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If R is an involution ring and M is an R-module equipped with a non- 
degenerate Hermitian symmetric inner product, then the set A,(M) of those 
R endomorphisms of M which possess adjoints forms a new involution ring. 
A simpler but less interesting method of constructing involution rings is to 
start with a ring S and let Sinv be the ring direct sum of S and its opposite 
ring, with the involution (a, b)  -+ (6, a). The main theorem of this paper 
(Theorem 19) asserts that members of a certain class of involution rings can 
be imbedded in direct products of rings AR(M) and Sinv, with R and S 
suitably well-behaved. Using this result, a semiprime Artinian involution ring 
is shown (Corollary 23) to be isomorphic to a finite direct sum of involution 
rings of three types: (a) A,(M), for R a division ring and M finite-dimensional; 
(b) the ring of 2 x 2 matrices over AR(M), with involution (If :) + (-'$ a:), 
for R a field of characteristic not 2 and M finite-dimensional; (c) Sinv, for S 
a full matrix ring over a division ring. If an additional condition is imposed on 
the involution, types (b) and (c) can be eliminated from this decomposition 
(Corollary 24). Our main theorem also yields an imbedding for a primitive 
involution ring with nonzero socle into an AR(M) with R simple Artinian 
(Corollary 21). This differs from a similar result of Jacobson ([I], Theorem 2, 
p. 83), in which R is forced to be a division ring, in that the inner product on 
M in his result is not always Hermitian. 

This section is devoted to some concepts and technical lemmas which are 
needed later but which can be discussed without the requirement of an involu- 
tion. These results also lead to a ring-theoretic representation theorem 
(Theorem 8) which is included partly for completeness and partly because it 
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offers yet another proof of the \Vedderburn-Artin theorem. For this scction, R 
will denote a ring (not necessarily with unit), :I8 a left R module, L ( M )  the 
lattice of submodules of M. 

An atom in R is an idempotent e for which Re is a minimal left ideal of R 
and eR is a minimal right ideal. a(R) will denote the set of atoms of R. Call 
M a solid R module if to each nonzero x E M there is an e E a(R) with ex # 0. 
R is a solid ring if it is solid both as a left R module and as a right R module. 
We first derive a few simple consequences of these definitions. The following 
facts will be useful (see [2], p. 63): 

(a) Every minimal left ideal of a semiprime ring is generated by an idem- 
potent. 

(b) If R is semiprime and e = eZ E R, then Re is a minimal left ideal iff eR 
is a minimal right ideal iff eRe is a division ring. 

PROPOSITION 1. (i) If M is torsionkss and RR is solid, then M is solid. 

(ii) If M is torsionkss and solid, then every minimal submodule of M is a 
direct summand. 

(iii) If M is solid and nonzero, then M contains a minimal submodule. 

(iv) Let M be torsionless and solid. The following conditions me equivalent: 

(a) M is Noetheria. 
(b) M is Artinian. 
(c) M is a finite direct sum of minimal submodules. 

(v) R is solid iff R is semipnpnme and every nonzero left deal of R contains a 
minimal kft iidal. 

(vi) If R i s  prime with nonzero socle, then R is solid. 

(vii) If R is solid, then eRe is solid for each idempotent e E R. 

Proof. (ii) If K is a minimal submodule, pick 0 # k E K, e E a(R) such 
that ek # 0, f E Hom(M, R) with ekf # 0, a E R for which ekfa = e. Set 
xg = (xf)ak Vx E M: g is an idempotent endomorphism of M with image K. 

(v) (=.): If 0 # a E R, choose e E a(R) with ea # 0, b E R such that 
eab = e .  eabeab = e # O a a R a # O .  

(e): Let 0 # a E R. aRa # 0 => Ra # 0 =- Ra contains a minimal 
left ideal, which must be Re for some e E a(R). e = 8 E Re C Ra 3 e = ba 
for some b E R bue = e # 0 ue # 0. Thus, RR is solid. By (iii), every 
nonzero right ideal of R contains a minimal right ideal, so by symmetry .R 
is solid. 

