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Our main purpose is to provide for primitive associative superalgebras a struc-
w xture theory analogous to that for algebras 5, 6, 10 and to classify primitive

superrings with superinvolution having a minimal one-sided superideal. We were
led to this problem by our work on finite dimensional central simple Jordan

w x Ž w x.superalgebras over fields of characteristic not 2 9 see also 7 . Of course, just as
symmetric elements give rise to Jordan superalgebras, skewsymmetric elements

w xgive rise to Lie superalgebras 8, 4 . The results and methods are closely related to
those of structure theory of associative rings and central simple associative algebras

w xwith involution 5, Chap. I; 6, Chaps. II, III; 1, Chap. X; 10, Chap. 2 . Some of the
w xresults have been announced in 13 . Q 1998 Academic Press

INTRODUCTION

² < : Ž .Let K be a field, G s 1, j i s 1, 2, . . . the Grassmann or exteriori
algebra over K on a countable number of generators j , with j 2 s 0,i i
j j s yj j , i / j. The elements 1, j j ??? j , i - i - ??? - i form ai j j i i i i 1 2 r1 2 r

Ž .K-basis of G. Letting G respectively G be the span of the products of0 1
Ž .even length respectively of odd length , G is the direct sum of its even and

odd parts: G s G q G . If VV is a homogeneous variety of algebras, a0 1
Z -graded K-algebra2

AA s AA q AA0 1

is a VV-superalgebra if its Grassmann en¨elope

G AA [ AA m G q AA m GŽ . 0 0 1 1
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PRIMITIVE SUPERALGEBRAS 589

Žbelongs to VV . While in general AA f VV for example, a Lie superalgebra is
.usually not a Lie algebra , an associatï e super-ring is nothing but a

Z -graded associative ring. However, AA s AA q AA is a commutatï e super-2 0 1
algebra if

aba b s y1 b a ; a g AA , b g AA .Ž .a b b a a a b b

We will say that such elements supercommute. The Grassmann algebra is a
commutative superalgebra. Since we are not interested in restating the
theory in the case of rings we will normally assume that the odd compo-

� 4nent is not 0 .

Ž .EXAMPLES. 1 Let V be a vector space over K. The tensor algebra
Ž . Ž .T V is a superalgebra, the even respectively odd part being the span of

Ž .the tensors of even respectively odd length. If q is a quadratic form on V,
Ž . Ž .the Clifford algebra C V, q is the quotient algebra of T V by the ideal

Ž .generated by elements of the form x m x y q x 1. Since these elements
Ž . Ž .are homogeneous C V, q inherits the grading of T V .

Ž .2 If V is of dimension 2 over a field K of characteristic not 2 and
² : ² : Ž . Ž .q s l H m then C V, q is a quaternion algebra l, m . We recall the

= Ž .standard notation for quaternions. If l, m g K , we write l, m for the
quaternion algebra K1 q Ku q K¨ q Ku¨ , where u2 s l1, ¨ 2 s m1, and

Ž . Ž . Ž .u¨ s y¨u. In this case the grading of C V, q s l, m is C V, q s K10
Ž .q Ku¨ , C V, q s Ku q K¨ . If QQ is a quaternion algebra with centre K,1y Ž .let be the standard involution of QQ; t x, y 1 [ xy q yx defines the trace

Ž . Ž .form, t x [ t x, 1 s x q x.
Ž . Ž .3 The algebra of p q q = p q q matrices MM DD , DD a divisionpqq

algebra, can be viewed as an associative superalgebra by taking the
Ž . Ž .diagonal components MM DD and MM DD as the even part and the off-di-p q

agonal components as the odd part; this is an example of a simple
associative superalgebra.

Ž .4 A superspace over K is a left K-vector space V which is Z -graded2
V s V [ V . The associative algebra End V s End V s End V q0 1 K 0

� < 4End V, where End V [ a g End V ¨ a g V , is an associative su-1 a b bqa

peralgebra. Note that if the role of V and V were interchanged, the0 1
superalgebra structure on End V would not change. A symmetric superform
on V is a graded bilinear form

, : V = V ª K , V s V H V ,Ž . 0 1

which is symmetric on V and skew-symmetric on V .0 1



M. L. RACINE590

A superin̈ olution of an associative superalgebra AA is a graded linear
map U : AA ª AA such that

U a bUU U Ua s a and a b s y1 b a .Ž .Ž .a b b a

If AA is of characteristic 2, this is nothing more than an involution
respecting the grading. A superinvolution of a super-ring R is an isomor-
phism of period 2 of R onto its opposite super-ring Ro p, where the
opposite super-ring of R, i.e., Ro p s R, as an additive group, with multipli-
cation given by

bgo pb c [ y1 c b , b g R , c g R , b , g g Z .Ž .b g g b b b g g 2

The identity map is a superinvolution of a commutative superalgebra. A
nondegenerate symmetric superform on a finite dimensional V induces a
superinvolution U on End V via

bg U¨ a , ¨ s y1 ¨ , ¨ a , for all ¨ , ¨ g V .Ž . Ž . Ž .a g b a b g a b i

The restriction of U to End V is the transpose involution while the0
restriction of U to End V is the symplectic involution. This superinvolu-1
tion, or rather the associated Lie superalgebra, has been called orthosym-
plectic.

Ž .5 If R is a simple associative algebra then the associative superal-
gebra

a b a, b g R½ 5ž /b a

is simple as a superalgebra but not as an algebra.

Primitï e Super-rings

We first start by establishing the elementary results for primitive super-
w xrings analogous to those for rings 6, Chaps. II and III . Some of these

results on prime associative superalgebras with nonzero socle have been
w xobtained in 3 from a different point of view.

Ž .If R s R q R is an associative super-ring, a right R-supermodule M0 1
is a right R-module with a grading M s M q M as R -modules such0 1 0
that

m r g M for any m g M , r g R , a, b g Z .a b aqb a a b b 2

If N s N q N is also an R-supermodule then a R-supermodule homo-0 1
morphism from M to N is an R -module homomorphism h , g g Z ,0 g 2
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such that

M h : N anda g aqg

m r h s m h r , ;m g M , r g R , a , b g Z .Ž . Ž .a b g a g b a a b b 2

Given an R-supermodule M, End M s End M , the ring R-supermoduleR
Ž . �endomorphisms of M, is a super-ring. For b g Z , let End M [ b g2 b b

< 4End M M b : M , a g Z .R a b aqb 2
The commuting super-ring CC of R on M is defined to be

CC s CC q CC ,0 1

ag
<where CC [ c g End M c r s y1 r c ; r g R , a g Z .Ž .½ 5g g g g a a g a a 2

Thus the elements of CC supercommute with those of R acting on M. An
� 4R-supermodule is irreducible if MR / 0 and M has no proper subsuper-

module. If R is unital then 1 g R . A unital super-ring R is said to be a0
dï ision super-ring if all nonzero homogeneous elements are invertible, i.e.,
every 0 / r g R has an inverse ry1, necessarily in R . If R is a divisiona a a a

super-ring then R is a division ring. Also any division super-ring is a0
simple super-ring. From now on, we assume that a , b , g , d g Z and that2
any equation involving these indices holds for all possible choices. The
next two results are standard and are included for completeness’ sake.

SCHUR’S LEMMA. Let M s M q M and N s N q N be irreducible0 1 0 1
R s R q R supermodules and f a R-homomorphism of M into N. If0 1 b

f / 0 then f is in¨ertible.b b

Proof. Since f / 0, Mf s M f q M f is a nonzero R-subsuper-b b 0 b 1 b

�module of N. By the irreducibility of N, Mf s N. Let Ker f s m gb a b a

< 4M m f s 0 . Then Ker f s Ker f q Ker f is an R-subsupermodulea a b b 0 b 1 b

� 4of M properly contained in M. By the irreducibility of M, Ker f s 0b

and f is invertible.b

COROLLARY 1. Let R be a super-ring and M an irreducible R-supermod-
ule. Then the commuting super-ring CC of R on M is a dï ision super-ring.

Proof. If 0 / c g CC then m c / 0 for some m g M , a s 0 or 1.b b a b a a

By Schur’s Lemma, c is invertible in End M and hence in CC. Thus CC is ab

division super-ring.

The following lemma is the key to the proof of the density theorem for
associative superalgebras.

LEMMA 2. Let M s M q M be an irreducible R-supermodule for the0 1
� 4super-ring R s R q R . If M / 0 then M is an irreducible R -module0 1 a a 0
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� 4 � 4and for any nonzero m g M , m R s M . If M / 0 and M / 0a a a b aqb 0 1

then the commuting ring of R on M can be identified with CC , the e¨en part0 a 0
of the commuting super-ring CC of R on M.

