Proof. Assertion a) follows from Propositiom 5, and the latter implies the injectivity of

of £, too. Let us show that ¢ is surjective. Given f&C(as5) » there exists a function g, =
C{2:5), taking only 2 finite number of values and such that ¢ Kf— g éni-ﬁ 1. By Theorem 2,

gn = X for some ¥,=B.(8) . 1f z.=Z,, then ‘.rEsup.r,.EBuru(S') and Cx = £.

To prove c), we resort to the characterization of agS given in Theorem 2, Let 13:8; + §
be a continuous, skeletal mapping of the compact space 5. onto §, and let 7 satisfy condi-

tions a) and b) of Theorem 4. Given F<#H(S) and zr=yxr=Bore(S) , Lzyp= yps, where F* &
A(agS). If Fy ~ Fa, them £xp, = Lxp, and F¥ = F¥. Notice that z/S\KeC(S\K) and Ixp(t) = 1
for tet (FNK), [Zelt}=0 for tetn(S\NF U K), i.e., F*AT;-IFC:—T;IK. Therefore, condi-
tion a) of Theorem 2 is satisfied. Let U=AlasS) and f=yy,=(F, and pick x & x; one can

assume that x takes only the values 0 and 1 (if not, we take x equal to zerp at all points
where it differs from O and 1). Then (x~*(1))* = U. The mapping x:F = F* is thus surjec-

tive. If F,#F;, then xp‘a&iﬁ_ , and property b} of Theorem 4 yields (f.}zFl#'C'ZF" yi.e., Fys=Fy
showing that % is a bijection. Now Theorem 2 shows that §; is homeomorphic to agS, and as-
sertion c) of our theorem is proved.
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S

ABSOLUTE ZERO-DIVISORS AND ALGEBRAIC JORDAN ALGEBRAS

E. I. Zel'manov Upc 519.48

INTRODUCTION

Suppose ¢ is a commutative associvtive ring with 1/2, J is a Jordan %-algebra, and «,
b, ¢ & J. Let R(a) denote the operator of multiplication by a,

Rla): 1=z — za,

and let U{az, b) and V(a, b) denote the operators

Ula, b) : 72z — {a, z, b} = (za)b + (zb)e — z(ab);
Via, 8}: 7=z -~ {z, a, b} .

We have U{a, b) = R{a)R(b} + R(bIR(a) — R{ab), Via, b) = R{z)R(b) — R(b)R(a) + R(ab). Tor
brevity we write U{a) = U(a, a).

Let J denote the algebra JT=J+ ¢ 1 obtained from J by externally adjoining a unity
element.

~ Institute of Mathematics, Siberian Branch, Academy of Sciences of the USSR. Translated
from Sibirskii Matematicheskii Zhurnal, Vol. 23, No. 6, pp. 100-116, November-December, 1982.
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An element e=J is called an absolute zero-divisor (a.z.d.) if [aJa} = 0. A similar
concept, the crust of a thin sandwich, was introduced for Lie algebras by Kostrikin [1, 21.

It turned out to be convenient to consider sandwiches of any thickness. In the present paper
we define the concept of an absolute zaro—-divisor of order m # 1 (see Sec. 1) and prove the
following: ’

If a Jordan algebra contains an absolute zero-divisor, then it contains absolute zero-

divisors of any orders.
It follows from this result and a theorem of Skosyrskii (see See. 1, [3]) that a finitely
generated Jordan algebra containing an absolute zero-divisor contains a nonzero trivial ideal.

Thus, all analogues of the concept of semiprimeness for a finitely generated Jordan al-
gebra coincide. Recall that a Jordan algebra containing no nonzero absolute zero—divisors
is called nondegenerate. The smallest ideal M(J) of J for which the corresponding quotient
algebra is nondegenerate is called the MeCrimmon radical of J. The above—mentioned results

have the following comsequence:

The McCrimmon radical of a Jordan algebra is contained in the locally nilpotent radical.

In the second part of this paper we apply these results to solve Kurosh's problem in the
class of Jordan PI-algebras. Kurosh's problem was solved in the classes of special Jerdan
and alternative PI-algebras by Shirshov in 1958 [4]. 1In this connection, Shirshov posed the
following guestion (see [5]): Is a Jordan nil-algebra of bounded degree locally nilpotent?

From Theorem 7 we obtain an affirmetive answer to this question and also a solution of
A. G. Kurosh's problem in the generality sought by A. I. Shirshov.

In the sequel we will use the following identities, which are valid in any Jordan alge-
bra:

(1) [Viz, g, Viz, &1 = Vi{z, y, b, ) — Viz, ly, 2, ),

(2) Utn)Uly) = 2Vz, 1) Viz, i) — YUz, 4} =} p),

(3) Rlzy)z) + R{z)R(z)R(y) + R(y)R(z)R{z) = Rlzy)R(z) + Rlzz)R(y) + Rlyz)R(z). = R(z)Rlzy) + R{y)R(xz) +
R(x)R(yz),

(4) R(HAGRE =+ (R@),RWRE+RE@,E@IRE)+R{ey):— 22— (22} y) -+ (R (4), R ()]
R(x) — R (zy) R (2)— B (zz) Ry) — Ry R (=),

(5) [Ri), R(y)] =5 IV (@) —V 2] =D (=)
(6) [R(2), Dly, 2)1 = R{zD(y, 2)).

1. ABSOLUTE ZERO-DIVISORS

1. As usual {a, b, c) = (abdc — a(bc) is the associator of the elements a, b, ¢ & J.
If A, B, C are subsets of J, then (A, B, C) denotes the set {{a, b,c)la=A, b=B, csCh

A submodule B = J is called an inner ideal of the algebra J (written B<,J) if for each
element b E B we have JU(b) = B.

‘Definition. By the annihilator of a set X = J we mean
_Aﬁﬁ:,.x=' {z= '.HXR(a)"a-T (x,7, ay=0=le= J]fV(a, ) =0hL

The following properties of AnnyX were proved in [6}. -

LEMMA 1 [6]. 1) If a=Ann,b, then b=Ann,e . 2) Anng X is an inner ideal of the alge-
bra J. 3) If X is an ideal of J, then AnnyX is also an ideal of J. 4y {J, X, Anng X} = 0.
%) If Xa = Xa? = 0, then a'=Ann, X, .

Consider a free Jordan algebra FJ<X> on a countable set of generators X = {pln =1,
2,...}, and consider the semigroup Il generated in Endo (FJ(X>, FI(X) by the operators {t(z,,
x2), Viz, z)i, j=1). For any word WeIl we define its rank by putting r(V(xi, xj)) = 2,
Uy, 2d) = 4, W, W) =r(W,)+ r(W,).

Definition. Aa element b = J is called an absolute zero-divisor of order n if for any
word Wiz, ..: .z.,.')"e II of rank n and any elements ay; .., a7 we have bWla, Logan) e Anng b,
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Example. Suppose J is a special Jordan algebra and R is its associative enveloping al-
. gebra “with 1. Assume that R is semiprime. Dneaote the product of elements x, y € J in R by
xy. Then;:

1) The annihilator of a set X = J is
Anm, X={aesJ|aX = Xa=0}:
2) an element b = J is an absolute zero-divisor of order m in J if for any elements
Ty vnny Tn=J+ D1 we have bxy ... xgh = 0. )
The aim of this section is a proof of the following:

THEOREM 1. A Jordan algebra that contains a nonzero absolute zero-divisor alsoc contains
absolute zero-divisors of any orders.