(vi) R has a minimal left ideal Re, e E a(R). If K is a nonzero left ideal of R, 
choose 0 # a E K: eba # 0 for some b E R, and Reba Re is a minimal left 
ideal contained in K. 
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(vii) Note that eRe is semiprime. Let 0 # a E eRe. Ra contains a 
minimal left ideal Rf, f E a(R). f = ba for some b E R. baf = f # 0 3 aef = 

a f # O = - g = e f # 0 . f e = b a e = b a = f * g 2 = g ~ e R e . 0 # R g C R f *  
Rg = Rf is a minimal left ideal * g(eRe)g = gRg is a division ring 
=> g E a(eRe). ag = aef # 0. Therefore, eRe,,, is solid. By symmetry, 
,R,eRe is solid. 

N.B.: For the remainder of this section, we shall assume that R is a solid 
ring. 

Given any left (right) ideal J of R, let JL denote its right (left) annihilator. 
Let L,I(R)[L,L(R)] denote the set of all left (right) ideals J of R for which 
JLL = J' 

PROPOSITION 2. Let K be a left ideal of R which is left Noetherian. 

(i) Given J E L,'-(R) with J n K = 0, 3e = 8 E JL such that K = Re. 

(ii) Suppose that e = e2 E R and K = Re # 0. Then 3 orthogonal 
el ,..., en E ~ ( R )  with e = el + + en . 

(iii) If e = e2 E R such that Re is left Noetherian, then eR is %ht Noetherian. 

(iv) If K is a two-sided ideal, then K is generated by a central idempotent. 

Proof. (i) Suppose en = en2 E JL and Re, C K. Choose x E K \ Re, and 
e E a(R) with z = e(x - xen) # 0. Since, z 4 J = JL'-, 3b E JL such that 
sb = e. f = b z ~  K n JL is a nonzero idempotent. Since fe, = 0, en+, = 

en + f - eJis idempotent. Re, C Ren+, _C K. 

(ii) K is a direct sum of minimal left ideals K, ,..., K, . Fix i and put 
H = { r - - r e [ r ~ R ) , H ~ =  @ j + i K j ,  J i=  H + H i . B y ( i ) , 3 w i = w i a E H L  
with Hi = Rw, , hence, Ji = [(e - wi)RIL. Again by (i), 3ei E a(R) such that 
K, = Rei and J,e, = 0. He, = 0 =- ei = eei , so e E K = Re, + - 0 .  + Re, 3 

e = x,e, + + xnen =- ei = xiei . 
A dual for M is a submodule P of Hom(M, R) such that to each nonzero 

x E M there is an f E P with xf # 0. We shall assume for the rest of this 
section that M has a dual P. For K EL(M) [K EL(P)] define K L  = 

{f G P I Kf = 0) (K-L = {X E M I xK = 0)). Let LYM) [LL(P)] denote the 
collection of all submodules K of M (of P )  for which KU = K. If we use 
RR as a dual for RR by right multiplication, then this notation coincides with 
our previous notation for annihilators. Let 

and F(M I P )  = {t E L(M I P )  I M t  is Noetherian). Given f E P and x E M, 
we define (f, x) EL(M I P )  by the rule a(f, x) = (af)x. Note that for 
t E L(M I P), ker t = (tP)I E LL(M). 



PROPOSITION 3. Let J E LL(1M), K E L ( M ) ,  and assume that J C K and 
K /  J is ~Voetherian. Then K E LL(M).  

Proof. Since J E LL(M) ,  K /  J is torsionless, and so has a composition series 
by Proposition 1 .  Thus,  it suffices to consider the case when K/  J is simple. 
Then J I / K L  is naturally isomorphic to a submodule o f  the simple module 
Hom(K/ J ,  R ) ;  since J I L  = J C K C K L L  =- JLjKL # 0 ,  JL /KL must be 
simple. By the same argument, KLL/ J = KLL/  JLL  is simple, hence KLL = K. 

