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A a m r r .  The following thwrcm is proved 
TIi~oaut. A Lie dgebm ouer a ring (D 3 f .  gnurated by afinfe nl of e l e m  of J ~ L - M ~  

or&,, ir n i h c n r .  - 
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I One of the auxiliary theorems for A. I. Kostrikin's solution of the weakened Burnside 
problem for a prime exponent was 

! THEOREM 3 from [1] (see also 121). An Engel L ie algebra of index n o w r  a field of 
I 

characteristic p > n, generaced by afinite collec~ion of elements of second order, t nilpalent. 

We recall that an element a E !2 is called an element of second order if a*' = 0, where 

i 
a' denotes the operator of Liemultiplication by the element a. If there is no 2-torsion in 
C, then such elements are also called absolute zero diotors or cowrs of thin sundwidres 

(see 5 I). 
i Using the ideas and methods of Kostrikin [I], and also of Zel'manov [4] on a problem 
i 
I 

of A. I. Sir~ov. we prove-the following theorem 

THEOREM I. A Lie algebra over a ring of scalars @ 3 { generated by ufinite collection of 
elements of second order is nilpalent. 

In order lo prove Theorem 3 from [I] (see also [2D, Kostrikin first reduced it to the 
following proposition. 

~ O P O S I T I ~ N  I. Let M be a finite sel of elemenls of an algebra f! (salisfying the 
conditions of Theorem 3 from [ID, and let b be an gemen1 of second order. A sequence of 
clemmts (c,),,, is consrmcfed by induction: c l  = [ x g ] ,  . . . , c,, , = [c,x,y,,b], x,, yi E 
M, i > 0. Then. beginning with some index m,  c, = 0 jor n > m. 

In this connection. the Engel condition and restriction on the characteristic were 
essential mainly for the proof of Proposition I .  In 81 of our paper we reduce Theorem 1 
(basically following Kostrikin) to the following proposition. 

PROP~SITION 1'. Let M be a Jnite set of elemenls oj an algebra f! (satisfying the 
condirrons of Theorem 1). let b+ and b-  be etements ojsecond order, and let b = [ b ,  b-1. 
A sequence is constructed by induction: c ,  = [x,,b], . . . , c,,, = [c,x,,y,b], x,, 
y, E ,,M i > 0. Then, &inning with some index m, c,, = 0 for n > m. 



\i'e next note that Proposition I' in essence is equivalent to the local nilpotency of the 
Jor~ian pair $ = ([F. b+]. [f. b.1) Thus there emerses a connection between our 
question and rhe question on local nilpotency in Jordan systems, and first of all with a 
problem of A. I. Siriov (see [3] and [4]). In 52 a locally nilpotent radical is construc~ed in 
Jordan pairs, and some of its properties are studied. Finally, in 53, using the methods of 

. . 141 we prove the local nilpotency of the pair 9- and with that complete the proof of ' 
- Theorem I .  In $4 it is proved by means of Theorem 1 that absolute zero divisors of a 

Jorchn pair without additive 6-torsion lie in the locally nilpotent radical. 

S1. Sandwiches - 

k t  E be a Lie algebra over an associative-commutative ring @ 3 1, let A be some . 
associative enveloping algebra for !?, let the algebra Â  = A + @ . 1 be obtained from A 
by the formal adjoining of an identity element, and let 2 = E + @ . 1. We shall denote 
the Lie multiplication of the elements x,y E E by [x,y], and x .y will denote their 
product in the algebra A. 

We denote by I?'' the @s"bmodule of the algebra 2 generated by products of the 
type e ,  . . . e,. e, 5 (?. 

We denote by Gk', . . . , different copies of one and the same module Ek). 
Following Kostrikin 121. we shall call the equality c@""c = 0 a sandwich of rhirkners m ',. 

of the pair ( f .  A). and the element c the c m r  of a sanhvich of thickness m or a 
c(,,-elemenr of the pair (E. A). For m < 1 we shall speak about a rhin sandwich, and for 
m > 1 about a thick sanhich. The cover of a thin sandwich is sometimes also called an 
absolure zero divisor of the pair (C, A). 

We denote by C,(C. A )  the set of ct,)-elements of the pair ( t ,  A). 
If o is an element of f .  we denote by a* the operator of Lie multiplication by o. . 

Furthermore. we denote by T *  the Lie algebra (a* I o E E), and by R ( e )  the subalge- 
bra of the associative algebra End(C*. %) generated by the operators a*, a E E. Thus 
R(?) is an associative enveloping algebra for t * .  

We shall call an element a E I2 the cowr a j a  sandwich of rhickness m (or c(,)-elemenr) 
if a* E C,(C'*, R(LJ)). C,((?) is the set of c(,)-elements of E. It is not difficult to see [l] 
that every element of second order of a Lie algebra without Ztorsion lies in C,(e), ie. is 
the cover of a thin sandwich. 

The following three lemmas are taken from [4]. However, for completenes; of the 
presentation we include their proofs. 

LEW 1.1 (on deletion). Lei b and c be cowrs of thin sandwiches of the pair (E, A), and 
ler k,, . . . , k, be mlurnl numbers. Then: 

I )  bc@;t)[b. c]@J . . . [b, c]$bjfi'cb 2 bi?\k:)b . . . b&)b; . 
2) bc>?"[b, r]@d . . . [b, c ] q W x  c b?r:)b . . . bGbYa'bc; 
3) cb?'ii"[b, c]@d . . . [b. c]$b)bc C cbqkl)b . . . bl?$li)bc; \ 
4) cbe1'[b, c]@d . . . [b, c]q$)cb c cbqt 'b . . . b q ' b .  

PROOF. For any x E I? the following inclusions are valid: 

pl*lX c - X$(k) + EW), &(k) i ( k ) x  + Elk), (W 
p(k), - ?( l ) ,p(k- l )  + ,p(k, + p(k-l,, ,p(k,  - p ( k - ~ ) ~ p ( l )  + ~ ( k ) ~  + E - ($1) 

p ( k i X  C p ( 1 ) ~ p l k - 2 )  + ~ ( ~ ) ~ ~ ( k - - l >  + X&l*) + E(k-l), 

xe(*) c t ( k - 2 ) x p ( 2 )  + & ( k - - ~ ) ~ ~ l l )  + &(kIx + t (k-2) .  
1@2) 

- 
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Lemma 1.1 is now obtained by a simple induction on p and application of the 
formulas (MI). (@I)  and (@2). 

LEMMA 1.2. Let the natural numbers p > I and k > 3, the cooers of thin sanhvicher b  
and c  of the pair (e, A) ,  and the element 6 E A be such that 

.- 
;(1) biJ(k-l)bE(k)t - cfJp)c . . . c S ( z )  c ~ ( * - ~ ) c ~ ( k ) ~  .. 0. bS\2'b.. . bL,-, 

-- 
P -  1 

, Then 

[ b ,  c ] @ ) [ b ,  c ]  . . . E;'?,[b, c ~ E ( ~ ) [ b ,  c ] t  = 0. 

