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. C6opHHK Math. USSR Sbornik
TOM 121(163) (1983), ΒΒΙΠ. 4 Vol. 49(1984), No. 2

LIE ALGEBRAS WITH AN ALGEBRAIC
ADJOINT REPRESENTATION

UDC 519.48

E. I. ZEL'MANOV

ABSTRACT. In this paper it is proved that a Lie algebra over a field of characteristic
0 with an algebraic adjoint representation is locally finite dimensional, provided the
algebra satisfies a polynomial identity. In particular, a Lie algebra (over a field of
characteristic 0) whose adjoint representation is algebraic of bounded degree is locally
finite dimensional.

Bibliography: 22 titles.

Let £ be a Lie algebra over a field of characteristic ρ > 0. Given an element a e £ we
denote by a' the commutation operator

a!: χ —>• [χ,α], χ 6 £ .

In 1958 Kostrikin [1] showed that a Lie algebra satisfying the identity x'n = 0 with
η < ρ, where ρ > 0, is locally nilpotent. This yielded the solution of the restricted
Burnside problem in the case of prime exponent.

A question of interest related to this result is as follows. What are the conditions
under which a Lie algebra with an algebraic adjoint representation must be locally finite-
dimensional? We say that the adjoint representation of a Lie algebra £ is algebraic if
each of the operators a', a £ £, is annihilated by a polynomial fa(x). This question is
Kurosh's problem for Lie algebras (cf. [2]). An example due to Golod [3] shows that, in
general, the answer is no.

Let f(xi, . . . , £ „ ) be a nonzero element of a free Lie algebra. We say that a Lie algebra
£ satisfies an identity / — 0 if for any o i , . . . , an G £ we have / ( α ϊ , . . . . an) = 0. In this
case we also say that £ satisfies a polynomial identity or that £ is a P/-algebra.

Our main result is the following.

THEOREM 1. Any Lie algebra over a field of characteristic zero with an algebraic
adjoint representation is locally finite-dimensional provided it satisfies a polynomial iden-
tity.

An immediate corollary is

THEOREM 2. Any Lie algebra over a field of characteristic zero with an algebraic
adjoint representation of bounded degree is locally finite-dimensional.

Theorem 2 answers in positive a question of Ε. Ν. Kuz'min in [4].
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538 Ε. Ι. ZEL'MANOV

We say that an element a s £ is an Engel element if a' is a nilpotent operator. In this
case the nilpotence index of a' is called the Engel index of a. We say that a Lie algebra
is Engel if each element of this algebra is Engel.

By [xi,..., xn] = X1X2 · • · x'n we denote the right-normed commutator of the elements
Xi, 1 < i < n.

Throughout the paper we assume that the base field Φ is of characteristic zero.

§1. Engel Lie algebras satisfying a polynomial identity

In the proof of Theorem 1 the crucial role is played by some previously proved results
on Jordan pairs (see references in [5] and [6]).

1. A pair of Φ-spaces V+,V~ with trilinear compositions

V+ x V~ χ V+ 9 {x+,y-,z+) -> {x+,y-,z+} e V + ,

V~ xV+ xV~ 3{x~,y+,z~) -^{x-,y+,z-}eV~

is referred to as a Jordan pair if the following relations hold identically:

{x°,y~",{x\z~\χσ}} = Κ, {y-°,χσ,ζ~σ},χσ},

{{x\y-\x°},y-\z°} = {x\{y-\x%y-°},z°},

{{x*,y-",x°}, z-°, {x\y~°X}} = {x\ {y~\ {χ^ζ~σ,χσ}, y~"}, χσ}.

EXAMPLE. Let R be an associative algebra. Put V+ = V~ = R and {xCT,y"CT, z"} =
xay-az" + zay~ryx" £ V7, σ = ±. Then (V+,V~) becomes a Jordan pair.

The notions of homomorphism, ideal, quotient-pair, and subpair are defined in a
natural way (cf. [5]).

In studying Lie algebras the Jordan algebras arise in the following way.
A subspace β of a Lie algebra L is called an inner ideal (see [7]) if [B,B] = 0 and

[C,B,B] C B. Given inner ideals B,C < £., the pair of subspaces B, C endowed with
compositions

Β χ C x Β 3 (buc, 62) -> {61, c, 62} = -[c, 61,62] G B,

CxBxC3 (ci,6,c2) ->{ci,6,c 2} = -[b,clic2\ eC

is a Jordan pair.

