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Our main purpose is to provide for primitive associative superalgebras a struc-
ture theory analogous to that for algebras [5, 6, 10] and to classify primitive
superrings with superinvolution having a minimal one-sided superideal. We were
led to this problem by our work on finite dimensional central simple Jordan
superalgebras over fields of characteristic not 2 [9] (see also [7]). Of course, just as
symmetric elements give rise to Jordan superalgebras, skewsymmetric elements
give rise to Lie superalgebras [8, 4]. The results and methods are closely related to
those of structure theory of associative rings and central simple associative algebras
with involution [5, Chap. I; 6, Chaps. II, 111; 1, Chap. X; 10, Chap. 2]. Some of the
results have been announced in [13].  © 1998 Academic Press

INTRODUCTION

Let K be a field, T' =<1, &li = 1,2,...) the Grassmann (or exterior)
algebra over K on a countable number of generators &, with &2 =0,
&&= —§&, i+ ) Theelements 1, & & - &, i, <i, < - <i, forma
K-basis of T. Letting T, (respectively T';) be the span of the products of
even length (respectively of odd length), T is the direct sum of its even and
odd parts: I' =TIy + I';. If 27 is a homogeneous variety of algebras, a
Z,-graded K-algebra

A =%+,
is a Zsuperalgebra if its Grassmann envelope
&) =o,0 1, +, @I
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belongs to . While in general . & 7~ (for example, a Lie superalgebra is
usually not a Lie algebra), an associative super-ring is nothing but a
Z,-graded associative ring. However, &/ =&, +.%/, iS a commutative super-
algebra if

aby = (-1)Pbsa, Va,c,, b, €.

We will say that such elements supercommute. The Grassmann algebra is a
commutative superalgebra. Since we are not interested in restating the
theory in the case of rings we will normally assume that the odd compo-
nent is not {0}.

ExampLEs. (1) Let V' be a vector space over K. The tensor algebra
T(V) is a superalgebra, the even (respectively odd) part being the span of
the tensors of even (respectively odd) length. If g is a quadratic form on V/,
the Clifford algebra C(V, ¢) is the quotient algebra of T(}") by the ideal
generated by elements of the form x ® x — g(x)1. Since these elements
are homogeneous C(V, g) inherits the grading of T(}).

(2) If V' is of dimension 2 over a field K of characteristic not 2 and
g = {A) L {uythen C(V, q) is a quaternion algebra (A, w). We recall the
standard notation for quaternions. If A, u € K*, we write (A, u) for the
quaternion algebra K1 + Ku + Kv + Kuv, where u? = A1, v? = ul, and
uv = —uu. In this case the grading of C(V/,q) = (A, w) is C(V, ¢q), = K1
+ Kuv, C(V, q); = Ku + Kv. If & is a quaternion algebra with centre K,
let ~ be the standard involution of @; #(x, y)1 == xy + yx defines the trace
form, t(x) = t(x,1) =x + X.

(3) The algebra of p + g X p + g matrices .Z,, (), & a division
algebra, can be viewed as an associative superalgebra by taking the
diagonal components .#,(2) and .Z,(2) as the even part and the off-di-
agonal components as the odd part; this is an example of a simple
associative superalgebra.

(4) A superspace over K is a left K-vector space V' which is Z,-graded
V=1V, ®V,. The associative algebra End} = Endy V' = End, V' +
End, VV, where End,V = {a € EndVl|vza €V}, }, is an associative su-
peralgebra. Note that if the role of 1/, and V;, were interchanged, the
superalgebra structure on End }” would not change. A symmetric superform
on V' is a graded bilinear form

(,):VXV—>K, V=V,1V,

which is symmetric on 1, and skew-symmetric on V.
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A superinvolution of an associative superalgebra .« is a graded linear
map * : .o/ — . such that

a*=a and  (a,by)" = (—-1)“Fbjat.

If o is of characteristic 2, this is nothing more than an involution
respecting the grading. A superinvolution of a super-ring R is an isomor-
phism of period 2 of R onto its opposite super-ring R°?, where the
opposite super-ring of R, i.e., R°’ = R, as an additive group, with multipli-
cation given by

bgre, = (-1)"c by, byERy c,ER,, B,yEZ,.

The identity map is a superinvolution of a commutative superalgebra. A
nondegenerate symmetric superform on a finite dimensional I induces a
superinvolution * on End IV via

(vaa,,v5) = (1) (v, v5a%), forallv, v €V,

4

The restriction of * to EndV, is the transpose involution while the
restriction of * to EndV; is the symplectic involution. This superinvolu-
tion, or rather the associated Lie superalgebra, has been called orthosym-
plectic.

(5) If R is a simple associative algebra then the associative superal-

gebra
( )
b a

is simple as a superalgebra but not as an algebra.

a,beR}

Primitive Super-rings

We first start by establishing the elementary results for primitive super-
rings analogous to those for rings [6, Chaps. Il and Ill]. Some of these
results on prime associative superalgebras with nonzero socle have been
obtained in [3] from a different point of view.

If R =R, + R, is an associative super-ring, a (right) R-supermodule M
is a right R-module with a grading M = M, + M; as R,-modules such
that

murg € My, p foranym, e M,,r, €Rg,a, B Z,.

If N=N,+ N, is also an R-supermodule then a R-supermodule homo-
morphism from M to N is an R,-module homomorphism 4, y € Z,,



PRIMITIVE SUPERALGEBRAS 591

such that
M h, CN

a’ty = a+y

(murg)h, = (myh,)rg, Vm,EM,, r; €ERs, o, BEZ,.

and

Given an R-supermodule M, End M = End My, the ring R-supermodule
endomorphisms of M, is a super-ring. For 8 € Z,, let Endz(M) = {b; €
End MgIM, by C M, 5, @ € Z,}.

The commuting super-ring € of R on M is defined to be

T =%, +%,

where &, = {c, € End, Mle,r, = (=1)“r,c, Vr, €R,, a € Z,}.

Thus the elements of & supercommute with those of R acting on M. An
R-supermodule is irreducible if MR + {0} and M has no proper subsuper-
module. If R is unital then 1 € R,. A unital super-ring R is said to be a
division super-ring if all nonzero homogeneous elements are invertible, i.e.,
every 0 # r, € R, has an inverse r, !, necessarily in R,. If R is a division
super-ring then R, is a division ring. Also any division super-ring is a
simple super-ring. From now on, we assume that «, 3, v, 6 € Z, and that
any equation involving these indices holds for all possible choices. The
next two results are standard and are included for completeness’ sake.

SCHUR’S LEMMA. Let M = M, + M, and N = N, + N, be irreducible
R = Ry + R, supermodules and fg a R-homomorphism of M into N. If
fg # 0 then fg is invertible.

Proof. Since fz # 0, Mfy = M,fz + M,f; is a nonzero R-subsuper-
module of N. By the irreducibility of N, Mf, = N. Let Ker, f; = {m, €
M,|m,f; = 0}. Then Ker f, = Ker, f; + Ker; f; is an R-subsupermodule
of M properly contained in M. By the irreducibility of M, Ker f, = {0}
and f, is invertible. 1

CoROLLARY 1. Let R be a super-ring and M an irreducible R-supermod-
ule. Then the commuting super-ring & of R on M is a division super-ring.

