordan triple systems come from the fuzziness in their local characteriza-
tion of primitivity regarding the element at which primitivity occurs.
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Indeed, if we forget about the element b at which a triple system is
primitive we could get all the results in this section in the same way the
corresponding results were obtained for pairs in Section 4. On the other

Ž .hand, results like 5.5 show some possibility of movement concerning the
element at which primitivity holds. The natural question to ask is:

Ž .i Let T be a Jordan triple system, primitive at b. Is T then
primitive at b9 for any 0 / b9?

Ž .By using tight double pairs, an affirmative answer to i is related to an
affirmative answer to

Ž . ys Ž .ii Let V be a Jordan pair, primitive at b g V s s " . Is V
then primitive at b9 for any 0 / b9 g Vys ?

Ž .Concerning Jordan pairs, one may ask also whether q -primitivity and
Ž .y -primitivity are connected notions.

6. TIGHT ASSOCIATIVE ENVELOPES OF PRIMITIVE
JORDAN PAIRS AND TRIPLE SYSTEMS

wIn this section we prove Jordan triple system and pair analogues of 5,
x Ž .4.1, 4.8 on how tight resp. )-tight envelopes of primitive Jordan algebras

Ž .inherit primitivity resp. )-primitivity . Since local algebras of an envelope
Ž .pair or triple system R of T are not generally envelopes of the corre-
sponding local algebras of T we will not be able to use our local

Ž . Ž .characterizations of primitivity, 3.8 and 3.9 , and will have to use directly
the polynomial tools developed in Section 2.

6.1. THEOREM. Let T be a Jordan triple system which is primitï e at
b g T. Then any tight associatï e triple en¨elope R of T is one-sided primitï e
at b.

Ž .Proof. I We first claim that we just need to prove that R is one-sided
Ž .primitive at b9 s bcb for some c g T even c g R such that 0 / b9.

Indeed, if, for instance, K is a left primitizer of R at b9 with modulus c9,
then x y xb9c9 s x y xbcbc9 g K for any x g R and therefore K is a left
primitizer at b with modulus cbc9.

w x Ž .Ž .Ž .Thus we can use the Jordan version in 3 of 1.8 ii b and assume that
Ž . Ž . Žb.T is primitive. As in the proofs of 3.5 and 3.6 , denote J s T , N sb

Kerb, x s x q N, for any x g J, J s JrN s T .b
Ž . w xII If J is PI then it is simple and unital by 5, 1.2 and , as in the

Ž .proof of 3.5 , there exists an idempotent element e g J such that e is the
unit element in J. Define

� 4M s x y xbe N x g R .
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It is clear that M is a left ideal of R which is modular at b with modulus
e. Moreover, M is proper: otherwise for any y g R, there exists x g R
such that y s x y xbe and

bebybebsbebxbebybebxbebebsbebxb eyebe bsbebxb eye2 bs0Ž . Ž .
since e is an idempotent of J; thus bebRbeb s 0, hence bebTbeb s PP eb

Ž .T s 0 and P e s 0, since T is nondegenerate by 3.7 ; therefore e g N,b
which is a contradiction. We just need to show that M complements
nonzero ideals of R. If L is a nonzero ideal of R then I s L l T is a

Ž .nonzero ideal of T by tightness, hence I q Kerb rKerb is a nonzero
Ž .ideal of J by 3.4 . By simplicity of J, I q Kerb s T and, as in the proof of

Ž . 33.5 , we can write e s y q n, where y g I and n g N, but e s e s y9 q
n3, where y9 g I since I is an ideal of T. But n3 s 0 because n g N s

Ž Ž .Ž ..Kerb see 3.5 1 and we obtain e g I : L. Now, for any z g R,

z s z y zbe q zbe g M q LŽ .
by e-modularity of M at b and the fact that e g L, which is an ideal of R.
Thus R s M q L.