Proof. If N is a nonzero R -submodule of M then N q N R is aa 0 a a a 1
nonzero subsupermodule of M. Therefore N q N R s M. So N s Ma a 1 a a

and M is an irreducible R -module.a 0
� 4 � < � 44If m R s 0 for some 0 / m g M , let N s n g M n R s 0 .a 0 a a a a a a 0

� 4Since N is a nonzero R -submodule of M , N s M . So M R s 0 . Ifa 0 a a a a 0
� 4 � 4M R s 0 then M R s 0 and M is a proper subsupermodule of M.a 1 a a

� 4Therefore M R / 0 . But then M R is a proper subsupermodule of M.a 1 a 1
� 4Hence if m / 0 then m R / 0 and m R s M . Also m R =a a 0 a 0 a a 1

� 4m R R s M R is an R -submodule of M . If M R s 0 whilea 0 1 a 1 0 aq1 a 1
� 4M / 0 then M is a proper subsupermodule of M, a contradiction.aq1 a

Hence m R s M R s M .a 1 a 1 aq1
Let DD be the commuting ring of R on M considered as an R -mod-0 a 0

ule. So for all d g DD, r g R , and m g M ,0 0 a a

m r d s m dr .a 0 a 0

Given d g DD we wish to extend its action to M . Fix a nonzeroaq1
m g M . Since m R s M , define an action of DD on M bya a a 1 aq1 aq1

m r d [ m dr , for any d g DD and r g R .a 1 a 1 1 1

We must show that this is well-defined, namely, that if m r s 0 thena 1
n s m dr s 0. If n / 0 then n R s M and m s n s foraq1 a 1 aq1 aq1 1 a a aq1 1
some s g R . Therefore1 1

m s n s s m dr s s m d r s s m r s d s m r s d s 0,Ž . Ž . Ž . Ž .a aq1 1 a 1 1 a 1 1 a 1 1 a 1 1

a contradiction. Note that this computation also shows that d commutes
with all s g R on M . By definition, d commutes with all elements of1 1 aq1
R on M . For all r g R , r g R , and d g DD,1 a 0 0 1 1

m r dr s m r d r s m d r r s m r r d s m r r dŽ . Ž . Ž . Ž . Ž . Ž . Ž .a 1 0 a 1 0 a 1 0 a 1 0 a 1 0

and d commutes with R on M . Thus we can identify DD with CC .0 aq1 0

w xFollowing 6 we prefer to have the commuting super-ring act on the left
and the endomorphism super-ring act on the right. We do this by letting
the opposite super-ring of CC act on the left via

ag
c ¨ [ y1 ¨ c .Ž .g a a g

Ž . Ž .The super-ring R is right primitï e if it has a faithful irreducible right
Ž .supermodule. If M is a faithful irreducible right R-supermodule we may
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consider M as left CC o p-supermodule. Then R is said to be dense on M if
for every positive integer n and choice of ¨ , . . . , ¨ g M linearly1a na a

independent over CC and w , . . . , w g M there is an element r g0 1b nb b aqb

R such that ¨ r s w , for i s 1, . . . , n.aqb ia aqb ib

DENSITY THEOREM. Let R s R q R be a primitï e super-ring, M s0 1
M q M a faithful irreducible R-supermodule, and CC s CC q CC the com-0 1 0 1
muting super-ring of R on M. Then R is a dense super-ring of linear
transformations on M o¨er DD s CC o p.

Proof. M and M are left vector spaces over DD s CC o p, R is a ringa b 0 0 0
of linear transformations of M into itself, and R an additive group ofb aqb

linear transofrmations of M into M such that R R : R . Bya b aqb 0 aqb

Lemma 2, M is an irreducible R -module and the commuting ring of Rb 0 0
w xon M is DD . These are exactly the hypotheses of Theorem 1 of 6, p. 28b 0

which allows us to conclude that R acts densely on M .aqb a

Ž . Ž .A right superideal I s I q I is a right subsupermodule of the0 1
Ž .super-ring R considered as a right R-supermodule. An associative

Ž .super-ring is right Artinian if it satisfies the descending condition on
right superideals. A superspace over an associative division superalgebra
DD s DD q DD is a left DD-supermodule V such that V s V [ V as a DD0 1 0 1 0
Ž .left vectorspace. Let dim V s p and dim V s q. If p q q - ` thenDD 0 DD 10 0

� 4we say that V is finite dimensional. If DD / 0 then for any 0 / d g DD ,1 1 1
Ž .d V : V and d V : V which implies that p s q and End V ( MM DD .1 0 1 1 1 0 DD p

� 4 Ž .If DD s 0 then End V ( MM DD as in Example 3. Thus the grading of1 DD pqq
� 4End V is induced by the grading of DD if DD / 0 and by a partition ofDD 1

dim V s n s p q q if DD s DD . An associative super-ring is simple if itDD 0
has no non-trivial graded ideal.

THEOREM 3. If AA s AA q AA is an Artinian simple associatï e super-ring0 1
Ž .then, as a super-ring, AA ( End V , V a finite dimensional superspace o¨erDD

an associatï e dï ision superalgebra DD.

Proof. Let I s I q I be a minimal right ideal of the super-ring AA. By0 1
minimality, I is an irreducible supermodule of AA. Since AA is simple, I is a
faithful supermodule. Therefore AA is a primitive super-ring with faithful
irreducible supermodule M s I. M is a left DD s CC o p-supermodule, where
CC is the commuting super-ring of AA on M. Thus AA is isomorphic to a
dense subsuper-ring of End M. If M is infinite dimensional over DD thenDD 0
so must M be for at least one a g Z . Let ¨ , . . . , ¨ , . . . be an infinitea 2 1a na

sequence of linearly independent elements of M . The annihilators Ann Va j
� < 4 � 4s Ann V q Ann V , where Ann V s b g AA V b s 0 for V s0 j 1 j b j b b j b j

[Ý j DD¨ , form a properly descending chain of right superideals of AA.is1 ia

Ž .Therefore dim M is finite, say n, and, by density, AA ( End V sDD DD0
Ž . Ž .End V q End V .0 1
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Ž .So as a ring AA ( MM DD , DD is an associative division superalgebra. Then
structure of associative division superalgebras will be determined in the
next section. We wish to show that, as in the algebra case, n and DD are
unique up to isomorphism.

PROPOSITION 4. Let R s R q R be a primitï e super-ring ha¨ing a0 1
Ž .minimal right ideal. Then any two faithful irreducible right R-supermodules

are isomorphic.

Proof. If I s I q I is a minimal right superideal of R s R q R and0 1 0 1
M s M q M a faithful irreducible R-supermodule, the faithfulness of M0 1

� 4ensures that m I / 0 for some m g M . Since m I is a nonzeroa a a a

subsupermodule of the irreducible supermodule M, it must be all of M.
Since the annihilator of m in I is a right superideal of R properlya

� 4contained in I, it is 0 and the map b ¬ m b, b g I, is an R-supermodulea

isomorphism of I onto M. Thus every faithful irreducible R-supermodule
is isomorphic to I.

If V s V q V is a superspace over the associative division superalge-0 1
bra CC s CC q CC , W s W q W a superspace over the associative division0 1 0 1
superalgebra DD s DD q DD and s : CC ª DD an isomorphism of superalge-0 1
bras then a map s : V ª W is said to be a s-semi-linear superspaceg

homomorphism provided that

¨ s g W and c ¨ s s cs ¨ s , ;c g CC , ¨ g V .Ž . Ž .b g bqg a b g a b g a a b b

ISOMORPHISM THEOREM. Let CC s CC q CC and DD s DD q DD be asso-0 1 0 1
Ž .ciatï e dï ision superalgebras and V s V q V respectï ely W s W q W0 1 0 1

