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1. INTRODUCTION

If R is an involution ring and M is an R-module equipped with a non-
degenerate Hermitian symmetric inner product, then the set 4zx(4) of those
R endomorphisms of M which possess adjoints forms a new involution ring.
A simpler but less interesting method of constructing involution rings is to
start with a ring S and let S0V be the ring direct sum of S and its opposite
ring, with the involution (4, ) — (b, @). The main theorem of this paper
(Theorem 19) asserts that members of a certain class of involution rings can
be imbedded in direct products of rings Agx(M) and SV, with R and S
suitably well-behaved. Using this result, a semiprime Artinian involution ring
is shown (Corollary 23) to be isomorphic to a finite direct sum of involution
rings of three types: (a) Ag(M), for R a division ring and M finite-dimensional;
(b) the ring of 2 X 2 matrices over Ax(M), with involution (¢ ) — (_% ~2),
for R a field of characteristic not 2 and M finite-dimensional; () SV, for .S
a full matrix ring over a division ring. If an additional condition is imposed on
the involution, types (b) and (c) can be eliminated from this decomposition
(Corollary 24). Our main theorem also yields an imbedding for a primitive
involution ring with nonzero socle into an Ax(M) with R simple Artinian
(Corollary 21). This differs from a similar result of Jacobson ([1], Theorem 2,
p. 83), in which R is forced to be a division ring, in that the inner product on
M in his result is not always Hermitian.

2. SoLip RiNGs AND MODULES

This section is devoted to some concepts and technical lemmas which are
needed later but which can be discussed without the requirement of an involu-
tion. These results also lead to a ring-theoretic representation theorem
(Theorem 8) which is included partly for completeness and partly because it
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offers yet another proof of the Wedderburn-Artin theorem. For this scction, R
will denote a ring (not necessarily with unit), 3 a left R module, L(M) the
lattice of submodules of M.

An atom in R is an idempotent e for which Re is a minimal left ideal of R
and eR is a minimal right ideal. a(R) will denote the set of atoms of R. Call
M a solid R module if to each nonzero x € M there is an e € g(R) with ex 54 0.
R is a solid ring if it is solid both as a left R module and as a right R module.
We first derive a few simple consequences of these definitions. The following
facts will be useful (see [2], p. 63):

(a) Every minimal left ideal of a semiprime ring is generated by an idem-
potent.

(b) If R is semiprime and e = €% € R, then Re is a minimal left ideal iff eR
is a minimal right ideal iff eRe is a division ring.

ProposiTiON 1. (i) If M is torsionless and xR is solid, then M is solid.

(ii) If M is torsionless and solid, then every minimal submodule of M is a
direct summand.

(i) If M is solid and nonzero, then M contains a minimal submodule.

(iv) Let M be torsionless and solid. The following condstions are equivalent:

(a) M is Noetherian.
(b) M is Artinian.
(c) M is a finite direct sum of minimal submodules.
(v) R 1s solid iff R is semiprime and every nonzero left ideal of R contains a
minimal left ideal.
(vi) If R is prime with nonzero socle, then R is solid.
(vii) If R is solid, then eRe is solid for each idempotent e € R.

Proof. (ii) If K is a minimal submodule, pick 0 7= % € K, e € a(R) such
that ek 7% 0, fe Hom(M, R) with ekf = 0, a€ R for which ekfa = e. Set
xg = (xf )ak Vx € M: g is an idempotent endomorphism of M with image K.

(v) (=): If 0~ a€R, choose eca(R) with ea %40, be R such that
eab = e. eabeab = e =0 = aRa # 0.

(«<): Let 0 £~ a€R. aRa# 0 = Ra # 0 = Ra contains a minimal
left ideal, which must be Re for some eca(R). e = e?c ReC Ra => ¢ = ba
for some b€ R = bae = e 7% 0 = ae 7= 0. Thus, Ry is solid. By (iii), every
nonzero right ideal of R contains a minimal right ideal, so by symmetry xR
is solid.

