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PRIMITIVE INVOLUTION RINGS

K. I. BEIDAR∗ (Tainan), L. MÁRKI (Budapest), R. MLITZ (Wien)
and R. WIEGANDT (Budapest)†

Abstract. A ∗-primitive involution ring R is either a left and right primi-
tive ring or a certain subdirect sum of a left primitive and a right primitive ring
with involution exchanging the components. An example is given of a left and
right primitive ring which admits no row and column finite matrix representa-
tion. We characterize ∗-primitive involution rings in terms of maximal ∗-biideals.
A ∗-prime involution ring has a minimal left ideal if and only if it has a minimal
∗-biideal, and these involution rings are always ∗-primitive.

1. Introduction

The most natural examples of rings can be endowed with an involution.
Let us mention here two kinds of examples of division rings with involution.
On a free associative algebra with more than one generator one can define
an involution (we shall present this explicitly in Example 3.2); this algebra
embeds into a division ring, and there the involution of the free algebra ex-
tends to the division subring generated by the free algebra. Next, it is well
known that the enveloping algebra of a finite-dimensional Lie algebra over
a field admits an involution, and this extends to the classical division ring
of quotients of the enveloping algebra. The classical reference for involution
rings is, of course, Herstein’s book [10]; some important results can be found
in [4]; for a recent treatise on central simple algebras with involution see [14].

From a categorical point of view, the consistent way of looking at the
class of involution rings is to consider between them only involution preserv-
ing ring homomorphisms. In describing the structure of involution rings in
terms within this category, it is a typical feature that an involution ring with
a given property (e.g. ∗-simple, ∗-prime, ∗-subdirectly irreducible) is either
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358 K. I. BEIDAR, L. MÁRKI, R. MLITZ and R. WIEGANDT

a ring with that property (e.g. simple, prime, subdirectly irreducible) or a
(sub)direct sum of a ring with that property and its opposite with the ex-
change involution. For instance, a ∗-simple involution ring is either a simple
ring or a direct sum of two simple rings – this seems to have been stated first
by Jacobson [13] in the special case of finite-dimensional central simple (as-
sociative) algebras. Another example: a ∗-subdirectly irreducible involution
ring is either a subdirectly irreducible ring or a subdirect sum of two sub-
directly irreducible rings subject to further constraints (cf. [9]). Involutive
versions of the Wedderburn–Artin Structure Theorems [1], the Litoff–Ánh
Theorem [2], Goldie’s Theorems [8], and the description of simple involution
rings with a minimal ∗-biideal by Rees matrix rings [3] are also of that kind.

The involutive version of primitivity, called ∗-primitivity, was introduced
by Rowen [17], and he noted: “There does not seem to be a good ∗-analog
for the density theorem in general, although there is an excellent version for
∗-primitive rings having minimal left ideals”. Nevertheless, one can describe
the structure of ∗-primitive rings by distinguishing between cases. In fact,
as an extension of an observation of Rowen (see Proposition 2.1 below) we
show here that a ∗-primitive involution ring is either a left and right primitive
ring or a subdirect sum of two anti-isomorphic (left and right, respectively)
primitive rings endowed with an involution which exchanges the components
(Theorem 2.4). We also show that not every left and right primitive ring can
be represented by row and column finite matrices (Theorem 3.1).

Moreover, the notion of left ideals is alien to the category of involution
rings, since a left ideal closed under involution is an ideal. The notion of
∗-biideals is more suitable in the category of involution rings and involu-
tion preserving homomorphisms. For instance, chain conditions imposed on
∗-biideals have proved to be efficient in describing the structure of certain
involution rings (see [1], [5], [8], [15]). We show that an involution ring R is
∗-primitive exactly when R2 6= 0 and R possesses a maximal ∗-biideal which
does not contain nonzero ∗-ideals of R (Theorem 4.3). We prove that for
∗-prime rings the existence of minimal left ideals is equivalent to the exis-
tence of minimal ∗-biideals (Theorem 5.1), and so ∗-prime rings with minimal
one-sided ideals have got a description in terms intrinsic to the category of
involution rings. We also prove that a ∗-prime ring with minimal ∗-biideals
is always ∗-primitive (Theorem 5.3).

Thanks are due to Pham Ngoc Ánh for several useful remarks, among
others, for calling our attention to the paper [11], and to the referee for
spotting some inaccuracies in the first version.
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2. The structure of ∗-primitive rings

Definition ([17, Definition 2.13.31]). If (R, ∗) is a ring with involution
∗ and M is an R-module, define

Ann(R,∗)M = {r ∈ R | rM = 0 = r∗M}.