Remark. In the sequel it willkbe convenient to assume that the ground ring & contains
elements a, §&® such that (1 — a){1 — 8)(a ~ B8) is invertible in ¢. This property holds,

e.g., in the ring ®{(x))} of Laurent series, @((z)) {E at k= iaiE(D} , in a variable x over

¢, since the element (1 — x)(1 — x?)}(x — x2) is invertible in ®((x)). Passing to the ®({x))-

algebra J((z:)):[ X ik, a{EJ} of Laurent series over ¢, we may assume without loss of
R

generality that the ground ring ¢ possesses the desired property. In the sequel we will do
this without specifically saying so.

2, 1In this part we obtain some sufficient conditions for the existence of absolute
zero~divisors of any orders,

LEMMA 2. 1If a Jordan algebra J contains a nonzero ideal I such that I3 = O, then J
contains absolute zero-divisors of any orders.

Proof, Suppose a, a;, ..., gane=] and z,, ..., Zm=J. McCrimmon [7] observed that the
expression £(@g, ai,...,am, X1,...,%xp = agViay, %x1) ... Viag, Xp) is skew-symmetric in the
variables X;,...,xy. Indeed, for xj = %i+; = X we have IVia, z)V{ay,, z) = (U, a,,)Uz)+
V(ﬂg‘ ﬂi+lU‘(I)) =0 !

We will show that for any &u @iy ..., s =T and z, ... Izn+r5? the element £ = f(zp,...,
QIn+ls x,,...,xznﬂ) is an absolute zero~divisor of order n. It suffices to show that for
any ... e VU, T, yEJ we have fvy ... vanV(f, y) = 0. Put e=fv,.,. el . Then, in

view of identity (1),
CV(&DV(GI, .. -V(ﬂzn+t. Inn+1)., y) = C[V(-‘E;,.H, a:lr:-!-l), [V(-T-'zm a?ﬂ)y B [V(In ﬂj), V(ﬂn, y)]. . ].
Also by (1),

(z) {a) (@) feyt (2
f(ﬂm Ay eeoy @andds Tyy ooy Tangy) Upoo Vg = E f(ﬂn 1 @1 5y e sy Banpn By Ty - e Tanda )y
[+ 2

vhere a{” & and for any o there exists an integer 15, 1 € ig € 2n + 1, such that D &z
Now :

Han) @1y« ooy Bang1,Z000c Ban g1 )0y -+ Vanl Vg, 1), Vg, 1), « g V(@anis: Zznir)l=
= Ef(ﬂfna)J a ,r . 1a§nzl-1! Qigy »» vy Bigy g I;. ); . l'rs'%)-{-llzll O :‘?ﬁﬂ'%-l;y) =
If J c:ontams no nonzero absolute :zero—divisars of order n, then for any elements
gy -y Langr &d, z), ..., Twmp=J we have aVigy, x,) .. V@anyp, Zang ) =0,
Suppgse k 2 1 is a natural number such that for any elements ., ...'.', ﬂAEI Ty vun Tyt
we have a.¥(a;, z)...Via, z) =0, but there exist elements a;,'.f. A= £ ,7:1,, veer@n_ye=J, such

that a;\{‘(di.z‘:;_‘) .-.W’_{ﬂ}l_l,ﬂf}:_l) #0. Then 0550V (al, :::1) ces V{ah_l,z,._.l\)EEAnqu f1{. Consequently,
B=INApa;I is a wmenzero trivial ideal of J. #Any element of B is an absolute zero-divisor
of any order. This contradicts our assumption that J contains no absolute zero-divisers of
order n. The lemma is proved.

Suppose aeJ . Let I(™(g) ang v(m (a) denote the submodules gemerated by the sets
{aR(a;). . Rla.May, ..., a,,eﬁ and {aVia, &)...Via, b)la, =] 0<k<ml, respectively.

LEMMA 3. If for each k 2 1 the algebra J contains an element ar = 0 such that (I(k)
(ax)}* = 0, then J contains absolute zero-divisors of any orders.




Proof. Let F denote a Frechet ultrafilter in the set of natural numbers N and con-
sider the ultrapower JY/&. The property of containing a nonzero absolute zero-divisor of

arder n is a First-level property (see [8]), hence J and J¥/F either both contain or both
do not contain a nonzero absolute zero-divisor of order m. Suppose a={(a,),on/F =J¥/5F  and
I is the ideal generated by a in the algebra J¥/F . 1t follows from the definition of ultra-
power that I? = 0. By Lemma 2, the algebra J¥/F contains absolute zero-divisors of any
orders. Thus, J contains abseclute sero—divisors of any orders. The lemma is proved.

(k)

LEMMA 4. 1If for each k 2 1 the algebra J contains an element gy = 0 such that (V
{(a))® = 0, then J contains absolute zarg-divisors of any orders.

Proof. It follows from identities (4) and (6) that any operator of the form Ria)..-
Ria), a=J, lies in the ¢-module UV MU, D, where y([n/21) (g, 1) denotes the [n/2]-th
power of the module V{(J, J) + #-Id. Note that Rizy) =Y. (V (z, 1) +V (1, W=V ({J,J). Therefore,
RF=VU, Ih
It is easy to show that I={zrellzU(F) =01 is an ideal of J and that (T°)° = 0. 1f
0, then, by Lemma 2, the algebra J contains absolute zero-divisors of any orders. Assume
0. Then for each element gy there exists an element b=l such that eiU(bg) = 0. In

- (21
view of identity (2), U(b)UNV(, J)= VU ). Thus, ' UG) =V * {ay) =
V™ (a)) for k = 3. By Lemma 3, the algebra contains absolute zero-divisors of any orders. The

I
I

|| {1

lemma 1s proved.

3. Sandwiches in Lie algebras._  Suppose % is a Lie abgebra over a ring 9, A 15 1its
associative enveloping algebra, and A = A + ¢-1, Let @M. denote the module generated by
the products of the form Z; ... 7k, where LeZ+® 1. Suppose ce & . Following Kostrikin
[2], we call the equality ¢Z™ec =0 a sandwich of the pair (£, 4) of thickness k and we call
the element c the erust of a sandwich of thickness k. Sandwiches of thickness | are also
called thin sandwiches.

We denote by la, ... a.] the left-normed commutatar IL.. .lla, @}, al, .. Ja..
LEMMA 5 (A. I. Kostrikin [11). Suppose o, ... =%, 6, ..., & are crusts of thin sand-
wiches of the pair (Z, A} , and ¢=1[ag, ..., a4} = [ap @iyr -+ 0 ai,‘] for any rearrangement {ii,...,

iw} = {1, 2, 3, 4}. Then c is the crust of a candwich of thickness 2 of the pair (&, 4).

: b . .
Let @™, ..., FY denote different copies of the module i,

LEMMA 6 (see {9]). Suppose the algebra % is generated as a ¢-module by crusts of thin
sandwiches of the pair (&, A),and £ =e is a nonzero element such that eV = a@Fa ...
'an(."‘;‘a=D. Then for any natural number meN the algebra % contains a nonzera element
am such that am.‘;?ma,'n=am9(1m)a,;9§,’")..‘ .?(.m,,am=0-

As usual, we denocte by ad{a) the operator of commutation with the element a, adf{a}): &35
x —+ [z, al; then ad(Z) = {ad ()= P} is a Lie algebra under commutation and we denote by
Asék (ad (F)) the associative subalgebra it generates in Ende? . An element c is called the
erust of a sandwich of thickness m if ad(e) is the crust of a sandwich of thickness m of the
pair (ad (P), Ass{(ad(Z)}). The following lemma is also taken from [9].