Ž .be a finite dimensional left CC respectï ely DD superspace. Then f : End VCC

ª End W is a superalgebra isomorphism if and only if there exists aDD

superalgebra isomorphism s : CC ª DD and a s-semi-linear superspace isomor-
phism

s : V ª W such that af s sy1a s , ;a g End V . 1Ž . Ž .g a g a g a CC a

Proof. If s is a s-semi-linear isomorphism of V onto W then oneg

checks that a ¬ sy1a s is an isomorphism of End V onto End W.a g a g CC DD

Conversely, assume that f : End V ª End W is a superalgebra iso-CC DD

morphism. The map f allows us to view W as a faithful irreducible
End V-supermodule. Since End V is a primitive super-ring with a mini-CC CC

mal right superideal, by Proposition 4, V and W are isomorphic as
End V-supermodules. If s : V ª W is an End V-supermodule isomor-CC g CC

phism then

¨ r s s ¨ s r f ;¨ g V , r g End V .Ž . Ž .a b g a g b a a b CC
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Therefore

w r f s w sy1 r s ;w g W , r g End V .a b a g b g a a b CC

On V, scalar multiplication by elements of CC, L : ¨ ¬ c ¨ commutesc d b db

with every element of End V. Therefore sy1 L s commutes with everyCC g c gb

sy1 r s s r f g End W. Therefore sy1 L s is a scalar multiplication ong b g b DD g c gb

L s on W for some cs g DD . For all a g CC and c g CC ,c b b a a b bb

L s s sy1 L s s sy1 L L s s sy1 L s sy1 L sŽ .ž /Ža c . g Ža c . g g c a g g c g g a ga b a b b a b a

s L s L s s L s s .c a a cb a a b

Ž .s s s sThus a c s a c and s : CC ª DD given by c ¬ c defines a super-a b a b b b

ring isomorphism of CC into DD. Similarly L t [ s L sy1 yields a super-d g d ga a

ring isomorphism t of DD into CC. Since dts s d , s is onto. So s is ana a

isomorphism of CC onto DD and

c ¨ s s cs ¨ s ;¨ g V , c g CC ,Ž . Ž .b a g b a g a a b b

that is, s is a s-semi-linear isomorphism of V onto W.g

Remark. Example 4 shows that odd isomorphisms are needed when
CC s CC . However, if there is a c / 0, c g CC then t [ L s is a0 1 1 1 gq1 c g1

t-semi-linear isomorphism of V onto W, where t s c s , xcc [ cxcy1.c1

As usual we say that a super-ring R is semiprime if it has no nonzero
nilpotent superideals and that it is prime if for any nonzero superideals

� 4I, J, the product IJ / 0 . Standard arguments show that if R is primitive
then it is prime and that if R is prime with a minimal one-sided superideal
then it is primitive. We also have the usual characterizations for homoge-
neous elements:

� 4R is semiprime m a Ra / 0 for all 0 / a g R .a a a a

� 4R is prime m a Rb / 0 for all 0 / a g R , 0 / b g R .a b a a b b

Just as in the case of rings, the following lemma is the basis for the
structure of primitive super-rings with a minimal one sided superideal.

LEMMA 5. Let R s R q R be a semiprime super-ring. If I s I q I is0 1 0 1
a minimal right superideal of R then I s e R, e g I a primitï e idempotent,0 0
e Re s e R e q e R e is a dï ision superalgebra and the left superideal0 0 0 0 0 0 1 0
Re is minimal. Con¨ersely if e g R is an idempotent such that e Re is a0 0 0 0 0
dï ision superalgebra then I s e R q e R is a minimal right superideal and0 0 0 1
Re is a minimal left superideal.0
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Proof. Let R s R q R be a semiprime super-ring, I s I q I a0 1 0 1
minimal right R-superideal. Then I is irreducible as a right R-supermod-

� 4ule. If RI s 0 then I is a nilpotent superideal. Therefore RI is a nonzero
� 4 Ž .2 2 2 � 4 � 4superideal, 0 / RI s RIRI : RI and I / 0 . If II s 0 then I I0 0 0

� 4 � 4 � 4 � 4s 0 and I I s 0 . So I I s I I R s 0 and I I s I I R s 0 .1 0 0 1 0 0 1 1 1 1 0 1
2 � 4 � 4 � 4Therefore I s 0 , a contradiction. Hence II / 0 and a I / 0 for0 a 0

some a g I . Now a I is a nonzero right superideal contained in I anda a a

must therefore be equal to I. Thus a I s I and a e s a for somea 0 a a 0 a

Ž 2 . � < 4e g I . Therefore a e y e s 0. Let J s r g I a r s 0 , J s J q0 0 a 0 0 b b b a b 0
J is a right R-superideal contained in I. Since a I s I, J is properly1 a

� 4contained in I and J s 0 . Therefore

e2 s e .0 0

� 4Let DD s e Re s e R e q e R e s DD q DD . If e b e / 0 then 0 /0 0 0 0 0 0 1 0 0 1 0 b 0
e b e R : I. Therefore e b e R s I s e R, e b e Re s e Re , and0 b 0 0 b 0 0 0 b 0 0 0 0
e b e c e s e for some c g R . Thus DD is a division superalgebra.0 b 0 b 0 0 b b

Consider L s Re s R e q R e s L q L . If LX s LX q LX : L is a0 0 0 1 0 0 1 0 1
X 2 � 4nonzero left superideal of R, arguing as above, L / 0 and there exists

X X � 4an a g L such that L a / 0 . Therefore e a / 0. Since a g Re ,a a a 0 a a 0
a e s a and 0 / e a s e a e g e Re s DD. Since e a e is invertiblea 0 a 0 a 0 a 0 0 0 0 a 0
in DD, e g LX and L s Re : LX : L is a minimal left R-superideal.0 0

We have shown that if, for some even idempotent e , e Re is a division0 0 0
superalgebra then Re is a minimal left superideal. A similar argument0
shows that e R is a minimal right superideal.0

Ž .Let V s V q V be a left superspace over a division superalgebra0 1
CC s CC q CC and W s W q W a right superspace over CC. A bilinear0 1 0 1

Ž . Ž .pairing , is a biadditive map , : V = W ª CC satisfyingn n

¨ , w g CC , c ¨ , w s c ¨ , w ,Ž . Ž . Ž .a b aqbqn g a b g a bn n n

¨ , w c s ¨ , w c ,Ž . Ž .a b g a b gn n

Ž .for all ¨ g V , w g W , and c g CC . The bilinear pairing , isa a b b g g n

nondegenerate if

� 4 � 4¨ , W s 0 « ¨ s 0 and V , w s 0 « w s 0.Ž . Ž .a a b bn n

Ž .If , is nondegenerate we say that the superspaces V and W are dual.n

Ž . o pThe right CC-superspace W may be viewed as a left CC -superspace via

bgc w [ y1 w c .Ž .g b b g
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Ž .A homogeneous element a g End V is said to have an adjointa CC a

aU g End o pW ifa CC

ad U¨ a , w s y1 ¨ , w a , ;¨ g V , w g W .Ž . Ž . Ž .b a d b d a b b d dn n

Ž .We denote the subsuper-ring of elements of End V having an adjoint byCC

Ž . Ž .LL V . An element a g End V has finite rank if the CC -dimension ofW CC 0
Va is finite. In particular a is of rank 1 if Va s CC ¨ . We denote the

Ž . Ž .elements of LL V having finite rank by FF V . We now prove aW W
complete analogue of the structure theorem for primitive rings with a
minimal right ideal.

THEOREM 6. If R is a primitï e super-ring with a minimal right superideal
then there exists a dï ision super-ring DD and dual DD-superspaces V and W
o¨er DD such that

FF V : R : LL V . 2Ž . Ž . Ž .W W

Con¨ersely, gï en dual superspaces V, W o¨er a dï ision superalgebra DD, any
Ž .super-ring R satisfying 2 is primitï e and contains a minimal right superideal.