We say that M is ∗-faithful if Ann(R,∗)M = 0, and (R,∗) is said to be ∗-prim-
itive if R has a simple ∗-faithful module.

An ideal P of a ring R is called left primitive if R/P is a left primitive
ring. Right primitivity of an ideal is defined correspondingly.

For a subset S of an involution ring the involutive image of S will be
denoted by S∗.

Proposition 2.1 ([17, Proposition 2.13.32]). The following assertions
about an involution ring (R, ∗) are equivalent:

(i) (R, ∗) is ∗-primitive,
(ii) Ann(R,∗)R/L = 0 for some maximal left ideal L of R,
(iii) R has a left primitive ideal P with P ∩ P ∗ = 0.

Moreover, P is the largest ideal of R which is contained in L. �

We shall make use also of the following:

Proposition 2.2 ([12, Theorem 2.4.4]). If R is a dense ring of linear
transformations of a vector space V over a division ring D, and if I is a
nonzero ideal in R, then I is also a dense ring of linear transformations
of V . �

Recall that if I is an ideal of a ring A such that I has non-zero intersec-
tion with any non-zero ideal of A, then we say that I is an essential ideal
of A and A is an essential extension of I. The following statement is well
known in radical theory.

Proposition 2.3. If R is a primitive ring and S is an essential exten-
sion of R then S is also primitive.

Proof. It follows from the assumptions that the two-sided annihilator
of R in S is 0. Now, the assertion holds by [7, Lemma 83]. �

The next theorem describes the structure of ∗-primitive involution rings.
First we advance a definition.

Definition. Let the involution ring (R, ∗) be, as a ring, a subdirect sum
R = S �

subd
T of two anti-isomorphic rings S and T with anti-isomorphism

ψ : S → T . We say that the involution ∗ on R is of exchange type if (s, t)∗

=
(
ψ−1(t), ψ(s)

)
for all (s, t) ∈ S �

subd
T . (Clearly, this is just the exchange

involution if R is the direct sum S � Sop.)
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Theorem 2.4. A ring R with involution is ∗-primitive if and only if
either

(I) R is left primitive (and then also right primitive), or
(II) R is a subdirect sum of two anti-isomorphic (left resp. right) primi-

tive rings with exchange type involution; or, equivalently, R is an essential
extension of the direct sum of two anti-isomorphic (left resp. right) primitive
rings endowed with the exchange involution.

Proof. Let R be a ∗-primitive ring. By Proposition 2.1, there exists a
left primitive ideal P of R such that P ∩ P ∗ = 0.

(I) Case P = 0 = P ∗. Now R is a left primitive ring. The converse is
obvious.

(II) Case P 6= 0. Put Q = P ∗, S = R/P and T = R/P ∗. Then ∗ induces
the anti-isomorphism

ψ : S → T : r + P 7→ r∗ +Q

and the mapping

ϕ(r) = (r + P, r +Q) for all r ∈ R

establishes an isomorphism between R and a subdirect sum of S and T . Since
S is left primitive, T is right primitive. Finally, the exchange type involution
� induced by ψ on R = S �

subd
T coincides with ∗ because for any r ∈ R we

have

r� = (r + P, r +Q)� =
(
ψ−1(r +Q), ψ(r + P )

)
= (r∗ + P, r∗ +Q) = r∗,

which proves the first assertion for Case (II). The converse statement is a
direct consequence of Proposition 2.1.

Next, in view of P ∩Q = 0, R contains Q� P . Here

Q ∼=
P +Q

P
/ R/P,

and R/P is a left primitive ring, hence Q is also left primitive, and likewise,
P /R/Q and P is right primitive. Now R/P is an essential extension of Q for
otherwise R/P would contain an ideal which decomposes into a direct sum
but the latter cannot be primitive, although an ideal of a primitive ring is
itself primitive by Proposition 2.2. Similarly, R/Q is an essential extension
of P . Likewise, Q� P is an essential ideal of R and ∗ restricted to Q� P is
the exchange involution. To see the converse, let Q and P be anti-isomorphic
left and right primitive rings, respectively, and suppose that the direct sum
Q� P endowed with the exchange involution is an essential ∗-ideal of a ring
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R with involution. Then Q, P are ideals of R with P ∩Q = 0, so R is a
subdirect sum of R/P and R/Q. Furthermore, R/P and R/Q are essential
extensions of Q and P , respectively, so by Proposition 2.3 they are also left
and right primitive rings, respectively. Finally, since the involution ∗ of R
restricts to the exchange involution of Q� P , we have Q = P ∗, and ∗ in-
duces an anti-isomorphism ψ between R/P and R/Q via r + P 7→ r∗ +Q.
Also, we see as above that ∗ agrees with the exchange type involution in-
duced by ψ on R = R/P �

subd
R/Q, and then R is ∗-primitive by the foregoing

considerations. �
Question 1. Using the notation in the proof of Theorem 2.4, the ring R

is embedded (as a subdirect sum) in R/P �R/Q, and it contains Q�P as an
essential ideal. Now, given a ring R without involution either as a subdirect
sum in R/P �R/Q or as an essential extension of Q� P , where R/P and
R/Q respectively Q and P are anti-isomorphic, one can ask when R admits
an involution ∗ which is an exchange type involution on R = R/P �

subd
R/Q

or which restricts to the exchange involution on Q� P . Good answers to
these questions would yield constructions of all ∗-primitive involution rings
of type (II).

Remark. It is natural to ask whether the involution of a ∗-primitive ring
R induces an involution on the underlying division ring. In case (I), we do
not know the answer in general, only if R has a minimal left ideal, and that
special case is presented in [10]:

An element x ∈ R of an involution ring R is called symmetric, if x = x∗.
An element e 6= 0 of a semiprime ring R is said to be a minimal idempotent
if e = e2 and Re is a minimal left ideal of R. We define an involution ∗ of a
prime ring R with minimal left ideals to be of transpose type if there exists a
symmetric minimal idempotent e ∈ R, and to be of symplectic type if ee∗ = 0
for every minimal idempotent e ∈ R. By Kaplansky’s well-known theorem, if
R is a primitive involution ring with a minimal left ideal then the involution ∗
on R is either of transpose type or of symplectic type (see e.g. [10, Corollary
to Theorem 1.2.2] or [4, Theorem 4.6.2]). Now, if R is a ∗-primitive ring with
minimal left ideals and the involution ∗ of R is of transpose type, then the
division ring D has the form D = eRe with a symmetric minimal idempotent
e; so the involution ∗ induces an involution on D. In case of a symplectic
type involution there exists a minimal idempotent e such that D = eRe is a
field and the involution ∗ induces the identical involution on D.

If R is of type (II) of Theorem 2.4, then it is easy to see that the invo-
lution ∗ of R does not define involutions on the division rings D and Dop.
For instance, if we take the direct sum R of a left primitive ring S and of
the right primitive ring T = Sop without involution, and endow R with the
exchange involution

(s, t)∗ = (t, s) ∀s ∈ S and t ∈ T,

Acta Mathematica Hungarica 109, 2005



362 K. I. BEIDAR, L. MÁRKI, R. MLITZ and R. WIEGANDT

then R becomes a ∗-primitive ring with left primitive ideal P = T and P ∗ = S
and, clearly, ∗ takes D onto Dop instead of mapping it onto D.

3. Examples

One can ask whether in Case (I) of Theorem 2.4 the left and right prim-
itive ring R has a row and column finite matrix representation. We show
that this is not always the case.

Theorem 3.1. Let V be a separable Hilbert space over the complex num-
ber field C with inner product 〈 , 〉 and let H be the C∗-algebra of bounded
linear operators on V with involution ∗ such that 〈Ax, y〉 = 〈x,A∗y〉 for all
x, y ∈ V , A ∈ H. Then V is a simple faithful left H-module with End (HV )
= C and for any (algebraic) basis E = {ei | i ∈ I} of V over C there exists
an operator A ∈ H such that the matrix of A relative to the basis E is not
row-finite.

Proof. Since V is separable, there exists a countable subset J j I
such that the subspace U =

∑
j∈J Cej is dense in V . We may assume that

J = {1, 2, . . . , n, . . .}. We now apply the Gram–Schmidt orthogonalization
process to {ej | j ∈ J}. We set

v1 = e1/‖e1‖,(1)

wn = en − 〈v1, en〉v1 − 〈v2, en〉v2 − . . .− 〈vn−1, en〉vn−1,(2)

vn = wn/‖wn‖.(3)

It is well known that every vector v ∈ V can be uniquely represented in
the form

(4) v =
∞∑

j=1

cjvj where
∞∑

j=1

|cj |2 <∞.