PROOF. a) We shall show that [b, c]@)[b, c] . . . @lbb@k)bc[ = 0. By (@I) we have 
fik)b c @"bI?k-l) + be"' + gk-". Therefore 

[ b, C ]  Ey) . . . Ep ,b~E(~)b~t 
c [b,  c ] f ? ~ )  . . . I?L?"-,(b(be(k) + bl)bEu-l)  + $k-'))c( 

c [ b ,  c]I?p) . . . EfllbcE("bI?(k-')d + [ b ,  c]er2) . . . ~ ? ~ ~ ? , b c i ( ~ - ~ ) c &  

We have 

[ b ,  c ] E $ .  . . i?yllb~&(l)bE'k-l '~( G(') E(l)b&)b . . . k(2) P- 1 b i ~ b i ( ~ ) ~  = 0. 

Furthermore. 

[b.  c]@) . . . i?,nlIbcE'*-"ct E(') ~ ( ' ) C ? ! P )  . . . En) P - 1  CE(~-I)C(  = O. 

b) We shall show that [b, el$' . . . l?f?,b~I?~)cbt = 0. By (@2) we have ak)c Bk) + 
$ ~ ) ~ @ h - l )  + &@k-2) + f i k - 2 ) .  Therefore 

[ b ,  c ] E ~ )  . . . Ef? , b ~ E ( ~ ) ~ b t  

r [ b ,  c ]  fJP . . . !3=? , b ~ k L ~ ) ) e ( ~ - l ) b t  +[b ,  c ] E P )  . . . ! ? ~ ? , b ~ f J ( ~ - ~ ) b 6  

U'e have 
[ b. c ]  $1') . . . , b ~ E ' ~ ) c E ( ~ - ~ ) b t  c(') fJ(l)cEr)c . . . c E $ ~ L , ~ ~ ~ ) c E ( ~ ) E .  - 0. 

Furthermore. 

[b.  C I F ~ ) .  . . Eyi,bcE(k-2)b~ c(') E ~ ) b E p b . .  . bEpL,bfJ(k-l)bt = 0. 

This proves the lemma. 
If CA is a subset of the algebra I?, then we define the solvable powers of 8 inductively 

by S$"I = B and @k+'l  = ( (6 ,  C ]  I b, c E SIk'). 

LEMMA 1.3. Let p > 1 and M = ( b  E e 1 b!?b = b@?b . . . b p b  = 0). There e x k ~  a 
function f(r), with argument a natural number r > 3, such (hat for any c  E MIXr)I . 

c P y ) c . .  . cEgl lc  =o. 

PROOF. We construct in descending successionp + 1 functionsfp,,, . . . . f ,  such that 
for any of the numbers 1 < q < p + I. r > 3, and for any element c E MU.(')] the 
equality - - 

cepe .. . e~)cI?$-L]c .  . . cI?$'c = 0 

(') Lcmma 1.1. ailh c dclctcd. 
(I) Lcrnma 1.1, aith b d c l e t d .  

('1 L c m a  1.1, wih b d c l e t d .  

(') k m m a  1.1. mlh c dclctcd. 



is satisfied. We setj,+,(r) = I. Suppose we have constructed the functionsi,,,, . . . ,f ,  
for r > 3. We define a functionl,-, by setting 

For brevity set r, = (? + 5r - 10)/2. Then for any a E M(A"d1 - 
\ 

U ? \ ~ ) O . .  . a e p , a ? p )  . . . k('~) P +  1 a = 0. 

By Lemma 1.2 (we set k = 3). for any c E  MI/."^)+'^ we have 

c~.\=)c.  . . C P ~ L , C Q - ~ ) C  . . . , e f~ , ,  = 0. 

Applying Lemma 1.2 r - 2 times, we obtain that for any c E M[~(")+'-'I 

C ? ~ ) C . .  . c ~ ~ ~ , c ~ ? ~ ) c E ~ ' : ' , c . .  . c ~ ~ ~ , c  = O. 

Consequently, the functionf,-, is the one we need. It now only remains to take f l  as the 
desired function. This proves the lemma. 

LEMAIA 1.4. Let the elements x,, . . . . x. lie in CI(E, A). Then for any indices 1 < 
i,. . . . . i,,, < n it ispossible to rewrite the element xi, . . . xc+, in the form xi, . . . xc+, - 
2, %ye. where w, is some word from (x,}, and y,, is o commutator from (x,) of weight 
greater than I. 

The proof is obvious. 

LEMMA 1.5. Let a Lie algebra k? be generated by o collection of elements x,,  . . . , x, (we 
write i! = Lie(+ . . . , x,)) and x:' = 0, I C i < n. Then the algebra [I?., E l  is finite& 
generated. 

PROOF. We shall show that [k?. C] is generated by commutators from the set 

In fact, consider the commutator xiox; . . . x;, where p > n + 3. It is clear that x; E 
C,(C', R(C)). Therefore, using Lemma 1.4, we can rewrite xi: . . . x; in the form 
x< . . . .r* = 2, wo.v:, where wm E R ( f )  and ym E [I?, El. By induction the elements 

I .  

~,~.r;w, and y, lie in the subalgebra Lie(M). This means the element xi& . . . x; also 
lies in Lie(,M). which proves the lemma. 

LEWL* 1.6. Let f = Lie(x,. . . . , x,) be a soloable Lie algebra, A an nrsociotiw 
enreloping algebra .for E ,  and x, E C,(!2, A), I < i < n. Then A is nilpotent. 

PROOF. By Lemma 1.5 the algebra [C, I?] is finitely generated. Consequently. carrycng 
our an induction on the degree of solvability, we can assume the set [E ,  E ]  is associa- 
tively nilpotmt, say of degree m. Then A is nilpotent of degree not greater than 
(n + I)m. In fact. any word w(xi) from (x,) of degree (n + l)m can be represented in 
the form w = wI . . . wm, where w, = x,,,, . . . x i  a-,,,. I < i,, < n + I .  By Lemma 1.4, 
y, = cm.v*, where ym E [ f ,  e l .  Hence w E A [ e .  E l .  . . [E, C] = 0. This proves the 
lemma. 

CURO~.I-ARY. k t  t? = Liejr,.  . . . , x,) be o solcable Lie algebra and .c2 =. 0. 1 < i < 
n .  Then I.' rs nilpoten!. 

PROOF. 11 is easy to see that .T; E C,(E*. R(E)), 1 < i < n. This means the algebra 
R(C) is nilptent by Lemma 1.6, and from this follows the nilpotency of e. 
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LEMMA 1.7. LEI t = Lie(x,. . . . , x,). A an associari~~ en~vloping algebra o j  E, Md , 

x, E C,(lr'. A). 1 < i < n. Then A is nilporenl. 