PROPOSITION 4. Let q5 E Hom(M, R) ,  t E Hom(:W, M ) ,  w E Hom(Mt, M ) .  

( i )  If ker C$ E L L ( M )  and Mq5 is I\ioetherian, then q5 E P. 

(ii) If M is Noetherian, then P = Hom(M, R )  and 

L(M I P )  = F(M I P )  - Hom(M, M) .  

(iii) If ker t E LL(M)  and Mt  is Noetherian, then t E F(M I P). 

(iv) I f t  E F(M I P), then tw E F ( M  I P).  

Proof. ( i)  Proposition 2 gives an e = e2 E R with MC$ = Re. Choose 
x E M such that xq5 = e, and set ] =. {exf If E (ker +)I). Since ker 4 E LL(M), 
]I = (eR)I. J and eR are right Noetherian by Proposition 2, hence are in 
LrL(R) by Proposition 3, so J -- eR. 3 f E (ker C$)' for which exf = e, and 
C$ = f E P .  

(iii) For f E P, (ker tf)/(ker t )  is Noetherian, hence, ker t f ~  L L ( M )  by 
Proposition 3 and t f ~  P by (i). 

LEMMA 5. (i)  If K is a minimal submodule of M ,  then 3 f = f E F(M I P )  
with Mf = K. 

(ii) If e E a(R),  x, y E M ,  and ex # 0,  then 3t E F(M I P )  with ext = ey and 
Mt  = Rey. 

Proof. ( i )  Choose 0 # x E K, e E a(R) such that ex # 0 ,  g E P for which 
exg = e, and set f = ( g ,  ex). 

(ii) Choose f = f 2 E F(M I P )  with Mf = Rex and compose it with the 
obvious map o f  Rex onto Rey. 

PROPOSITION 6. Let A be any subring of L(M I P )  containing F(M I P) .  

( i )  Let e = e2 E A. Then e E a(A)  iff Me is a minimal submodule of M. 

(ii) A is a solid ring. 

(iii) If R is prime, then so is A. 

Proof. ( i)  Suppose Me is minimal. I f  0 # t E eA, then Mt = Met is a 
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minimal submodule of M and t IMe is an isomorphism of Me onto Mt. By 
Lemma 5, 3 f = f E A for which Mf = Mt; and t[f(t = e. Thus 
eA is minimal. If 0 # t E Ae, choose x E M with xt # 0, f E a(R) such that 
fxt # 0, and w E A for which fxtw = fx (by Lemma 5). (ewte)IMe is an auto- 
morphism of Me, and [ e [ ( e ~ t e ) l ~ , ] - ~ ( e w ) I ~ ~ ] t  = e. Therefore, Ae is minimal, 
hence e E a(A). 

If e E a(A), choose a minimal submodule J of Me and g = g2 E A with 
Mg = J. AgCAe => Ag = Ae * Me = Mg = J. 

(ii) If 0 # t E A, choose x E M with xt # 0, e E a(R) with ext # 0, and 
idempotents g, h E A such that Mg = Rex, Mh = Rext. g, h E a(A) and 
gth # 0. 

(iii) Given 0 # t, w E A, choose x, y E M with xt, yw # 0, e, f E a(R) 
such that ext, fyw # 0, and g = g2 E A with Mg = Rext. Since R is prime, 
Re r Rf. If u is the composition of g with the isomorphism Rext -t Re -+ 

Rf + Rfy, then tuw # 0. 

PROPOSITION 7. (i) If K E Y M )  is Noetherian, then 3e = e2 E F ( M  I P) 
with Me = K. 

(ii) Given t EF(M I P), 3 f, ,..., f, E P and x, ,..., xn E M such that 

t = (fl + + (fn xn>. 

Proof. A = F(M I P )  is solid by Proposition 6. 