Ž .FF V is the unique minimal superideal of R.W

Proof. Let R s R q R be a primitive super-ring with a minimal right0 1
superideal I s I q I . By Lemma 5, I s e R, e g I a primitive idempo-0 1 0 0 0
tent. Let V s e R, the left superspace over the division superalgebra0
DD s e Re and W s Re the right superspace over DD. For ¨ s e a g V0 0 0 a 0 a a

and w s b e g W , defineb b 0 b

¨ , w [ e a b e g DD .Ž .a b 0 a b 0 aqb0

� 4 Ž .Since R is primitive, R is prime and 0 s ¨ , W s e a Re impliesa 0 0 a 0
Ž . � 4¨ s e a s 0. Similarly V, w s 0 implies w s 0. Hence V and Wa 0 a b 0 b

are dual superspaces. Right multiplication

R : V ª V , ¨ ¬ ¨ r , r g R ,r a a g g gg

Ž .induces a super-ring homomorphism from R to End V which is in-DD

Ž .jective since V is a faithful right R-supermodule. Since ¨ R , w sa r b 0g

e a r b e , we see that the adjoint of R is L left multiplication of W0 a g b 0 r rg g

Ž .by r . Therefore R g LL V .g r Wg

Ž .If b : FF V is of rank 1 thenb W

V b g DDu , for some u g V .a b g g g

Ž .Let w g W be such that u , w s 1. If ¨ b s d u theng g g g 0 a b aqbqg g

d s d u , w s ¨ b , w s ¨ , bU w s ¨ , w ,Ž .Ž . Ž . Ž .aqbqg aqbqg g g a b g a b g a bqg0 0 0 0
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where w s bU w . Thereforebqg b g

¨ b s ¨ , w u , ;¨ g V .Ž .a b a bqg g a a0

Ž . Ž .In particular R is of rank 1 and e a e s e a e e . Since u s e r ,e 0 a 0 0 a 0 0 g 0 g0

for some r g R , and w s c e , for some c g R ,g g bqg bqg 0 bqg bqg

¨ b s ¨ , w u s e a c e e r s ¨ c e r s ¨ RŽ . Ž .a b a bqg g 0 a bqg 0 0 g a bqg 0 g a c e r0 bqg 0 g

;¨ g V .a a

Ž .Thus all rank 1 transformations belong to the image of R. Hence FF V isW
contained in the image of R and we may therefore identify R with a

Ž . Ž .subsuper-ring of LL V containing FF V .W W
Conversely, given dual DD-superspaces V and W, if R is a subsuper-ring

Ž . Ž .of LL V containing FF V then clearly R acts faithfully and irreduciblyW W
� < 4on V. Fix u g V and let L s r g R V r g DD u . We wish to0 0 a a a b a aqb 0

show that the left superideal L s L q L is minimal. For a fixed y g W ,0 1 b b

consider

¨ ¬ ¨ , y u , ¨ g V .Ž .a a b 0 a a0

Since its adjoint is given by

w ¬ y u , w , w g W ,Ž .g b 0 g g g0

this rank 1 map belongs to L ; denote it by b . We want to show that anyb b

homogeneous element a of L is a left R multiple of b and hencea a aqb b

Ž .that L is minimal. Arguing as above, if u , w s 1,0 0 0

¨ a s ¨ , aU w u , ¨ b s ¨ , bU w u .Ž . Ž .g a g a 0 0 g b g b 0 00 0

Ž U .Choosing x g V such that x , b w s 1, we haveb b b b 0 0

¨ c [ ¨ , aU w x g FF V : RŽ . Ž .g aqb g a 0 b W0

and

¨ c b s ¨ , aU w x , bU w u s ¨ , aU w u s ¨ aŽ . Ž .Ž .g aqb b g a 0 b b 0 0 g a 0 0 g a0 0 0

;¨ g V .g g

Hence L is a minimal left superideal of R and, by Lemma 5, R contains a
minimal right superideal.

Ž .Since multiples of elements of finite rank are of finite rank, FF V is aW
superideal of R and any nonzero superideal of R contains nonzero
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elements of finite rank. Arguing as above one sees that it must then
contain an element of rank 1, hence all elements of rank 1, and so all

Ž .elements of FF V .W

If s an antiautomorphism of DD then it is an isomorphism of DD onto
DDo p and W is a left DD-supermodule under the action

bd td w [ y1 w d , d g DD , w g W .Ž .d b b d d d b b

Ž . Ž .Thus, , : V = W is a sesquilinear pairing of left DD-superspaces, i.e.,n

d ¨ , w s d ¨ , w ,Ž .Ž .d a b d a bn n

bd s¨ , d w s y1 ¨ , w d ,Ž . Ž .Ž .a d b a b dn n

for all ¨ g V , w g W , d g DD . If y is a superinvolution of DD then DDa a b b d d

is isomorphic to DD o p and we may consider sesquilinear pairings of V = V.
Ž .We refer to these as superforms. If e g Z DD with ee s 1, an e-hermitian

superform is a sesquilinear pairing satisfying

ab¨ , w s y1 e w , ¨ , ;¨ g V , w g V .Ž . Ž . Ž .a b b a a a b bn n

Ž .The superform , is said to be e¨en or odd according to whether n s 0n

Ž . Ž . Žor 1. If e s 1 respectively, y1 , , is said to be hermitian respectively,n

.skewhermitian .

THEOREM 7. A primitï e super-ring R s R q R with a minimal right0 1
superideal has a superin̈ olution ) if and only if R has a selfdual right
supermodule V, the commuting super-ring CC of R on V has a superin̈ olution,
and ) is the adjoint with respect to a nondegenerate hermitian or skewhermi-
tian superform on V.

Proof. If there exists a symmetric primitive even idempotent e s eU
0 0y U <then DD s e Re is a division superalgebra with involution s and theDD0 0

right superideal V s e R s e R q e R s V q V is a left DD-super-0 0 0 0 1 0 1
space. For ¨ s e a g V , w s e b g V , definea 0 a a b 0 b b

U U¨ , w [ e a e b s e a b e g DD .Ž . Ž .a b 0 a 0 b 0 a b 0 aqb0

One checks that for all d g DD , ¨ g V , w g V ,d d a a b b

bdd ¨ , w s d ¨ , w , ¨ , d w s y1 ¨ , w d ,Ž . Ž . Ž .Ž . Ž .d a b d a b a d b a b d0 0 0 0

abw , ¨ s y1 ¨ , w ,Ž . Ž . Ž .b a a b0 0

Ž .that V is self dual with respect to , , and that ) is the adjoint with0
Ž .respect to the hermitian superform , .0
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If a minimal right superideal I s I q I contains a homogeneous0 1
U � 4e-symmetric element a s e a , e s "1, such that a I / 0 then I s e Ra a a 0

for a suitable primitive idempotent e g I with eU s e . Indeed, since0 0 0 0
� 4a I / 0 then a I s I and, arguing as in the proof of Lemma 5, therea a

exists an idempotent f g I such that a f s a and I s f R. Then0 0 a 0 a 0
f a s a and0 a a

UU U U U Ua s e a s e f a s e a f s a f s a f f .Ž . Ž .a a 0 a a 0 a 0 a 0 0

Again the proof of Lemma 5 shows that e s f f U g I is a nonzero even0 0 0 0
symmetric idempotent.

Assume from now on that if aU s e a g I , e s "1, I a minimal righta a a

� 4 Usuperideal, then a I s 0 . We wish to show that if b b / 0 for somea b b
U � 4b g J , J a minimal right superideal then J J s 0 . Indeed, by Lemma 2,b b

U � 4 U U U Ub b / 0 implies 0 / b b R : J. Therefore b b R s J and J s Rb b .b b b b b b b b
U U U � 4Since b b g J is e-symmetric, J J s Rb b J s 0 .b b b b

We claim that there exists a minimal right superideal I such that
a aU s 0, for all a g I . Let I be a minimal right superideal of R. Fora a a a

any 0 / a g I , by Lemma 5 and Theorem 6, I s a R s e R and Re sa a a 0 0
Ž .U URa is a minimal left superideal. Therefore Ra s a R is a minimala a a

right superideal. If any of these satisfy b bU s 0 for all b g aU R thenb b b a aqb

we are done. Otherwise, by the preceding argument,

UU U U � 4Ra a R s a R a R s 0 ;a g I . 3Ž . Ž . Ž .a a a a a a

Thus, by primeness a aU s 0, for all a g I , establishing the claim.a a a a

From now on let I be a minimal right superideal of R such that
a aU s 0, for all a g I . Writing I s e R s e R q e R as in Lemma 5,a a a a 0 0 0 0 1

U � 4 U � 4we have e Re / 0 by primeness. Therefore e R e / 0 for at least0 0 0 n 0
one n g Z . We choose n to be 0 if possible. This will always be the case if2

� 4 U � 4 U U Ž .UDD s e R e / 0 , for if e R e / 0 , since e Re s e Re is a divi-1 0 1 0 0 1 0 0 0 0 0
U U U � 4sion superalgebra, e R e = e R e R e / 0 . We may therefore assume0 0 0 0 1 0 1 0
� 4that if n s 1 then DD s 0 .1