PROOF. I )  We shall show that A is generated as a @-module by the elements of the 
form I ,  . . . I,. where 1, E t? and k < n. We denote the @-module generated by elements 
of the form I, . . . 1,. I; E f .  I < i < k < n, by tCn1. Unlike I??", the existence of an --. 
identity element is not assumed in irY"'. For each index I < i < n we consider the- 

.,@-module W, = Q'q + [e,  x,]. It is easy to see that llRillR, = 0 and f = 2; m,. We shall 
show that every product a, . . .a,+, of elements a, E E, I < i < n + 1, lies in r"). In 
this connection. without loss of generality we can assume that each factor a, lies in one 
of the modules !IF8' I < B < n. This means there can be found distinct indices i and j, 
I < i < j < n + 1. such that the elements a, and a, lie in some module mk. We note that 
the facrors a,, I C a < n + 1,  in the product a, . . .a,+, are permutable modulo P I .  

Rearranging the factors so that a, and a, are adjacent, we obtain a, . . . a,,, = 0 
(mod I?"'). This means A = r"'. 

2) If .4 is not nilpotent, it can be assumed to be semiprime. Then, by I), CJC, A) = 0. 
By Lemma 1.3 for some r > 1 we have (q(C, A))[') c C,(E, A) = 0. This means the set 
C2(!?. A )  is solvable. Furthermore, by Lemma 1.1, [C2(C, A), C,(C, A)] c q ( C ,  A). 
Therefore lr' = a(;(?, A), i.e. C is generated as a 0-module by the set C2(C. A). 
Consequently. e is solvable. The nilpotency oi  A now follows from Lemma 1.6. This 
contradicts our assumption, which proves the lemma. 

COROLLARY. Ler I? = Lie+,. . . . . x,) andx, E G(C), I < i < n. Then f is nilpotent. 

LEMMA 1.8. Suppme rhal f = W,(C). Then 0G(C) is a locally nilporenr ideal in C. 

PROOF. As we noted above, [C,(C), C,(E)] C,(C). Therefore @Cl(C) is an ideal of F 
The local nilpotency of %(C) follows from Lemma 1.7. This proves the lemma. 

LEMMA 1.9. Ler C = Lie(+. . . , x,), x, E C,(C). 1 < i < n, and let S be rhe set of 
commurarors from (x,l 1 < i < n).'Ler SI be a maximal subset of S generating a local& 
nilporenr ideal I in C, and 9: C -+ E l 1  the natural homomorphism. Then no nonzero subser 
o j  S' gmerarrr a lorolly nilpotent ideal in I?. 

PROOF. Suppose on the contrary that some nonzero subset of the set Sv generates a 
locally nilpotent ideal in I?. We denote by S, the inverse image of this subset under the 
mapping S: S + I / I .  so S, 2 S,. We shall show that the ideal J generated in C by S, 
is locally nilpotent which will contradict the maximality of the subset S,. It is easy to see 
that J = q J  n S). We choose arbitrary elements a,, . . . ,ak E J n S, and set C, = 

L i e ~ a , .  . . . .ah). By assumption some solvabie degree of C, falls into the ideal I. By 
Lemma 1.5 h e  algebra is finitely generated. Since the ideal I is locally nilpotent, this ' 
means is solvable. By the corollary to Lemma 1.6, el now is nil pot en^ Since the 
choice of a,, . . . . a, was arbitrary. J is locally nilpotent. This proves the lemma. 

We shall henceforth denote the left-normalized commutator xlx; . . . x; by 
[ x , .  . ..r, I. 

LE\~SIA 1.10 (see [I]). LEI a,, a,, a,, o,, a, E C, let A be on associariw enwloping 
algebra .Tor E. and let a,, a2, a3, a, E C,(C, A). Suppose rhor for ony permufarion 

(i,i2i,i,) = (1 2 3 4) rhe equoli~y c = [ooala2a,a,] = [a,aj,aj2a,,aj,] holak. Then c E 
C2(F, A). 



PRWF. We assume below that I < i. i,, i2, i,, i, < 4. 
I) ca, E [C. a,]a, = 0. Analogously. aic = 0. Furthermore, for each element x E l? we 

have [cxo,] E [ f o j . q ]  = 0. Hence cxo, + aixc = 0. 
2) We consider ~>~)a,,a,,a,,. By (01) we have g2)ai, I; a,,F') + $')ai,@') + El). Hen* 

.. 
~?( '~a, ,a ,~a, ,  G c?(')aj,&')ai,a,, + cE~')ai,aj, = ai,~(i)a,lE(t)caj,  + alzE!(')ca,, - 0. 

.- 
-., 3 )  We consider c~')ai,aj2a#j,aj,. We have 

~ ~ ~ ~ ) o , , a , ~ ~ ~ , a ~ ,  s c(,,PQ) + i?cl)a,,k(l) + &'))aj2afli,ai, 

= ~ k ( ~ ) a , , ? ( ' ) a ; ~ a ~ ~ , a ~ ,  + c~~ l~a lzaoa j ,a j ,  

= a,,~")ai,?(l)a,,aocar. + ~,,~(~)o,,a,,ca,,  - 0. 

4) w e  consider c~ ' )a i ,a~ i ,a i , a j , .  We have 

CE(2)ajnw, a. a. c c(oi,2(l? + P")a,,E(l) + E('))a,-,ai,a,,ai, 
1 I ,  1. - 

by 1). 
5 )  We consider ci?2)aoaj,ai,aj,aj, 5 c~')a,,ai2ai,aj,. We have 

~ ? ( ~ ~ a , , ~  , a, . I . -  a- c c(a,,l?@) + k ( l ) ~ ; , k ( ~ )  + k('))ai,al,a;, 

= ~ E ( l ) a , , E ( ~ ) a , ~ ~ , a ~ .  + cE(')aipi,a,, - a. I t  E(')cE(2)ajzaj,aj, + cEQ)aipi,a,, = o 
by 1). This proves the lemma. 

I We now assume that Proposition I' is true, and following Kostrikin [I] we shall prove 
Theorem I. Let E = Liecx,. . . . , x,), and x:' = 0, 1 C i < n. We shall show that any 

I finite set (y, .  . . . . y,) of commutators from ( x i )  of weight not less than 2 generates a 
nilpatent subalgebra F, = Lie(y, . . . ,yh)  of E. Hence it will follow that the algebra 
I f .  ? ]  is locally nilpotent. This means, by Lemmas 1.5 and 1.6, that L? is nilpotent. 