“LEMMA 7 [9]. 1If a Lie algebra generated by crusts of thin sandwiches contains a sand-
wich of thickness 2, then it contains sandwiches of any thickness: '

4. We consider some constructions of Lie algebras from a Jordan algebra. It follows
from identity (1) that the ¢~module V{J, N =ZaV{z, ydla=®; z,-pi=J} is a Lie algebra under
commutation. Let Ass<V(J, J)> denote the subalgebra it generetes in EndgJ. If a, b are ab-
solute zero-divisors in J, then V(a, b) is the crust of a thin sandwich of the pair (V(J, J),
Ass <V{T, I)>). '

We demote by D(x, y) = [R(x), R(y}] = Ya(vix, y) — Viy, x)) an inner derivation of an
algebra J, and by Inder (J) the submodule genérated by the set {Dlz, Pz, yp=J}. It is easy
to see that Inder (J) is a subalgebra of the Lie algebra v(J, J) and that V(J, J) = R(J?} +
Inder {I). o : :

The following construction is due to Koecher [10]; Suppose J is a Jordan algebra. By a
Jordan pair constructed from J we mean a pair of isomorphic copies J¥esJ-=7 of J, acting

on one another by the rule {247} = {aba)®, g== . To each pair of elements ate I+, el
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."we assign the operator & (a*, b-) = (V(b~, a*) , —V(a*, b)) = EndaJ* @ EndeJ- . It follows from
identity (1) that the $-module generated by the operators {8{a*, b-), et =7+ b-=F} is a Lie
algebra, We denote it by &(J*+, J7). We consider the direct sum of ¢-modules K(J)} = J* +
§(Jt, J7) + J” and define on K(J) the operations [at, b=]1 =68(a*, b7), [b~, a*]l =-délat, 1),

[a°, 51 =0, [a° &lc*, d=)] =a%(c*, b-)=r, [6(c*, d-), a"]-——a"ﬁ(c"’ d-) . The resulting structure on
K(J) is a Lie algebra (see [10])

LEMMA B. A Jordan algebra J contains absolute zero-divisors of any orders if and only
if the Lie al algebra K(J) contains sandwiches of any thickness.

Proof. It is easy to see that if e</J is an absolute zero—d1v150r of order at most
2n + 4, then a*=K({]) is the crust of a sandwich of thickness n.

Assume that the algebra K(J) contains sandwiches of any thickness. We will show that in
this case the subset J*UJ- already contains crusts of sandwiches of K(J) of any thickness.
Indeed, suppose a* — a~ — & is a~donzero crust of a sandwich of thickness n + 4. If a* —
g~ = 0, then there exists an element §"=J° such that pH+0, b4 is the crust of a sandwich
of thickness n + 2. ’

Suppose a’#0 . If {ze/JizU(J)=0)+0, then, as we observed in the proof of Lemma 4, the
algehra J contains absolute zero-divisors of any orders. Assume that {z=MNzU{3=0}=0.
Then there exists an element be=J such that [lat+a- + 6,677, b 9= {[gq°, b, bl 0, [la", b1, b-°]
is the crust of a sandwich of thickness n.

It now remains to observe that if J'e=a” is the crust of a sandwich of K{J)} of thick-
ness 2k + 1, then (V*™{(a}))'=0. By Lemma 4, J contains absolute zero-divisors of any orders.
The lemma is proved.

Note that if s*=J = K({J) , then ad (a® =0; if one of a, b is an absolute zero-divisor of
J, then ad{8le*, b=))*=0. It is known [11] that if ® = 1/7!, then exp(ad (aM), exp(ad (5{e*, b))
are automorphisms of the algebra K(J). However, it can be shown directly that for algebras
of tvpe K(J) the requirement 1/71l=® is opticnal.

LEMMA 9. 1) exp (ad (%)) = Id 4 ad (%) —}-%ad (0°)* = Aut K (J).
2) If one of the elements @, b is an absolute zero-divisor of J, then ad(5{a*, b-})*=0
and exp (ad (6{e+, b)) =AutK{),

LEMMA 10, Suppose & is a Lie algebra over a ring ¢ and is generated by a system of
elements {z/i=%) such that ad (xi)? = 0, and suppose explad (yz)) = AutL for each yeo- .
Suppose also that M is a subset of % that is stable under inner automorphisms. Then the
submodule ¢M generated by M is an ideal of 2.

Proof. It suffices to verify that Mad(z)=®M for each i=%. Supposem = M. We

11 1
have assumed that the ring ¢ contains elements sg = 1, @1, a2 such that |1 a, al =0 . We have
] 1o, al
mi =exp (ad (az;)) m = m+ ay [m, ;] 3-1/20% (M, 73, ;1 M. Therefore, [m,z] &M . The lemma is proved.
LEMMA 11. Suppose & 1is a Lie algebra generated by a system of elements {zii=%) such
that ad (x;)? = 0, and suppose explad{yz:}) =Autl Ffor each y=® . If a nonzerc ideal I of
% contains sandwiches of any thickness, then 2 contains sandwiches of any thickness.
Proof. It is easy to see that if ci1,...,cps2 are crusts of sandwiches of thickness 2n +
T of the algebra I, then [ecy,-..,ep+2] is the crust of a sandwich of thickness n of the alge-

bra .2 . Let M dencte the set of crusts of sandwiches of thickness 2n + 1 of the algebra I.

The set M is automorphically admissible in I and is therefore stable under inner auto-
morphisms of &%, By Lemma 10, ¢M is an ideal of &. If.% contains no sandwiches of thick-
ness n, then the commutator of any n+2 elements of M is equal to zero, i.e., (DM~ =) .
Thus, £ contains a nonzero Abelian ideal and sandwiches of any thickness. The lemmais proved.

3. Let Z denote the submodule generated by all absolute zero~divisors of the algebra J.
It is known that Z is an ideal of J. Our immediate goal is to prove that the algebra Z con-
tains absolute zero-divisors of any orders. Assume this is not so. Then, by Lemmas 7 and 8,
the Lie algebra K(Z) contains no sandwiches of thickness 2.




Suppose b, b,, b; are absolute zero-divisors of Z. D, = D{b., ba), and c = bDs. Then
R{(b)R(c) + R(cIR(b) = 0, V(b, c) = 2R(b)R(c) = —2R{c)R(b) = —V(c, b).

LEMMA 12. For any operators b, D;EV(Z,LZ), 1=<i<3,, we have V(b, c)V(bvy, bvi)V(bvs,
bvz)V(bvy, bvi) = O.

- T
Proof . We may assume without loss of generality that vi = V(xi, i), v}_r= vixi, yi),
where xi, yi, x;-_, y;: are abhsolute zeFo-divisors of J. Then b{ = bvi, b'i = bvy are also abso-
lute zero-divisors ef J, and G(b';, bi_) is the crust of a thin sandwich of the algebra K(Z).

For any index i, 1 € i € 3, we have biV(c, b) = b'iv(c, b} = 0. It follows from this
fact and identity (1) that the operator V(b, c) commutes with V(bj, bl). We shall show that
V(b, ¢)[V(by, bi), v(bj, b_%)] = 0 for any i, i, where 1 € i, j € 3. In view of identity (1)
ve have [V (b, &), V (b;,b))] =V (b, {53y by, b;)— ¥ ({84, B}, B, b)), we will show that V(b,a)V (b5} b;),bi) =
0. Again in view of (1), {bu,J, bd={b, 7, blu,+ (b, J, 6} =0 and {bu;,bj, bujl= (buy, b, B} v — (buww;, b,
bl4-{bvi, b5 V(y;, 2),b] = — {bws, v;, b}, bl = [bvw;, b, b).