U � 4 Ž U . UAssume e R e / 0 . If e r q r e / 0, for some r g R , letting0 n 0 0 n n 0 n n
U Ž U .U U Ž U .Ut s r q r we may assume that e t e s e t e . Otherwise e r en n n 0 n 0 0 n 0 0 n 0
U Ž U .Us ye r e , for all r g R and we choose t g R such that e t e s0 n 0 n n n n 0 n 0

ye t eU / 0. Thus0 n 0

UU Ue t e s e e t e , e s "1.Ž .0 n 0 0 n 0

U U � 4 U USince e Re t e / 0 , by primeness, and since e R e is a division0 0 n 0 0 0 0
algebra, one can choose s g R such thatn n

eUs e t eU s eU .0 n 0 n 0 0
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Applying ),

n 2 U U Ue s y1 e t e s eŽ .0 0 n 0 n 0

n U Us y1 e e t e s e .Ž . 0 n 0 n 0

Therefore
nU U U Ue s e s e s y1 e e t e s eŽ .Ž .0 n 0 0 n 0 n 0 n 0

n U U Us y1 e e s e t e s eŽ . Ž .0 n 0 n 0 n 0

n U Us y1 e e s eŽ . 0 n 0

and
nUU Ue s e s y1 e e s e .Ž . Ž .0 n 0 0 n 0

We therefore have

eUs e t eU s eU , e t eUs e s e ,0 n 0 n 0 0 0 n 0 n 0 0
4Ž .nU UU U U Ue t e s e e t e , e s e s y1 e e s e .Ž . Ž . Ž .0 n 0 0 n 0 0 n 0 0 n 0

Letting V s I s e R, for ¨ s e a g V , w s e b g V ,0 a 0 a a b 0 b b

¨ wU s e a bUeU
a b 0 a b 0

s e a bUeUs e t eU .0 a b 0 n 0 n 0

Define

¨ , w [ e a bUeUs e g e R e s DD .Ž .a b 0 a b 0 n 0 0 aqbqn 0 aqbqnn

Ž . Ž . � 4By the claim, ¨ , ¨ s 0, for all a g V . If ¨ , V s 0 ,a a n a a a n

U � 4e a Re s e s 0 ,0 a 0 n 0

and, since eUs e / 0,0 n 0

e a s 0, by primeness.0 a

Ž . � 4 Ž .Similarly V, w s 0 implies w s 0 and , is nondegenerate. Ifb n b n

Ž . Ž .d g DD , d ¨ , w s d ¨ , w . Moreoverd d d a b n d a b n

¨ , d w s e a bUeUdUeUs eŽ .a d b 0 a b 0 d 0 n 0n

s e a bUeUs e t eUdUeUs e0 a b 0 n 0 n 0 d 0 n 0

s ¨ , w d ,Ž .a b dn
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where
U U Ud [ e t e d e s e .d 0 n 0 d 0 n 0

For d g DD ,d d

UU U U U Ud s e t e e t e d e s e e s eŽ .d 0 n 0 0 n 0 d 0 n 0 0 n 0

2 dnn U U U Us y1 y1 e t e s e d e t e s eŽ . Ž . 0 n 0 n 0 d 0 n 0 n 0

dns y1 e e d e eŽ . 0 d 0

dns y1 dŽ . d

s d ,d

since if n s 1 then d must be 0. For c g DD and d g DD ,g g d d

UU Uc d s e t e c d e s eŽ .g d 0 n 0 g d 0 n 0

gd U U U Us y1 e t e d c e s eŽ . 0 n 0 d g 0 n 0

gd U U U U U Us y1 e t e d e s e t e c e s eŽ . 0 n 0 d 0 n 0 n 0 g 0 n 0

gds y1 d c .Ž . d g

y Ž .Thus is a superinvolution of DD and , is a nondegenerate sesquilin-n

ear superform on V whose adjoint is U. Finally

UU U U U¨ , w s e t e e a b e s e e s eŽ . Ž .a b 0 n 0 0 a b 0 n 0 0 n 0n

Ž .nab aqb U U U Us y1 y1 e t e s e b a e s eŽ . Ž . 0 n 0 n 0 b a 0 n 0

n nŽ .a b aqb U Us y1 y1 y1 e e b a e s eŽ . Ž . Ž . 0 b a 0 n 0

n nŽ .a b aqbs y1 y1 y1 e w , ¨ .Ž . Ž . Ž . Ž .b a n

Ž . � 4If n s 0, , is e-hermitian. If n s 1, we have assumed that DD s 00 1
Ž .and therefore ¨ , w s 0, for all ¨ , w g V . Hence the right hand sidea a 1 a a a

is 0 unless a q b s 1. Thus for all ¨ g V , w g V ,a a b b

ab¨ , w s y1 e w , ¨Ž . Ž . Ž .a b b a1 1

Ž .and , is an e-hermitian superform.1

EXAMPLE. Let DD be a division ring with involution y and W a left
DD-vector space endowed with a nondegenerate e-hermitian form
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Ž . Ž .g : W = W ª DD. If A is a subring of End W satisfying FF W : A :DD W
Ž .LL W , let V s V q V , V s W, i.e., as a left DD-vector space, V is aW 0 1 a

Ž .direct sum of two copies of W, and R s MM A with the obvious right2
action on V. Give DD the trivial grading, DD s DD. Then h : V ª DD given by0

h ¨ , w [ 0, h ¨ , w [ g ¨ , w , andŽ . Ž . Ž .a a 0 1 0 1

h w , ¨ [ yh ¨ , wŽ . Ž .1 0 0 1

Ž .is a nondegenerate odd ye -hermitian superform which induces a super-
involution U on R given by

U ˜ ˜a b d ybs ,ž / ž /c d c a˜ ˜

where is the involution of A induced by g. If W s f A, f a primitive˜ 0 0
idempotent of A, then

f 00e s0 ž /0 0

U � 4is a primitive idempotent of R such that e R e s 0 but of course0 0 0
U � 4e R e / 0 . This shows that the last case of Theorem 7 can occur.0 1 0

Recall that an involution is said to be of the first kind if its restriction to
the centre is the identity and of the second kind otherwise. We will use the
same terminology for superinvolutions. We adopt the following convention
to deal simultaneously with superinvolutions of the first and second kind.

Ž . � < U 4We will let Z AA l AA s K and k s c g K c s c . So K s k if ) is of0
w x Uthe first kind or K s k u , a quadratic extension of k with u s yu in

characteristic not 2 or u q 1 in characteristic 2. Comparing our result with
the classical results for primitive rings with nonzero socle having an
involution, one expects that more can be said about the superform, namely
that it could almost always be chosen to be hermitian. If the characteristic
is 2 then this is a moot point. If the characteristic is not 2 and ) is of the
second kind the multiplying a skewhermitian superform by u produces a
hermitian superform which induces the same superinvolution. The only
case in the proof of Theorem 7 where the superform could not be chosen
even was when DD s DD . In that case the superform could be chosen0

Ž U .U Uhermitian unless e r e s ye r e for all r g R . In that case e s y10 1 0 0 1 0 1 1
Ž . U Ž .and n s 1 in Eqs. 4 . Exchanging the role of e and e , we see from 40 0

Ž U .U U Ž .that e s e s e s e which allows us to choose , hermitian.0 1 0 0 1 0 1
Ž .If our superform is even then the restriction of , to V is nondegen-0 0

Ž . � 4erate. This is clear if DD s DD since V , V : DD . When DD / 0 , if0 0 1 0 1 1
y1Ž . Ž . Ž . � 4¨ , w s d / 0 then ¨ , d w s 1 and ¨ , V / 0 .0 1 0 1 0 1 1 0 0 0 0
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In the case where the minimal right superideal I s e R is such that0
U U U � 4a a s 0 s a a for all a g I and e R e / 0 , we have, for alla a a a a a 0 0 0

r g R ,0 0

U U U U U U U U0 s e e q r e q r e s e e q e r e q e r e q e r r eŽ . Ž .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

and
e rUeU s ye r eU ; r g R .0 0 0 0 0 0 0 0

Ž .Applying this last relation repeatedly, where t is as in 4 ,0

e a e b e tUeU s ye a e t eU bUeUŽ .0 0 0 0 0 0 0 0 0 0 0 0 0 0

s y e a e t eU bUeUŽ .0 0 0 0 0 0 0

s e tUeUaUeU bUeUŽ .0 0 0 0 0 0 0

s ye b e a e t eU
0 0 0 0 0 0 0

s e b e a e tUeU .0 0 0 0 0 0 0

Thus

w x U U0 s e a e , e b e e t e0 0 0 0 0 0 0 0 0

w x U U U0 s e a e , e b e e t e s e0 0 0 0 0 0 0 0 0 0 0

w xs e a e , e b e e ,0 0 0 0 0 0 0

for all a , b g R . Therefore the division ring DD is commutative, the0 0 0 0
Ž .restriction of , to V is nondegenerate alternating, and the associated0 0

involution y of DD is the identity. We will return to this question after the0
description of division superalgebras with superinvolution.