Ž .III Assume that J is not PI. Now, T cannot be exceptional since
any exceptional strongly prime Jordan triple system is homotope]PI by
w x Ž .20, Th. 5; 2, 4.1 . Thus, T is special and, in particular, EE J / 0; hence
Ž . Ž .EE b; T s EE J / 0.

Ž .IV Let K s KrKerb be a primitizer of J such that K is maximal-
Ž w x. Ž . Ž .modular cf. 9, 3.2 . As in the proof of 3.6 , it is clear that 3.6 ,
Ž . Ž . Ž .assertions 1 , 2 , and 3 hold.
Ž . Ž . Ž .Now 0 / EE J is an ideal of HH HH J by 2.5 , which is an ideal of J by7

Ž . Ž . Ž Ž . .2.2 . Hence, there exists a modulus c of K lying in EE J s EE J q N rN
w x Ž .by 5, 0.7 and we can assume that c g EE J . Define

M s RbEE K q R 1 y bcŽ . Ž .
Ž . Žb.and notice that EE K is calculated in T , so that it can also be denoted

Ž .EE b; K in the triple system T , as in Section 2. It is clear that M is a left
ideal of R which is c-modular at b.

Ž .V We will show that M complements nonzero ideals of R: Let L
be a nonzero ideal of R. By tightness of R, I s L l T is a nonzero ideal

Ž .of T. By 3.4 , I q N is an ideal of J strictly containing N; hence
Ž .I q N q K s J by 3 . Thus I q K s J since N : K. But

c g EE J s EE I q K : I q EE KŽ . Ž . Ž .
since I is an ideal of J, and we can write c s y q k, where y g I and

Ž .k g EE K . Now,

cbc s c2 s P b s P b s P b q P b q P b s P b q P b q kbkc yqk y y , k k y y , k

g I q RbEE K : I q M : L q M .Ž .
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Hence, for any x g R

x s x y xbc q xbc y xbc bc q xb cbcŽ . Ž . Ž . Ž .Ž .
g M q M q RR L q M : M q L,Ž .

using the definition of M and the facts that M is a left ideal of R and L is
an ideal of R. We have shown R s M q L.

Ž .VI Similarly, we define

M9 s EE K bR q 1 y cb R ,Ž . Ž .

which is a right ideal of R, c-modular at b, and complements nonzero
ideals of R.

Ž .VII We just need to show that either M or M9 is proper. Other-
wise R s M s M9 and we can write

c s kX bs q y y cby , s , y g R , kX g EE b; K ,Ž . Ž .Ý Ýl l m m l m l

c s r bk q x y x bc , r , x g R , k g EE b; K ,Ž .Ž .Ý Ýi i j j i j i

where

s s z z z . . . z , y s t t t . . . t ,l 1 2 3 2 q q1 m 1 2 3 2 u q1l m

r s ¨ ¨ ¨ . . . ¨ , x s w w w . . . w ,1 1 2 3 2 d q1 j 1 2 3 2 p q1i j

where the z ’s, t ’s, ¨ ’s, and w’s are in T since RsTqTTTqTTTTT q
w x Ž .. . . . By 5, 0.7 , for all odd n, there exists a modulus f g HH HH J sn n

Ž . Ž .HH HH b; T for K in J as in IV . Nown

a s cbf bcn n

s k 9bz . . . z q t . . . t y cbt . . . tŽ . Ž .Ý ÝŽ .l 1 2 q q1 1 2 u q1 1 2 u q1l m m

bf b ¨ . . . ¨ bk q w . . . w y w . . . w bc .Ž . Ž .Ý Ýž /n 1 2 d q1 i 1 2 p q1 1 2 p q1i j j