If f ,  is not nilpotent. then by Lemma 1.9 without loss of generality we can assume 
that no nonzero set of commutators from ( y ,  . . . , y , )  generates a locally nilpotent 
ideal. In addition. carrying out an induction on k, we can assume that Lie<y,, . . . , y,) 
is nilpotent. Consequently, there exists a commutator c, from (y  ,, . . . , y,) commuting 
uilh all the elements y;. I < i < k. If [c,yo] = 0, then co would lie in the center of el. 
This means [c,.~,] f 0. By Lemma 1.6 the operators y:, I C i < k, generate a nilpotent 
suhalgehra in R(lr',). Let r be the maximal number with the property that for some 
numhcrs i,. . . . . i, E (I. . . . . k )  the commutator [c,yoy,, . . . y,]  is different from zero. 
In arldilion, let p he the least number lor which thcre exist commutators f , ,  . . . . f, from 
(y , .  . . . . y , )  of rota1 degree r such that c, = [coyo f ,  . . . f,] i 0. Then by the maximal- 
icy of r the element c, commutes with y,, I < i < k, and by the minimality of p for any 
permutstion i . . . i )  = (I  . . . p )  we have [coyoJ;, . . .Ae]  = [coyo f ,  . . . J,] = c,. If 
p < I ,  then r ,  would lie in the center of PI. If p > 3, then c, = -[y,c,f, . . .I,] would be 
a ~,~,-elerncnt by Lemma 1.10. But we have assumed that no nonzero commutator from 
[ y , . .  . . .y,) generates a locally nilpotent ideal, and so such a commutator is not a 
 element. This means p = 2. Acting this same way with the element c,, we l i d  
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commutators j, and f, from (y, ,  . . . , y,) such that [cIyOJ, f4] # 0, and so on. This gives 
an infinite sequence of nonzero elements, which contradicts Proposition 1'. Thus we have 
deduced Theorem 1 from Proposition 1'. 

For the proof of Proposition 1' we need the concept of a Jordan pair (see [6]). 
Let P + and P- be @-modules with quadratic mappings Ua: P" + Hom(P4, Po) (here 

and below, o E ( + , -)). -. 
We define trilinear mappings Po X P- x P o  --, Po, (x, y,  z) -+ ( q z ) ,  and bilinear 

-'mappings V": P +  X P o  -t End(Pn) by the formulas ( q z )  = 2% = yU&, where 
Uzs = U,"+, - U," - Up. It is obvious that {xyz) = (zyx) and ( g x )  = ZyU,". 

DEFINITION. A pair P = ( P  +, P 3  of @-modules with a pair of quadratic mappings 
U": Pa -, Ho%(P", Pa) such that in the above notation the following identities and all 
their partial lineariations are satisfied is Ailed a Jordan pair: 

u -0 
= u; VY,*, (1) 

v-", = v-" -0, 
YUZ.Y x . a y  (2) 

LP " = - u:LijO~. 
YCJX (3) 

Subsequently. where it does not cause ambiguity. we shall often omit the symbols & o in 
the notation for the operators and write U,. U,, and V,, instead of U,", U,", and V&,. 

A pair h = (h+, h-) of @-linear mappings h": Vn+ Pa such that hn(yU:) = 

h*(y)U&,, is called a homomorphism of the Jordan pairs (V+, V-) and (P+ ,  P-). 
Linearizition gives us hD((yr ) )  = (h"(x)h"(y)ha(z)). 

A pair P = ( P + ,  P-) of submodules of a Jordan pair V = (V+. Y-) is called a subpair 
(respectively ideal) if P-U;. G P o  (respectively YOU;. + PdUF. + ( V0V*P") PO). 
Other concepts are defined in a natural manner, and they can be found in 161. 

We note that in an arbitrary Jordan pair the following identities are satisfied (see [6]): 

[trx.Y9 v";"l = V~,Y.V"," - vz,, u.u, y, (4) 

U=Vy, = u=.*vy,,-- vz,fl.t, ( 5 )  

U=,zU!, = V,,,V,, - v,,,uy, (6) 

uyUr.z= Vy,xVy.m - Vzuy.ll (7) 

u a y u z  + u*uyux = u,,,, - V,,flZU"., - u* ,,,.,. (8) 

Let L = L-i + & + Li be a &-graded Lie algebra over a ring of scalars @ 3 such 
that [L.i. L_i] = [Li. Li] = 0. Then the pair of @-modules (Lj, L_i) with trilinear 
product {.r,v,z,) = [[.r,v,]z.], x.. z. E L z ,  y, E L.2: is a Jordan pair (see [6]). . 

A @-submodule K of a Lie algebra L is called an inner ideal if [LKK] C K. Let K +  
and K he abelian inner ideals. Then K +  + K-+ [K+, K-] is a Z,-graded Lie algebra, 
and ( X  +. K - )  is a Jordan pair. 

We now return to our previous situation. Let I? be a Lie algebra satisfying the 
conditions of Theorem I, and b,, b _ E  C,(e). Then J +  = [E, b+] and J -  = [I?, 6-1 are 
abelian inner ideals. We denote by $ the Jordan pair they constitule. Suppose that a 
sequence of elements (c,),,,, , , . is constructed according to the rule 



LEMMA 1.1 I .  Any element c, can be rewritten in the form c, = [ W,, b,], where 
lVa = Z I+:" is a sum of word of a pair 5 jrom ( [x i ,  bo], [ y j r  be], 0 < i < n - I),  
IV, E :To.. In addition the rompasition ojeach term [ W,'", b,] coincides with the compasi- 
lion of c,. - --_ 

. . PROOF. We carry out an induction on the number n. We have C ,  = [ [ x ,  boJ, b,). 
- Assume that the lemma is true for c,, I < k < n. Let c, - [+,be, . . . b+b-] - [W,, b-1. 

Then 
1) 

[c .xy .b+b-]  = [ x o .  . . b+b_xa,b+b-]  

-[%. - . b+b-xm[ynS b + ] b - ]  + [ x , .  . . b+b-y,[x, ,  b + ] b - ]  

= [ K b - x m [ ~ n . b + ] b - ]  +[W,b-y , [x , ,  b + ] b - ]  
- -1 & [ b  - x n ] [ y - b + ] b : ]  + [ W , [ b - ~ , ] [ x , ,  b + ] b - ]  - [ W , + , ,  6-1, 

where *:+I = 4(vt~.-,ur.,b.l + vlb.y.lls.s.S E T + ;  and 
2 )  

[c,.r,vnb-b+] = [ W , b - x , ~ ~ b . b + ]  - [W,[b-. x , ] [ y , ,  6 - ] b + ]  - [W,+ , ,  b + ] ,  

where W;+, = -W,UIb,u,b,, E 5 - .  
This proves the lemma. 
Lemma 1.1 1 shows that for the proof of Proposition 1' it is sufficient to verify the local I 

nilpotency of the pair 9 = ( I t .  b+l.  [I?. b-1). Therefore we turn to the study of local 
nilpotency in Jordan pairs, and first of all to the construction of a locally nilpotent j 

radical. 
! 52. Tke I d l y  nilpotent radical in Jordan pairs 

Our construction in many respects is analogous to the construction of the locally 
nilpotent radical in Jordan algebras (see [5n. The calculations are greatly simpwled if i t  
is assumed that 0 3 f .  However we prefer not to impose a restriction on  the ring 0 in 
this section. 