Associatï e Dï ision Superalgebras

To complete the structure of primitive super-rings with minimal one-
sided superideals and of simple Artinian associative superalgebras, we
describe associative division superalgebras in terms of division algebras,

w x w xsee 2 and also 12 for a more detailed study from a different point of
Ž .view. A superalgebra AA s AA q AA over a field K is central if K s Z AA0 1

Ž .l AA , where Z AA is the centre of AA. For any algebra AA and invertible0
c g AA, denote by c the inner automorphism xcc s cxcy1. If K is ofc

Ž . � 2 < 4characteristic 2, denote by ` K the set a q a a g K . We recall the
following lemma of Wall.

w xLEMMA 8 11, Lemmata 3, 5 . If AA s AA q AA is a central simple unital0 1
superalgebra o¨er K then either AA is simple as an algebra or AA is simple and0

Ž . 2AA s AA u, with u g Z AA l AA and u s 1. Moreo¨er AA or AA is central1 0 1 0
simple as an algebra o¨er K and if AA is finite dimensional the or is exclusï e.
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We determine next the associative division superalgebras.

DIVISION SUPERALGEBRA THEOREM. If DD s DD q DD is a central dï i-0 1
sion superalgebra o¨er the field K then exactly one of the following holds where
throughout EE denotes a central dï ision algebra o¨er K.

Ž . � 4i DD s DD s EE, i.e., DD s 0 ,0 1

Ž . w x 2 =ii DD s EE m K u , u s l g K , DD s EE m K1, DD s EE m Ku,K 0 1

Ž . Ž . � <iii DD s EE, DD s C u , the centralizer of u in EE, DD s d g EE du0 EE 1
s 4 w xs u d , for some quadratic Galois extension K u ; EE with Galois automor-

phism s ,

Ž . Ž . Ž . w x w xiv DD s MM EE s EE m MM K , DD s EE m K u , DD s EE m K u w,2 K 2 0 1
where

0 1 1 0 2u s , w s g MM K , l f K , char K / 2Ž .2ž / ž /l 0 0 y1

0 1 1 0u s , w s g MM K , l f ` K , charK s 2,Ž . Ž .2ž / ž /l 1 1 1

w xand K u does not embed in EE,

Ž . 2 = fv DD s EE q EE ¨ , DD s EE, DD s EE ¨ , ¨ s d g EE , ¨a s a ¨ , ;a0 1
g EE, where f is an outer automorphism of EE o¨er K such that f 2 s c andd
df s d.

This last case can occur only if EE is infinite dimensional o¨er its centre K.

Proof. Assume that DD s DD q DD is a central division superalgebra0 1
� 4 Ž .over the field K and that DD / 0 , i.e., we are not in case i . If1

0 / ¨ g DD then DD ¨ : DD s DD ¨y1 ¨ : DD ¨ . Therefore DD s DD ¨ for any1 0 1 1 0 1 0
c¨ <0 / ¨ g DD . For any a g DD , ¨a s a ¨ and c is an automorphism ofDD1 0 ¨ 0

Ž .DD as an algebra over Z DD l DD . Observe that, since any element of DD0 0 1
Ž .is of the form c ¨ , c g DD , the restriction of c to Z DD does not0 0 0 ¨ 0

depend on the particular choice of ¨ g DD=.1
< <Assume first that c is an inner automorphism of DD , say c s cDD DD¨ 0 ¨ c0 0

Ž .for some c g DD determined up to multiplication by an element of Z DD .0 0
Therefore cy1 ¨a¨y1c s a, for all a g DD . Letting u s cy1 ¨ g DD , we have0 1
uauy1 s a, for all a g DD and u centralizes DD . Since DD s DD u, u0 0 1 0

Ž . 2 Ž . 2 =centralizes DD also. So u g Z DD and u g Z DD l DD , say u s l g K .1 0
w xLetting EE s DD , DD s EE m K u . Note that DD is simple as an algebra if0 K
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and only if l f K 2. If l g K 2, we may assume that l s 1. This is the only
case where a division superalgebra is not simple as an algebra.

<Assume next that c is not an inner automorphism of DD over K. IfDD¨ 00

< Ž .c is not the identity then K is the fixed subfield of Z DD . We mayZŽ DD .¨ 00

Ž . Ž . w xchoose u g Z DD such that Z DD s K u ,0 0

u2 s l f K 2 , uc¨ s yu , char K / 2,

u2 q u s l f ` K , uc¨ s 1 q u , char K s 2.Ž .

c¨ c¨ Ž .But then a¨u s au ¨ s u a¨ for all a g DD . Therefore DD s C u ,0 0 DD

� < c¨ 4the centralizer of u in DD, and DD s c g DD cu s u c . If DD is a division1
Ž .algebra, this is case iii with EE s DD.

If DD is not a division algebra then since DD is not central simple over0
Ž .K s Z DD l DD then, by Lemma 8, DD is central simple over K. Let0

� 4J / 0 be a right ideal of DD. If 0 / a q a g J then at least one a / 00 1 i
and, multiplying by ay1 on the right, 1 q b g J, for some b g DD . Hencei 1 1 1
Ž . X X Ž .1 q b DD : J. If J contains an element a q a f 1 q b DD then, argu-1 0 1 1
ing as above, we obtain an element 1 q bX g J, bX / b . In that case1 1 1
0 / b y bX g J and 1 g J which must be the whole of DD. Therefore a1 1
descending chain of nonzero right ideals in DD has length at most 2 and

Ž .not only is DD artinian but DD is isomorphic to MM EE , EE a division algebra2
w x Ž . Ž Ž ..with centre K. If K u were to embed in EE then DD s C u = MM C u0 DD 2 EE

w xwhich is not a division algebra. Therefore K u does not embed in EE but
w x Ž .rather the quadratic extension K u embeds in MM K and w can be2

chosen as

0 1u s , andž /l 0

1 0w xDD s EE m K u w for w s , char K / 2,1 ž /0 y1

0 1u s , andž /l 1

1 0w xDD s EE m K u w for w s , char K s 2,1 ž /1 1

Ž .and we are in case iv .
< <Assume finally that c is not inner but c is the identity map.DD ZŽ DD .¨ ¨0 0

Ž . Ž .Therefore Z DD s Z DD . This cannot happen if DD is finite dimensional0 0
over its centre since all automorphisms of DD over its centre are inner.0
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2 2 Ž 2 .c¨
2 2 Ž .2Now c s c is inner since ¨ g DD and ¨ s ¨ . So we have case v .¨ ¨ 0

Conversely if EE is a central division over K and f an outer automorphism
of EE over K such that f 2 s c , for some d g EE with df s d, letd
DD s EE q EE ¨ , as a left EE-vectorspace and define ¨ 2 [ d and ¨a [ af¨ ,
for a g EE. Let DD s EE, DD s EE ¨ . This grading is compatible with the0 1
product in DD and it remains to check associativity. The only case where
the full assumptions on f are needed is

ff f y1 f fa¨b¨ c¨ s ab dc¨ s ab dcd d ¨ s a bc d ¨Ž . Ž .
s a¨ bcfd s a¨ b¨c¨ .Ž . Ž .

w xIt is shown in 5, Example 5, p. 189 that such a DD is a division algebra if
fand only if d is not a norm, i.e., d s c c has no solution c g DD .0

Remark. In the last case the centre of DD s K, DD and DD are central0
simple. Therefore the assumption of finite dimensionality is necessary in

Ž .the last statement of Wall’s Lemma Lemma 8 .

Dï ision Superalgebras with Superin¨olution

Let AA s AA q AA be a superalgebra with superinvolution ). Of course0 1
Ž U < .AA , is an algebra with involution. If ) is a superinvolution ofAA0 0

AA s AA q AA then0 1
XU U Ua q b [ a y bŽ .0 1 0 1

defines a superinvolution on AA.
Let DD s DD q DD be a division superalgebra with superinvolution ). If0 1

Ž .DD s DD then DD, ) is a division algebra with involution. More will be said0
Ž .about superinvolutions of MM DD in the next section. Assume from nowpqq

� 4 Ž .on that DD / 0 . We deal first with case ii of the Division Superalgebra1
Theorem.

w x 2 =PROPOSITION 9. Let DD s DD m K u , u s l g K , DD s DD m Ku. If0 K 1
DD has a superin̈ olution then we can choose u such that uU s u and

U U <l s yl. If the characteristic is not 2 this implies that is of the secondDD0

kind. Con¨ersely if y is an in¨olution of DD and l / 0 an element of K the0
2w xcentre of DD such that l s yl, the superalgebra DD s DD m K u , u s l,0 0

has a superin̈ olution ) extending y gï en by

U
a q bu [ a q bu.Ž .