(vi) R has a minimal left ideal Re, ¢ € a(R). If K is a nonzero left ideal of R,
choose 0 £ a € K: eba 7= 0 for some b € R, and Reba ~ Re is a minimal left
ideal contained in K.
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(vi)) Note that eRe is semiprime. Let O 7~ a € eRe. Ra contains a
minimal left ideal Rf, f € a(R). f = ba forsomebe R.baf =f £ 0 = aef =
af 0 =>g=eF#0.fe =bae =ba =f=>g* =geceRe. 05 Rg CRf =
Rg = Rf is a minimal left ideal = g(eRe)g = gRg is a division ring
= gea(eRe). ag = aef £ 0. Therefore, eRe,z, is solid. By symmetry,
«re€Re is solid.

N.B.: For the remainder of this section, we shall assume that R is a solid
ring.

Given any left (right) ideal J of R, let J* denote its right (left) annihilator.
Let L,(R)[L,*(R)] denote the set of all left (right) ideals | of R for which
=]

PROPOSITION 2. Let K be a left ideal of R which is left Noetherian.

(i) Given JeL,(R) with [N K =0, Je = ¥ J* such that K = Re.

(i1) Suppose that e =€ R and K = Re 0. Then 3 orthogonal
& ,..n€a(R)ywithe =e, + - + ¢, .

(iii) If e = €® € R such that Re is left Noetherian, then eR is right Noetherian.

(iv) If K is a two-sided ideal, then K is generated by a central idempotent.

Proof. (i) Suppose ¢, =e,2€ J* and Re,C K. Choose x € K\ Re, and
e€a(R) with 2 = e(x — xe,) 7% 0. Since, 2 ¢ J = J*, 3b€ J* such that
2b =e f=0bze KN J* is a nonzero idempotent. Since fe, =0, ¢,,, =
e, + f — e,f is idempotent. Re, C Re,,, C K.

(ii) K is a direct sum of minimal left ideals X ,..., K, . Fix i and put
H={r—re|lreR,H,=®;.:K;, Jy=H+ H; .By(i), w;, =wie H*
with H; = Rw, , hence, J; = [(¢e — w,)R]*. Again by (i), 3¢, € a(R) such that
K;=Re;and Jie, =0. He; =0 = ¢, = e¢; ,s0e€ K = Re; + - + Re, =

e = X8, + * + x.6, > €; = x€; .

A dual for M is a submodule P of Hom(M, R) such that to each nonzero
x € M there is an f€ P with xf = 0. We shall assume for the rest of this
section that M has a dual P. For K e L(M) [K €L(P)] define K+ =
{feP|Kf =0} (K* ={xe M|xK = 0}). Let L(M) [L*(P)] denote the
collection of all submodules K of M (of P) for which K+ = K. If we use
Rj as a dual for gR by right multiplication, then this notation coincides with
our previous notation for annihilators. Let

L(M | P) = {t e Hom(M, M) | tPC P}

and F(M | P) = {teL(M | P)| Mt is Noetherian}. Given fe P and xe M,
we define {(f, x> e L(M | P) by the rule a{f, x) = (af)x. Note that for
teL(M|P), kert = (tP)* e L (M).
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ProposiTioN 3. Let JeL+(M), KeL(M), and assume that |C K and
K| ] is Noetherian. Then K € L*(M).

Proof. Since J e L*(M), K|/ ] is torsionless, and so has a composition series
by Proposition 1. Thus, it suffices to consider the case when K/] is simple.
Then J+/K* is naturally isomorphic to a submodule of the simple module
Hom(K/], R); since J** = JCKCK** = 4K #£0, J*/K* must be
simple, By the same argument, K**/ ] = K*+/ J** is simple, hence K*+ = K.

ProrosiTION 4. Let ¢ € Hom(M, R), t € Hom(M, M), w € Hom(Mt, M).
(1) If ker ¢ € LY(M) and M is Noetherian, then ¢ € P.
(i) If M is Noetherian, then P = Hom(M, R) and
L(M | P) = F(M | P) == Hom(M, M).

(iil) Ifker t e L(M)and Mt is Noetherian, thent € F(M | P).

(iv) Ifte F(M | P), thentwe F(M | P).

Proof. (i) Proposition 2 gives an e = e2e€ R with M¢ = Re. Choose
% € M such that x¢ = ¢, and set | = {exf | f € (ker $)*}. Since ker ¢ € L+(M),
J* = (eR)*. ] and eR are right Noetherian by Proposition 2, hence are in
L*(R) by Proposition 3, so J = eR. If e (ker¢)* for which exf = e, and
¢ =feP.

(i) For fe P, (ker tf)/(ker t) is Noetherian, hence, kertfeL*(M) by
Proposition 3 and tf € P by (i).