We recall that the solvable powers of a Jordan pair P = ( P + ,  P-) are defined by 
induction: P1'l = P. plL1 = (P-Up.. PCU,.), and Pin+ '1 = (P[n3111. A pair P is called 
solcoble if Plnl = 0 for some natural number n. The least number with this property is 
called the degree of solcabiliry of the pair P. As in 151, the keys to the construction of the 
locally nilpotent radical are the following theorems. 

THEOREM 2. Let P be a finitely generated Jordan pair. Then the pair Plll is aLsoJnire]u 
gencrared. . 

i 
THEOREM 3. A jinilrlr~ generated sol~able Jordan pair is nilporenr. 

W e  proceed to the proof of these theorems, but first give some more definitions. Let \ 
P = ( P  +, P') be a Jordan pair, and ler P +  63 P- be the direct sum of the @-modules. 
The operators V;Y, and L';" can be extended to homomorphisms of the module P+ $ P; 
serting P '"V:." = 0 and P"UP = 0. The subalgebra of End,(P + CB P3 generated by the 
operalors LrTa and 17,". .r E P", y E Pa, r E Po, is called the multiplication algebra of 
the pair P and is denoted by M(P). We denote the subalgebra o f  EndofPo, Po) 
generated by the set ( F:.v) by Ass( V"). and the subalgebra generated by Ass(Ym) and ( 

the idcntily operator id: P"  - P o  by Gs(V"). 
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Let the pair P = ( P  +, P-)  be generated by a finite collection of elements ( x , ,  . . . . x, 
E P+ .y , . .  . . , y m  E P-). 

LEMMA 2.1. For any elements a,, . . . , a,, E Po and b,, . . . . b,, E Pd (he prodrrcr 
II:, V,, can be rewritten in the jorm tIzI V4.b, = Xi yV54 ,  where E A?s(V-) .- and eiiher 4 E PoUp, or c, E P*Up.. 

' PROOF. Modulo the Q-submodule 9 generated by operators of the form Z WjV,4, 
where 5 E G ( V * )  and either 4 E PoUP, o r  5 E PdUp., all factors V,,& and V,,4 
are permutable (see (4)). Therefore if one of the elements a,, 1 < i < 4n. lies in PdUp., 
then moving the operator Vq.b, to the right we obtain the assertion of the lemma. Let us 
assume that all elements a:, 1 < i < 4n, belong to the set ( x , ,  . . . . x,). Then at least 4 
elements with different subscripts are equal, a = ail - a,> = a;, = a;,. Moving the opera- 
tors with subscripts ik. 1 < k < 4, to the right end, we obtain on the right 

V.,4,V,.4,V..b,,V..b,.. BY identity (7) from 5 1 we have V.,t,,V,,4 = U.Uq,42 + VL, ,~ ,~  and 
va.4,vo.ks UdU4,,b,, + Vh,b,,~.. Therefore 

va.bi,vo,;,va.b;,va,bii UDUbi,.t;,UaU~;,,bi, U~i,~,,.bi,~mUbi,,bi,a 

= Vbi,~a.bi,Vbi,~&i, $ Vbi,U,.bI~b;,U,.bi,- ~ b ; , ~ ~ . b ; , ~ ~ ~ b ; , . b ; ,  S2 0 (Ill& 5). 
This proves the lemma. 

LEMMA 2.2. Far any elemenls a,,  . . . ,a,,, E Pa and b,. . . . , b,,, E Pa, m - 32n1, the 
epuoliry 

holdr, where E E(v-°), c, E P4UP. and 4 E PeUp-. 
i 

PROOF. W e  have , 

By Lemma 2.1, 
I n k  

where @&,, E ZS(V-O) and either rk, E P*Up. dr I,, E PoU,-. We consider 

n k  *k.v, Vr *.&. I,..; We set 

N , = ( l < k < 8 n )  rk.vkcP-uUpo). N - =  ( 1 < k < 8 n I  t k , v k ~ P n U p - o ) .  . 
Since IN+I + IN.[ > 8n. either IN+] > 4n or  IN.] > 4n. Assume that the second possi- 
bility is realized. With the aid of identity (4), moving the operators V r,,.,,,,,,, to the right 
end, we obtain on the right n:, V3,%. where q, E P"Up .. Even if only one elements,, 
I < j < 4n, lies in P "Up.. with the aid of (4) by moving the corresponding operator to 
the right we ohmin the assertion of  the lemma. I f  (r,. . . . , s,,) c ( x , .  . . . , x,), we 

. - repeat the a r~uments  of Lemma 211. This proves the lemma. 
We denote by M , ( P )  the subalgebra of M(P) generated by the operators from 

Assi;Fo?, and we set U;,, = (b'lbl 0. b E Pa) ,  o E (+, -). Le t s  = (64n3'. 



PROOF. I) Let a,, a,! E Po and b,, b,! E P4, I < i < 32n2. Then 

In fact. by (6) for 1 < i < 32n2 we have U&UG; E Ass(V4). Therefore the assertion 
to be proved follows from Lemma 2.2. - -. 

> 2) Let 1V be a word from the operators (Uq4, U4,11., Va,+; Vb,4, a,, a; € Pa, b,, b; E 

, P") in which the operators U4.q. and U4,6 occur at least 64n tunes. Then using (5) the 
word W can be rewritten in the form 

where Hy E A%(V"). By I), ~ l l ' l t '  C P121. 
3) Now l a  the operators U,,,. nnd Ub h. occur in the word W less than 64n1 times. ,. , 

Then IC' can be written in the form W =.ll~-t(W,Uj) Wk+I, where E &(YO) and 
Q. E Upp. I < i < k + 1, k < 64n2. By the choice of the number s the length of some 
word iY, is not less than 64n2. Dividing the word W, into two subwords of length not less 
than 32n2 and using Lemma.2.2, we have W, = E., WLV,4V,p,,., where W,, E Gs(v") 
and c,, d,. r,. I ,  E pill. Furthermore, by ( 5 )  and (6), 

U, W;,, . . . Wk+, E Ass(Vm) + GS(V')U,+. 
For the proof of the lemma it is now sufficient for us to verify 'that if c, d, r, I E Pi'! 
then Pl'lVcdVr.,Up.p C PI2! But this follows from the identities 

x v c . d ~ r i , . l U z  = X (- rrc ,dr lzvl , r  - ~ z , z ~ ~ , ~ d , c  + ~ z v ~ , ~ , z v ~ ~  + U Z . Z V ~ , ~ V ~ , ~ )  

x x ~ ~ . ~ v ~ . ~ v ~ , ~  ~ ~ r , l v d , c ~ z . z  ~ v r . l v . r , z v d , r  

[I1 
~ V r . l V d . r V ~ , ,  - ~ v r . l V d ~ , ~ . r 6  P . 