LEMMA 1 (BENKART [7]). Let a e L be such that a'3 - 0. Then Φα + [ϋ,α,α] is
an inner ideal in £,.

The following fundamental lemma, due to A. I. Kostrikin, supplies us with sufficiently
many Engel elements of index at most 3.

LEMMA 2 (KOSTRIKIN [1]). Let a € L be an Engel element of index at most m,
4 < m, and let b G L- Then ba'm~1 is an Engel element of index at most m—\.

COROLLARY. If L contains a nonzero Engel element then L contains a nonzero Engel
element of index at most 3.

Following Kostrikin [8], we say that an element a 6 L is the crust of a thin sandwich
if [L,a, a] = 0. A Lie algebra without nonzero envelopes of thin sandwiches is called
strongly nondegenerate.

The least ideal of Ζ whose associated quotient algebra is strongly nondegenerate is
called the strongly degenerate radical of £ (the Kostrikin radical). We denote it by K(£).
It is shown in [9] that K{Z) is a radical in the sense of Amitsur and Kurosh.

Put Ko(£) = 0 and let Ki(f.) be an ideal generated by all crusts of thin sandwiches
in £.. Using transfinite induction we define a nondecreasing chain of ideals Ka{£.) by
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putting Ka{£) = [}0<αΚβ{Ζ) for limit a and K
otherwise. It is obvious that K{£) = \JaKa(£).

We define similar concepts for Jordan algebras. An element ασ ε V7, σ = ±, of a
Jordan pair V = (V+,V~) is called an absolute zero divisor (see [5]) if {ασ,ν~σ,ασ} — 0.
A Jordan pair is nondegenerate if it has no nonzero absolute zero divisors. The least ideal
of the pair V — (V+,V~) such that the corresponding quotient pair is nondegenerate is
called the McCrimmon radical of V and is denoted by M(V) = (M(V) + , M(V)~).

Let Mo{V) = 0 and let Mi(V) denote the ideal generated by all absolute zero divisors
of V. It is known [5] that Μχ(ν)σ is a subspace spanned by all zero divisors of V
which are in V. Put Ma{V) = Όβ<α

Μβ(ν) f o r l i m i t a a n d Ma(V)/Ma^{V) =
M^V/M^iV)) for nonlimit a. then M{V) = \Ja MQ(V).

LEMMA 3. Let V+ and V~ be inner ideals of a Lie algebra £ and V = (V+, V~)
their associated Jordan pair. Then [Μ(ν)σ,ν~σ,ν~σ] C K(£).

PROOF. We restrict ourselves to the case K{£) = 0 and show that then [M(V) + ,
V~~,V~] — 0. Let a denote the least ordinal with \Ma(V) + ,V~,V~] φ 0, and choose
b G Ma(V+) such that [6, V~, V~] φ 0. From the above b can be represented in the form
b = Σ{ fr»> where 6j G V+ and [V~, bi, bi] C Ma-i{V)+. Thus, with no loss of generality,
we may take [V~,b,b] C Ma-i(V) + .

Now let ν £ V~. It is obvious that v'3 = 0 and v'b'v'2 = v'2b'v'. Hence

[b,v,v}'2=vl2b'2v'2-bv'2b'v'bfv'.

We have
Lv'2b'2v'2 C \y-,b,b,V-,V~] C [MQ_i(V) + ,^-,V-] = 0.

Now
b'v'b' = -\([v,b,b}' -v'b'2 -b'2v').

Therefore

£v'2b'v'b'v' = £v'2[v,b,b\'v' c \y-,\y-,b,b],v-] ς [Μα_!(7)+,ν-,^-] = 0.

This proves that [b, V~,V~] C fC(£) = 0, a contradiction. The proof is complete.
Given elements a+ e F + and a^ G V~ of a Jordan pair V = (V+,V~), we con-

sider the operator 6(a+,a~) € End<i>(V+ φ Γ ) defined by δ(α+,α~): V" 9 χσ ->
{χσ, α~σ, ασ} G V7, σ = ±. If (V+, V~) is a Jordan pair formed by a pair of inner ideals
of a Lie algebra £, then δ(α+,α~) is induced by σ[α~,α+]'.