Next, let {fj | j ∈ J} be the dual basis to {vj | j ∈ J}; that is to say, fi(vj)
= δij for all i, j ∈ J . We extend each fi to V by the rule fi(v) = ci where v
is as in (4). Clearly ‖fi‖ = 1 for all i ∈ J .

It follows from (1)–(3) that
∑n

i=1Cei =
∑n

i=1Cvi for all n = 1, 2, . . . and
so

(5) fm(en) = 0 for all n < m.
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Next, if m < n, then (3) implies that fm(wn) = 0 and so (2) yields that

(6) fm(en) = 〈vm, en〉 for all n > m.

Furthermore, both (2) and (3) imply that

(7) fn(en) = ‖wn‖ 6= 0 for all n = 1, 2, . . . .

We now choose positive real numbers d1, d2, . . . , dn, . . . inductively as follows.
Set d1 = 1

2 . If d1, d2, . . . , dn−1 have been selected, we choose any positive real
number dn such that the following two conditions are satisfied:

dn 5
1
2n
,(8)

‖wn‖dn +
n−1∑
i=1

〈vi, en〉di 6= 0(9)

(this is possible in view of (7)).
Define A : V → V by the rule

A(v) =
( ∞∑

i=1

difi(v)
)
v1, v ∈ V.

Since |ci| 5 ‖v‖ for all i, we see from (8) that

∥∥A(v)
∥∥ 5

∞∑
i=1

di

∣∣fi(v)
∣∣ =

∞∑
i=1

di|ci| 5 ‖v‖
∞∑
i=1

1
2i

= ‖v‖

for all v ∈ V and so A is a bounded linear operator on V . Hence A ∈ H.
Given n = 1, in view of (5), (6) and (7) we have

A(en) =
( n∑

i=1

difi(en)
)
e1 =

(
‖wn‖dn +

n−1∑
i=1

〈vi, en〉di

)
e1 6= 0

by (9). Therefore the matrix of A relatively to the basis E has infinite first
row. �

Question 2. Let A be a countable dimensional primitive algebra over a
field F with a simple faithful left A-module M and let D = End (AM). Sup-
pose that A has an involution ∗. Is it true that MD has a basis relatively to
which every element of A is represented by a row- and column-finite matrix?
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Another question is as whether in Case (II) the subdirect sum R =
R/P �

subd
R/Q always coincides with the direct sum Q� P . For a negative

answer we take a ring considered by Jacobson.

Example 3.2 (cf. [11]). Let F = Φ〈X,Y 〉 be the free algebra over a field
Φ with generators X and Y . The mapping

Xp1Y q1 · · ·XpnY qn 7→ (−1)
∑

pi+
∑

qiY qnXpn · · ·Y q1Xp1

induces an involution on F where p1, qn are non-negative, and p2, . . . , pn, q1,
. . . , qn−1 are positive integers. This involution takes 1−XY to 1− Y X,
hence it interchanges the ideals generated by them. The intersection I of
these two ideals is therefore a ∗-ideal and so R = F/I is an involution ring.
Denote by x and y the images of X and Y in R, and consider the ideals
P = (1−xy) and Q = (1−yx). We have Q = P ∗ and P ∩Q = 0. Further, set
u = x+ P ∈ R/P and v = y + P ∈ R/P . Then we have uv = 1 but vu 6= 1.
By [11, Theorem 4] the Φ-algebra R/P is (left) primitive and has minimal
left ideals. Since vu is a nonzero element of R/P , so is the involutive image
u∗v∗ in R/Q. Hence R is a ∗-primitive ring. Finally, we have to show that
Q� P 6= R. Indeed, we have P = (1− xy) ∼= (1−XY )/I, and so

R

Q� P
∼=

F/I(
(1− Y X) + (1−XY )

)
/I

∼=
F

(1− Y X) + (1−XY )
.

Since 1 6∈ (1− Y X) + (1−XY ), it follows that Q� P 6= R as claimed.

4. Maximal ∗-biideals and ∗-primitivity

In this section we prove a necessary and sufficient condition for ∗-prim-
itivity in terms of maximal ∗-biideals. A subring B of a ring R is called a
biideal if BRB j B, and a ∗-biideal is a biideal which is closed under invo-
lution. Clearly, every biideal of a ring R can be written both as a left ideal
of a right ideal of R and as a right ideal of a left ideal of R.