Proof. 1f 0 # ¢, € €, then m,cz # 0 for some m, € M,, a =0 or 1.
By Schur’s Lemma, ¢, is invertible in End M and hence in . Thus € is a
division super-ring. |

The following lemma is the key to the proof of the density theorem for
associative superalgebras.

LEMMA 2. Let M = My + M, be an irreducible R-supermodule for the
super-ring R = Ry + R,. If M, # {0} then M, is an irreducible R,-module
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and for any nonzero m, € M, m, Ry =M, 5. If My # {0} and M, + {0}
then the commuting ring of R, on M, can be identified with &, the even part
of the commuting super-ring & of R on M.

Proof. If N, is a nonzero R,-submodule of M, then N, + N, R, is a
nonzero subsupermodule of M. Therefore N, + N,R, =M. So N, =M,
and M, is an irreducible R,-module.

If m,R, = {0} forsome 0 +#m, M, let N,={n, e M,|n, R, =1{0}}.
Since N, is a nonzero R,-submodule of M, N, = M,. So MR, = {0}. If
M_R, = {0} then M_,R = {0} and M, is a proper subsupermodule of M.
Therefore M R, # {0}. But then M_ R, is a proper subsupermodule of M.
Hence if m,# 0 then m, R, # {0} and m, R, =M,. Also m, R, D
m,RyR, = M_ R, is an R,-submodule of M ,,. If M R, ={0} while
M, , # {0} then M, is a proper subsupermodule of M, a contradiction.
Hence m, R, =M, R, =M, ,.

Let 2 be the commuting ring of R, on M, considered as an R,-mod-
ule. Soforall d €2, r, € Ry, and m, € M,

m,rod = m, dr,.

Given d €2 we wish to extend its action to M_,,. Fix a nonzero
m, € M,. Since m,R, = M, ,, define an action of & on M, , by

(43

m,rd = m, dry, forany d €< and r; € R;.

We must show that this is well-defined, namely, that if m_r, = 0 then
n,.,=m,dry=0.1fn, ,#0then n, R, =M, and m,=n_, s, for
some s, € R,. Therefore

My =N, 18, = (m, dry)s; =m,d(r;sy) =m,(rs;)d = (m,ry)s;d =0,

[e3

a contradiction. Note that this computation also shows that 4 commutes
with all s; € R, on M, ,. By definition, d commutes with all elements of
R,on M,.Forall r,€eR,, r, €R,,and d €9,

(myry) drg = (morid)rg = (mgd)(rirg) = my(rire)d = (m,ry)(rod)
and d commutes with R, on M, ,. Thus we can identify & with &,. |

Following [6] we prefer to have the commuting super-ring act on the left
and the endomorphism super-ring act on the right. We do this by letting
the opposite super-ring of # act on the left via

cU = (—1) ayvacy.

The super-ring R is (right) primitive if it has a faithful irreducible (right)
supermodule. If M is a faithful irreducible (right) R-supermodule we may
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consider M as left #°P-supermodule. Then R is said to be dense on M if
for every positive integer n and choice of v,,,...,v,, € M, linearly
independent over &, and wyg,...,w,z € My there is an element r,, ; €
R, g such that v, r,. s =w;g fori=1... n

DeNsITY THEOREM. Let R = R, + R, be a primitive super-ring, M =
M, + M, a faithful irreducible R-supermodule, and & = &, + &, the com-
muting super-ring of R on M. Then R is a dense super-ring of linear
transformations on M over & = & °P.

Proof. M, and M, are left vector spaces over &, = &5”, R, is a ring
of linear transformations of M, into itself, and R, ; an additive group of
linear transofrmations of M, into M, such that R, zR, SR,z By
Lemma 2, M, is an irreducible R,-module and the commuting ring of R,
on Mg is 9,. These are exactly the hypotheses of Theorem 1 of [6, p. 28]
which allows us to conclude that R, ; acts densely on M,. |

A (right) superideal I =1, + I, is a (right) subsupermodule of the
super-ring R considered as a (right) R-supermodule. An associative
super-ring is (right) Artinian if it satisfies the descending condition on
right superideals. A superspace over an associative division superalgebra
9 =9, +2, is a left Z-supermodule V" such that =1, & V| as a &,
(left) vectorspace. Let dim,, V;, = p and dim,, V; = q. If p + q < = then
we say that V' is finite dimensional. If &, # {0} then for any 0 # d, € 9,
d\Vy € V; and d,V; € V;, which implies that p = g and End,, V' =.7,(2).
If 2, = {0} then End,, V =7, (2) as in Example 3. Thus the grading of
End,, V is induced by the grading of & if &, # {0} and by a partition of
dim,V=n=p+gq if 2 =9, An associative super-ring is simple if it
has no non-trivial graded ideal.

THEOREM 3. If & =4/, + &/ is an Artinian simple associative super-ring
then, as a super-ring, & = End,(V), V a finite dimensional superspace over
an associative division superalgebra 9.

Proof. Let I =1, + I, be a minimal right ideal of the super-ring . By
minimality, [ is an irreducible supermodule of . Since &/ is simple, I is a
faithful supermodule. Therefore o7 is a primitive super-ring with faithful
irreducible supermodule M = 1. M is a left & = @ °P-supermodule, where
% is the commuting super-ring of .&# on M. Thus . is isomorphic to a
dense subsuper-ring of End,, M. If M is infinite dimensional over &, then
so must M, be for at least one « € Z,. Let v,,,...,0,,,... be an infinite
sequence of linearly independent elements of M,,. The annihilators AnnV;
= AnngV; + Ann, V;, where AnngV, ={b; €.4|V;bs} = {0} for V=
oY/ ,9v,,, form a properly descending chain of right superideals of ..
Therefore dim,, M is finite, say n, and, by density, & = End,(}) =
End, (V) + End, (V). 1
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So as a ring & =.#,(2), & is an associative division superalgebra. The
structure of associative division superalgebras will be determined in the
next section. We wish to show that, as in the algebra case, n and & are
unique up to isomorphism.

ProposiTION 4. Let R =R, + R, be a primitive super-ring having a
minimal right ideal. Then any two faithful irreducible (right) R-supermodules
are isomorphic.

Proof. If I =1, + I, is a minimal right superideal of R = R, + R, and
M = M, + M, a faithful irreducible R-supermodule, the faithfulness of M
ensures that m, I # {0} for some m, € M,. Since m, I is a nonzero
subsupermodule of the irreducible supermodule M, it must be all of M.
Since the annihilator of m, in I is a right superideal of R properly
contained in I, it is {0} and the map b — m_b, b € I, is an R-supermodule
isomorphism of I onto M. Thus every faithful irreducible R-supermodule
is isomorphicto 1. 1

If V=1V, + V| is a superspace over the associative division superalge-
bra®# =%, + &, W= W, + W, asuperspace over the associative division
superalgebra 9 =2, +2, and o : € — 2 an isomorphism of superalge-
bras then a map s, :V — W is said to be a o-semi-linear superspace
homomorphism provided that

vgs, € W, and (cqtp)s, =ci(vgs,), Ve, €E,,v5 €Vp.