This proves the lemma. 
The algebra M(P) is generated by the subalgebra M,(P) and the operators U, and 

U, . I < i. j < n. It is not difficult to see (it suffices to verify it for the gene;ators) that for 
a& operator T E M(P) we have M,(P)T C MI(P) + M(P)MI(P). Therefore, if I is 
the ideal generated in M(P) by the set M,(P), then I' = M(P)M;(P) + M;(P) and 
plll~' C p['l. - 

We denote by L the left ideal of M(P) generated by operators of the form U,U,, 
where a E P-U,. and b E Paup-. 

LESIM.~ 2.4. p"l(L f LM,(P)) C PI2]. 

PROOF. We have already noted above that Ml(P) = Ass(Ve) + Ugp Y 
Assi: C ' = >  Up:,. Therefore i t  is sufficient to verify that P1'I~,Ub Usy E p12] for x, y E Po. 
But this iollows from (7) and (5). The lemma is proved. 

We denote by n U the semigroup generated by the operators (U,, U,,I I < i, j < n). 

LEMMA 2.5. (n L + I. 
(We recall that I is the ideal generated in M(P) by MI(P).) 
PROOF. We consider a word W E IIU, W =  Ilz:2(U,Ub,), a, E (x,,  . . . , x,), b, E 

(.bm1. . . . . y . ) .  I < i < 2n + 2. Among the elements (ail n + 2 < i < 2n i- 2) at least 
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two elements with different subscripts are equal. By (8) we have 

Moving the identical operators U, to the right end modulo the submodule @(IIU)U#OI-' 
+ I and applying Macdonald's identity, we obtain lIz;:,(U,U4) E @(IIU)U,,,, + I .  -. 
Analogously, i(U,U4) E @ ( ~ L I ) U @ # I  + I .  Applying (8) in succession, we move the 
operators from U,,U to the right end modulo the ideal I. This proves the lemma. 

PROOF. It is not hard to see that M ( P )  -. @ ( n u )  + ( IIU)M,(P)  + M,(P) .  For the 
proof of the lemma it suffices to verify that 

w e  shall show by induction on k that for any natural numben 0 < k < s and q > 0 we 
have Pl1\nU)("+'&MI(P)'-*+q PIX. For k = 0 this follows from Lemma 2.3. We 
assume that the assertion being proved is true for k < s .  Then 

p l ~ l  (nD')lm+d(k+'+'l M, (p)'-k-ltq - - p[lI (n,y)l4"+4)k pu)I"+4 M, (p)s-k-l+q 

c pI1l cnu)14nt+'k - (L  t- (nu) Ml (P) + Ml (P)) M, ( ~ f " - " ~  
p r l l ~ ~  (p)s-k-l+q + prll (n,~)(+nt*W~ - 1 1 (P)'-~* E PI. 

For k = s we have P"\IIu)(~"+~)'M,(P)~ c Pt2! This proves the lemma. 
We set d = ((4n + 4)s - 1)s + 1. 

PROOF. Let W be a word from nu, M,(P) of length d. If W has degree at least s 
modulo M,(P) .  then W E I' and everything follows from Lemma 2.3. If the degree of 
W modulo M , ( P )  is less than s ,  then W = II:;~(W'.l+$!)~, where 4 is either an 
element of IIU or the identity operator and W: is either an element of M,(P)  or the 
identity operator. By the choice of the number d one of the operaton W., I < i < s, lies 
in (IIU)(4"+4)r. It now only remains to apply Lemma 2.6, which proves the lemma. 

REMARK. If E @. then M,(P)  = M(P) .  In this case Lemmas 2.4-2.6 are not needed. 
PROOF OF THEOREM 2. It is easy to see that the algebra M(P) is generated by the 

operatom LC:. LL;, U,', U*;,. V&,and VyTx. . , From Lemma 2.6 it follows that the pairP['l 
is generated by words of degree not greater than 2d  + I modulo (x,, yjl 1 < i. j < n).Thihis' 
proves the theorem. 

PROOF OF THEOREM 3. Let the pair P = ( P C ,  P') be generated by the elements 
( x , .  . . . , x, E P +, y , ,  . . . , y, E P - )  and be solvable. Canying out an induction on the 
degree of solvability (the pair ~ [ ' l  is finitely-generated!), one can assume that the pair 
PI'] is nilpotent. say of degree r. Analogously to what was done in Lemmas 2.2-2.6, it is 
easy to show that 



For the proof of Lemma 2.5 it was noted that U, U, U, + U,U,U, = U(,, (mod I). 
Therefore (TIU)@"+'!' = M(P)U,'I,I + U ~ I ~ I  (mod I )  = 0 (mod I). Hence (nU)*+lk c 
I and (nu)@"+ 2k'3(w? = 0. Let t = 2(mr)3(2n + 2) . r .  2(mr)']. Proceeding as in the 
proof of Lemma 2.7, we obtain P'''M'(P) = 0 and M'+ ' ( P )  - 0. This proves the 
theorem. 

From Theorems 2 and 3 immediately follows .- 
--. THEOREM 4. E L V ~  Jordan pair hnr a locol& nilpatent radical. '. 

We call a Jordan pair Pprime if for any two ideals I = (I +, 13 and J = (J+,  J 3  of 
the pair P the equalities I +U;- = 0 and I-U,. = 0 imply I = 0 or J = 0. 

As in the case of algebras, the radical of a Jordan pair is naturally called spetial if a , 

semisimple (in the sense of this radical) pair is approximable by semisimple prime pairs. 
The analogue of a theorem of I. P. Sestakov holds (see [51). 

THEOREM 5. The lacal& nilpotent radical in Jardon pairs is special. 

We do not give a proof, since modulo Theorems 2 and 3 the proof does not differ from 
that mentioned in 151. 

83. h f  of k r e m  1 
In this section we shall denote by $ the pair $ = ($+, 8-), where 8" = [i?, bo]. As 

above. it is assumed that the algebra i? is generated by the set Cl(E), and the ring of 
scalars 0 conlains i. 

We call the set (xu E P"I x0U,, = 0) the kernel Ker P of the Jordan pair P - 
(Pi ,  P-). It is easy to see that if P docs not have Ztorsion, then Ker P is a locally 
nilpotent ideal in P. 

LEMMA 3.1. Let K +  and K- be abdian inner ideals of a Lie algebra L, and let 
L - K.+ + K'+ [ K + ,  K-1. In addition, let I = ( I + ,  I3 be an ideal of the pair K - 
(K+.  K-) containing Ker K. Denote by ug(l), the ideal of L generated by the set I +  u I - .  
Then KO n ~ g ( l ) ~  - lo. i 

j ~ O O F .  It is easy to see that ug(l), = [ I + ,  K-] + [I-, K + ]  + I - +  I + .  We assume 
that a nonzero element a lies in K +  n ug(I),, i.e. a = a, + a +  + a ,  where a. E 

[K+.  K '1 and a, E In. Then a - a+ E K + n (K-+ [K +, K-1) C Ker K I. 'Ihis 
means a E I +, which proves the lemma. 