(i) We may assume that K is nonzero and write it as a direct sum of 
minimal submodules Kl ,..., Kn . For each i, Lemma 5 yields an ei = ei2 E A 
such that Me, = Ki . Since each ei E a(A) by Proposition 6, Ae, + ..- + Aen 
is a Noetherian left ideal of A. By Proposition 2, 3e = e2 E A for which 
Ae = Ae, +- a - -  + Ae,. 

(ii) Assume that t # 0 and use (i) to find e = e2 E A with Me = Mt. 
Proposition 2 gives us orthogonal el ,..., en E a(A) such that e = el + - - -  + en . 
Fix i, and choose 0 # x E Mei and gi E a(R) with gix # 0. Let xi = g p  
and choose a E M for which a t  = xi . gia $ ker te, - 3 f, E (ker tei)l such that 
ggfi = g, , hence te, = (fi , xi). 

We are now in a position to represent any solid ring in terms of linear 
transformations on vector spaces with duals, as follows: 

THEOREM 8. Let A be any ring. Then A is solid ifJ 3 a collection 

{(Dm Ma , Pm)) such that 

(i) For each a, Da is a division ring, Ma is a left Da-vector-space, and Pa is a 
dual for Ma . 

(ii) A is isomorphic to a subring B of n L(Ma I Pa) containing @F(M, ( P,). 



Proof. I t  follows easily from Proposition 6 that any such ring B is solid. 
Now assume that A is solid. Let {la) be the set of minimal two-sided ideals of 
A. Fix a, and choose e, E a(A) n I, . Set D, -- e,Ae, , Ma = e,A, Pa = Ae, . 
For x E A and a E M a ,  put a(x+), = M. This defines a ring homomorphism 
+ of A onto a subring B of n L(M, I Pa). Given t E F(MB I P,), Proposition 7 
gives us b, ,..., b, E P, and a, ,..., a, E ME such that 

w h e r e x = b , a , + ~ ~ ~ + b , a , ~ I , . F o r o r # ~ , I J ~ C I , n I , = O ~ ( x + ) ~ = 0 .  
Therefore, @ F(M, I Pa) C B. If x E A and x+ = 0, then I2 = AeaAx = 

AM,(x+), = 0 Va; since e E AeA E {I,) Ve E a(A), this means x = 0. 
With a little help from the previous propositions, the following well-known 

results are direct consequences of Theorem 8: 

COROLLARY 9. Let A be any ring. Then A is prime with nonzero socle ijJ 3 
a divisbn ring Dl a nonzero left D-vector-space MI and a dual P for M such 
that A is isomorphic to a subring of Y M  I P) containing F(M I P). 

COROLLARY 10 (Wedderburn-Artin). k t  A be any ring. Then A is 
semajbime and left Artinian iff A is isomorphic to a finite direct sum of full 
matrix rings over division rings. 

The purpose of this section is to introduce the involution rings and inner 
product modules which will be used in the representation theorems, and to 
derive a few of their properties. 

An involution ring is a ring R together with a map * : R + R such that 
Va, b E R, 

(i) (a + b)* = a* + b*. 

(ii) (ab)* = b*a*. 

(iii) a** = a. 

A D* ring is an involution ring R with the property that to each nonzero 
a E R there is a b = b* E R with aba* # 0. We shall use n, and 0, for 
direct products and direct sums of involution rings. An isomorphism of 
involution rings is called a * isomorphism, and is denoted r, . If R is any ring, 
we can construct an involution ring Rav from the abelian group R @ R 
by defining a multiplication and an involution according to the rules 
(a, bxc, d) = (ac, db), (a, b)* = (b, a). 
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LEMMA 11. Let D be a division ring, M an injinite-dimensional kft 
D-vector-space, P = Hom(M, D), A a subring of L(M I P )  containing F(M I P). 
There are no involutions on A. 