ISOMORPHISM THEOREM. Let @ = %, + &, and & =D, + 2, be asso-
ciative division superalgebras and V = Vy + V| (respectively W = Wy + W)
be a finite dimensional left & (respectively &) superspace. Then ¢ :End, V
— End,, W is a superalgebra isomorphism if and only if there exists a
superalgebra isomorphism o : € — 9 and a o-semi-linear superspace isomor-
phism

s,:V—>W  suchthatal =5 "a,s, Va, € (End, V), . (1)

as'y’

Proof. If s, is a o-semi-linear isomorphism of }© onto W then one
checks that a, — s_*a,s, is an isomorphism of End, V" onto End, W.

Conversely, assume that ¢ :End, V — End, W is a superalgebra iso-
morphism. The map ¢ allows us to view W as a faithful irreducible
End_ V-supermodule. Since End. V' is a primitive super-ring with a mini-
mal right superideal, by Proposition 4, IV and W are isomorphic as
Endg V-supermodules. If s, :1 — W is an End, }-supermodule isomor-
phism then

(Uﬂrﬁ)sy = (Uasy)réb Vo, €V, , rs€ End V.



PRIMITIVE SUPERALGEBRAS 595

Therefore

Wold =wos,'rgs,  Yw, €W, , r, € End, V.

On V, scalar multiplication by elements of #, L., :vs = cgu; CcOMMUtes

with every element of End, V. Therefore s;chBsy commutes with every
-1

— 0 -1 i inlicati
s, 1gs, =rg € Endg W. Therefore s “L_ s, is a scalar multiplication on

L. on W for some cg €. Forall a, € %, and c; € %,

— o1 _ o1 — -1 -1
L(aacﬁ)" =5 L(aacﬁ)sv =5 LcﬁLaasv - (sv Lcﬂsv)(sv Laasv)
=Ll = Loy
Thus (a,cy)” =agcg and o1& —>Z given by ¢, — cg defines a super-
ring isomorphism of # into &. Similarly L . := syLdasy_l yields a super-
ring isomorphism 7 of & into #. Since d7° =d,, o is onto. SO o is an
isomorphism of & onto 2 and

!

(cpty)s, = cg(v,s,) Vo, €V, cs €%,

that is, s, is a o-semi-linear isomorphism of V" onto W. |

Remark. Example 4 shows that odd isomorphisms are needed when
& = %,. However, if there isa ¢, #0, ¢c; €%, then ¢, ,=L.s isa

7-semi-linear isomorphism of V" onto W, where 7 = ¢, o, x¥e = cxe L.

As usual we say that a super-ring R is semiprime if it has no nonzero
nilpotent superideals and that it is prime if for any nonzero superideals
I, J, the product IJ # {0}. Standard arguments show that if R is primitive
then it is prime and that if R is prime with a minimal one-sided superideal
then it is primitive. We also have the usual characterizations for homoge-
neous elements:

R is semiprime < a_Ra, # {0} forall0 # a, € R,,.

Ris prime < a,Rb; # {0} forall0 # a, € R,,0 # b; € R,.

Just as in the case of rings, the following lemma is the basis for the
structure of primitive super-rings with a minimal one sided superideal.

LEMMA 5. Let R = R, + R, be a semiprime super-ring. If I = I, + I, is
a minimal right superideal of R then I = eyR, e, € I a primitive idempotent,
eoRey = ey Rye, + ey R e, is a division superalgebra and the left superideal
Re, is minimal. Conversely if e, € R, is an idempotent such that eyRe, is a
division superalgebra then I = e, R, + ey R, is a minimal right superideal and
Re, is a minimal left superideal.
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Proof. Let R=R,+ R, be a semiprime super-ring, I =1, + 1, a
minimal right R-superideal. Then I is irreducible as a right R-supermod-
ule. If RI = {0} then I is a nilpotent superideal. Therefore RI is a nonzero
superideal, {0} # (RI)?> = RIRI c RI* and I? # {0}. If 1I, = {0} then I,1,
={0} and 1,1, ={0}. So I,I, = ,I,R, ={0} and LI, = I,I R, = {0O}.
Therefore 12 = {0}, a contradiction. Hence II, # {0} and a,I, # {0} for
some a, € I,. Now a_I is a nonzero right superideal contained in I and
must therefore be equal to I. Thus a, I, =1, and a e, = a, for some
eo € 1. Therefore a (e — ;) = 0. Let J, = {r; € Igla,ry =0}, J =J, +
J, is a right R-superideal contained in I. Since a,I =1, J is properly
contained in I and J = {0}. Therefore

e =e,.
Let I = e Rey = eyRyey + egRieg =Z, +2,. If eybge, # 0 then {0} +
egbgeoR € 1. Therefore eybgeaR =1 =¢yR, eybgeaRey = egRe,, and
egbgegcgey = e, for some ¢, € Rg. Thus & is a division superalgebra.

Consider L = Re, = Rye; + Rjep =L, +L,. If I =L, +L, CcLisa
nonzero left superideal of R, arguing as above, L'? # {0} and there exists
an a, € L', such that La, + {0}. Therefore eya, #+ 0. Since a, € Re,,
a,e, =a, and 0 # eqa, = eya,e, € egRe, = 2. Since eya, e, is invertible
in Z,e,€L and L = Rey, C L' C L is a minimal left R-superideal.

We have shown that if, for some even idempotent e,, e, Re, is a division
superalgebra then Re, is a minimal left superideal. A similar argument
shows that e, R is a minimal right superideal. |

Let V=1, + 1V, be a (left) superspace over a division superalgebra
¢ =¢,+% and W= W, + W, a right superspace over &. A bilinear
pairing (, ), is a biadditive map ( , ), : V' X W — & satisfying

(Ua’wﬁ)ve%a+ﬁ+v1 (CYUCV’WB)V:C'Y(U“’WB)V'
(00 m56,), = (04,6,

for all v, €V,, wy€W,, and c, € &, The bilinear pairing (, ), is
nondegenerate if

(v, W), ={0} =v,=0 and (Viwg), =1{0} = w; =0.

If (, ), is nondegenerate we say that the superspaces V' and W are dual.
The right #-superspace W may be viewed as a (left) #°P-superspace via

e ws = (—1)"w,c, .
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A homogeneous element a, € End (}V), is said to have an adjoint
at € End ., W if

(V.. w5), = (—1) (v, wyat) . Vv, €V, w; € W

We denote the subsuper-ring of elements of End..(}') having an adjoint by
Zy(V). An element a € End_ (V) has finite rank if the &,-dimension of
Va is finite. In particular a is of rank 1 if Va = €v. We denote the
elements of %, (V) having finite rank by 7, (V). We now prove a
complete analogue of the structure theorem for primitive rings with a
minimal right ideal.

THEOREM 6. If R is a primitive super-ring with a minimal right superideal
then there exists a division super-ring & and dual Z-superspaces V and W
over & such that

Fyw(V) CR % (V). (2)

Conversely, given dual superspaces V., W over a division superalgebra &, any
super-ring R satisfying (2) is primitive and contains a minimal right superideal.
Fw (V) is the unique minimal superideal of R.