LemMma 5. (i) If K is a minimal submodule of M, then 1 f = f2e F(M | P)
with Mf = K.

(it) If e€ a(R), x, y € M, and ex 7~ 0, then 3t € F(M | P) with ext = ey and
Mt = Rey.

Proof. (i) Choose 0 £ x € K, e € a(R) such that ex 7~ 0, g € P for which
exg = e, and set f = (g, ex).

(ii) Choose f = f2e F(M | P) with Mf = Rex and compose it with the
obvious map of Rex onto Rey.

ProPoSITION 6. Let A be any subring of L(M | P) containing F(M | P).

(i) Let e = e € A. Then e € a(A) iff Me is a minimal submodule of M.
(i1) A is a solid ring.
(iii) If R is prime, then so is A.
Proof. (i) Suppose Me is minimal. If 0 % t e ed, then Mt = Met is a
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minimal submodule of M and ¢ |, is an isomorphism of Me onto Mt. By
Lemma 5, 3f = f2€ A for which Mf = M¢; and t[f(t [s,)"'] = e. Thus
eA is minimal, If 0 7 ¢ € Ae, choose x € M with xt 7 0, f € a(R) such that
Jxt £ 0, and w € A4 for which fxtw = fx (by Lemma 5). (ewte)| s, is an auto-
morphism of Me, and [e[(ewte)|ps,] *(ew)|sse]t = e. Therefore, Ae is minimal,
hence e € a(4).

If e € a(A4), choose a minimal submodule | of Me and g = g*e 4 with
Mg =] AgC Ae = Ag = Ae = Me = Mg = ].

(ii) If 0 7~ t € A, choose x € M with xt 7= 0, e € a(R) with ext # 0, and
idempotents g, ke A such that Mg = Rex, Mh = Rext. g, he a(A4) and
gth £ 0.

(iii) Given 0 #£ t, we A, choose x, ye M with xt,yw £ 0, ¢, fea(R)
such that ext, fyw #~ 0, and g = g? € A with Mg = Rext. Since R is prime,
Re ~ Rf. If u is the composition of g with the isomorphism Rext — Re —
Rf — Rfy, then tuw £ 0.

ProrosiTioN 7. (i) If Ke€L(M) is Noetherian, then 3e = 2 e F(M | P)
with Me = K.

(i) Givente F(M | P), 3f,,....fo€ P and x, ,..., x, € M such that

t = <f1 y %)+ + <fn N
Proof. A = F(M | P) is solid by Proposition 6.

(i) We may assume that K is nonzero and write it as a direct sum of
minimal submodules K| ,..., K|, . For each ¢, Lemma S yields an ¢; = ¢% € 4
such that Me, = K, . Since each ¢; € a(4) by Proposition 6, Ae, + -+ + Ae,
is a Noetherian left ideal of 4. By Proposition 2, 3e = e2€ A for which
HAe = Aey + -+ + Ae, .

(ii) Assume that ¢ £ 0 and use (i) to find e = 2 € A with Me = Mt
Proposition 2 gives us orthogonal ¢, ,..., e, € a(4) such thate = ¢, + -+ 4 ¢,.
Fix 7, and choose 0 £ x € Me; and g, € a(R) with gix 4 0. Let x; = gix
and choose a € M for which at = x, . g.a ¢ ker te; = 3f; € (ker te;)* such that
gaf; = g:, hence te; = (f;, x>.

We are now in a position to represent any solid ring in terms of linear
transformations on vector spaces with duals, as follows:

Tueorem 8. Let A be any ring. Then A is solid iff 3 a collection
{(D., M, , P,)} such that

(i) For each o, D, is a division ring, M, is a left D,-vector-space, and P, is a
dual for M, .

(ii) A is isomorphic to a subring B of [LL(M, | P,) containing ®F(M, | P,).
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Proof. It follows easily from Proposition 6 that any such ring B is solid.
Now assume that 4 is solid. Let {{a} be the set of minimal two-sided ideals of
A. Fix a, and choose e, € a(4) N 1, .Set D, = e, Ae,, M, = e,4, P, = Ae, .
For x€ 4 and a e M, , put a(x$), = ax. This defines a ring homomorphism
¢ of 4 onto a subring B of [TL(M, | P,). Given t € F(Mj | P,), Proposition 7
gives us b, ,..., b, € Py and a, ,..., a, € M such that

t = <b1:al> S +<bn’an> = (x(l))B!

wherex = bya; + ** + bpa,€ly . Fora# 8,11, CI, NIy =0 = (x¢), = 0.
Therefore, ®F(M, | P,)CB. If x€ A and x¢ = 0, then I.x = Ae, Ax =
AM (x$), = 0 Va; since e € AeA € {I,} Ve € a(A), this means x = 0.