It now suffices to prove that ‘V(b,‘c)V([-:.z:,b,b;-Lb;)=D for any x = Z. Indeed, V(b,¢c)V{lz,
babi]:,bi)= -——{V(c,b)V(!x, b, b;‘]»bvi)=v(€"b. U;)V({x, b, b;],b),but V{lz,b,b5],0) =0, since b is an absolute
zero—divisor of the algebra Z. Analogously, V{b,c)V (&;, lbi'lbj,b}])=0.

Suppose+(ﬁ_‘EZ_+Ef_{(Z). By Lemma 5 of Kostrikin, the element p+=‘[a+;6(c+,b_), 6(b’1+, b7),
ﬁ(b’:.b;),é(b'a. b7} = (aV (b,¢) ... V (bs, ba)" is the crust of a sandwich of thickness 2 of the alge-
bra K(Z). By our assumption, p = 0, The lemma is proved.

LEMMA 13. For amy operators by ... v = V{(Z, Z) we have V (by) 03V (b, &) 03 ...V (b, c) v2V (b, ¢) = 0.
Proof. 1) For any elements =z, y=J we have
Vb, c)R(z}R()V(B, ¢) == ZV(b, ) R(z)R(yIR(B)R(c) =

=2V(d, c)(=R(B)A(y)R(z) — RU{bz)y) + Rlbz)R(y) + R(byIR(z) + Rlzy)R(B)R(c) = 0.

2) Suppose zeJ, De=DerJ.. Then Vb, c)R(z)DV(b, cF = —2V(b; ¢) X-R(z)DR(c)R{b) = —2V{b, - c) =
R(z)D,: R()R(b) = 2V(b, c)R(z)R(cD) X Rb) = 2V(b, e)R(x), R(eDIR(B) + 2V(b, )R(eD)R(2)R(B). The
operators V(b, c) and R(cD) commte. Therefore, V(b, c)R{cD)R(z)R(H) = R(cD)V(b, c)R(z)R(B) == 0.
Also, 2V(b; c)R(z), R(cD)NRb) = 2V(b, MIR(z), R(cD)], R(b)'= Vb, ¢)R(h Inder J).

3) Suppose DeDerl.. Then VIb, e)D'Vib, c)=Vib, oD, .[D, Vb, cNf=2Vib, c)V(bD, cD)=
2V{b, c)V{(bD, .bD,D) =2V(b, ¢ X (V(bD, b[D,, D1)+V(bD, 8DD;)). We will show that V(b, c)V(bD,
bDDy) = 0. Indeed, V. (bD, bDD,} = R (bD) R (bDD,) — R{(bDDy) R (6D)y + R (bD - bDD,) = R (bD) [R (bD), Dyj—

(R (D), Do) R (bD)4-/ [ R ((bD)%), Dy ).

The operator V(b, c) commutes with R(bD) and R({bD)2). It follows from this fact and
the equalities V(b, c)Ds = 2R()ARIcID, = ~2R(6)DuR(EDY), . JDR (BD) = (D) = F - JD}— 0 that V(b,
€}V(bD, bDBg) = 0. We have shown that V(b, c}D*V(b, ¢) = 2V{b, c)V{bD, blD,, D).

We have V(J, J) = R(J?) + Inder J. Therefore, in view of what was praved above, V(b,
)V, )V (b, c)= V(b, e){R{E Inder )+ R(b Inder /)*). Consequently, V{d,c)X(V(J, J*Vib, ¢))f < Vb, c)B(b x
InderJ)* BndeJ. It remains to observe that if D, D, =Indery , then V'(b,c) R{(bD,) R{(BD,) = YV {b,c) .x
V(bDy, bD;), and to use Lemma 12. The lemma is proved.

We noted above that if a, b are absolute zero-divisors of the algebra Z, then V{a, b)
is the crust of a thin sandwich of the pair (V(Z, 2}, Ass<V(Z, Z)>). Consequently, the alge-
bra V(Z, 2) is generated by the crusts of such sandwiches of the pair (V(Z, Z), Ass<v(Z,
Z)>}. Assume that V(b, ¢) # 0. Then, by Lemma 6, for any natural number k the algebra V(Z,
Z) contains an element vi = 0 such that

BV ™(Z, Z)0,¥N(Z, 2)0,V™Z; Z)v, =0, .
Consequently,_ for any natural number k the algebra Z contains an element Pk ® G such that
PkVk = 0, (V_('k)(pkvk))\rk = G. 7
LEMMA 14, For any natural number k > 1 there exists an element ak, 0+ a, =2, such that
(V(k)(ak))J = {,
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Proof. Suppose k 2 1. Consider the element p=pu. =2 and the operator ¥ = Uuyz=

(vk+13)

EV(.I:i,y‘-). Then pv 2 0 and (V "(pv))v = 0. Let uv* --va (y1;7:) . We consider two cases,
T

1) (V9 (pp))v* =0 . Then (V®{pp), V™ (pv), V“"(pu)},=0 . Indeed, identity (1} can be re-

written in the form {z, yv, 2} =z, y, 2% — {zv* y, 2} —{z, y, 2v*}. 1t follows that for any ele-
ments x, y, 2= 2 we have

Hevas 3 VOO @0 v o).

Thus, ) _
(V™ {go), Vi’f-"(pv), ViN(pp)} = VRV (po), pu, VR {pu)).
We have : ‘ ‘
{V (pw), pu, V" {(pp)} < (V¥ (polo*, p, VN (po)} +{VE (o), p, V¥ (pu)lu* =0.
2) Assume that (Ve {pp)lp*=a+0 . Then {V¥(a), V¥ {(a), V*(a)} =0 . It suffices to

verify that {ViM(a), Zuv*, VY a)) =0 . We have
{V{a), Zu*, V() s ((V™a))u, Z, V*a)) + (V™(a), Z, V¥ a)} s VEH(VOH (pu))e) = O

The lemma is proved.

It now follows from Lemma 4 that the algebra Z ceontains absclute zero-divisors of any
orders. Meanwhile, we assume the cpposite. Thus, V(b, ¢) = 0, Now in several steps we will
complete the proof of the fact that Z contains absolute zero-divisors of any orders.

a) Suppose b is an absolute zero-divisor of the abgebra Z., Then for any elements x, vy,
z €& Z we have bR(x)R(y)JR(z)R(b) = 0. 1Indeed, in view of identity (4) it suffices to verify
that for any D-='lnderZ and z2=2, we have bDR(z)R(b) = zR(bD}R(b) = 0, hut this follows
from what was proved above.

b) We will show that for any elements z, y=2Z2 we have R{bx)R(by) = 0. In view of iden~-
tity (3}, R(b2)R(by) =~R{b(by)IR(z) — RUby)ZIR(B) + R(z)R(B)Riby) + R(By)R(R(z) + RU(by)z)b) =
—R{{by)x)R(b) =0 [the last equality is because of a)]. Therefore, if b is an absolute zero-
divisor of the algebra Z and z&Z is an arbitrary element, then bx and b + bx are also ab-
solute zero-divisors of Z.

c) For any z, y, 2=Z we have BR(z)R{z)R(y) X R(z)A(b) =0. Indeed, in view of a) and b)),
(b +bz)R(z)R(y)R(z) R(b+ bz) = 0, hence (br}R(z)R( IR(IR(B) = —-bR(z)R(YR(2)R(bz) = —(bx)R(y)R(z)Rtbz) =
0. As usual, let wep=*uvtwu).. Then for any z, ¥, 3 t=Z we have b(R(z)- RyHR(2)RIDA(D) =
0.