Proof. Let R = R, + R, be a primitive super-ring with a minimal right
superideal I =1, + I,. By Lemma 5, I = ey R, ¢, € I, a primitive idempo-
tent. Let V= ¢,R, the left superspace over the division superalgebra
Z = eyRe, and W = Re, the right superspace over 9. For v, = eja, €V,
and w; = bge, € Wy, define

(Ve Wg )y 7= €olabgeo €L, p
Since R is primitive, R is prime and {0} = (v,, W), = e,a, Re, implies

U, = epa, = 0. Similarly (V,wg), = {0} implies w; = 0. Hence 1V and W
are dual superspaces. Right multiplication

R,y:V—) Vv, Uy = Uty ryeRy,

induces a super-ring homomorphism from R to End, (V) which is in-
jective since V' is a faithful right R-supermodule. Since (uaR,y, Wg)o =

eya,r,bgey, we see that the adjoint of R, is L, left multiplication of W

by r, Therefore R, €%, (V).
If bB c V) is "of rank 1 then

V.by €9u,, forsome u, €V, .

Let w, € W, be such that (w,,w,), = 1. If v,b; =d u, then

at+pB+yTy

doz+B+v = (da+l3+7 y! )o (Uabﬁ’wy)o = (Ua’ BW7)0 = (Ua’wﬁ+7)o’
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— hk
where Wy = bﬁ W, Therefore
Uabg = (U0 Wi y) oy Yv, eV,.

In particular R, is of rank 1 and (eqa,)e, = (eqa,eq)e,. Since u, = e,r,,
for some r, € R, and w,, , = cg. €, for some ¢z, , € Ry, .,
Uabﬁ = (Uoz’wﬁ+y ouy = eOQaCB-FyeOeOry = Ua(cﬁ+yeory) = UaRcleeorv

Vv, eV,.

Thus all rank 1 transformations belong to the image of R. Hence (V) is
contained in the image of R and we may therefore identify R with a
subsuper-ring of #,,,(J/) containing .7, (V).

Conversely, given dual Z-superspaces V' and W, if R is a subsuper-ring
of Z, (V) containing .#,,(V) then clearly R acts faithfully and irreducibly
on V. Fix uy €V, and let L, ={r, € R,IV;r, €9, zu,}. We wish to
show that the left superideal L = L, + L, is minimal. For a fixed y, € W,
consider

Ua’_)(ua’yﬁ)ou()’ v, €V,

Since its adjoint is given by
Wv'_)yﬁ(uo’wv)o’ er Wv’

this rank 1 map belongs to L,; denote it by b,. We want to show that any
homogeneous element a, of L, is a left R, , multiple of b; and hence
that L is minimal. Arguing as above, if (u,, wy), = 1,

v,a, = (v, akwy) g, v,by = (v, bwg),Up-
Choosing x; € Vj such that (xg, b3 wy), = 1, we have
UyCourp = (U, aiwy) Xg €Fy(V) CR

and

U, Corgbg = (v, aiwo) (X, b wo), uo = (v, aswo) uo = 0,4,

VUYEVV.

Hence L is a minimal left superideal of R and, by Lemma 5, R contains a
minimal right superideal.

Since multiples of elements of finite rank are of finite rank, %, (V) is a
superideal of R and any nonzero superideal of R contains nonzero
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elements of finite rank. Arguing as above one sees that it must then
contain an element of rank 1, hence all elements of rank 1, and so all
elements of #,,(V). 1

If o an antiautomorphism of & then it is an isomorphism of &2 onto
Z°P and W is a left &-supermodule under the action
dswg :=(—1)Béwﬁdg, ds €5, wz € W,
Thus, (, ), :V X W is a sesquilinear pairing of (left) Z-superspaces, i.e.,
(dﬁva,wﬁ)y =ds(v,, W),
(Vg dswg), = (—1)7 (v, W) dE,

forall v, € V,, wy € Wy, d; €Z;. If ~ is a superinvolution of & then &
is isomorphic to £°7 and we may consider sesquilinear pairings of IV X V.
We refer to these as superforms. If € € Z(Z) with €€ = 1, an e-hermitian
superform is a sesquilinear pairing satisfying

(VW) = (—1)Pe(ws,0,),, Vv, €V, ws €V}

The superform ( , ), is said to be even or odd according to whether v = 0
or 1. If e = 1 (respectively, —1), (, ), is said to be hermitian (respectively,
skewhermitian).

THEOREM 7. A primitive super-ring R = R, + R, with a minimal right
superideal has a superinvolution x if and only if R has a selfdual right
supermodule V', the commuting super-ring % of R on V has a superinvolution,
and * is the adjoint with respect to a nondegenerate hermitian or skewhermi-
tian superform on V.

Proof. If there exists a symmetric primitive even idempotent e, = ¢f
then 9 = ey Re, is a division superalgebra with involution ~=*|g and the
right superideal V' =¢e,R =e R, + eyR, =V, + V, is a left Z-super-
space. For v, = eya, € V,, wy = e;bg € V;, define

(U Wg), = eoaa(eobﬁ)ﬂ< =eqa,bie, €7, 4.
One checks that for all d; €5, v, €V, wy €V},
s -
(dSUa’WB)o = dB(Ua'WB)O' (Ua’dBWB)O = (_1)B (Ua‘wﬁ)odﬁ’

(WBan)o = (_1)aB(Ua’WB)0’

that 1 is self dual with respect to ( , ),, and that = is the adjoint with
respect to the hermitian superform ( , ),.
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If a minimal right superideal [ =1, + I, contains a homogeneous
e-symmetric element a* = ea,, e = +1,such that a, I + {0} then I = ¢,R
for a suitable primitive idempotent e, € I, with ef = ¢,. Indeed, since
a,I # {0} then a, I = I and, arguing as in the proof of Lemma 5, there
exists an idempotent f, € I, such that a,f, =a, and I =f,R. Then
foa, = a, and

a, = eal, = €(foa,)" = ealfs = a,f5 = (a.0)f5

Again the proof of Lemma 5 shows that e, = f, f;" € I, is a nonzero even
symmetric idempotent.

Assume from now on that if ¢* = ea, € I,, e = +1, I a minimal right
superideal, then a,/ = {0}. We wish to show that if byb; +# 0 for some
bg € Jg, J a minimal right superideal then J*J = {0}. Indeed, by Lemma 2,
bgb # 0 implies {0} # bybs R CJ. Therefore bybs R = J and J* = Rbgbj.
Since bgby € J is e-symmetric, J*J = Rbyb;J = {0}.

We claim that there exists a minimal right superideal I such that
a,a* =0, for all a, €1I,. Let I be a minimal right superideal of R. For
any0 #a, €1, by Lemma5and Theorem6, I = a,R = e¢,R and Re, =
Ra, is a minimal left superideal. Therefore (Ra, )* = a* R is a minimal
right superideal. If any of these satisfy byb; = 0 for all by € a; R, 5 then
we are done. Otherwise, by the preceding argument,

RaaaztR = (aiR)*(aiR) = {O} Vaat € Iur' (3)

Thus, by primeness a, a* = 0, for all a, € I, establishing the claim.