With a little help from the previous propositions, the following well-known
results are direct consequences of Theorem 8:

COROLLARY 9. Let A be any ring. Then A s prime with nonzero socle iff 3
a division ring D, a nonzero left D-vector-space M, and a dual P for M such
that A is tsomorphic to a subring of L(M | P) containing F(M | P).

CoroLLARY 10 (Wedderburn-Artin). Let A be any ring. Then A is
semsprime and left Artinian iff A is isomorphic to a finite direct sum of full
matrix rings over division rings.

3. InvoruTiON Rings AND Dot MobuLes

The purpose of this section is to introduce the involution rings and inner
product modules which will be used in the representation theorems, and to
derive a few of their properties.

An involution ring is a ring R together with a map * : R — R such that
Va,be R,

(i) (a + b)* = a* + b*.
(ii) (ab)* = b*a*.
(ii) a** = a.

A D¥* ring is an involution ring R with the property that to each nonzero
a€ R there is a b = b* € R with aba* 7~ 0. We shall use [], and @, for
direct products and direct sums of involution rings. An isomorphism of
involution rings is called a * ssomorphism, and is denoted =, . If R is any ring,
we can construct an involution ring RI®¥ from the abelian group R @ R
by defining a multiplication and an involution according to the rules

(@, b)(c, d) = (ac, db), (a, b)* = (b, a).
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LemMMA 11. Let D be a division ring, M an infinite-dimensional left
D-vector-space, P = Hom(M, D), A a subring of L(M | P) containing F(M | P).
There are no involutions on A.

Progf. Assume A has an involution *, and choose any e € a(4). e* € a(4)
also, so ede ~ e*Ae* ~ D. There are semilinear isomorphisms of e*4 onto
M and of Ae onto P. e*4 can be converted into a right vector space over e4e
by defining a scalar multiplication according to the rule (e*a) - (ebe) =
(ebe)*(e*a); then * is an eAe isomorphism of e*A onto Ae. Then the following
contradictory equalities hold:

[M: D] = [e*A : e*Ae*] = [e*A : ede] = [Ae: ede] = [P : D).

THeOREM 12. Let A be a prime involution ring with nonzero socle S.
Assume that S is contained in each left tdeal | of A which satisfies J* = 0.
Then A satisfies all chain condstions.

Proof. By Corollary 9, 3 a division ring D, a nonzero D-vector-space M,
and a dual P for M such that 4 is isomorphic to a subring B of L(M | P)
containing F(M | P). Consider any subspace K of M for which K+ = 0. If
J = {te B| Mt C K}, then it follows from Proposition 7 that K = M, so
that for we J* we have Kw = 0 = M = K** Ckerw. Thus ] contains
the socle of B, hence a(B)C J, which yields K = M. In particular, all
maximal subspaces of M must be closed, which forces LY(M) = L(M).
Proposition 4 now yields P = Hom(}M, D), and then Lemma 11 forces
[M: D] < .

Let R be an involution ring, M a left R-module. An snner product for M
isamap (1, ") : M X M — Rsuch that Va,b,ce M, reR,

@) (ra +b,¢) =r(a, c) + (b, c).

(ii) (a, b)* = (b, a).
M is called a (left) dot module over R if to each nonzero x € M there is a
y € M with (x, y) 7% 0. We shall use @, for the direct sum of dot modules.
An isomorphism of dot modules is called a dot-isomorphism, and is denoted =< .

For the remainder of this section, R will denote a solid involution ring, and
M will denote a left R-dot-module. Given x € M, define ¢, € Hom(M, R)
by the rule ad, = (a, x). Set M* = {¢, | x € M}, which is a dual for M.

Since x — ¢, is a conjugate linear isomorphism of M onto M*, we identify
M and M* when discussing *, in the sense that we now write

K*={xeM|(x,K) =0} for KeL(M).