Proposition 4.1. If R is a ∗-primitive involution ring, then R contains
a maximal ∗-biideal B such that B does not contain nonzero ∗-ideals of R.

Proof. By Proposition 2.1, the ring R contains a maximal left ideal
L modular with respect to an element e ∈ R \ L (that is, r − re ∈ L for all
r ∈ R) and a left primitive ideal P which is the largest ideal of R contained in
L. In view of P ∩ P ∗ = 0 the ∗-biideal B = L ∩L∗ does not contain nonzero
∗-ideals of R.
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We claim that B is a maximal ∗-biideal in R. Let C be a ∗-biideal in
R properly containing B. Then we consider the left ideal M = C +RC and
the ∗-biideal D = M ∩M∗. Clearly, D contains B properly. Furthermore,
we have

L∗L j L ∩ L∗ = B ⊂ C.

Using the left Noetherian quotient

(X : L) = {r ∈ R | rL j X}

for subsets X of R, we have

L∗ j (C : L) j (M : L) / R.

Here L∗ is a maximal right ideal of R, and we distinguish two cases.
Case (M : L) = R. Then for the involutive image e∗ of e ∈ R \L and for

all ` ∈ L we have
e∗`− ` ∈ L∗ ∩ L = B j M.

Furthermore, (M : L) = R implies e∗` ∈M . Hence ` ∈M for all ` ∈ L. Since
L∩L∗ = B ⊂ D, we conclude that L ⊂M , whence M = R and D = M ∩M∗

= R follow. Now, C is a right ideal in M = R and C∗ = C is a left ideal in R.
Thus

C = C +RC = M = R,

and so B is a maximal ∗-biideal in R.
Case (M : L) = L∗. Then L∗ / R, and so we infer from Proposition 2.1

that P ∗ = L∗ and that P ∗ is a maximal right ideal of R. Hence R/P ∗ is a
division ring. A similar reasoning yields that also R/P is a division ring.
Therefore R/P and R/P ∗ do not contain non-trivial biideals. Here either
P = 0, and then L = B = 0 and the claim is true, or R is a subdirect sum
of two division rings. Thus 0 is the only proper ∗-biideal of R, and so B =
L ∩ L∗ = 0 is a maximal ∗-biideal in R. �

Proposition 4.2. If B is a maximal ∗-biideal in an involution ring
R such that B does not contain nonzero ∗-ideals of R, then either R is a
∗-primitive ring or R is a simple ring with R2 = 0.

Proof. Take the left ideal L = B +RB of R. Then we have B j L∩L∗
and L∩L∗ is a ∗-biideal of R. Hence the maximality of B yields B = L∩L∗
unless L∩L∗ = R. But in that case B is a right ideal in R (which is the only
left ideal containing B), hence B∗ = B is a left ideal, and thus B = L = R,
a contradiction.

Let {Lλ} be an ascending chain of left ideals of R such that B = Lλ ∩L∗λ.
A standard argument shows that Zorn’s Lemma is applicable, and so there
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exists a left ideal K of R such that B = K ∩K∗ and K is maximal with
respect to this property.

Let M be a left ideal of R properly containing K. Then, in view of the
maximality of K, B is properly contained in the ∗-biideal M ∩M∗ of R.
Since B is maximal in R, necessarily M = R follows. Thus K is a maximal
left ideal of R.

Clearly, R2 is a ∗-ideal in R. We distinguish two cases.
Case R2 = 0. Then every ∗-biideal is a ∗-ideal in R, so R/B is a ∗-simple

ring with zero multiplication, which is necessarily a simple ring.
Case R2 6= 0. Now, if R2 j K then R2 j K∗ as well, whence R2 j

K ∩K∗ = B. Since R2 is a ∗-ideal of R, we would have R2 = 0, a con-
tradiction. Hence the action of R on R/K is non-trivial, and so R/K is an
irreducible left R-module. Hence the left annihilator

P =
{
r ∈ R | r(R/K) = 0

}
of the left R-module R/K is the largest ideal of R which is contained in K.
An analogous reasoning shows that P ∗ is the right annihilator of the right
R-module R/K∗ and P ∗ is the largest ideal of R contained in K∗. By the
assumption on B we have P ∩ P ∗ = 0, and so by Proposition 2.1 the ring R
is ∗-primitive. �

An immediate consequence of Propositions 4.1 and 4.2 is the following

Theorem 4.3. An involution ring R is ∗-primitive if and only if R2 6= 0
and R contains a maximal ∗-biideal B such that B does not contain nonzero
∗-ideals of R. �

5. Involution rings with minimal ∗-biideals

Next we consider ∗-prime involution rings with non-zero socle, and show
that this condition can also be expressed in terms of ∗-biideals. In particu-
lar, this holds also for ∗-primitive involution rings. For elementary facts on
minimal one-sided ideals we refer to [10] or [12].