Proof. Assume A has an involution *, and choose any e E a(A). e* E a(A) 
also, so eAe r e*Ae* D. There are semilinear isomorphisms of e*A onto 
M and of Ae onto P. e*A can be converted into a right vector space over eAe 
by defining a scalar multiplication according to the rule (e*a) . (ebe) = 
(ebe)*(e*a); then * is an eAe isomorphism of e*A onto Ae. Then the following 
contradictory equalities hold: 

[M : Dl = [e*A : e*Ae*] = [e*A : eAe] = [Ae : eAe] = [P: Dl. 

THEOREM 12. Let A be a prime involution ring with nonzero sock S. 
Assume that S is contained in each Left ideal J of A which satrsfies JL = 0. 
Then A satisjks all chain conditions. 

Proof. By Corollary 9, 3 a division ring D, a nonzero D-vector-space M, 
and a dual P for M such that A is isomorphic to a subring B of L(M 1 P )  
containing F(M I P). Consider any subspace K of M for which K-L = 0. If 
J = {t E B I Mt  C K), then it follows from Proposition 7 that K = MJ, so 
that for w E JL we have Kw = 0 * M = KLL C ker w. Thus J contains 
the socle of B, hence a(B) C 1, which yields K = M. In particular, all 
maximal subspaces of M must be closed, which forces LYM) = L(M). 
Proposition 4 now yields P = Hom(M, D), and then Lemma 11 forces 
[ M : D ]  <a. 

Let R be an involution ring, M a left R-module. An inner product for M 
i samap( . ,  .): M x M +  R s u c h t h a t V a , b , c ~ M ,  ~ E R ,  

(i) (ra + b, C) = r(a, c) + (b, c). 

(ii) (a, b)* = (b, a). 

M is called a (left) dot moduk over R if to each nonzero x E M there is a 
y E M with (x, y) # 0. We shall use 0, for the direct sum of dot modules. 
An isomorphism of dot modules is called a dot-isomorphism, and is denoted r,. 

For the remainder of this section, R will denote a solid involution ring, and 
M will denote a left R-dot-module. Given x E M, define 4, E Hom(M, R) 
by the rule a+, = (a, x). Set M *  = (4, I x E M), which is a dual for M. 
Since x + 4, is a conjugate linear isomorphism of M onto M*, we identify 
M and M *  when discussing I, in the sense that we now write 

KL = {x E M I (x, K )  = 0) for K eL(M). 

Consider t E Hom(M, M). An adjoint for t is any s E Hom(M, M )  for which 
(at, b) = (a, bs) Va, b E M. If t has an adjoint, it is unique, and is denoted by 
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t*. T h e  set A ( M )  o f  all elements of  Hom(M, 1M) which have adjoints is an 
involution ring. Note that A ( M )  = L(M I M*). W e  writeF(M) forF(M I M*). 
Given x, y E M ,  write ( x ,  y )  for (+,, y ) ,  and note that ( x ,  y)* = ( y ,  x) ,  
(rx,  y )  =-  ( x ,  r*y) Qr E R. 

PROPOSITIOX 13. Let A be a sub-involution-ring of A ( M )  containing F ( M )  

( i )  I f R  is D*, then A is D*. 

(ii) If A is D* and M is faithful, then R is D*. 

Proof. ( i )  Given 0 # t E A ,  choose x E M with xt # 0 ,  e E a(R) with 
ext # 0 ,  w E A for which extw = ext # 0 ,  y E M with (xtw, y )  # 0 ,  
and r = r* E R such that 0 # (xtw, y )  r(xtw, y)* = (xtw(y,  ry) wxt*,  x). 
w ( y ,  ry)w* is a self-adjoint element o f  A and tw(y ,  ty)w*t* # 0. 

(ii) Given 0 # t E R ,  choose x E M with tx # 0 ,  e E a(R)  with etx # 0 ,  
y E M with ( y ,  etx) # 0 ,  z E M with 0 # ( y ,  etx)z = y(etx, z ) ,  w = w* E A 
for which ( z ,  etx)w(z, etx)* # 0 ,  and a E M such that 

0 # a(z ,  etx)w(etx, z )  = (a,  z )  et(xw, x )  txe*z. 