An element a E P"  is called an absolute zero divisor of the Jordan pair P = (P+, P-) 
if P"U, = 0. It is easy to see that any element from n Cl(l?) is an absolute zero 
divisor in 8. The pair $ is therefore generated by its absolute zero divisors. 

We recall that the goal of this section is the proof of the local nilpotency of the pair 5. 
We consider an arbitray finite set of absolute zero divisors of the pair 5, and we 
generate with them a subpair TI = ('T,+?;+, 5;) and a Lie subalgebra el = '3; + 5; + 
[5;, T;]. If the pair 5, is not nilpotent. then by Theorem 5 it contains a prime ideal 
I a 'TI modulo which the factor pair does not contain locally nilpotent ideals. By 
Lemma 3.1, ug(lft, n % = I*. Now factoring the algebra El modulo the ideal ug(l)< if 
necessary and considering TI and I?, instead of 5 and l?. respectively,.we shall assume 
that   he pair 3 is prime. does not contain locally nilpotent ideals, and is generated by a 
finite collection of absolute zero divisors. We shall also assume l? is represented in the 
form li = j+ + 8 - +  [4+, 3-1. 
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LEMMA 3.2. Thepair $ sotisfier the following identities: 
1) u, y,., = 0. 
2) uyux = -VIup, = -y"yu.. 
3) u,uyux + uzuy'Jx = -u,,,cJ"*. 
4) U, uy U, = 0. 

~ O O F .  1) Let x E [k!, b + ] ,  y = [v ,  b-] and z = [ w .  6-1. It is necessary for us to-.. 
show that [ t b - x x [ b _ ,  1115 [ w ,  b_][w.  6-11 = 0 ,  or  in other words that 

'\ blx0x'[b_, c]*x*blw*w*bl = 0. Any element from 9+ u 5- is Engel of third order. 
Therefore .r8' = 0, and for any element y E E we have 3(x04*x* - X * ~ * X * ~  = 0. In 
view of the absence of 3-torsion in the algebra E, for any element y E 9 we have 
x*'y*xW - x * ~ * x * ~ .  NOW 

We have shown that the pair 9 satisfies the identity U, Y,,Uz - 0. Since Ker 5 - 0, the 
pair $ satisfies the identity U, V,, = 0. 

2) From I) it follows that $ satisfies the identity yU, Y,, - 0. Applying partial 
linearization in x to this identity, we have aVZq, + aUy U, - 0, whence U,U, = -VXy, - - p' ."." Lf.. 

3) By 2). U,U,U, + U,U,U, = -Y,,.,U, - U, Y,,u.. Now using (5), we have 

Y,u.,U, + ~ ~ v y , u ,  = u*,c,".. 
4)By2)and I). U,U,U, - -U,V,,,-0. 
This proves the lemma. 
We denote by U' the @-submodule of the multiplication algebra M(5) generated by 

the operators (U,1 a E $"). 

I LEMMA 3.3. Ler b E $+ and c E $- be absolute zero divisors. Then VbSc U+VCb - V:: 

! = 0. 
j 

PROOF. The equality V& = 0 follows from the fact that b, c, [b,  c] E C,(E). Further- 
I more, in an arbitrary Jordan pair the identity V, U, Y,, = U,,qu= + Y,,  U, Vy, - 

U,,yu, is satisfied. Setting x = 6. y = c, z = a E 5+, we obtain V,,cUaV,b = 0. This 
proves the lemma. 

It is known (see (4)) that the @-module generated by the operators ( V,I x E $", y E 
$") is a subalgebra of the Lie algebra (M($))(:'. We denote it by Yo. Then Ass(V") is 
an associative enveloping algebra for the Lie algebra V'. 

L E ~  3.4. There exists a ~ t u r a l  number m such that Ass(V-) is generated as a 
@-module by the products o, . . . tik, vi E V ;  1 < k < m. . 

PROOF. Let the pair $ be generated by a finite collection of absolute zero divisors 
(xi E $+.y, E 8-1. Then the multiplication algebra M($)  is generated by the operators 
U+,,. q,,, V,, and %,,. Hence 



In other words. 9 = Z:-.,, !Dl:, where each @-module !Dl: consists of absolute zero 
divisors of the pair 5. We denote by y.j the @-module generated by the operators V,,. 
x E \R,+, y E $my. Then V'= Z i j  yJ. In addition, in view of (4). for any elements a,, 
a, E 'R: and b,, b2 E 'R; we have [V.,c,, Va>,bJ = 0. By Lemma 1.10 this means the set 
q j  is associatively nilpotent of degree 4. In all there will be d+d- subspaces V,,. We set 
m = 3d+d-. From what has been said above it follows that the number m satisfies the 
requirement of the lemma. This proves the lemma. 

LEMMA 3.5. Let I = ( I  +. 1-1 be a nonzero ideal of the pair 5, let o - X, V,,g E V-, 
a, E 5+, bi E 5-, and let 1-u = 0. Then o = 0. 

PROOF. We denote by ow the element 2, Vq4 E V + ,  and show that $+u0 = 0. From 
the fact that 3 f and 2) of Lemma 3.2, it follows that the ideal generated by the set 
$+ o* will be the pair 

P = ( ~ + U * G < V + ) ,  ~ i + u * ~ - G s ; v + ) )  = ( P + ,  P-). 

We verify that ( I0(I"P"I")I")  - 0. In facl for a - + we have 

( I - ( T + V * A S S ( V + ) ) I - )  C ( I - ( 5 + v 8 ) I - )  + ( I - ( ~ U * G ( V - ) ) I - ) .  

and (I-($+og)I-)  C {I-$+I-)o  + [I-$+(l-u)) - 0. Hence (I'P +I-) = 0. 
For o = - the equality ( I ' ( ]  + ( $ + o * ~ - & ( v + ) ) I + ) I - )  = 0 follows from what was 

proved above and (8). Since the pair $ is prime, we now have P - 0. This means u* - 0. 
As above, it is easy to establish that 

( ? + ( $ - ~ ) $ + )  r (?+ 8-8')~' + (($+u*)$-$+) = 0. 

Consequently, $-u C_ Ker $ = 0 and o = 0. This proves the lemma. 

LEMMA 3.6. Lef the element a E and the operators o, E Yo, I < i < 4, be such that 
v: - u, Youi - o:' - o: V e q  - 0 and for any permutation (iIi2i3i,) = (1 2 3 4)  the 
equnliry c - no, . . . u, - m,, . . . o,, is wlid. Then c - 0. 

PRWF. By Lemma 1.10 the element c is a co-element and generates a I d l y  nilpotent 
ideal in f .  From this it is not difficult to deduce that the ideal generated by the clement 
c in the pair $ will also be locally nilpotent. This proves the lemma. 