d) Suppose b, c, d are absolute zero-divisors of Z, and suppose D, D.=lInderZ. Then
BbR(eD)R(dD.}R({be)d) = 0. Indeed,
bR(cD,)R(dD,)R((bc)d) = bR(eD,)R(dD.}{R{bc}R(d) + R(pd)R(c) + Ricd)R(D) — R(BIR(A)R(a)'— R)R(AR(D)) =

=—bR(cD\)R(dD,)R(c)R(b) = —2b(R(cDy) » R(dD.))R(c)R()R(b) = 0

in view of ¢). Consequently, for any D, D;=InderZ we have ({bc)d)D,D,R({be)d) =0,
6. Let p = (bc)d. For any az, y, z,'L‘EZ we have

ApR(z)R(PR(ROR(p) = pl2R{z) » Rly) + Dz, y)I2R(z) = R(2) + Diz, }R(p) = pDlz, y)Dlz, DR p)= 0.

e) We will show that D(p, -q) = 0 for any absolute zero-divisor q of the algebra Z. It
suffices to show that D{(p, q) is the crust of a sandwich of thickness 2 of the pair (V(Z, z),
Ass<V(Z, Z)>). We have already noted above that V(Z, Z) = R(Z2) + Inder (Z, Z). Suppose
reZ? DelnderZ. Then .

Dip, q)DR(J:)D(p, g) =D(pD, PR(z)D{p, g} + Dlp, eD)R(x)D{p, ) =
=——R(g)R(pDJR(J:)R(p)R(q) R(p)R(qD)R(m)R(q)H(p)——R(q)R(p)DR(.r)R(p)R(q) ‘R(p)R{GIDR{z)R(4)R(p) =0,
" Dip, )D*D(p, q) = 2D(pD, gD)D(p, q) -—-2R(p13)R(qD)R(p)H(q)+2H(qD)R(pD)R(q)H(p) =0.
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Thus, D{(p, q} = 0. It follows that if p = 0, then the ideal of Z generated by p is triviat
ine., p is an absolute zero-divisor of any order. If for any absolute zero-divisors b, ¢, d
of Z we have (bc)d = 0, then Z' = 0 and Z certainly contains absolute zero-divisors of any
orders. This contradicts our assumption. We have proved that the algebra contains absolute
zero-divisors of any orders. P

Let us complete the proof of Theorem 1. Consider the Lie algebra @ =K(J)=J*-+6(J*,

J7) + J and its subalgebras &, =Z*+ §(Z*, Z7)+2Z~, &, =2+ +§(2*, )8, 2942~ . 1t is
easy to see that 2, is an ideal of %;, and %, an ideal of £ . The algebra 2, is
generated by the system of elements {4° 6(a*, ¢7)}, where b and one of a, c are absolute zero-
divisors of J, and the algebra % is generated by the system of elements {e°, o=, acJh
Furthermore, we have proved that the algebra 2, contains sandwiches of any thickness. By
Lemma 11, % also contains sandwiches of any thickness. The proof of the theorem can now
be completed by using Lemma 8, Theorem 1 is proved.

Let M(J) denote the subalgebra of Ends{J) generated by the set {R{z)lz=J} . Skosyrskii
[3] proved that for any finitely generated algebra J there exists a natural Inumber s such
that M(J) is generated as a ¢-module by the operators of the form R{x;) ... Rixy), where k € s
and zy&J ., From Theorem 1 and Skosyrskii's theorem we obtain

THEOREM 2. A finitely generated Jordan algebra containing a nonzero absolute zero divi—
s0r contains a nonzero trivial ideal.

It follows from Theorem 2 that the ideal Z of J is locally nilpotent, which, in turn,
implies:
THEOREM 3. The McCrimmon vadical of a Jordan algebra is contained in the locally nil-
potent rtadical.

In [9] Theorem 3 was proved for Jordan pairs over a ring ®=1/6. For special Jordan
algebras this assertion was proved by Slin'ko (see [12]). Theorem 3 also answers Question
No. 128 of [5].

2. THE RADICAL OF A JORDAN PI-ALGEBRA

Let Ass <X> denote the free associative ¢-algebra on the set of generators X. An element
flzy, ..., z) = Ass(X) is called admissible if at least one of the coefficients of the terms of
highest degree of the polynomial £(x;,...,x;) is unity. An element f(x) of the free Jordan
algebra FI<X> is called essentfal if the image of f(x) under the natural homomorphism of the
algebra FI<X> into the algebra 5J<X>» is admissible.

Suppose J is a Jordan ¢-algebra. We will say that J satisfies an essential polynomial
identity if there exists an essential element flz) & FI(X> such that fla, ... la,}) =0 Ffor all
2, .., an<J. In this case, for brevity, we will also call J a PI-algebra.

In this section we will prove that the nil-radical of a Jordan PI-algebra coincides with
the McCrimmon radical. It will follow from this fact and Theorem 3 that the nil-radical of a
Jordan PI-algebra is locally nilpotent,

We define by transfinite induction an ascending chain of ideals: W,(J) =Z{7), M () =
ﬂU Wp(/} if o is a limit ordinal, and D(J)/M._ ()= Z(J/M_,(J)) otherwise. It is known that
<o

MT)= U B (S} is the McCrimmon radical of J.
[+

The following lemma will be used three times in different situations, s0 we prove it in
the necessary generality. ¥ '

LEMMA 15. Suppose a Jordan algebra.J; is embedded in a Jordan algebra Jy in the set-
theoretic sense and Ulz):L;=y—~{zyz}, i = 1, 2, is the square multiplication operator in J;
and J;, respectively. Suppose also that I is an ideal of J;, that ‘wy w*e M) are opera- 7
tors such that Jw*=J,;, Jw=MJ) - ; and for each a=J; we have Uy{aw) = w*U;{(a)w. Finally,
suppose W/ =MMJ/I) is the McCrimmon radical of the algebra J;/I. Then Dw=MJ,).

Proof. We have M= U W, where Ty =1, Thy/TW =Z(J/Th). We will prove by transfinite

>y ‘
induction that E_Raw-E'ﬂR(_Jg')_ » For a = 0 this follows from the hypothesis. Everything is also
clear for limit ordinals. Assume that WT“/WZG_.=Z(I,/%-:) and "M, w=M(J,) . Suppose JjU;
{e) =M, ,. Then !
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LU aw) = Jw* U la)hw = LU lahe = P = TUJ,).

Thus, awESR(J,). . Since the algebra M, is generated as a ¢-module by absolute zero-divi-
sors of J; modulo My_,, it follows that M =M{) . Consequently, Mw=MUJ) . The lemma
is proved.

COROLLARY. ‘Suppase K<,.] is an inner ideal of J. ‘Then THKII{K)=R{I)

Proof. We use Lemma 15 with J; =K, Jp =J, T =0, W=Wk= U(k), where k & K. By
Lemma 15, MUKIUk) =IJ). )

Suppose J is a special Jordan algebra and A is its associative enveloping algebra. By
a weak identity of the pair (J, A) we mean a nonzero element f(x,,...,%n)} of the free asso-
ciative algebra such that f(ai,...,agp) = 0 for all a,..,a, =/l

Let N(J} denote the nil—radiﬁaﬁ of the algebra J.