A Jordan pair is called a nil pair if for any a+ e F+ and a~ ε F ^ the operator
5(α+,α~) is nilpotent. The sum of all nil ideals of a pair V is a nil ideal. We call this
the nil radical of V, and denote it by Nil(V).

We say that a Jordan pair V = (V+,V~) satisfies a polynomial identity if there exists
a nonzero element f(xi,...,xn) of a free associative algebra such t h a t for arbitrary

O j " , . . . , α + ε V+ and a^,... , o ~ ε V~ we have

THEOREM JP1 (see [6] or [10]). Let V be a Jordan pair satisfying a polynomial iden-
tity. Then Nil(F) = M(V).

LEMMA 4. Let Ζ be a Lie algebra and I an ideal in £ Then Κ (I) C K{£).

PROOF. It is sufficient to notice that, given an ο in 7 with [7, a, a] = 0, for any b ε £
we have [b, a, a}'2 = 0.

REMARK. It will be shown in §2 that Κ (I) = K(£) Π 7.
Now we are in a position to prove the following.
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PROPOSITION I . Any Engel Pi-Lie algebra is locally nilpotent.

PROOF. We assume that Ζ is an Engel ΡI-Lie algebra which is not locally nilpotent.
By [11], every Engel Lie algebra contains a maximal locally nilpotent ideal, and the
quotient algebra over this ideal has no nonzero locally nilpotent ideals. Hence, without
loss of generality, we may assume that Ζ has no nonzero locally nilpotent ideals. Grishkov
[12] has shown that, for a Lie algebra Ζ over a field of characteristic zero, the ideal K\(Z)
is locally nilpotent. Therefore K(Z) = 0.

Now let a, b e Ζ be Engel elements of index at most 3. Then V+ — Φα + [Ζ, a, a]
and V~ — Φ6 + [Z,b,b] are inner ideals of Z- Now V — {V+,V~) is a Jordan nil pair
satisfying a polynomial identity. By Theorem JP1 we have V = M(V). Then from
Lemma 3 we deduce that

[a,b,b]C [M(V) + ,V-,V-]CK{£)=0.

Let / denote the subspace of Ζ spanned by all Engel elements of index at most 3.
Since Ζ is Engel, every automorphism-invariant subspace in Ζ is an ideal. Hence I <\ Z.
By Kostrikin's lemma Ζ has nonzero Engel elements of index at most 3; that is, Ι φ 0.
By Lemma 4, Κ (I) = 0. But we have shown above that for b G Ζ with b'3 = 0 one has
[/, b, b] = 0, a contradiction. Now the proof is complete.

2. In this subsection we prove Theorem 1 for a Lie algebra Ζ satisfying all identity
relations of a finite-dimensional algebra. For this we will require a variant of Engel's
theorem in Jacobson's form (see [13]).

LEMMA 5. Let A be an associative Φ-algebra of dimension m which is generated by
{ai 11 < i < k}. Suppose each commutator in {ai} of degree at most m2m~2 is nilpotent.
Then A is a nilpotent algebra.

PROOF. We construct, by induction, an increasing chain of nilpotent subalgebras in
A. Set AQ for the subalgebra generated by a\. Suppose we have constructed an Ai in such
a way that Ai is generated by a set Pi of commutators in {ai j 1 < i < k} of degree at most

m2(»-i)^ if At = A, then we set Ai+\ = A. Now suppose At φ A. Then dim $ Ai < m—l.
The subalgebra in Εηάφ (A) generated by all right and left multiplications by elements of
Ai has dimension at most (m — l)2 over Φ and is nilpotent of index at most (m — I ) 2 + 1.
Since Ai φ A, we can find a generator a,j outside Ai. For any arbitrary set of (m — I ) 2 + 1
commutators pi, • • •, P(m~i)2+i m Pi we have [ay, ρχ,... ,/9(m__i)2 + 1] = 0. Hence there
exist commutators pdx,..., pJr G Pi, 0 < r < (m — I ) 2 , such that

w = \a3' Pji' · · · > Pjr] Φ Αι, Κ Pi] ^ Af

The degree of w is at most 1 + rrn?^1^ < 1 + (m — l)2?™2^"1) < m2%. Besides,

i C At + AiW. Now choose for Ai+X the subalgebra generated by Ai and w. The mth
step of the construction gives Am — A, proving the lemma.