By reversing products we can construct in R the element

b s k b¨ . . . ¨ q w . . . w y cbw . . . wŽ . Ž .Ý Ýž /n 1 2 d q1 1 2 p q1 1 2 p q1 1i j j

bf b z . . . z bkX q t . . . t y t . . . t bc .Ž . Ž .Ý ÝŽ .n 2 q q1 1 l 2 u q1 1 2 u q1 1l m m
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It is clear that

bounded length bounded length! # " ! # "
a q b g EE b; K b TTT . . . T bf b TTT . . . T b EE b; KŽ . Ž .n n n½ 5

bounded length bounded length! # " ! # "
q EE b; K b TTT . . . T bf b TTT . . . T 1 y bcŽ . Ž .n½ 5

bounded length bounded length! # " ! # "
q 1 y cb TTT . . . T bf b TTT . . . T 1 y bcŽ . Ž .n½ 5

: EE b; K bTTTbK q EE b; K bTTT 1 y bc� 4 � 4Ž . Ž . Ž .
q 1 y cb TTT 1 y bc if n is big enough� 4Ž . Ž . Ž .

: K since K is c-modular inŽ
J s T Žb. and 2.5 .Ž . .

Analogously, a bb g K and a bTbb : K if n is big enough. Noticen n n n
w xthat a is a modulus for K in J by 5, 0.4 since a s U f and c, f aren n c n n

moduli for K. Now

a ba bb q a bb ba s a ( a bb g KŽ .n n n n n n n n n

since a bb g K and a is a modulus for K. Now, a ba bb g a bTbb :n n n n n n n n
K, so a bb ba g K. Butn n n

a3 q a bb ba s U a q b g U K : KŽ .n n n n a n n an n

since a is a modulus for K, showing that a3 g K. This contradictsn n
w xproperness of K by 9; 3.1 .

6.2. THEOREM. Let T be a Jordan triple system which is primitï e at
b g T. Then any )-tight associatï e triple en¨elope R of T is )-primitï e at b.

Ž . Ž . Ž .Proof. Parts I ] V of the proof of 6.1 apply here verbatim, replacing
ideals of R by )-ideals of R and tightness by )-tightness. Then, the proof

Ž . Ž .of 3.6 , part V , can be used to establish the properness of M.

Ž q y. Ž q y.6.3 LEMMA. If V s V , V is a special Jordan pair and R s R , R
Ž . Ž .is an en¨elope of V, then T R is an en¨elope of T V . Moreo¨er, if R is tight

Ž . Ž . Žresp. )-tight o¨er V and V is strongly prime, then T R is equally tight resp.
. Ž .)-tight o¨er T V .

Ž . Ž .Proof. The fact that T R is an envelope of T V readily follows from
Ž . Ž .the definition of the products in T R and T V . Assume that R is a tight



PRIMITIVE JORDAN SYSTEMS 677

Ž .resp. )-tight envelope of V and V is strongly prime. Let I be a nonzero
Ž . Ž . Ž q y.ideal resp. )-ideal of T R . Hence L s I l R , I l R is an ideal

Ž . Žresp. )-ideal of R. If L / 0 then L l V / 0 by tightness resp. )-
. Ž . Ž .tightness of R and 0 / T L l V : I l T V . Otherwise L s 0 and, by

Ž . s Ž . s Ž . spolarization of T R , p I : Ann R s s " , where Ann R is the
set of elements of Rs which annihilate any monomial of R containing

Ž . Ž .them. But R is prime resp. )-prime since it is a tight resp. )-tight
envelope of V which is strongly prime; hence R is semiprime and Ann

s Ž . s Ž . Ž .R s 0 s s " . Therefore p I s 0 s s " and I s 0, which is a
contradiction.

6.4. THEOREM. Let V be a Jordan pair which is primitï e at b g Vys

Ž .s s " . Then any tight associatï e pair en¨elope R of V is one-sided
primitï e at b.

Ž . w x Ž . Ž .Ž .Proof. Use 6.3 , 3, 5.5 , 6.1 and 1.4 iii .

6.5. THEOREM. Let V be a Jordan pair which is primitï e at b g Vys

Ž .s s " . Then any )-tight associatï e pair en¨elope R of V is )-primitï e
at b.

Ž . w x Ž . Ž .Ž .Proof. Use 6.3 , 3, 5.5 , 6.2 and 1.4 iii .
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