(xw, x)  is a self-adjoint element o f  R and t(xw, x)t* # 0. 

T h e  next two results are straightforward, hence, their proofs are left to the 
reader. 

PROPOSITION 14. Let S be the ring of 2 x 2 matrices over R ,  Q the set of 
2 x 2 matrices with entries from M. 

( i )  Set 

Then S becomes an involution ring, which we shall denote by 2-,(R). 
(ii) Q is a left S module in the obvious matter. Define 

Then Q becomes a left dot module over S ,  which we shall denote by 2-,(M). 

(iii) A(&) E, 2-,[A(M)]. 

LEMMA 15. Let R be prime. If 3e E a(R) and r = r * E R such that ere* # 0 ,  
then R is D*. 
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THEOREM 16. Assume that R is the ring of all 2 x 2 matrices over some 
division ring D, and that R is not D*. Then D is a jield, char. D # 2, and 
R = 2 4 0 )  (we use the identity map as the involution on D.) 

Proof. By Lemma 15, 

Since (i :)* is a nonzero idempotent, this forces 

Similarly, 

Given a E D, 

such that 

and similarly 3arr E D such that 

and a are inverse antiautomorphisms of D. 

with 

Then Va E D, 
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In particular, 

so = a-l. If a = 1 + a, then 

and Lemma 15 forces 

hence or = - 1. Thus 

Similarly, 

O l O O *  e, -,..I = c s* = rio 0,co all 

Given a E D, set b = a - ar: then 

and Lemma 15 forces b = 0 .  Therefore, T = 1. Since T is an antiauto- 
morphism of D, D must be a field. Applying Lemma 15 once again, 

hence, char. D # 2. 

LEMMA 17. Assume that 2r # 0 w h e t  0 # r E R. If K E L(M)  with 
(x, x) = 0 Vx 'x K, then K C K1. 

Proof. 

O = ( x + y , x + y ) = ( x , y ) + ( y . x ) v ~ ' x , ~ ~ K -  

0 = (Y, (Y, 4.4 + ((y, x)x,y) = 2(y, x)(x,y)Vx,y E K  

0 = [(x, r * ~ )  + ( r * ~ ,  x)I(x, Y) = (x. Y) Y) Vx,yeK, r e R .  
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PROPOSITION 18. Suppose that F is a field with idmtity involution, char. 
F # 2, R = 2-,(F). Assume that M is Noethetian. Then 3 an F-dot-module K 
such that M g ,  2-,(K). 

Proof. First consider the case .M = .R. ( 1 ,  1 )  = ( 1 ,  1)* * ( 1 ,  1 )  = (k 2 
for some 0 # t EF.  Set FK = FF and put (a, b) = atb Va, b E K. 

W e  may assume M # 0. According to Lemma 17, 3x E M such that 
(x ,  x )  # 0. Then (x ,  x)  = (x ,  x)* (x ,  x)  = (i !) for some 0 # t E F, hence 
(x ,  x )  is invertible in R. This forces Rx g .R and Rx n (Rx),  = 0. Since Rx 
and (Rx),+Rx are inLL(M) by Proposition 3, ((Rx)l+Rx)l = Rx n (Ru)l  = 
0 =+ (Rx),  + Rx = 0,  = M =- M = Rx 0, (Rr) l .  Repeat this process 
with (&)l i f  (Rx),  # 0. Eventually we find F-dot-modules K, ,..., K,, such 
that 

M zi, 2-,(Kl) 0, ... 0,2-,(K,) g, 2-l(K1 0, ... 0, G). 

Throughout this section, A will denote an involution ring. 

THEOREM 19. A is solid iff 3 a collection {(R, , S,)) such that 

(i)  For each a, one of the following holds: 

(a) 3 a divhim involution rzhg D, and a left Dm-dot-module Ma such that 
R, = A(M,) and S ,  = F(M,). 