From now on let I be a minimal right superideal of R such that
a,a* =0,forall a, € I,. Writing I = ¢;R = eyR, + ¢,R; as in Lemma 5,
we have e, Ref # {0} by primeness. Therefore e,R, ey + {0} for at least
one v € Z,. We choose v to be 0 if possible. This will always be the case if
9, = eyR e, # {0}, for if e,R el # {0}, since efRef = (eqRey)* is a divi-
sion superalgebra, e,Ryef D e R ef R e # {0}). We may therefore assume
that if v =1 then 9, = {0}.

Assume ey R, ef + {0}. If ey(r, + r*)el + 0, for some r, € R,, letting
t,=r,+r* we may assume that (eyt, el )* = e, t,e’. Otherwise (eyr,ed )*
= —eyr,eg, for all r, € R, and we choose ¢, € R, such that (eyz,ef )* =
—eot,eg # 0. Thus

(eot,ef)" = eeqt,ef, e= +1.

Since efRe,t, el + {0}, by primeness, and since efR,ei is a division
algebra, one can choose s, € R, such that

k) k o ok
egs, et eq = eg.
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Applying =,
e = (—1) " egtiessie,
= (—1)"eeyt, eiske,.
Therefore
ess,eq = ez‘;s,,(( -1) Veeotveg"s;“eo)
= (—1)e(efs, et ef)skeq
= (—1) eetsie,
and

(cfs,00) = (—1)"ecis, es.
We therefore have
€ys,eol, €5 = €5, €ol,€55,€0 = €,
(eotyeé‘)* = €cgl, €5, (eaksyeo)* = (—1)V6€?§Sveo-
Letting V' =1 = ¢ R, for v, = eqa, €V, wy = eyby €V},
U Wi = epa,byes
= eqa,biegs, et €5
Define
(Ve Wg), = €qgbyegs,eq € eoRy gy 0 =Doipy -
By the claim, (v,,v,), = 0, for all a, € V. If (v,,V), = {0},
eqa, Reds, e, = {0},
and, since efs, e, # 0,
=0, by primeness.

eya

[e%

Similarly (V,wg), = {0} implies w; =0 and (, ), is nondegenerate.

ds € s, (dsv,,wy), = ds(v,, wg),. Moreover
— k% %k 5%
(Vardswg), = ega, b egdiess, e
= eoaabg‘ea“s,,eotyeg*‘dg“egks,,eo

= (Ualwﬁ),,d_él

601

(4)

If
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where
ds = egt, efdiels,e,.
For d; € 95,
dy = egt, €f (eot, eidiess, e0)" efs, e
=(-1 VZ( —1)"eqt, efsieods et els, e
= (—1)"eeyd;ee,
=(-1 6yd5
=d,,
since if » =1 then & must be 0. For ¢, €9, and d; € Z;,
o, dy= et el (c,dy) efs,eq
= (—1)yseotvea"d§c;"eg“s,,eo
= (—1)"et,e5diess, et fciess, e
- (-)"TE,

Thus ~ is a superinvolution of 2 and ( , ), is a nondegenerate sesquilin-
ear superform on IV whose adjoint is *. Finally

 — b
(Ua'WB)V = eOtVeg(eOaabgeaksveO) e§sveo
= (—l)aB(—1)(a+B)”eot,,ef)"s;"eobﬁajeé‘sveo
= (~D)P(~D)'"T (1) eeobgaties, e
B (a+p)”
= (=D (=D (=1)"e(ws,0,), -

If v=0,(, ), is ehermitian. If » =1, we have assumed that 2, = {0}
and therefore (v,,w,), = 0, for all v,,w, € V,. Hence the right hand side
isOunless a + B =1 Thusforall v, €V, ws €V,

- B
(Ua'wB)1=(_1) G(WB’Ua)l
and ( , ), is an e-hermitian superform. |I

ExamMpPLE. Let & be a division ring with involution = and W a left
9-vector space endowed with a nondegenerate e-hermitian form
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g WXW->9.If Ais a subring of End,,(W) satisfying %, (W) Cc A C
Ly W), let V=V, +V, V,=W,ie, as a left Z-vector space, VV is a

direct sum of two copies of W, and R =.#,(A) with the obvious right
action on V. Give & the trivial grading, 2, =<. Then h:V — 2 given by

h(v,,w,) =10, h(vg,wy) =g(ve,wy), and
h(wy,00) = —h(vg,wy)

is a nondegenerate odd (— e)-hermitian superform which induces a super-
involution * on R given by

(a b)* _(d -b
c d T al
whereTis the involution of A induced by g. If W= f,A4, f, a primitive
idempotent of A4, then
o= (1o O
0 0

is a primitive idempotent of R such that e,R,ef = {0} but of course
eoR,ey # {0}. This shows that the last case of Theorem 7 can occur.

Recall that an involution is said to be of the first kind if its restriction to
the centre is the identity and of the second kind otherwise. We will use the
same terminology for superinvolutions. We adopt the following convention
to deal simultaneously with superinvolutions of the first and second kind.
We will let Z(«) Ny = K and k = {c € K|c* = ¢}. So K =k if = is of
the first kind or K = k[6], a quadratic extension of k£ with 6* = —6 in
characteristic not 2 or 6 + 1 in characteristic 2. Comparing our result with
the classical results for primitive rings with nonzero socle having an
involution, one expects that more can be said about the superform, namely
that it could almost always be chosen to be hermitian. If the characteristic
is 2 then this is a moot point. If the characteristic is not 2 and = is of the
second kind the multiplying a skewhermitian superform by 6 produces a
hermitian superform which induces the same superinvolution. The only
case in the proof of Theorem 7 where the superform could not be chosen
even was when & =9,. In that case the superform could be chosen
hermitian unless (e ef)* = —eyrief forall r, € R, Inthatcase e = —1
and v = 1 in Egs. (4). Exchanging the role of ¢, and ef, we see from (4)
that (efs,ey)* = ejs e, which allows us to choose ( , ), hermitian.

If our superform is even then the restriction of ( , ), to V/;, is nondegen-
erate. This is clear if & =9, since (V,,V}), €2,. When 9, # {0}, if
(vg, 1)y = d; # 0 then (vy,d; *w,), = 1 and (v, V,), # {0}.
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In the case where the minimal right superideal I = ey,R is such that
a,a* =0=a*a, for all a, I, and e R, el # {0}, we have, for all
ry € Ry,

0 =ey(eq +79)(ey +ro) el = eges + egries + egroes + egrories
and
eyraey = —egroeh Vr, € R,.
Applying this last relation repeatedly, where ¢, is as in (4),
eooeoboeoiie; = —egag(egloel byes)
= —(eoapeqtoes ) bies
= (estieiases)bies
= —eybgeqazeptyed
= egbgeqagetied .
Thus
0 = [egageq, egboeolegtses
0 = [eqaqeq, eoboeglentiessie,
= [eoaqeq, egboeg]eq,
for all ay, by € R,. Therefore the division ring 2, is commutative, the
restriction of ( , ), to V/, is nondegenerate alternating, and the associated

involution ~ of 9, is the identity. We will return to this question after the
description of division superalgebras with superinvolution.