LEMMA 16. Suppose J is a special Jordan algebra and A its associative enveloping alge-
bra. Assume that the pair (J, A) satisfies a weak identity of degree n. Then for any ele-
ment b = J and any natural number m > 40, the equality b®™ = § implies -b™*s ML

Proof. We will prove the lemma by induction on n. TFor n = 1 there is nothing to prove.
Assume there exists an associative multilinear polynomial

flE, . oza)=12, ... 2.+ gl CoTe) - - - Tamy = Ly (g, - <2 ) + 1-;2 zifi {2y, Ty e, 2)
g ‘ :

such that fla;,...,a,) = 0 for any elements @, ...,a,=J . Suppose b=/, b"=0, m>47. Con-
sider the inner ideal K = b“Jb" + ¢b" and its associtive enveloping algebra Ass <K> < A. Tor
any elements e, ce=f ky ..., k., =K we have 0=>b"*f(B'ca-t ach®, ku, ..., k) =b""'act'fi(ky ..., k).
It is easy to see that P ={z < Ass (K)Ib'f‘“?ﬁ;‘:’:=0} is a two-sided ideal of Ass<K>. Indeed,
suppose x = P. Then for any elements &'ch*=b'/' and vy, zn'=ff we have
, bretyabt et o= b yzb® 4 b‘z"ij)cb‘x= 0.

Analogously, b™ "yzb"*+b%x = 0. Let @:Ass<(K)—+ Ass{K)/P be the natural homomorphism. By
what was proved above, for any elements A¥+... kfe=K"® we have £ (k% ...,k8)=0. Let m = m/4

if m is divisible by 4, and m; = [m/4] + 1 otherwise. Then ((b“)"’)m1 =0 and m; > 4%7), By the
induction assumption, ((b‘*)"’)mr"l =(b‘f”‘“f”)“’eﬂ)_l_(l(‘”). Suppose I, ‘yET are arbitrary. In Lem—

ma 15 put J,=K, JLi=J I=KNP, W=UGWHIUGUE""), W*=U{E"- 0y z)U®B") . Then, by
Lemma 15, 0™ U YU @) XU @) U™ =" U (@) U @) U (3" %) € M(J). Linearizing with respect

to %, we obtain bmlhBR(Ji)U(y)U(b"',_“’)E'éDI(J').- It is easy to see thatédm — 8 < m+ 4 —8 =

m— 4. Put ="M en =ty U™ ) M) . Since y was chosen arbitrarily, it

follows that ¢ ™= MJ). The lemma is proved.
LEMMA 17. A Jordan nil-algebra of bounded degree is radical in the sense of McCrimmon.

Proof. Let Var {p, q) denote the variety of Jordan algebras satisfying the identity %P =
0 and the complete linearization of the identity x9 = 0. Assume that each algebra of the
variety Var (p, q), where p + g < n, is radical in the sense of McCrimmon.

1) Suppose J is a special Jordan algebra of Var (p, q), where p + ¢ = n, and A is its as-
sociative enveloping algebra. Consider the inner ideal K = bJb+ ¢b, its associative en-
veloping algebra Ass <K> < A, and the ideal P = {z= Asg(X>|bP~"/jz=10). We showed above (see
the proof of Lemma 16) that the pair (K + P/P, Ass <K>/P) satisfies the weak identity . 3 .

-e=Btp-).
Toq) - - - Togp—1) =0, i.e., K + P/P = Var (p, g='1).. By the induction assumption, K+ P/P=WEK+
P/P). Suppose z=J. In Lemma 15 put Jy=K, i=J, [=KNP, W=TUBUtz)UH"), W¥=T{br-)iX!
U(x)U(b). Then, by Lemma 15, JOBW =JUW) Uz)U(b™) = MJY.: Thus, JU(zU(b>1))=MJ) and
b~ e M) . We have proved that J/WS)eVar(p—~1, ¢). Therefore, by the induction assumption,
J == TUJT). '

We now need some results of [13]. Suppose K4,.J is an inner ideal of J. Consider the
set K, —={k=K|k-J=K) 1t was shown in [13] that K; is an ideal of K, the quotient algebra
K/K; is special, and KU )= K,.




2) Suppose J is an arbitrary algebra of var (p, q). Assume ) =0. Suppose belt.
Consider the inner ideal K = JU(b) and in it Kp. Let 1 = k}. 1In view of part-1), the special
Jordan algebra K/K, is radical in the sense of McCrimmon. It Follows easily that the algebra

K/I is also radical in the sense of McCrimmon. Suppose X e J. Put W=U®U (UG,

W —

U(pr-I()UB) .  Then ITW=0, IW*=K |, and, by Lemma 15, EwWem{J}=0. Thus, U(®) X Ul U(br—Y)=
0, hence b*'eM{J)=0. Consequently, JeVarlp—1,q) . Contradiction. We have shown that any
algebra of Var (p, q) is radical in the sense of McCrimmon. It remains to observe that Var (p,

R ) consists of precisely the nil-algebras of degree at most p. The lemma is proved.

i THEOREM 4. Suppose J is a Jordan algebra with polynomial idemtity. Then N{J} =D},

Proof. Assume that J satisfies a polynomial identity of degree at most n and mJy=0.

1f for each b = N{J) we have L 0, then, by Lemma 17, N()) =@} =0, Suppose NU) =1,
b= (), b 70, m>4", The rest of the argument is a repetition of the end of the proof of
Lemma 17. Consider the inner ideal K = JU(b) + b and in it Ky and I = k3. By Lemma 16,

v+ K, e MK/K,) , so -t o+ K, = QU K/K,). Thus, pm=*+ [ = MA/I). Suppose ze&f. Put W =

OB Uz T (B™Y), W* = U ()UB). By Lemma 15, §"7'W = g2 (b) Ulz) U= = b= Uz)U (o) e

MJ)=0. It follows easily that bm'e@)=0. Contradiction. The theorem is proved.

3, ALGEBRAIC JORDAN ALGEBRAS

1. In this part we will assume that is a field and prove that any algebraic Jordan

PI-algebra over ¢ is Locally finite-dimensional.

- If R is an associative ¢—algebra with imvolution *:R + R, we denote by H(R, »})=le=
Rla* —a) the Jordan algebra of fixed elements with respect to the operation a°b = Yalab +

ba).

LEMMA 18. Suppose R is a simple associative ¢-algebra with involution *:R - R. Assume

that the Jordan algebra H(R, #) is algebraic and satisfies a polynomial identity. Then
locally finite-dimensional over ¢.

R is

Proof. By a theorem of Amitsur [14], the algebra R satisfies a polynomial identity. Let
7 denote the center of R. By a theorem of Kaplansky (see [15]), dimzR < ¢. The involution *
induces on Z an automorphism of order at most 2. Let Zo={z=Z|z*'=z} . The field Zy is lo-
mn

.. . . . )
cally finite-dimensional over ¢. Let e7,...,8n be a basis of the space R over Zg eie,-f;*E Vii€h 5
k=1
n )
3 : , . . i .
vii€ Z,. Consider arbitrary elements i ... . =R, ' np= D opatq, Opr = Z, . Comsider also the
subfield - et

F e @ (4 opg (1< o, g <Ky A < pK ), dimo, F < o0

Then the dimension over ¢ of the subalgebra generated by ai,...,ap is at most n-dimg F.
lemma is proved.