LEMMA 3.7. a) Let u E V -  and o' - oAss< V-)u - 0. Then o = 0. 
b) Ler u E V -  and u' = v V b  = 0, and for any elements o,. . . . , o, E V -  let 

U . ~ U , L X , U , L ~ ~ C ~ O  = 0. Then o = 0. 

PROOF. a) We assume that $-o # 0. Then the set $-u generates a nonzero ideal 
P = (PI. P-) in the pair 8, where P-= $ - u ~ s < v - ) .  By assumption, P b  - 0. The 
equality r = 0 now follows from Lemma 3.5. 

b) If a nonzero element u E V' satisfies the requirements of b), then, analogously to 
what was done in 5 I, we can easily prove the existence of a sandwich of thickness m in 
the pair ( V - ,  Ass(V-)) ,  where rn is the number from Lemma 3.4. However, this 
contradicts a). 

This proves the lemma. 

LEMMA 3.8. LPt the operators u, E U' be such that u-u+ = u+u-= u, U4um = 0. Then 
u+Gs(;s(v+)u-= 0. 



ABSOLUTE ZERO DIVlSORS IN IOWAN PAIRS 563 

PROOF. If u E U D  and o E V", we denote by [u, o]  the operator u*u + uv E U". 
The @-module V C  is generated by the.operators Vm-,b,, where a _  and b +  are absolute 

zero divisors. For the proof of the lemma it is therefore sufficient to show that ---  
[ u + .  Yo.+-] = 0 for any such operator V,_,+. In fact, the pair of operators [u+.  Va,+], 

,u_ will then have the same properties as the pair u+ ,  u-, and it is possible to conclude 
that Ku+. V,..b+l, V.L,x.l~_= 0 for any operator Vd..&, etc. 

We set vo = and [u+,  oo] = u'+, and show that o = ~ i + u - =  0. For this it suffices 
to verify that the element o E V- satisfies the conditions of Lemma 3%). The equalities 
ri+U-C+ = o V b  = u2 = 0 are verified directly by means of Le- 3.3. We now 
consider arbitrary absolute zero divisors a, E ?+ and c, E 8-, I < i < 6, and operators 
o, = V , ,  E V-.  It is easy to see that 

We shall show that l i+uJI: , , [~ i+ ,  oh][u, o,,] - 0 for any collection of indices 1 < i,, 
j, < 6. For any operators u, E U +  and u, E U- and any I < i < 6 we have 

But [[u+, v,], o,]u_[u+, 001 - -[[u+. oi,b o&-o,u+ - 0, because uoU-v; - ooV'vo - 0. 
Consequently, 

It now only remains to note that i + u -  and [u+,  [04, od][u,  o,,], 1 < k < 3, satisfy the 
conditions of Lemma 3.6, which proves the lemma. 

LEMMA 3.9. Let the operators u, E U' satisfy the conditiom of Lemma 3.8. Then either 
u+ = 0 or u_ = 0. 

PROOF. We assume that u+ # 0. .Denote by P = (P+, P-) the ideal generated by the 
A 

set $-Y+. Then P +  = $-u+Ass(V+) ,  and by Lemma 3.8 we have P+u-= 0. But 
u_U+ c V + .  whence by Lemma 3.5 we have u _ U f  = 0. This means $+u_c  Ker $ = * 

0, i.e. u. = 0. This proves the lemma. 
Let a+  E 'y+ and b-, c _ E  5-. By 4) of Lemma 3.2 the operators Ua+ E U +  and 

Uc-U,.Ud-+ Ud-U,+U,-E U -  satisfy the conditions of Lemma 3.8. By Lemma 3.9 this 
means we have U,-U,+U,+ LJd-U,+Uc-= 0. Hence for any elements a, ,  . . . , a, E 5+ 
and b,, . . . , b, E 9- the operators vj = UqUb, commute and satisfy the conditions of 
Lemma 3.6. This means l14_,(U,Ub,) = 0, which contradicts the fact that Ker 5 = 0. 
This proves Theorem I. 

COROLLUY. Let !2 be a Lie algebra without additive 6-torsion, and A an associative 
enreloping algebra far !?. Suppose A is generated by the set C,(E!, A).  Then A is locoNy 
nilporent. 

-.. 



54. The McCrimmon radical of a Jordan pair is locnlly nilpotent 

The smallest ideal of a Jordan pair P ( P + .  P - )  modulo which ihe quotient pair 
does ntit cilnlain ahsolutc zero divisors is called the McCrirnmon rurlical of the Jordan 
pair P (denoted W ( P ) ) .  

We denote by Z ( P )  the ideal generated in the pair P by the set of all its absolute zero 
divisors. I t  is easy to see that Z ( P )  = ( Z + ,  Z J ,  where ZD is the @-module generated by 
the absolute zero divisors contained in Pa.  

We set by definition W [ ( P )  = Z ( P )  and let the ideal CIR,(P) be already defined for all 
ordinals a such that a < P. If f l  is a limit ordinal, we set CIRB(P) = U e<B CIR.(P). If the 

-.. ordinal f l  is not a limit, we define CIRp(P) as the ideal such that CIRB(P)/%-,(P) - ' Z(P/!lVp- , ( P ) ) .  The chain W t , ( P )  C . . . c IR,(P) C . . . stabilizes at some ordinal y. 
It is not hard to show that W , ( P )  - Wl(P).  

In this section we shall show how Theorem I implies 

THEOREM 6. The McCrimmon radical, of a Jordan pair without 6-lorsion is locally 
nilporenr. 

From what was said above it follows that for the proof of Theorem 6 it is sufficient to 
prove the local nilpotency of the ideal Z(P) ,  i.e. the following theorem. 

THEOREM 7. A Jordan pair P = ( P + ;  P 3  without addiliw 6-torsion generated by afinite 
collecrion of absolute zero dicisors (a: ,  . . . , a: E P + ;  a;  . . . , a; E P - )  is nilpotent. 

PROOF. Without loss of generality we can assume that the ring of scalars '3 contains i. 
The Lie algebra V4 is generated as a @-module by the set of operators ( V,,I x E Po 
and y E P" are absolute zero divisors). It is not difficult to see that all such operators 
tie in C,(V", Ass(Vd)). by the corollary to neorem 1 this means the algebra 
Ass(V") is locally nilpotent. We denote by m, the degree of nilpotency of the 
associative algebra generated by the set of operators ( V4.+..I 1 < i, j < n) ,  and we set 
m - max[m+. m-). In view of (5) and (6). 

u - G s < v - > u 4  G(vo) .  
Consider the set 

We denote by s, the degree of nilpotency of the associative algebra generated by the 
set M,. and we write s = max(s+, s-) .  It is now w y  to see that the algebra M ( P )  
generated by the set (U4.+., V4.P;, a = 4 1. 1 < i ,  j < n )  is nilpotent of degree not 
greater than 2sm. This proves the theorem. 

COROLIARY. A simple Jordan pair wirhouf 6torsion does not contain absolute zero 
dirirors. 
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