Associative Division Superalgebras

To complete the structure of primitive super-rings with minimal one-
sided superideals and of simple Artinian associative superalgebras, we
describe associative division superalgebras in terms of division algebras,
see [2] and also [12] for a more detailed study from a different point of
view. A superalgebra & =97, +.%, over a field K is central if K = Z(%/)
N/, where Z(&) is the centre of «. For any algebra .« and invertible
c €4, denote by . the inner automorphism x% = cxc™* If K is of
characteristic 2, denote by p(K) the set {a + a?|a € K}. We recall the
following lemma of Wall.

LEMMA 8 [11, Lemmata 3, 5]. If & =/, +., is a central simple unital
superalgebra over K then either & is simple as an algebra or &7, is simple and
o, =yu, with u € Z() N, and u? = 1. Moreover & or &, is central
simple as an algebra over K and if &/ is finite dimensional the or is exclusive.
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We determine next the associative division superalgebras.

DiVISION SUPERALGEBRA THEOREM. If 9 =9, +9, is a central divi-
sion superalgebra over the field K then exactly one of the following holds where
throughout & denotes a central division algebra over K.

(i) 9=9,=2, ic, 2, =1{0)
(i) 9=&@Klul,u>’=1€K*, 9,=¢ K1, 9, =% ® Ku,

(i) 9 =8, 9, = Cy(u), the centralizer of uin &, &, = {d € &|du
= u?d}, for some quadratic Galois extension Klu] C & with Galois automor-
phism o,

(iv) 9=4,8)=&,M,(K), Z,=& ®Klul, 7, =& ® Klu]w,
where

0 1 1 0
u:(A 0)’ W:(o _1)5///2(K),A$K2,charl<¢2

0 1 10
uz(/\ 1)’ w=(1 1)6/%2(1(): A& p(K), charK =2,

and K[u] does not embed in &,

V) 9=&+&v, 9,=%, 2, =&, v>°=d €&*, va =a’v, Va
€ &, where ¢ is an outer automorphism of & over K such that $* = i, and
d* =d.

This last case can occur only if & is infinite dimensional over its centre K.

Proof. Assume that 2 =2, +2, is a central division superalgebra
over the field K and that 9, # {0}, i.e., we are not in case (i). If
0+ v e, then I CI, =D v CDw. Therefore I, =, for any
0+ v ez, Forany a €2, va =a’v and y,|5, is an automorphism of
9, as an algebra over Z(2) N 2,. Observe that, since any element of 2,
is of the form cyw, ¢, €2,, the restriction of ¢, to Z(Z,) does not
depend on the particular choice of v € 2*.

Assume first that |5, is an inner automorphism of 2, say ¥,lo, = .
for some ¢ €9, determined up to multiplication by an element of Z(Z,).
Therefore ¢ tvav~—'c = a, for all a € 9,. Letting u = ¢ "*v €9, we have
uau ! =a, for all a €9, and u centralizes 2,. Since I, =D,u, u
centralizes 2, also. So u € Z(2) and u? € Z(2) N9, say u’> = A € K*.
Letting & =92,, & = & ®,K[u]. Note that & is simple as an algebra if
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and only if A & K2 If A € K%, we may assume that A = 1. This is the only
case where a division superalgebra is not simple as an algebra.

Assume next that |5, is not an inner automorphism of &, over K. If
¥, z(2,) is not the identity then K is the fixed subfield of Z(Z,). We may
choose u € Z(2,) such that Z(2,) = K[ul,

u> =\ ¢ K?, u% = —u, char K # 2,
u2+u=)\6£p(K), u¥ =1+ u,charK = 2.

But then avu = au¥v = u"av for all a €2,. Therefore 9, = C,(u),
the centralizer of u in 2, and 2, = {c €Z|cu = u’c}. If & is a division
algebra, this is case (iii) with & = 9.

If & is not a division algebra then since &, is not central simple over
K =Z(2) N9, then, by Lemma 8, & is central simple over K. Let
J # {0} be a right ideal of . If 0 # a, + a, € J then at least one a; # 0
and, multiplying by a;* on the right, 1 + b, € J, for some b, € 2,. Hence
1+ b)2 cJ. If J contains an element a;, + @} & (1 + b,)Z then, argu-
ing as above, we obtain an element 1 + b} €J, b} # b,. In that case
0#b, — b} €J and 1 €J which must be the whole of &. Therefore a
descending chain of nonzero right ideals in & has length at most 2 and
not only is & artinian but & is isomorphic to .#,(&), & a division algebra
with centre K. If K[u]were to embed in & then 2, = C, (1) 2.4£,(Cx(1))
which is not a division algebra. Therefore K[u] does not embed in & but
rather the quadratic extension K[u] embeds in .#Z,(K) and w can be
chosen as

(0 1
u—()\ 0), and

91=8®K[u]wforw=(é _(1)) char K # 2,
_ ({0 1
u—()\ 1), and

1 0

91=5®K[u]wforw=(l 1

), char K = 2,

and we are in case (iv).

Assume finally that ¢,|s, is not inner but |74, is the identity map.
Therefore Z(2) = Z(2,). This cannot happen if &, is finite dimensional
over its centre since all automorphisms of &, over its centre are inner.
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Now 2 = 4. is inner since v? € 7, and (v2)" = v2. So we have case (V).
Conversely if & is a central division over K and ¢ an outer automorphism
of & over K such that ¢* = y,, for some d € & with d?=d, let
I =&+ &, as a left &-vectorspace and define v? :=d and va = a®v,
for a e &. Let 9,=&, 2, =&v. This grading is compatible with the
product in 2 and it remains to check associativity. The only case where
the full assumptions on ¢ are needed is

(avbv)cv = abdcv = ab®ded~'d*v = a(bctd) v
= av(bc®d) = av(bucv).

It is shown in [5, Example 5, p. 189] that such a & is a division algebra if
and only if d is not a norm, i.e., d = c¢®c has no solution ¢ €2,. |

Remark. In the last case the centre of & = K, 2 and 9, are central
simple. Therefore the assumption of finite dimensionality is necessary in
the last statement of Wall's Lemma (Lemma 8).

Division Superalgebras with Superinvolution

Let &/ =&/, +%, be a superalgebra with superinvolution *. Of course
(y,"|.,) is an algebra with involution. If * is a superinvolution of
& =5/ +.57, then

(ag +by)" =aj = b}

defines a superinvolution on ..

Let 2 =92, +2, be a division superalgebra with superinvolution *. If
I =9, then (2, =) is a division algebra with involution. More will be said
about superinvolutions of .z, () in the next section. Assume from now
on that &, + {0}. We deal first with case (ii) of the Division Superalgebra
Theorem.

PROPOSITION 9. Let & =9, ®Klul, u> = A € K*, 2, =2 ® Ku. If
9 has a superinvolution then we can choose u such that u* =u and
X* = — . If the characteristic is not 2 this implies that * |5 is of the second
kind. Conversely if ~ is an involution of &, and A # 0 an element of K the
centre of 9, such that A= —A the superalgebra & =2, ® Klul, u® = A,
has a superinvolution * extending ~— given by

(a +bu)* =a+ bu.