LEMMA 6. Let A be an associative Φ-algebra satisfying all the identities of some
m-dimensional Φ-algebra. Suppose A is generated by a set {ai j 1 < i < k}, and let each
commutator in {at} of degree at most m?m~2 be nilpotent. Then A is nilpotent.

PROOF. We assume that the lemma is false. Then, with no loss of generality, we may
assume that A is prime. By a theorem due to Markov [14] and Rowen [15], the center
Ζ (A) of a prime Pi-algebra A is nonzero and the ring of quotients Z(A)~1A is a simple
finite-dimensional algebra over the field of quotients Z(A)~1Z(A). The dimension of
Z(A)~XA over Z(A)~lZ{A) is at most m. Z(A)~1A is generated over Ζ {Α)'1 Ζ (A) by
{ai | 1 < i < k}. By Lemma 5, Z(A)~1A is nilpotent; but this was assumed false. The
proof is complete.
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COROLLARY. Let Ζ be a Lie algebra satisfying all the identities of some m-dimension-

al algebra. Suppose Ζ is generated by a set {at \ 1 < ι< k} and let each of the commu-

tators in {ai} of degree at most m 4 m ~A be Engel. Then Ζ is nilpotent.

PROOF. Let R{Z) be the multiplication algebra of Z\ that is, the subalgebra in
Εηάφ(£) generated by the operators of the form a', a £ Z- Then R{Z) satisfies all
the identities of some m2-dimensional algebra. R{Z) is generated by a\, 1 < i < k, and
each of the commutators in {a^} of degree at most ( m 2 ) 2 m ~~2 = m4m ~4 is nilpotent.
By Lemma 6, R(Z) is nilpotent; hence, so is Z-

LEMMA 7. Let Ζ be a Lie algebra satisfying all the identities of some m-dimensional
algebra A. Assume that Ζ is generated by a set {ai | 1 < i < k} and that for any
commutator a in {ai} of degree at most m 4 m ~~4 the operator a' is algebraic. Then Ζ is
a locally finite-dimensional algebra.

PROOF. Let Γ denote the ideal of identities of an m-dimensional algebra A and

Z{X) the free algebra in the variety determined by the identities of A, X — {xi 1 <

i < k} being the generating set. A mapping φ: x% —> ai, 1 < i < k, extends to a

homomorphism φ: Z(X) —> Z- We denote by Ρ the set of all commutators in {xt}

of degree at most mim ~ 4 . For each commutator ρ e Ρ we can find a polynomial

fp{x) = xn" + Σ ι < η ρ

 αΡ-ιχί s u c h t h a t ίρ{{Ρφ)') = 0. Let / denote the ideal of Z{X)

generated by [jpep Z(X)p'n"• It is obvious that / is homogeneous. Z{X)/1 is generated

by the elements Xi + 1, 1 < i < fc, every commutator in {li + l} of degree at most m4m ~4

being Engel. By the corollary to Lemma 6, Z(X)/I is nilpotent. Suppose Z(X)S C /.

We will show that, as a Φ-space, Ζ is generated by the commutators in {a;} of degree

less than s. Let b = [atl,..., als] be a commutator of degree s in {ai}. We know that

Xi1,..., Xi is in 7; that is,

P<3

where

vPueZ{X), peP, W'Pd £ R(Z(X))

We may choose vpj and W' • homogeneous in X. Obviously

s = deg(wp.j) + ηp deg(p)

Now

P M i , . . . ,ak).

pd V i<np J

The right-hand side is the linear combination of the commutators in {ai \ 1 < i < k} of
degree less than s. This proves the lemma.

§2. Radicals

1. Our next purpose is to prove that Kostrikin's radical is hereditary with respect to
subalgebras.

An element a £ Ζ is called strongly Engel if there exists a function g(a, Ζ,η), η > I,
of natural argument such that for any α ϊ , . . . , ak S Z: k < n, we have

α / 9 ( α , £ , η ) = [a,ai,...,ak}9{a'£'n) = 0 .