(b)  3 ajeMF, of characteristic not 2 and a left 2Zl(F,)-dot-module Ma such 
that R, = A(M,) and S ,  = F(M,). 

(c)  3 a division ring D, , a left Dm-vector-space Ma , and a dual Pa for Ma 
such that R, = [ Y M ,  I Pa)]uV and S ,  = [F(M, 1 Pa)IWV. 

(ii) A is *-isomorphic to a sub-involution-ring B of n* R, containing @,S, . 
Proof. The  solidity o f  such a ring B follows easily from Proposition 6. 

Now assume that A is solid. Say that two minimal two-sided ideals I ,  J are 
equivalent i f f  I = J or I = I* ,  and let {I,) be a collection consisting of 
exactly one representative from each equivalence class. Now fix a. 

CASE (a) I, = I,* is D*. Choose e, E a(A) n I,  , a = a* E I, such that 
earn,* # 0,  and b E A for which e,ae,*b = e, . Set v, = e,ae,*, w, = e,*be, . 
W,V,W, = w,e, = e,*w, a w,v, = e,*. Then w,*v, = (vawa)* = e,* = 

W,V, 5 w,* = W ,  . Therefore, v, = va* = e,v,e,*, w, = ma* = ea*waea 9 

v,w, = e, , w,v, = em*. Define an involution ' on D, = e,Ae, by the rule 
a' = v,a*w, and an inner product on Ma = e,A by the rule (a, b) = ab*w, . 
I f  0 # a E M a ,  choose b E A for which ab = e, , and note that 0 # eme = 
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abv,w, - (a,  v,b*). Set R, =. A(Ma) and S, = F(M,). Given x E A, define 
(x+), E R,  by the rule a(x+), = ax. 

CASE (b) I, = I,* is not D*. Choose e E a(A)  n I,. If I, -- 4 e ,  then it 
would follow from Proposition 2 that e would be central in A, whence 
I, = eAe would be a division ring and thus D*. Therefore, {a - ae I a E I,} 
is nonzero and so contains a minimal left ideal 1. It follows from Proposition 2 
that 3 orthogonal f,  g E a (A)  such that J = Af,  Ae 7 -  Ag. I, = A f A  = AgA. 
Ag*A = I,* = I,. Then 12 # 0 => 3a E A with fag* # 0. Choose b E A 
for which fag*b = f ,  and set e, ;= f+g, v,  =. fag*+gaif *, w, = f *b*g+g*bf. 
fag*bf = f 3 f *b*ga*f * = f*. 3c E A such thatga*f *c = g, so gaif *b*g --- 
ga*( f *b*ga*f *)c -= ga*f *c = g andgibfag* = g*. Thus v,  -- v X x  -- e,v,e,*, 
w = w,* = e,*w,e, , v,w, = e, , w,v, = e*. As in case (a), D, =- e,Ae, has 
an involution defined by a' = v,a*w, and M ,  = e,A has an inner product 
defined by (a,  b) = ab*w, . If 0 # a E M, , then either fa # 0 or ga # 0, 
say fa # 0; choose b E A with fab = f and note that 0 # fe, - fabv,w, = 

f(a, web*). Define R,  , S, , and (x+), as in case (a). 
By Proposition 1, D, is solid. Since x 4 (x4),  is a *-isomorphism of I, onto 

a sub-involution-ring of A(M,) containing F(M,), Proposition 13 says that 
D, is not D*. If 0 # a, b E D, , then (AaA)(AbA) = 12 # 0 aD,b = 

aAb # 0, hence D, is prime. Since D, is the direct sum of the minimal left 
ideals D j, D,g, it follows from the Wedderburn-Artin theorem that D, is 
isomorphic to the ring of 2 x 2 matrices over some division ring F, . 
Theorem 16 now forces F, to be a field of characteristic not 2 and 
D, r * 2-,(F,). 