Ž . w x Ž .Proof. The centre of DD, Z DD s K u and since u g Z DD l DD ,1
U Ž . U Uu g Z DD l DD s Ku. If u q u / 0, replacing u by u q u if neces-1

sary, we may assume that uU s u. Otherwise, uU s yu.
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Applying the superinvolution ) to u2 s l g K yields ye ue u s lU ,
e s "1, So

lU s yl

U <and must be of the second kind if char K / 2. In that case, replacingDD0

u by u u if necessary, we may assume that uU s u. So in all cases u can be
chosen with uU s u, u2 s l g K, lU s yl.

Conversely given an involution y of DD and an element 0 / l g K, the0
centre of DD , such that l s yl, one checks that0

U
a q bu [ a q buŽ .

w x 2is a superinvolution of the superalgebra DD s DD m K u , u s l, extend-0ying .

Ž . Ž . Ž .We deal with cases iii , iv , and v of the Division Superalgebra
Theorem together. If DD s DD q DD is a division superalgebra and 0 / ¨ g0 1
DD then for all a g DD , ¨a s af¨ , where a ¬ af [ ¨a¨y1 is an automor-1 0
phism of DD .0

PROPOSITION 10. Let DD s DD q DD be a dï ision superalgebra with DD0 1 1
Ž . � 4/ 0 and Z DD l DD s 0 . If DD has a superin¨olution ) then DD contains1 1

a 0 / ¨ s ¨U. Moreo¨er

dU s yd, where d s ¨ 2 . 5Ž .

bU f s bfy1U ;b g DD . 6Ž .0

Ž . Ž .Con¨ersely, if ) is an in¨olution of DD , satisfying 5 and 6 , then0

U U U fa q b¨ [ a q b ¨Ž .

extends ) to a superin̈ olution of DD.

Proof. Since b q bU is symmetric, we may assume that there exists a
nonzero symmetric ¨ g DD or that the characteristic is not 2 and bU s yb1 1 1
for all b g DD . In that case, for all a g DD , b , c g DD ,1 1 0 0 1 1 1

U Uya b s a b s yb aŽ .0 1 0 1 1 0

a b c s b aUc s b c a .0 1 1 1 0 1 1 1 0

Since DD DD s DD , DD is commutative. This contradicts infinite dimension-1 1 0 0
Ž .ality in case v . We are left with DD a division quaternion algebra in case

Ž . Ž .iii and a split quaternion algebra in case iv . In both cases, since
2 ) U U 2 U <¨ s y¨ ¨ s y¨ g K, is of the second kind and, arguing asK
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U Ž .U U Uabove, we may assume that u s u. In that case u¨ s ¨ u s y¨u s
u¨ , contradicting our assumption that DD consists of skewsymmetric ele-1
ments. Therefore DD contains a nonzero symmetric element ¨ .1

Ž .U U U f Ž .UU Uf UfFor a g DD, a¨ s ¨a s a ¨ and a¨ s a¨ s a ¨ . Therefore

aU f s afy1U ;a g DD .0

Ž . Ž .Conversely, if ) is an involution of DD , satisfying 5 and 6 , then one0
checks that

U U U fa q b¨ [ a q b ¨Ž .
extends ) to a superinvolution of DD.

Remark. For DD as above, superinvolutions come in pairs. One checks
Ž . Ž .that if ) satisfies 5 and 6 then )f is an involution of DD which extends0

to a superinvolution of DD via

a q b¨y1 ¬ aU f q bU ¨y1 .

In view of the discussion following Theorem 7, we pay particular
attention to superalgebras with superinvolution with commutative even
part. Collecting the results above, we have the following possibilities:

Ž . Ž .1 K, ) , a field with involution ),
Ž . Ž . 2 = U U Ž .U U2 K q Ku, ) , u s l g K , u s u, l s yl, a q bu s a q

bU u,
Ž . Ž w x w x . w x3 K u q K u ¨ , ) , K u , a quadratic Galois extension, with Ga-

U w x w xlois automorphism s , ¨ s ¨ . The algebra QQ s K u q K u ¨ is a quater-
Ž . Ž . w xnion algebra, division in case iii , split in case iv . The odd part, K u ¨ s

ys s� < 4d g QQ du s u d . Let be the standard involution of QQ. Then u s u
s s s Ž .and if du s u d then ud s d u and du s u d. Therefore d q d u s

s sŽ . Ž . Ž . Ž .u d q d or t d u s t d u and the trace of d, t d s 0. In particular
¨ 2 s l g K, so lU s yl.

The last case in our classification of division superalgebras cannot occur
since DD is of dimension 1 over its centre. Hence if the characteristic is0

Ž . Ž .not 2, ) is of the second kind on K in cases 2 and 3 . When ) is of the
second kind on K, scaling a skewhermitian superform by u yields a
hermitian superform having the same adjoint.

Simple Superalgebras with Superin¨olution

In trying to obtain more precise information on central simple associa-
Ž .tive superalgebras AA, ) with superinvolution we first start by establishing

elementary results for super-rings. The first lemma is a version of a
standard result for rings with involution.
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LEMMA 11. If AA is an associatï e super-ring with superin̈ olution ) such
Ž . Ž . Uthat AA, ) is simple then either AA is simple as a super-ring or AA s BB [ BB ,

with BB a simple super-ring.

Ž .Proof. Let AA, ) be an associative super-ring with superinvolution
which is simple as a super-ring with superinvolution. If BB is a nonzero
superideal of AA then BB q BB

U and BB l BB
U are U-stable superideals of

U U � 4AA. Therefore BB q BB s AA. If BB / AA then BB l BB s 0 and AA s BB [
BB

U. If I is a proper superideal of BB then I q IU is a proper superideal of
U

AA. Therefore either AA is simple or AA s BB [ BB with BB simple.

In the second case BB
U is isomorphic to the opposite super-ring of BB.

We will consider a super-ring AA with nonzero odd part, and to avoid
double indices, will at times write AA s A q B, where A s AA is the even0

Ž .part and B s AA the odd part B is a bimodule of the ring A .1

� 4THEOREM 12. Let AA s A q B be an associatï e super-ring with B / 0
Ž . Ž U < .and ), a superin̈ olution of AA. If AA, ) is simple then either A, isA

simple or

A s A [ A , B s B [ B , 7Ž .1 2 1 2

Ž U < .where A , are simple and B are irreducible A-bimodules withAi ii

BU s B and BU s B , 8Ž .1 2 2 1

such that

A B s B s B A , A B s B s B A ,1 1 1 1 2 2 2 2 2 1 9Ž .B B s A , B B s A ,1 2 1 2 1 2

� 4A B s 0 s A B s B A s B A s B B s B B . 10Ž .2 1 1 2 1 1 2 2 1 1 2 2

Proof. Let I be a nonzero )-stable ideal of A. Then I q BIB q IB q
BI is a nonzero )-stable superideal of AA. So

I q BIB s A and IB q BI s B. 11Ž .

� 4If I l BIB / 0 then J s I l BIB is a nonzero )-stable ideal of A
Ž .and, by 11 with I replaced by J, J q BJB s A. But BJB : BBIBB : AIA

Ž U < .: I. Therefore A s J q BJB ; I and I s A. Thus either A, is sim-A

ple as a ring with involution or for any proper )-stable ideal I of A,
� 4I l BIB s 0 . In that case let

A s I , A s BIB , B s IB , B s BI. 12Ž .1 2 1 2
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� 4If z g IB l BI then, for any b g B, bz g BIB l BBI : BIB l I s 0 .
Similarly zb s 0 and

< � 4IB l BI : Ann B [ z g B Bz s 0 s zB .� 4B

Since Ann B is an A-bimodule, it is a )-stable superideal of AA and thusB
� 4 � 4 Ž .must be 0 . Therefore IB l BI s 0 and 7 holds. If J is a proper

)-stable ideal of A then it is a )-stable ideal of A s A [ A . Moreover1 1 2
BJB : BIB s A and J generates a proper )-stable superideal of AA,2
which is impossible. Therefore A and, by symmetry, A are )-simple.1 2

Ž . Ž .Equation 8 follows from 12 and the facts that I is )-stable and that )
is of period 2. Let C be a nonzero A-sub-bimodule of B . Then CU is an1 1 1
A-sub-bimodule of B and C CU q CU C q C q CU is a )-stable su-2 1 1 1 1 1 1
perideal of AA. Therefore C s B and B is irreducible. Similarly B is1 1 1 2
irreducible.