It is obvious tha t , given a strongly Engel element ο £ Ζ and any b £ Z, the commutator

[a, b] is strongly Engel. Indeed it is sufficient to set g([a,b), Z, n) = g(a, Ζ,η + 1).
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LEMMA 8. All elements in K\{Z) are strongly Engel.

PROOF. We consider a = Χ^[αί,αα 5 · · · ,a,imi] £ ifi(-C), the a,i being crusts of thin
sandwiches and a^ 6 Z- Let Z{X) denote the free Lie algebra freely generated by
X = {xo,Xi,Xij,yi \i,j > 1}, and let / be its ideal generated by []{[Ζ(Χ),χτ,Χι]- We
consider a natural homomorphism

Choose elements zk = J2i[xi,xll,... ,ximi>y1,... ,yk] € Κι{Ζ{Χ)), 0 < k < n. By the

above-mentioned result of Grishkov [12], K\{Z{X)) is a locally nilpotent ideal. Hence,
for a natural s, we have χ~ο,~ζ'ξ = 0, where 0 < k < n. Now setting g(a,£,n) — s
completes the proof.

LEMMA 9. Every strongly Engel element of Ζ is in K(£).

PROOF. Let a e Z\K(Z) be a strongly Engel element. Without loss of generality
we may assume that £ is a strongly nondegenerate algebra. By Kostrikin's lemma there
exist elements α ϊ , . . . , am G Ζ such that 0 ^ 6 = [α, ο ι , . . . , am) is an Engel element of
index at most 3. The element b is also strongly Engel. Let c G Ζ be any other Engel
element of index at most 3. We consider a Jordan pair

For any v+ 6 V+ and v~ G V" we have δ(υ+, v")9(b"C '2) = 0; that is, V is a nil pair of

bounded index. By Theorem JP1, V is radical in the sense of McCrimmon. By Lemma.

3,
[c,b,b]c[M(V)+,V-,V-]CK{L) = 0.

We want to show that [c, c i , . . . , cn,b,b] = 0 for any c\,... ,cn G Z-
We consider the infinite power series algebra Φ((χι,...,χη)) over Φ in the variables

Xi, 1 < i < n, and we set Ζ = Ζ ®Φ Φ ( ( Χ Ι , · • •, ΐ η ) ) · It is easy to see that Ζ is strongly

nondegenerate and that 6 is a strongly Engel element in Ζ with g(b, Z,n) = g(b, Z,n).

Hence for any Engel element c of index at most 3 in Ζ the equation [c, 6, b] = 0 holds.

Given an automorphism

φ = exp(xici) • · -exp(xncn),

we find that [<p{c), b, b] = 0, which implies [c, c i , . . . , c n , 6,6] = 0.
Thus, denoting by / the ideal in Ζ generated by b, we have proved that [/, b, b] = 0.

This contradicts Ζ being nondegenerate, proving the lemma.

PROPOSITION 2. Let A be a subalgebra of a Lie algebra Ζ such that A C K(Z). Then
A = K{A).

PROOF. It is sufficient to show by transfinite induction on a that AP\Ka(Z) C K{A).
Setting g{a, A, n) = g(a, Z, n) shows that every strongly Engel element α of a Lie algebra
Ζ which is an element of A is strongly Engel in A. Hence using Lemmas 8 and 9 we have
Α Π Κι{Ζ) C Κ (A). Now suppose Α Π Κβ(Ζ) C K{A) for all β < a. We want to show
that Α Π Ka(Z) Q K{A). There is nothing to prove if a is limit. Now suppose a — 1
exists and consider a homomorphism ~ : Ζ —> Ζ/Κα-ι(Ζ). Then

Α Π Ka{Z) CAn Ka(Z) = Af] Ki(Z) C Κ (A).

By induction the kernel of the homomorphism A —> A is in Κ (A). Hence Α Π Κα(Ζ) C
), and the proof is complete.
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COROLLARY 1. For any ideal I <1 Ζ, Κ (I) = Ι Π Κ {Ζ).

This gives a positive answer to a question of Filippov [9].

COROLLARY 2. Let Ζ be a strongly nondegenerate Lie algebra and I <\ Z, a G Z,
[I, a, a] = 0 . Then [I, a] =0.