An algebra is called prime if, for any ideals K and L, K=L = 0 implies K = 0 or L

LEMMA 19. Suppose a prime special Jordan algebra J contains n pairwise orthogonal
potentses, ...., 8. Then J does not satisfy any polynomial identity of degree less than

Proof. Comsider the associative enveloping algebra R of the Jordan algebra J. We
assume without loss of generality that each nonzero ideal of R has nonzero. intersection

The

= 0.
idem—
2n.

may
with

J. Then the algebra R is prime. Assume that J satisfies a polynomial identity of degree

less than 2n. Then there exists a nonzero multilinear associative polynomial

f(ﬂ'.'l, ...,Id}mﬂfl eos Tg+ glaﬂzﬂ(l)"'g;(d)ld<2n.
o ' a

are such that eJp = 0, then eRp = 0. This will lead immediately to a contradiction.

xk+1p = O,
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such that @y ... =0 for any ay, ..., a=7] . Put ay=~&dué, fr = 80:8: T €200y, Qs =7 Exlnte.

@, = €055 1 €448, 4, . - ., WhETE ay=J. Since d £ Zn - 1, such a choice of elements is possible.
We have .ef(a,, ..., ai) =eial...(i.,'=E,1a,,ela,,ezane=...=0 . Since the elements ajj were chosen arbi-
trarily, e1JeyJezJez... = 0. We will show that if an idempotent e & J and an element p R

We will prove by induction on k that exi ...Xkp = 0 for any elements I, ..., L =J . For
k = 1 this is guaranteed by our hypothesis. Also, eTi. . Tppip = elez, @y T T, T18) L5 - TpeiP — €T T
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Since the set J generates the algebra R, it follows that eRp = 0. The lemma is proved.

LEMMA 20, Suppose J 'is a prime Jordan alpebra and e is a proper idempotent im J. Then
the algebra {eJe} is special. .

Proof. Let K = {eJe} and consider in the algebra K the ideal K,={keKlk-J=K). The
algebra J admits a Peirce decomposition

" J={ele} + JR(e)RU — &) + U — ).
For any z=J,ea= K, we have

~aR(ze ({—e))=(a=z) = (L—e)={ele} - (1 —e) =0.

Thus, K;R(JR(e)R(1 — e)) = 0. Alsc, aRUzli—e)z))={acz, 1~¢ 2)—{z, acll—e) 2=0
{eJ(i —e)P=iU(l~e)+ (1 —e}UW). Thus, JU(1—e)+{eJ(1—e)}* = Ann,K;. By Lemma 1.3 of [6].
Anng K, is an ideal of J. Assume that K; = 0. Then, since J is prime, AnnyK; = 0. There-
fore, J = Ju(e) + eJ{(1 —e} and eJ{(1 —e) is a trivial ideal of J. Again, since J is
prime, we have {eJ(1 — e)} = 0, J = JU(e}. This contradicts the fact that the idempotent e
is proper. Thus, K; = 4. The lemma is proved.

Let I{a) denote the ideal generated by the element esJ.

LEMMA 21. Suppose e is an idempotent of the Jordan algebra J. Then I{e) is generated
as a ¢-module by the elements of the form eR(x)R(y), where z, y=/.

Proof. For any derivatiom D of the algebra J we have eD =D =2e-(eD)=eRUJ)., Suppose
z, y, ze=J. Then, in view of identity (4),

eR()R(y)R(z) = elInder (N)RU) + RIAD) = eRDIRD).

The lemma is proved.

LEMMA 22. Suppose e, f are orthogonal idempotents of the Jordan algebra J such that
Ju(e, £) = 0. Then I(f) = Ann, {I{e)).

Proof, We have eRWIR(f)={efill +1{eJf)=0. We will prove that eR(IR(IIR{f) = O for any
elements z, y=J. 1In view of identity (3), R(f) = R{f?) = 3IR*(f) — R? _(f). Also, for any
z, y=J we have eR(z)R(yRNR() =e(~R{(zNy) —RHRHR(Z) +R(zy}R{f) + Rz )R{y) + R{yHR)R(f) = 0.

Therefore, eR(_T)R{T)H(f)=D=I(e)1i'(f)=0. By Lemma 1.5, fe= Ann (J(e)), and, by Lemma 1.3 (see
[61), I{) = Ann (I{e)) . The lemma is proved.

Let Jac (J) denote the Jacobson radical of J; by a semisimple algebrg we mean a semi-
simple algebra in the sense of the Jacobson radical.

LEMMA 23. Suppose J is a prime semisimple Jordan algebra that is alpebraic over ¢ and
e 1s an idempotent in J. Then the algebra JU(e) is prime.

Proof. Assume, on the contrary, that the algebra JU{e) contains nonzero ideals X, L
such that KoL = U, McCrimmon [16] proved that Jac {eJe} = {e Jac (J)el. Therefore, the alge-
bra {eJe} is semisimple. Thus, the algebraic Jordan algebras K and L are not nil-algebras,
hence they contain idempotents f and g, respectively, KX =f, . L=g . Then f and g are orthogo-
nal and JU(f, g) = JU(e)U(f, g) = 0. By Lemma 22, I(f) = I{(g) = 0. This contradicts the fact
that J is prime. The lemma is proved. ’

LEMMA 24, A prime algebraic semisimple Jordan PI-algebra containsg ne infinite family of
pairwise orthogonal idempotents.

Proof. Suppose an algebra J satisfies the conditions of the lemma and an identity of
degree d. Then J does not contain [d/2] + 2 pairwise orthogonal idempotents. Indeed, suppose
[d/2]+1
the idempotents ej,...,e[d/z]+1 are pairwise orthogonal and 8= P g is a proper idempo-
tent., By Lemmas 20 and 23, JU{e)} is a prime special Jordan algebra containing fd/2] + 1 pair-
wise orthogonal idempotents. This contradicts Lemma 19. The lemma is proved.

LEMMA 25. A prime algebraic semisimple Jordan ¢-algebra satisfying a polynomial identity
is locally finite-dimensional.

Proof. According to McCrimmon [17], a Jordan algebra J is called an I-algebra if for
each nonnilpotent element aeJ the inner ideal JU(a) contains an idempotent. Obvieusly, an
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algebraic Jordan algebra is an I-algebra. McCrimmon proved that a semisimple Jordan I-algebra
containing no infinite family of pairwise orthogonal idempotents has a capacity and therefore
by Jacobson's capacity theorem [18], is isomorphic to a direct sum J,®...8J,, where each
algebra Jj is isomorphic to one of the fellowing:

1) the algebra of a symmetric bilinear form over some extension of the éround field;

2) the algebra R(*), where R is az simple Artinian ¢-algebra;

3) the algebra H(R, *), where R is a simple Artinian ¢-algebra and #:R + R an involution;
4) an exceptional simple Jordan algebra that is 27-dimensional over its center.

It follows from the structure theory of associative algebras [15] that algebras Ji of
types 1), 2), and 4) are locally finite-dimensional. It follows from Lemma 18 that algebras
Ji of type 3) are also locally finite-dimensional. Thus, an algebra J satisfying the condi-
tions of the lemma is locally finite-dimensional. The lemma is proved.

THEOREM 5. Suppose ¢ is a field. An algebraic Jordan 9-algebra satisfying a polynomial
identity is locally finite-~dimensional.

Proof. 1In [19] Zhevlakov and Shestakov proved (in a more general situation, which will
be considered below) that in any Jordan algebra J the sum of all locally finite-dimensional
ideals S{J) is itself a locally Finite-dimensional ideal and that the quotient J/5(J) contains
no locally finite-dimensional ideals. In the same paper it was shown that the algebra J/S(J)
can be approximated by prime Jordan algebras containing no lecally finite-dimensional ideals.
Suppose an algebra J satisfies the conditions of the theorem. We will show that §(3) = J.