CASE (c) I, # I,*. Choose e, E a(A)  n I, and set D, = e,Ae, , Ma = e,A, 
P, = Ae, , R, = (L(M, I S ,  = (F(M,  I P,))'". Given x E A ,  define 
x, E L ( M ,  I P,) by the rule ax, = ax, and set (x4), = (x ,  , (x*),) E Ra . 

We now have a *-homomorphism + of A onto a sub-involution-ring B of 
n* R, . Fix j3 and let t E S ,  . In case (a) or (b), it follows as in Theorem 8 
that 3x E A with (x4), = t and (x4), = 0 Vci # j3. Now assume (c). Then 
t = (u, v )  for some u, v E F(M, I P,). As in Theorem 8, 3x, y E I, for which 
X, = u, yr = v. Set z = x + y*. Since I&* C I, n I,* = 0, z ,  = x, = u 
and (a*), = y,  = v ,  hence (a+), = t. Since z E I, + I,*, (z+), = 0 Vci # 8. 
Therefore, @, S, C B. Finally, consider a nonzero x E A .  Choose e E a(A)  
such that ex # 0 and set I = AeA. If I = I*, then I = I, for some fl and 
AM,(x+), = I x  # 0 3 (x4), # 0. Now assume that I # I*. 38 such that 
I, = I or I*. 3a E A for which exa = e, so e*a*x*e* = e* # 0 - I*x* # 0. 
If I, = I ,  then AMP, = I x # O  3 x, # 0, while if I, = I * ,  then 
AM,(x*), = I*x* # 0 3 (x*), # 0; thus (x4), = ( x ,  , (x*),) # 0. 

COROLLARY 20. A is a solid D* ring iff 3 a collection ((D, , Ma)) such that 
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(i)  For each a, Da is a division involution ring and M,  is a left Dm-dot-module. 

(ii) A is *-isomorphic to a sub-involution-ring of n, A(M,) containing 
0 * F(Ma). 

COROLLARY 21. A is prime with nonzero socle iff 3 an involution ring R 
and a nonzero left R-dot-module M such that 

( i )  Either R is a division involution ring or 3 a jield F of characteristic not 2 
such that R = 2-,(F). 

(ii) A is *-isomorphic to a sub-involution-ring of A ( M )  containing F(M).  

COROLLARY 22. A is a prime D* ring with nonzero socle iff 3 a division 
involution ring D and a nonzero left D-dot-module M such that A is *-isomorphic 
to a sub-involution-ring of A ( M )  containing F(M).  

COROLLARY 23. A is semiprime and left Artinian iff 3 Rl ,..., Rn such that 

( i )  For each i = 1 ,.. ., n, one of the following holds: 

(a) 3 a division involution ring Di and a finite-dimensibnal left Di-dot- 
module Mi such that Ri = A(Mi). 

(b) 3 a field Fi of characteristic not 2 with identity involution and a finite- 
dimensi'wl left Fi-dot-module Mi such that Ri = 2-,[A(Mi)]. 

( c )  3 a division ring Di and a finite-dimensional W t  Di vector-space Mi 
such that Ri = [Hom(M, , Mi)linv. 

(ii) A r* R,  @, @, Rn . 

COROLLARY 24. A is a semiprime left Artinian D* ring zr 3 division 
involution rings D, ,..., D,, and jinite-dimensional left D,-dot-modules Mi  such 
that A g, A(Ml)  @, 6 . .  @, A(M,). 

COROLLARY 25. Let A be a solid D* ring. Assume that any left ideal ] of A 
satisfying JL = 0 must contain the socle of A.  Then 3 a collection {(Dm , Ma)) 
such that 

(i) For each a, Dm is a division involution ring and Ma is a finite-dimensional 
left Da-dot-module. 

(ii) -4 is *-isomorphic to a sub-involution-ring of JJ, A(Ma) containing 
O* A(Mm). 
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