PROOF. We consider a subalgebra I' — I + Φα. It is obvious that a ε K(I'). By
Proposition 2 we have

[/, a] C Ι η Κ{Γ) C K{I) C K{Z) = 0.

2. Lie algebras with finite grading. Let Λ be a torsionfree abelian group. A decomposi-
tion of Ζ of the form Ζ — ΣΛΕΛ ^-λ m^° ^ n e s u m of subspaces such that [Z\, Ζμ] C Ζχ+μ,
λ, μ £ Λ, is called a λ-grading of £. A grading is called finite if the set {λ ε Λ | Ζχ φ 0}
is finite. Suppose that Μ is a finite subset in A such that 0 £ Μ. We say that Ζ is
M-graded if Z\ = 0 for all λ ^ Μ.

Now let £ = ΣΧΕΜ £λ be an M-graded Lie algebra, M* = M\{0} and Z* =
UAEM· ^λ· Everywhere in the sequel we will be assuming that Λ is generated as a
group by Μ. An ideal / < Ζ is called a strong ideal if it can be generated by a subset in

z*.
LEMMA 10. Let Ζ be a Lie algebra generated by Z*, and suppose that Ζ has no

nonzero strong nilpotent ideals. Then
(a) the sum J2\eM ^λ is direct, and
(b) for I < Z, either I C ZQ Π Z(Z) orlnZ*^0.

PROOF, (a) We take ΣΙ ai = ο> ° ^ αί *Ξ —£λί5 λ» ^ Aj for i φ j, 1 < i, j < r. Since
Λ is a finitely generated torsionfree abelian group, there is a homomorphism <p: Λ —> Ζ
such that one of the integers ^(λ ι ) , . . . , ̂ (Ar) is greater than all the others. Suppose for
instance that <p(Xr) > <ρ(λί) for all i, 1 < i < r ~ 1. We consider

= U
φ(Ί)<φ(Χ)

By the above, ar ε Β Π Ζ* • It is easy to see that [B, Z* U Zo] C β. Hence a Φ-subspace
Φ Β spanned by Β is an ideal in Z- Now set

- ρ ( μ ) | λ , μ ε Μ ,

• <ρ(μ) Ι λ, μ 6 Μ,

s = Tna"

We will show that Bs = 0. Let a i , . . . , a s 6 J5, â  = J2jaij G -^λί;

tj) < <p(Ai) - £min and [au ..., as φ 0. Then «ι Η \- as ε Μ. Now

[αϊ , . . . , o s] =

We have [ α ι ^ , . . . , aSJs] ε ϋ λ ΐ ί 1 +-··+λ.3·8 · But

^(Aiji Η V Kjs) < (^(Ai) - e m i n ) Η h (ip(As) - e m i n )

= φ(\χ -\ h As) - semin < φ{λι Η V \s) -

and hence
( -\ h A s) - ^ ( λ ι ^ Η 1- X3Js).
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We see that λ ι ^ + • · · + Xsjs φ Μ and, consequently, [a\j1,..., asje] = 0, a contradic-
tion.

(b) Since Ζ is generated by £*, the maximal ideal of Ζ contained in Zo is Z(Z) Π Zo-
By factoring over Z(£) Π £o we may assume that £0 contains no nonzero ideals of Z-

Now we admit 0 φ I < Ζ and / Π Ζ* = 0. Then / is not homogeneous and it contains
no nonzero homogeneous ideals. By (a) there exists a nonzero strong ideal D of Ζ which
is nilpotent modulo /. Each power of D is a homogeneous ideal. Hence D is nilpotent,
a contradiction. The proof is complete.

Let d denote the maximum length of α-series β, β + a,..., β + ka, a Ε Μ*, k > 0,
lying entirely in M. Having some other applications in mind, we formulate the results
of this subsection in greater generality than required by the proof of Theorem 1. In
particular, it will be assumed for the sequel that the characteristic of the base field is
either zero or at least d. It is obvious that Z'd = 0 for λ 6 Μ*.