If this is nmot so, there exists a prime Jordan algebra J satisfying the conditions of the
theorem and containing no leocally finite-dimensional ideal. By Theorem 3, J is nondegenerate,
In view of the fact that J is algebraic and Theorem 4, Jac(J) =N()=%{J)=0. Thus, J is
semisimple. By Lemma 25, J is locally finite-dimensional. Contradiction. The theorem is
proved.

2. Local finiteness in the sense of A. I. Shirshov., Suppose ¢ is a commtative asso—
ciative ring with 7, T is an ideal of ¢, and A is a power—associative algebra over §. An
element a4 1is called algebraic over I' if there exist elements z =T and a natural num—

o m—1 .
ber m such that a" = Xz’ . A finitely generated ¢-algebra A is called finite over I' (in
i=
the sense of Shirshov) if there exist elements a;,...,ak of A such that A" = Ta/+. . .+ Tg

for some natural number m. If T' = O, then an algebra that is finite over T is nilpotent,

If T = ¢, then an algebra is finite over T if and only if it is finitely generated as a ¢-
module. If in a ¢-algebra B each finitely generated subalgebra is finite over T, we say that
B is loecally finite over I' (in the sense of Shirshov).

An ideal Zp{Ad) of A that is locally finite over T is called the loecally finite over T
radical of 4 if it contains all two-sided ideals of A that are locally finite aver I' and if
the quotient alpebra A/%r(A) contains no proper two-sided ideals that are locally finite
over T.

The concepts of local finiteness in the sense of Shirshov and the locally finite over T
radical were studied in detail by Zhevlakov and Shestakov [19], where very broad sufficient condi-
tions for the existence of a locally finite radical were also found. We will need the follow-
ing theorem, due to Shestakov:

THEOREM (Shestakov [19]). Suppose a variety of #$-~algebras M contains a locally.finite
over I' radical Zr. Then any semisimple algebra of .M , in the"sense of the radical @, , can
be approximated -by prime semisimple algebras in the sense of the radical Zr.

Let us also recall some definitions. Suppose A is an algebra over a ring @. Let R{a)
and L{z) denote the operators of right and left multiplication by a, respectively, and let
M(A) .denote the subalgebra generated by the set {R(a), I{a)la= A} in the associative algebra
Endg (A). The centralizer of M(A) in Endg (A) is called the centroid of A, i.e., Cent{d)={a=
Ende (AHap=oa for all g=M(4)}. . It is known that if the algebra A is prime, then Cent (A)
is a commtative domain and A iIs a faithful Cent (A)-module.

We will say that an algebra A over a field F Ifes in a vartety of ¢-algebras M (A= M)
if A= and F=Cent(d). We will need the Following result of Rowen:
|
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THEOREM (Rowen [20]). If a prime #-algebra A satisfies all of the multilinear identities

of a finite—-dimensional algebra over a field, then A can be embedded in a prime d-algebra B
that is a finitely generated Cent (B)-module, where B is generated as a Cent (B)-module by
the set A. .

In this part we will prove:

THEOREM 6. Suppose a homogeneous variety of power-associative ¢-algebras M satisfies
the following conditions: '

1) For any ideal I'dd there exists in MM a locally finite over T radical £

2) Suppose F is a field. An algebraic F-algebra Ap of Mt is locally finite-dimensional
over F.

3) An algebra Ar=IM that is finite-dimensicnal over F and possesses an F-basis con-
sisting of nilpotent elements is nilpotent. :

Then any l-algebraic ¢-algebra of T is locally finite over T.

It follows from the results of Zhevlakov and Shestakov [19] and of Shestakov [21] that
any variety of Jordan ¢-algebras satisfies conditions 1) and 3}, In view of Theorem 5 of the
present paper, any variety of Jordan algebras satisfying an essential polynomial identity
satisfies condition 2). Thus, Theorems 5 and 6 imply:

THEOREM 7. Suppose J is a Jordan algebra over a commutative associative ring b= 1/2
and satisfies an essential polynomial identity, and suppose [' is an ideal of #. Suppose also
that J is algebraic over I'. Then J is locally finite over T.

We turn to the proof of Theorem 6.

LEMMA 26. Suppose a ¢-algebra A &M satisfies all of the multilinear identities of
some finite-dimensional algebra over a field and is generated as a $-module by a family of
nilpotent elements. Then A is locally nilpotent.

Proof. In view of condition 1}, there exists in the variety M a locally nilpotent
radical 2. If A+ 2(4), then, by Shestakov's theorem, the quotient algebra A/P(A) can
be approximated by prime algebras containing no locally nilpotent ideals. TIf A is prime,
then, by Rowen's theorem, A can be embedded in a prime algebra B that is finite-dimensional
over its centroid and is the Cent (B)-linear span of the set A. Consider the central closure
B = Cent (B)~'Band the field of fractions K = Cent (B)~*' Cent (B). The algebra B possesses a
K-basis consisting of nilpotent elements. By condition 3), B is nilpotent. This contradicts
our assumption. The lemma is proved.

Proof of Theorem 6. Suppose the algebra A is algebraic over an ideal I'd® . We will

prove that 4 =%#.(4) . If this is not so, then, in view of Shestakov's theorem, we may as-
sume_without loss of generality that A is finitely generated and prime. Let Ann—={a=®lad=
0}, ¥ = ¢/Ann. Then ¢ is a commutative domain and A is a faithful ¢-module. Consider the

central localization #~'A. It is easy to see that ¢ A €Tt and ¢~ 'A is a finitely gener-
ated, algebraic algebra over the field of fractions 2~%%. By condition 2), the algebra 1A
is finite-dimensional over ©® '®. Thus, A satisfies all of the identities of the finite-
dimensional algebra ¢ 'A. Let T denote the subvariety of M consisting of the algebras
satisfying all of the multilinear identities of the algebra 3~1A. The variety T, is homo-

geneous. We fix some set of generators aj,...,an of A and consider in T a free ¢-algebra

F, on the generators X, ..., Xg. For any word Wiz, ..., T FM, we choose a natural num—
. n(wj—1

ber n{w) such that ‘w(a, ..., &= 2 (g, r..,a4)" . Consider the ideal P of FI gen-

A=1

erated by the set {w(xl,...,xn)n(w)}, where w ranges over the set of all words in xi1,...,%pn,

and let — : PO, —~ FM/P be the natural homomorphism. The algebra FIL/P is generated as a

¢-module by the system {@(z, ..., z,)}, which consists of nilpotent elements.

By Lemma 26, the algebra FI/P is nilpotent. Assume (FQRJP)'=50. SUPPOSE W1, .-+s,W
m

is the set of words im Xj,...,%Xp in F®M, of degree less than s. We will show that A'c 3Ty
S A=t

(a;, --.,an}. Suppose v is a word in Xi,...,xp of degree at least s. Then vlz, “.,z;)F§P y l.e.,




v::}ﬂufPW)T,, where the wj are words in %1,...,%xn and the T{ are operators in M{FI) . We

) n{wi)-1 :
have w(m;, ..., m5) e? ( kE w’f (ayy . - .,an)) Tifay, ..., aa)
The degree of any word occurring in w%(x;,...,xn)Ti(xl,...,xn), k < n{wj), is less than
the degree of v(x;,...,xn). 1If the degree of some word v, occurring in w?(xl,...,xn)Ti
. m
(%x1,.-.,%p) is greater than s — 1, then, by the induction assumption, Vilay ... a2 Ty

(21, .. .,a5)., The theorem is proved. =1
The author is sincerely grateful to the late Corresponding Member A. I. Shirshov and
also to his adviser, Professor L. A. Bokut', under whose direction this paper was written.
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