Proof. The centre of 9, Z(2) = K[u] and since u € Z(2) N9,
ut* € Z(2) N9, = Ku. If u+u* #0, replacing u by u + u* if neces-
sary, we may assume that u* = u. Otherwise, u* = —u.
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Applying the superinvolution * to u? = A € K vyields —eueu = X*,
e= 41, So

N ==

and *|g0 must be of the second kind if char K # 2. In that case, replacing
u by 6u if necessary, we may assume that u* = u. So in all cases u can be
chosen with u* = u, u> =X € K, \* = — A,

Conversely given an involution = of &, and an element 0 # A € K, the
centre of 9, such that A = — A, one checks that

(a +bu)* =a + bu
is a superinvolution of the superalgebra 2 =2, ® K[ul, u?> = A, extend-

ing . 1

We deal with cases (iii), (iv), and (v) of the Division Superalgebra
Theorem together. If & =9, +2, is a division superalgebraand 0 # v €
2, then for all a €9,, va = a®v, where a — a® :== vav™?* is an automor-
phism of Z,.

ProposiTiON 10. Let & =9, + 2, be a division superalgebra with 2,
# 0 and Z(2) N2, = (0}. If @ has a superinvolution * then 9, contains
a 0 # v = v*. Moreover

d* = —d,  whered = v°. (5)
b** =b** Vb eg,. (6)
Conversely, if * is an involution of 9, satisfying (5) and (6), then

(a + bv)* =a* + b**%v

extends * to a superinvolution of 9.

Proof. Since b + b* is symmetric, we may assume that there exists a
nonzero symmetric v € 2, or that the characteristic is not 2 and b* = —b,
for all b, €2,. In that case, for all a, €9, b,,c, €2,

—agh, = (aobl)>k = —b,a}

— * —
agb,c, = bjafc, = b,c,a,.

Since 9,9, =9,, 9, is commutative. This contradicts infinite dimension-
ality in case (v). We are left with 2 a division quaternion algebra in case
(iii) and a split quaternion algebra in case (iv). In both cases, since

2" = —p** = —p? € K, *|x is of the second kind and, arguing as
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above, we may assume that u* = u. In that case (uv)* = v*u* = —pu =
uv, contradicting our assumption that 2, consists of skewsymmetric ele-
ments. Therefore &, contains a nonzero symmetric element ov.

For a €9, (av)* = va* = a*%v and av = (av)** = a****v. Therefore

a**=a®™*  Vaeg,.

Conversely, if = is an involution of 2,, satisfying (5) and (6), then one
checks that

(a + bv)" =a* + b*%v
extends * to a superinvolution of 2. |

Remark. For & as above, superinvolutions come in pairs. One checks
that if = satisfies (5) and (6) then * ¢ is an involution of &, which extends
to a superinvolution of & via

a+bv - gt + ¥yl

In view of the discussion following Theorem 7, we pay particular
attention to superalgebras with superinvolution with commutative even
part. Collecting the results above, we have the following possibilities:

(1) (K, =), a field with involution =,

@) (K+Ku,*),u>?=rxe K5, u* =u, \* = —A, (a + bu)* = a* +
b*u,

(3) (K[u] + K[ulv, =), K[u], a quadratic Galois extension, with Ga-
lois automorphism o, v* = v. The algebra @ = K[u] + K[u]v is a quater-
nion algebra, division in case (iii), split in case (iv). The odd part, K[ulv =
{d € @|du = u°d}. Let ~ be the standard involution of €. Then & = u°
and if du = u’d then @d = du® and du = u’d. Therefore (d + d)u =
u’(d + d) or t(d)u = t(d)u’ and the trace of d,#(d) = 0. In particular
v2=A1€K,s0 \* = —\

The last case in our classification of division superalgebras cannot occur
since 2, is of dimension 1 over its centre. Hence if the characteristic is
not 2, = is of the second kind on K in cases (2) and (3). When = is of the
second kind on K, scaling a skewhermitian superform by 6 vyields a
hermitian superform having the same adjoint.

Simple Superalgebras with Superinvolution

In trying to obtain more precise information on central simple associa-
tive superalgebras (&, *) with superinvolution we first start by establishing
elementary results for super-rings. The first lemma is a version of a
standard result for rings with involution.
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LEMMA 11.  If & is an associative super-ring with superinvolution * such
that (&7, =) is simple then either & is simple (as a super-ring) or &/ = B & F*,
with % a simple super-ring.

Proof. Let (&, *) be an associative super-ring with superinvolution
which is simple as a super-ring with superinvolution. If % is a nonzero
superideal of . then & +.%* and % N%* are *-stable superideals of
&. Therefore & + #* = If &+ then # NF* ={0}and v =% &
F*.If I is a proper superideal of & then I + I'* is a proper superideal of
&. Therefore either & is simple or &/ =% & &* with & simple. |

In the second case %* is isomorphic to the opposite super-ring of .
We will consider a super-ring & with nonzero odd part, and to avoid
double indices, will at times write & = 4 + B, where 4 =7, is the even
part and B = .7 the odd part (B is a bimodule of the ring A).

THEOREM 12. Let &/ = A + B be an associative super-ring with B + {0}
and *, a superinvolution of &/. If (7, ) is simple then either (A,*|4) is
simple or

A=A, ®A, B=B, o5, (7)
where (A;,*| 4,) are simple and B; are irreducible A-bimodules with
Bf =B, and  BY =B, (8)
such that
A,B, =B, = B,A,, A,B,=B,=B,A,, ©
B,B,=A,  B,B, =A,,
A,B, = {0} =A,B, = B,A, = B,A, = B|B, = B, B,. (10)

Proof. Let I be a nonzero *-stable ideal of 4. Then I + BIB + IB +
BI is a nonzero *-stable superideal of .o7. So

I+BIB=A and IB + BI = B. (11)

If I N BIB + {0} then J=1nN BIB is a nonzero =*-stable ideal of A
and, by (11) with I replaced by J, J + B/JB = A. But BJB € BBIBB c AIA
c 1. Therefore A =J + BJB c I and I = A. Thus either (A4,*|,) is sim-
ple as a ring with involution or for any proper #-stable ideal I of A,
I N BIB = {0}. In that case let

A, =1, A,=BIB, B, =IB, B,=B8lI (12)
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If z<IB N BI then, for any b € B, bz € BIB N BBI Cc BIB N I = {0}.
Similarly zb = 0 and

IB N BI C Ann,B = {z € B|Bz = {0} = zB}.

Since AnngB is an A-bimodule, it is a *-stable superideal of .7 and thus
must be {0}. Therefore IB N BI = {0} and (7) holds. If J is a proper
x-stable ideal of A, then it is a =-stable ideal of A = A, ® A,. Moreover
BJB C BIB = A, and J generates a proper =-stable superideal of .,
which is impossible. Therefore A4, and, by symmetry, A, are =-simple.
Equation (8) follows from (12) and the facts that I is *-stable and that =
is of period 2. Let C, be a nonzero A-sub-bimodule of B;. Then Cf is an
A-sub-bimodule of B, and C,Cf + CfC; + C; + Cf is a =-stable su-
perideal of . Therefore C; = B, and B, is irreducible. Similarly B, is
irreducible.