We consider a subalgebra A generated by arbitrary elements a\,..., an Ε Z*'-

Ao = Z{au...,an}CZ, A=J2AX, AxCAnZx,

Ao= Σ [Αχ,Α_χ\.
λεΜ·

The following notation will be used: A' = {a': Ζ —> Ζ j a £ A} C End<j>(£), A'k is the

subspace generated by the operators x[ • • • x'k, where Xi Ε A, 1 < i < k, R{A) = Y2^° A'k

is a subalgebra in the associative algebra Endφ(.C), and R(A) = R{A) + Φ Η

LEMMA 11. There exists a function of natural argument f(n) such that r(A) =
V-fW A'k

PROOF. There exists a homomorphism φ: Λ —> Ζ such that φ (λ) φ 0 for all λ € Μ*.
Therefore, without loss of generality, we may assume that Λ = Z. We set

M+ = Μ (Ί {k | k > 0} = {0 < αϊ < · · · < a s + } ,

Μ' = Μ Π {k | k < 0} = {βΒ_ < • • • < βί < 0},

A+ =

λ€Μ+

1°. We first show that R(A+)d'+ = R{A-)d*~ = 0. For this we consider the decreas-
ing chain of ideals

= R(A+)

of R(A+). It is easy to verify that if C 7 l + i , 1 < % < s+, and 7^+ = 0. Hence

J?(A + ) d S + = 0.
2°. Now let α £ AQ and i i , . . . , Xd Ε Α-α. It is easy to verify, by induction, that for

all 1 < k < d

fc-l

t ,a] ' mod 7?

\i>0

For k = d we find that a'd = 0. Hence

i>0
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3°. For any permutation σ we have

d d

This gives us

d-l

i=\

d\ Υ^[χ%, a}' = [χι + • • • + xd, a]'

i=l

+ • • • + χτ + • • • + xd, a

d-l

'd

Using 2°, we have
d-i

Σ Α'3'·
i=l \i>0 /

Hence, independently on the sign of a, we obtain

d d-l

n(d-l)

4°. Now we show that

A'0"
(d-1)+1 C R(A+)R(A) + Σ Α>1-

i=l

For this we consider an operator of the form

i,yi}\ x% G AXi, y% G A_ A i -

By the Jacobi identity we may assume that for each 1 < i < n(d — 1) + 1 the element Xi
is in {a 1 ; . . . , an}. There exist indices 1 < i\ < i 2 < • · · < id < n(d - 1) + 1 such that
Xi1 = • • • = Xid = a G { α ϊ , . . . , a n } . For each permutation σ we have

= Π \XiiVi\' m ° d

Now v/e may assume that i^ = k for 1 < k < d, and then 1° is applicable.
5°. Now we can prove that

Suppose that ΠΓ=ι^ x'i ls n o ^ a n e l e m e n t of the right-hand side. Then we may
assume that x% G AQ for i <m and x,: G A- for m < i; 0 < m < n(d — 1) + ds~. From
3° we have m < n(d — 1). Hence

x[C C R{A)A'f- = 0.

This is a contradiction. Now putting f(n) = ds+ (n(d — 1) + ds~) completes the proof of
the lemma.

REMARK. Similar propositions have been proved (see [16]) by I. P. Shestakov in the
case of alternative algebras and by V. G. Skosyrskii in the case of Jordan algebras.
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LEMMA 12. There exists a function of natural argument f\ (n) such that

R(A)[Aa,A0]'.

PROOF. It will be shown that /i(n) — (2f(n) + l)(nd-n + \) is the desired function.
By Lemma 11, A'2f^+1 C R(A)[A, A, A]'. Hence

(nd-n+l) c R(A)\A, A, A]'n(>d

We consider an operator of the form ΠΙ=ι [χί>ν%]Ί where Xi <E [A, A], X{ € Aai and
!/»€ A f t .

Suppose there is an index i§ such that cti0 + βί0 ^ 0 and let ίο be the largest index
with this property. Then for i > i0 we have ai+βί = 0, and applying the Jacobi identity
we easily find that

[xliyt}'ER(A){Aao,A0a]'.
i=0

Now we suppose that cti + βί = 0 for all 1 < i < n(d — 1) + 1. If yj0 is an element in
[A, A], then replacing [xio,yio]' by x'ioy'iQ — y'io

xio makes it possible to repeat the above
argument.