Ž . Ž .Next A B s BIB IB : AIB : IB; but BIBIB s BI BIB : BIA : BI2 1
� 4 � 4 Ž .and A B : B l B s 0 . Also B B s IBIB s A A s 0 by 7 . The2 1 1 2 1 1 1 2

Ž .other equations of 10 are proved in a similar fashion.
Ž .That B B : A and B B : A is a consequence of 12 . Since B B is1 2 1 2 1 2 1 2

� 4 � 4 Ž .a )-stable ideal of A , B B s 0 or A . If B B s 0 then, by 10 ,1 1 2 1 1 2
� 4B B s 0 and B q B B is a proper )-stable superideal of AA, a contra-1 2 1

Ž .diction. Hence B B s A and, similarly, B B s A . By 12 , A B : B1 2 1 2 1 2 1 1 1
Ž .and must equal B by the irreducibility of B . The other equations of 91 1

are proved in a similar fashion.

Remark. If AA s A [ A q B [ B with A )-simple, B irreducible1 2 1 2 i i
Ž . Ž . Ž .A-bimodules satisfying 8 , 9 , and 10 then there is no proper )-stable

� 4ideal I of A with I l BIB / 0 .

We will obtain more information on the superinvolutions of AA when the
grading is not inherited from that of DD, that is, DD s DD , and AA is finite0

Ž . Ž . Ž .dimensional. If AA s MM DD , AA s MM DD [ MM DD , p, q ) 0, then wepqq 0 p q
are in one or the other of the situations described in Theorem 12. We
consider each case in turn using the notation of Theorem 12.

Ž .PROPOSITION 13. If AA s MM DD , p, q ) 0, is a superalgebra withpqq
Ž . Ž . Ž U < . Ž .AA s A s MM DD [ MM DD and A, is simple then p s q, MM DD hasA0 p q p

; Ž . Ž .an in¨olution and AA, ) is isomorphic to MM DD with the superin̈ olu-2 p
tion ) gï en by

U ˜ ˜d ymba b s , 13Ž .ž /c d ž /mc a˜˜ ˜
Ž .for a, b, c, d g MM DD and m g K such that mm s 1. If is of the first kind˜ ˜p

Ž . ;then m may be chosen equal to 1. Con¨ersely if MM DD has an in¨olutionp
Ž . Ž .then 13 defines a superin̈ olution on the simple superalgebra MM DD .pqp
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Proof. Since AA has a superinvolution then, by Theorem 7, so has DD. In
y Ž .this case, since DD s DD , DD has an involution and MM DD has an0 p

Ut Ž < . Ž .involution a s a , t the transpose. Since A, is simple, MM DD is˜ A q
Ž . Ž U < .anti-isomorphic to MM DD and q s p. Up to isomorphism, A, is givenAp

U ˜Ž Ž . Ž . . Ž . Ž .by MM DD [ MM DD , ) with a, b s b, a . Letting˜p p

p 2 p p p

f s e , f s e , f s e , f s e ,Ý Ý Ý Ý11 i i 22 i i 12 i pqi 21 pqi i
is1 ispq1 is1 is1

we have

A s MM DD f [ MM DD f ,Ž . Ž .p 11 p 22

B s MM DD f [ MM DD f , f U s f , f U s f .Ž . Ž .p 12 p 21 11 22 22 11

Hence
UU Uf s f f f s f f fŽ .12 11 12 22 11 12 22

and

f U s cf , for some c g MM DD .Ž .12 12 p

Ž .For any a g MM DD ,p

UU
af s af f s cf af s cafŽ . Ž .Ž . ˜ ˜12 11 12 12 22 12

while
UU

af s f af s af cf s acf .Ž . Ž .Ž . ˜ ˜12 12 22 11 12 12

Ž Ž .. Ž .UUTherefore c g Z MM DD . Moreover f s f s ccf implies cc s I .˜ ˜p 12 12 12 p
U Ž Ž ..So c s ym g K with mm s 1. Similarly f s df , d g Z MM DD . But˜ 21 21 p

U Ž .U y1f s f s f f s ydf cf s ydcf which implies d s yc .22 11 12 21 21 12 22
Ž .U Ž .UTherefore af s ymaf and af s maf or˜ ˜ ˜12 12 21 21

U ˜ ˜d ymba b s ,ž /c d ž /mc a˜˜ ˜

Ž .for a, b, c, d g MM DD if is of the first kind then m s "1 and, permuting˜p
the indices if necessary, we may assume that f U s yf and f U s f . The12 12 21 21
converse is easy to check.

Ž .PROPOSITION 14. If AA s MM DD , p, q ) 0, is a superalgebra withpqq
Ž . Ž . Ž U < .A s A [ A , A s MM DD , A s MM DD , and A, is not simple thenA1 2 1 p 2 q

Ž U < . Ž U < .A , and A , are of the same kind. If ) is of the second kindA A1 21 2

then ) is induced by a nondegenerate e¨en hermitian superform. If AA is finite
dimensional o¨er a field of characteristic not 2 and ) is of the first kind then
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Ž U < .one A , is orthogonal type and the other of symplectic type. The gradingAi i

on V can be chosen such that ) is induced by a nondegenerate e¨en hermitian
superform.

Proof. If AA has a superinvolution ) then, by Theorem 7, DD has an
involution y and ) is the adjoint of a nondegenerate hermitian or

U < U <skewhermitian superform. Therefore the involutions and are ofA A1 2

the same kind. If they are of the second kind, we may assume that ) is
induced by a nondegenerate even hermitian superform.

We show next that if they are of the same kind and the dimension of AA
U < U < Žis finite then and cannot be both of the same type orthogonal orA A1 2

.symplectic . Assume that they are. Extending the base field if necessary,
Ž . Ž .we may assume that AA s MM CC , with CC s k or MM k , the split quater-m 2

Ž . Ž . U <nions, A s MM CC , A s MM CC , r q s s m, and that the involutions A1 r 2 s i

are given by yt, where y is the standard involution of CC and t is the
Ž . Utranspose. Let e denote the matrix units of MM CC . Therefore e s ei j m i j ji

for 1 F i, j F r or r q 1 F i, j F m. Fix i, j such that 1 F i F r and
r q 1 F j F m. Then

UU U Ue s e e e s e e e and e s ce for some c g CC .Ž .i j i i i j j j j j i j i i i j ji

For any a g CC,
UU

ae s ae e s ce ae s cae andŽ . Ž .Ž .i j i i i j ji i i ji

UU
ae s e ae s ace .Ž . Ž .Ž .i j i j j j ji

Ž . U Ž .Hence c g Z CC . Similarly e s de for some d g Z CC . Moreover e sji i j i jyUU y1Ž . Ž .e s cde and since is the identity on Z CC , d s c . Finallyi j i j
U Ž .Ue s e s e e s yde ce s ye , a contradiction.i i i i i j ji i j ji i i

Ž .The superalgebra AA s MM DD is isomorphic to the endomorphismpqq
�superalgebra of a left DD-superspace V s V q V , where dim V ,0 1 DD 0

4 � 4dim V s p, q . Let ) be a superinvolution of AA which stabilizesDD 1
Ž . Ž . U < Ž U < .A s MM DD and A s MM DD . The involution respectively, isA A1 p 2 q 1 2

Ž .induced by a hermitian or skewhermitian form h respectively h on V1 2 0
Ž . U < U <respectively, V . If and are of the first kind, one of theA A1 1 2

U < Ž U < .involutions say is of orthogonal type and the other of symplecticA Ai 1

type. We may therefore assume that h is hermitian and h is skewhermi-1 2
tian. The hermitian superform h s h H h induces a superinvolution i of1 2

Ž . U <End V whose restriction to A coincides with . The composition of iAi i

with ), i), is an algebra automorphism of AA. It is inner and restricts to
the identity map on A and A . One checks that this forces i) to be the1 2
conjugation c by the sum c s g q g of nonzero central elements g ofc 1 2 i
A . Changing the superform to g h q g h will produce the desiredi 1 1 2 2
superinvolution. Therefore ) is induced by an even hermitian superform
on V.
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Combining the discussion after Theorem 7, the determination of division
superalgebras with commutative even part having an involution and Propo-
sition 14, we have

THEOREM 7X. A primitï e super-ring R s R q R with a minimal right0 1
superideal has a superin̈ olution ) if and only if R has a selfdual right
supermodule V, the commuting super-ring CC of R on V has a superin̈ olution,
and ) is the adjoint with respect to a nondegenerate hermitian or skewhermi-

� 4tian superform on V. If R / 0 then the superform may be chosen hermitian.1
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