Next 4,B, = (BIB)IB C AIB C IB; but BIBIB = BI(BIB) C BIA C BI
and A,B, € B, N B, = {0}. Also BB, = IBIB = A, A, = {0} by (7). The
other equations of (10) are proved in a similar fashion.

That B,B, € 4, and B, B, C A, is a consequence of (12). Since B, B, is
a =-stable ideal of A4,, B,B, = {0} or A,. If B,B, = {0} then, by (10),
B,B ={0} and B + B, B, is a proper #-stable superideal of &, a contra-
diction. Hence B, B, = A, and, similarly, B,B, = A4,. By (12), A,B, € B,
and must equal B; by the irreducibility of B;. The other equations of (9)
are proved in a similar fashion. |

Remark. If &/ =A, ® A, + B, ® B, with A4, *-simple, B, irreducible
A-bimodules satisfying (8), (9), and (10) then there is no proper =-stable
ideal I of A4 with I N BIB # {0}.

We will obtain more information on the superinvolutions of .~ when the
grading is not inherited from that of &, that is, 2 =9,, and .« is finite
dimensional. If « =4, (2), %, =#,(2) ©.4,2), p,q > 0, then we
are in one or the other of the situations described in Theorem 12. We
consider each case in turn using the notation of Theorem 12.

ProposITION 13. If & =4, (Z), p,q >0, is a superalgebra with
oy =A =/%p(9) &M (D) and (A,*|,) is simple then p = q, %(9) has
an involution ~ and &e/, *) is isomorphic to #, (D) with the superinvolu-
tion * given by

HE
c d]

fora,b,c,d e#4(2) and p € K such that p = 1. If"is of the first kind
then p may be chosen equal to 1. Conversely if /gp(g ) has an involution ~
then (13) defines a superinvolution on the simple superalgebra 4, ().

d —ub

— , (13)
e a

+p



612 M. L. RACINE

Proof. Since & has a superinvolution then, by Theorem 7, so has 2. In
this case, since & =9, 2 has an involution =~ and .Z,(2) has an
involution @ =a’, ¢ the transpose. Since (A,*[4) is simple, .Z,(2) is
anti-isomorphic to .Z,(Z) and g = p. Up to isomorphism, (4, *IA) is given
by (#,(2) .4, (9) ) with (a, b)* = (b, @. Letting

2p p p
Ju= Zeii’ Jao = Z €iis Ji2 = Zeip+i' Ja = Zep+ii'
i=1 i=p+1 i=1 i=1

we have
=%(9)f11 GB%(Q)]CZZ’
BZ%(Q)JCQ @%(Q)fzp fii =10, 5 =rfu-
Hence

2= (f11f12f22)* =f11f1*2f22

and
fis = cf1s, for some ¢ e/é’p(g).

For any a €.#,(2),
ale = ((“fn)flz) = cfi,af,, = cafy,

while
aflz (flz(afzz)) = afyycf1, = acfy,.
Therefore ¢ Z(,/%E(Q)).NMoreov_er_f12 = (f1)** = Cefy, implies cc' =1,
So ¢ = —p € K with pup = 1. Similarly /3 = df21, d e Z(#, (9)) But
fo = fii = (ffo)* = —dfycfi, = —dcf,, which implies d = —c
Therefore (af;,)* = —padf,, and (af,)* = maf,, or
(a b)* _|[d —wh
c d ne a |

for a,b,c,d e#,(2) if”is of the first kind then u = +1 and, permuting
the indices if necessary, we may assume that f5 = —f,, and f;; = f,;. The

converse is easy to check. |I

ProposiTioN 14. If & =4, (Z), p,q >0, is a superalgebra with
A=A4,8A4,, A =/%p(9), A, =/%q(9), and (A,*|4) is not simple then
(Ay,*14) and (A,,*| 4,) are of the same kind. If * is of the second kind
then * is induced by a nondegenerate even hermitian superform. If & is finite
dimensional over a field of characteristic not 2 and * is of the first kind then
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one (A;,*| 4,) is orthogonal type and the other of symplectic type. The grading
on V can be chosen such that * is induced by a nondegenerate even hermitian
superform.

Proof. If o7 has a superinvolution * then, by Theorem 7, & has an
involution =~ and =* is the adjoint of a nondegenerate hermitian or
skewhermitian superform. Therefore the involutions *|,, and *|,, are of
the same kind. If they are of the second kind, we may assume that * is
induced by a nondegenerate even hermitian superform.

We show next that if they are of the same kind and the dimension of &/
is finite then *[,, and *| 4, cannot be both of the same type (orthogonal or
symplectic). Assume that they are. Extending the base field if necessary,
we may assume that & =7, (%), with € = k or .#,(k), the split quater-
nions, A, =#,(%), A, =#(%), r + s = m, and that the involutions *|,,
are given by ', where ~ is the standard involution of & and ¢ is the
transpose. Let e;; denote the matrix units of .Z,(#). Therefore e} = e;
for 1<i,j<r or r+1<i,j<m. Fix i,j such that 1 <i<r and
r+1<j<m. Then

el = (eiieijejj)* =e;ele; and ef; = ce; for some c € #.

Forany a € &,

(ae;)* = ((a.‘:,-,-)eijfX< = cejae; = cae;  and
(aeij)* = (el-j(aejj))>X< = acej;.
Hence ¢ € Z(#@). Similarly ¢} = de;; for some d € Z(%). Moreover ¢,; =
(e;))** = cde;; and since ~ is the identity on Z(%), d = c~*. Finally
e; = e = (e;e;)" = —de;ce; = —e;;, a contradiction.

The superalgebra & =.#,, (2) is isomorphic to the endomorphism
superalgebra of a left Z-superspace V =1V, + V;, where {dimgV,
dim, V1) = {p,q}. Let = be a superinvolution of . which stabilizes
A, =/%p(9) and A4, =%’q(9). The involution *|,, (respectively, *(,,) is
induced by a hermitian or skewhermitian form 4, (respectively #,) on V,
(respectively, V). If *[, and *|,, are of the first kind, one of the
involutions *[ 4, (say *| 4,) is of orthogonal type and the other of symplectic
type. We may therefore assume that /4, is hermitian and 4, is skewhermi-
tian. The hermitian superform 4 = h, L h, induces a superinvolution ¢ of
End(}") whose restriction to A4; coincides with *[ ;.. The composition of ¢
with =, ¢ =, is an algebra automorphism of .oz. It is inner and restricts to
the identity map on 4, and A,. One checks that this forces ¢ * to be the
conjugation ¢, by the sum ¢ = v, + vy, of nonzero central elements vy, of
A;. Changing the superform to vy,h, + v,h, will produce the desired
superinvolution. Therefore * is induced by an even hermitian superform

onV. 1
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Combining the discussion after Theorem 7, the determination of division

superalgebras with commutative even part having an involution and Propo-
sition 14, we have

THEOREM 7'. A primitive super-ring R = R, + R, with a minimal right

superideal has a superinvolution * if and only if R has a selfdual right
supermodule V', the commuting super-ring % of R on V has a superinvolution,
and * is the adjoint with respect to a nondegenerate hermitian or skewhermi-
tian superform on V. If R, + {0} then the superform may be chosen hermitian.

10.
11.
12.

13.
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