Consider ¢ € Hom(M, M). An adjoint for t is any s € Hom(M, M) for which
(at, b) = (a, bs) Va, b € M. If t has an adjoint, it is unique, and is denoted by
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t*. The set A(M) of all elements of Hom(#, M) which have adjoints is an
involution ring. Note that A(M) = L(M | M*). We write F(M ) for F(M | M*).
Given x, y € M, write {x, y> for {¢,,y>, and note that {x, y)>* = (¥, x),
rx,y> =- {x,r*y) Vre R.

ProrosiTION 13. Let A be a sub-involution-ring of A(M) containing F(M)

(i) If Ris D*, then 4 is D*,

(ii) If A is D* and M is faithful, then R is D*,

Proof. (i) Given 0 # te€ A, choose x € M with xt £ 0, e a(R) with
ext 20, we A for which extw = ext £ 0, y € M with (xtw, y) 7 0,

and r = r* € R such that 0 7 (xtw, y) r(xtw, y)* = (xtwly, ry) w=t*, x).
w{y, ry>w* is a self-adjoint element of 4 and tz{y, ry)w*t* £ 0.

(ii) Given 0 = te R, choose x € M with tx 7~ 0, e € a(R) with etx % 0,
y € M with (y, etx) 7 0, 2 € M with 0 7 (3, etx)z = yletx, 2D, w = w¥e A
for which <z, etx>w(z, etx>* £ 0, and a € M such that

0 £ alz, etxdwletx, 3y = (a, 2) et(xw, x) t¥e*z.
(xw, x) is a self-adjoint element of R and #(xw, x)t* 7 0.
The next two results are straightforward, hence, their proofs are left to the
reader.
PrOPOSITION 14. Let S be the ring of 2 X 2 matrices over R, Q the set of
2 X 2 matrices with entries from M.

(i) Set

* _ *
(a)* = ( 22 a}kz) V(a;) e S.

—az a5
Then S becomes an involution ring, which we shall denote by 2_,(R).
(ii) Q s a left S module in the obvious manner. Define

() = (30 Z G5 e + o)
V(xy), (yi5) €Q-
Then Q becomes a left dot module over S, which we shall denote by 2_,(M).
(iii) A(Q) <. 24[A(M)].

LemMA 15. Let Rbe prime. If 3e € a(R) andr = r* € R such that ere* £ 0,
then R is D*,
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THEOREM 16. Assume that R is the ring of all 2 X 2 matrices over some

division ring D, and that R is not D*. Then D is a field, char. D # 2, and
R = 2_,(D) (we use the identity map as the involution on D.)

Proof. By Lemma 15,

o oo o =l oo o=

Since (3 9)* is a nonzero idempotent, this forces

b o =0 1

b 1) =l o

Similarly,

Given ae D,
6 o =1l oG oo "= DG o)} 1) =2eren
such that
6o =6 o
and similarly Jam € D such that
b o =(5 o
7 and = are inverse antiautomorphisms of D.

b o =[6 oo oo D=6 oo o (o ) =3e2

with

i

b o =G o

Then Vae D,
o) = o 00 )= “F)

[6 oo ol -



308 GOODEARL
In particular,
* )
6 o=6o =k %)
soar = oL If @ = 1 + «, then
wwr=a= (0o =60
and Lemma 15 forces
1 0,/0 1 Oy* 0
0=(5 olo o)lo o) =lo o)
hence « = —1. Thus

(0 a)* — (0 —a-r) VaeD.

00 o 0
Similarly,
*
G o = (o) vee2
6 5)=6 8 =6 oo A

=7 9 =6 ) veen-o

Given a€ D, set b = a — ar: then

T

and Lemma 15 forces & = Q. Therefore, + = 1. Since = is an antiauto-
morphism of D, D must be a field. Applying Lemma 15 once again,

6 o6 oo o #0=( o=l of = o
hence, char. D 5£ 2.
LemMA 17. Assume that 2r % O whenever 0 % r € R. If K e L(M) with
(%, x) =0VxeK, then KC K*.
Proof.
0=(+yx+y) =®y+(nx)Vxryek =

0 = (3 (3, %)%) + (3, %)%, ¥) = 2y, x)(*x, y) Vx,y€ K =
0 = [(x, r*y) + (r*y, D)% ¥) = (x.¥)r(x,y) Vx,yeK, reR.
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PROPOSITION 18. Suppose that F is a field with identity involution, char,
F £ 2, R = 2_,(F). Assume that M is Noetherian. Then 3 an F-dot-module K
such that M ~, 2_,(K).