An involution ring R is said to be ∗-prime if, for any two ∗-ideals K and
L of R, from KL = 0 it follows K = 0 or L = 0.

Theorem 5.1. A ∗-prime involution ring has a minimal left ideal if and
only if it has a minimal ∗-biideal.

Proof. First of all, notice that every ∗-prime ring is ∗-semiprime and
that ∗-semiprimeness is the same as semiprimeness. By [15, Proposition 4],
if a semiprime involution ring has a minimal ∗-biideal then it has a minimal
biideal. Next, by [18, Theorem 5], if a ring has a minimal biideal then it has
a minimal left ideal.
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Conversely, suppose that R is a ∗-prime involution ring with a minimal
left ideal L. Since R is semiprime, L = Re with an idempotent e in R. Now
eRe is a division ring and hence a minimal biideal of R and, obviously, the
same is true for e∗Re∗. Next, e∗Re = (e∗R)(Re) where e∗R and Re are min-
imal right and left ideals, respectively, and e∗Re is closed under involution.
Therefore, by [18, Theorem 4], e∗Re is either 0 or a minimal ∗-biideal of
R. Clearly, the same applies to eRe∗. Further, if e∗Re = eRe∗ = 0 then e∗e
= ee∗ = 0, so eRe ∩ e∗Re∗ = 0, and eRe⊕ e∗Re∗ 6= 0 is a ∗-biideal of R. We
claim that it is a minimal ∗-biideal. Indeed, let eae+ e∗be∗ be any nonzero
element of eRe⊕ e∗Re∗ 6= 0. Without loss of generality we may assume that
eae 6= 0. Then we have

(eae+ e∗be∗)e(eae+ e∗be∗) = (eae)2 ∈ eRe.
Since eRe is a division ring, the biideal generated by the nonzero element
(eae)2 is eRe, so the ∗-biideal generated by (eae)2 is eRe⊕ e∗Re∗, and then
the same is true for eae+ e∗be∗, which proves our claim. �

Finally, we prove the involutive version of McCoy’s theorem [16] which
states that a prime ring with minimal left ideals is left primitive. Here we
shall need the following result of Birkenmeier and Groenewald [6]:

Proposition 5.2 (cf. [6], Theorem 4.2 and Proposition 3.3). A ∗-prime
involution ring R is either a prime ring or a subdirect sum of prime rings
R/P and R/P ∗ ∼= (R/P )op where P and P ∗ are minimal as prime ideals and
P ∩ P ∗ = 0. �

Theorem 5.3. A ∗-prime involution ring R with a minimal ∗-biideal B
is ∗-primitive.

Proof. As was shown in the beginning of the proof of Theorem 5.1, the
ring R has a minimal left ideal L, and so it has also a minimal right ideal. We
apply Proposition 5.2 to the ∗-prime involution ring R, and correspondingly
we distinguish two cases.

(i) R is a prime ring. Then by McCoy’s theorem, R is left primitive.
Thus 0 is a left primitive ideal of R and so from Proposition 2.1 we infer that
R is ∗-primitive.

(ii) R has a prime ideal P 6= P ∗ such that P ∩ P ∗ = 0. If B is not con-
tained in P , then by [15, Proposition 4] B contains a minimal biideal J not
contained in P , so (J + P )/P is a minimal biideal of the prime ring R/P . If
B j P , then B ∼= (B + P ∗)/P ∗ is a minimal biideal of the prime ring R/P ∗.
Since R/P ∗ ∼= (R/P )op, we obtain that, in any case, R/P is a prime ring
which has a minimal biideal hence, by [18, Theorem 5], it has a minimal left
ideal, too. Consequently, by McCoy’s theorem, the ring R/P is left primi-
tive. In view of P ∩ P ∗ = 0, P is isomorphic to an ideal of R/P ∗, hence it is
also primitive. Now from Proposition 2.1 we conclude that R is ∗-primitive.
�
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