Proof. First consider the case zM = zR.(1,1) = (1, 1)* = (1, 1) = (9
for some 0 £ t € F. Set K = pF and put (@, b) = atb Va, b€ K.

We may assume M £ 0. According to Lemma 17, 3x € M such that
(x, x) % 0. Then (%, x) = (x, x)* = (x, x) = (}9) for some 0 7= ¢ € F, hence
(%, x) is invertible in R. This forces Rx ~ gR and Rx N (Rx)* = 0. Since Rx
and (Rx)*+Rx are in L*(M) by Proposition 3, ((Rx)*4Rx)* = Rx N (Rx)* =
0= (Rx}* + Rx =0 =M = M = Rx @, (Rx)*. Repeat this process
with (Rx)* if (Rx)" 5~ 0. Eventually we find F-dot-modules K] ,..., K, such
that

Mo~ 2,(K)D, - DL 24(Kn) 22, 2K Dy - Dy Ka)-

4. THE REPRESENTATION THEOREMS
Throughout this section, 4 will denote an involution ring.

THeOREM 19. A is solid iff 3 a collection {(R, , S,)} such that

(i) For each o, one of the following holds:
(a) 3 a division involution ring D, and a left D -dot-module M, such that
R, = A(M,)) and S, = F(M,).
(b) 3 a field F, of characteristic not 2 and a left 2_y(F,)-dot-module M, such
that R, = A(M,) and S, = F(M,).
(c) 3 a division ring D, , a left D,-vector-space M, , and a dual P, for M
such that R, = [L(M, | P)}" and S, = [F(M, | P]~.
(ii) A is *-isomorphic to a sub-involution-ring B of I'1, R, contatning P, S, .

Proof. The solidity of such a ring B follows easily from Proposition 6.
Now assume that A is solid. Say that two minimal two-sided ideals I, | are
equivalent iff ] = J or I = J*, and let {I.} be a collection consisting of
exactly one representative from each equivalence class. Now fix a.

Casg (a) I, = I* is D*. Choose e,ea(A)N1,, a = a* eI, such that
e,ae,* 5~ 0, and b € A for which e ae *b = ¢, . Set v, = e ae.*, w, = e,*be, .
w oW, = we, = &*w, > ww, = ¢* Then w v, = (vw,)* = ¢,* =
w,v, => w,* = w,. Therefore, v, = v,* = e,9,6,%, w, = w,* = e, *w,e,,
U W, = &, , W,v, = &% Define an involution ' on D, = e, Ae, by the rule
@ = v,a*w, and an inner product on M, = e,A by the rule (a, b)) = ab*w, .
If 04 ae M, , choose b e A for which ab = ¢,, and note that 0 5% ¢, =
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abv,w, = (a, v,b*). Set R, = A(M,) and S, = F(M,). Given x € 4, define
(x¢), € R, by the rule a(x¢), = ax.

Case (b) I, = I,* is not D*. Choose ec a(A) NI, . If I, = Ae, then it
would follow from Proposition 2 that ¢ would be central in 4, whence
I, = eAe would be a division ring and thus D*. Therefore, {a — ae|ael}
is nonzero and so contains a minimal left ideal J. It follows from Proposition 2
that 3 orthogonal f, g € a(4) such that | = Af, de = Ag. I, = AfA = AgA.
Ag*A =1.* =1,. Then I.2 £ 0 = Jaec A with fag* 7~ 0. Choose be 4
for which fag*b = f, and set ¢, == f+g, v, = fag*+ga*f *, w, = f*b*g{g*bf.
fag*bf = f = f*b*ga*f* = f*. Ic € A such that ga*f *c = g, so ga*f *b*g =
gaX{(f*b*ga*f *)c == ga*f *c = g and g*bfag* = g*. Thus v, = v,* == e,v,¢,%,
w, = W, = e, W8, , VW, = €,, W,u, = e*. As in case (a), D, = e,Ae, has
an involution defined by &' = v.a*w, and M, = e,4 has an inner product
defined by (a, b) = ab*w, . If 0 = a € M, , then either fa 7 0 or ga £ 0,
say fa 7 0; choose b€ 4 with fab = f and note that 0 £ fe, - fabv,w, =
f(a, v,0*). Define R, S, , and (x¢), as in case (a).

By Proposition 1, D, is solid. Since x — (x¢), is @ *-isomorphism of I_ onto
a sub-involution-ring of A(M,) containing F(M,), Proposition 13 says that
D, is not D*. If 0 %4 a, be D, , then (AaA)AbA) =120 = aDb =
aAb £~ 0, hence D, is prime. Since D, is the direct sum of the minimal left
ideals D f, D,g, it follows from the Wedderburn-Artin theorem that D, is
isomorphic to the ring of 2 X 2 matrices over some division ring F, .
Theorem 16 now forces F, to be a field of characteristic not 2 and

D, 22, 2_|(F)).

Cask (c) I, 5 I,*. Choose e, € a(d) N I and set D, = e de, , M, = e,4,
P, = Ae,, R, = (L(M, | P))>, S, = (F(M, | P,))!»¥. Given x € 4, define
x,€eL(M,| P,) by the rule ax, = ax, and set (x¢), = (x,,(x*),)eR,.

We now have a *-homomorphism ¢ of 4 onto a sub-involution-ring B of
Il«R,. Fix 8 and let t€ S, . In case (a) or (b), it follows as in Theorem 8
that 3x € A with (x¢); = ¢ and (x¢), = 0 Va 7~ B. Now assume (c). Then
t = (u, v) for some u, v e F(Mj | Pg). As in Theorem 8, 3x, y € I; for which
x,=uy =0v8tz=x+y*Since LL*CL,NL*=0,2 =x =u
and (3*), = y, = v, hence (z¢); = t. Since z€; + I*, (24), = 0 Vo £ 8.
Therefore, @, S, C B. Finally, consider a nonzero x € A. Choose e € a(4)
such that ex 7= 0 and set I = AeA. If I = I*, then I = I, for some 8 and
AMy(x¢)s = Ix £ 0 = (x¢); % 0. Now assume that I =~ I*. 38 such that
I, = Tor I*. 3a € A for which exa = e, so e*a*x*e* = e* £ 0 = I*x* £ 0.
If Iy =1, then AMpx, =Ix#0 = x, %0, while if Iy =I* then
AMy(x*), = I*x* £ 0 = (x*), 7 0; thus (x¢)s = (x,, (x*),) # 0.

[+ 3

CoroLLarY 20. A is a solid D* ring iff 3 a collection {(D, , M)} such that
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(i) For each o, D, s a division involution ring and M, is a left D,-dot-module.

(ii) 4 is *-isomorphic to a sub-involution-ring of T1. A(M,) containing
@*F (Ma)‘

CoroLLARY 21. A is prime with nonzero socle iff 3 an involution ring R
and a nonzero left R-dot-module M such that

(i) Either R is a division involution ring or 3 a field F of characteristic not 2
such that R = 2_,(F).
(ii) A is *-isomorphic to a sub-involution-ring of A(M) containing F(M).

COROLLARY 22. A is a prime D* ring with nonzero socle iff 3 a division
involution ring D and a nonzero left D-dot-module M such that A is *-isomorphic
to a sub-involution-ring of A(M) containing F(M).

COROLLARY 23. A is semiprime and left Artinian iff I R, ,..., R, such that
(i) For eachi = 1,..., n, one of the following holds:
(a) 3 a division involution ring D, and a finite-dimensional left D-dot-
module M such that R; = A(M,).
(b) 3 a field F; of characteristic not 2 with identity involution and a finite-
dimensional left Fi-dot-module M ; such that R, = 2_,[A(M,)].
(c) 3 a division ring D; and a finite-dimensional left D; vector-space M;
such that R; = [Hom(M, , M,)]*™".

(ii) A, Rl @x - Dx R,.

COROLLARY 24. A is a semiprime left Artinian D* ring iff 3 division
tnvolution rings D, ,..., D, and finite-dimensional left D;-dot-modules M, such
that A >, A(M,) @y *** Dx A(Mp,).

CoroLLARY 25. Let A be a solid D* ring. Assume that any left ideal | of A
satisfying J* = O must contain the socle of A. Then 3 a collection {(D, , M,)}
such that

(i) For each a, D, is a division involution ring and M, is a finite-dimensional
left D,-dot-module.

(i) A is *-~isomorphic to a sub-involution-ring of []. A(M,) containing
@ A(M,).
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