We may assume, by the Jacobi identity, that yi £ {αϊ,..., an} for all 1 < i < n{d— 1) +
1. There exist indices 1 < i\ < ii < • • • < id < n(d— 1) + 1 such that yi1 = • • • = yid = a-
The equation

[ τ · n l ' f r • i i - V — ί τ • ι ι - 1 ' Γ τ - n l ' 4 - i r • i r · »/ 1 ' o l ' — ί τ · n \ r • 11 •]']'

[Xi,a\ {X3,y3\ — iXj,y3\ [xua\ -\- [xt[Xj,yj\ ,a\ [xt, a[x3,yj\ \

shows that we may put i^ = k for 1 < k < d. Now for each k > 1 we have
k / k \

k\'[[[xi,a}'=('[lxi)a'k mod ^
i=l \i=l I «+/3/0

In particular, for k = d we obtain
d

proving the lemma.
Let AW denote the fcth soluble power of an algebra A; that is, A'°l = A and Aife+1l =
[fc]Alfe]]

COROLLARY 1. For each fc > 1 there exists a function of natural argument fk{n)
such that

A'M") ς ^ β ( Α ) ( Α Μ ΓΊ £x)'.

COROLLARY 2. If A is a soluble subalgebra then R(A) is nilpotent.

A subset Β in an algebra £ is called locally nilpotent if every finite subset of Β generates
a nilpotent subalgebra.

LEMMA 13. Let I be a strong ideal of f, such that Ι Π £* is locally nilpotent. Then
I is a locally nilpotent ideal.

PROOF. 1°. We choose Xi e Ι Π £a, a e M*, 1 < i < m, and an a € £_Q. Let X
denote the set of commutators in {α,χ; | 1 < i', < m} having degree at least 1 in {xt},



LIE ALGEBRAS WITH AN ALGEBRAIC ADJOINT REPRESENTATION 547

length, at most fi(m + 1), and lying in Z* • By our hypotheses X' is nilpotent. Suppose
X's = 0. Then {x[, a'} is a nilpotent set of index at most /i(m + l)s.

2°. Now we choose Xi G / ΓΊ ΖΆτ. en G Z-ai and a», —a^ G M*, i = 1,... ,n. We
will show, by induction on n, that {[χ^,α^]' \l < i < η} is nilpotent. For η = 1 this has
been proved in 1°. Now we assume that W — R{Zl\xi,a^\ 11 < i < η - 1)) is a finite-
dimensional nilpotent algebra with Wm = 0 and set W = W + Φ Id. For an arbitrary
w £ W we have

[xn,a]'w = w[xn,an]'

where Wi,Wj,Wj G W and w^w'j £ W. Let {wi,...,wr} be a basis of W. We set
X = {zi, XiWj \l<i<n,l<j<r}. Then

'ίΤΪ-

By virtue of 1°, {x'{, (xtWj)'', (anWj)', a'n\l < i < n, 1 < j < r} is a nilpotent set of index,
say, s. Then {[a^, cij]' 11 < i < n} is a nilpotent set of index at most ms.

Thus we have proved that the set {Σα€Μ, [Ια, -£-<*])' is locally nilpotent.
3°. Now we consider

«EM·

We can prove now that R = R(£.(xi,..., xn, j / i , . . . , y m )) is a nilpotent algebra. By 2°,
R(L(yi, • • • ,ym)) is a finite-dimensional nilpotent algebra of index, say, q. Let «i , . . . ,vr

form a basis of R(C(y1,..., j/ m )), and let X = {xt, XiV-j \ 1 < i < n, 1 < j < r} be a finite
set in / Π Ζ*. Then Ri C i?X'. Suppose X' nilpotent of index i. Then Rqt = 0, proving
the lemma.

PROPOSITION 3. Ζ contains a maximal strong locally nilpotent ideal Loc(£). Ζ =
Z/hoc(Z) contains no nonzero strong locally nilpotent ideals. Each locally nilpotent ideal
of 2 is in £ 0 Π Ζ(Ζ).

PROOF. If £/Loc(i3) contains a nonzero strong locally nilpotent ideal, then there
exists a strong ideal Ι οι Ζ which properly contains Loc(£) and which is locally nilpotent
modulo Loc(£). We will show that / is locally nilpotent. Indeed it is sufficient to
verify that / Π Ζ* is a locally nilpotent set. We consider α ι , . . . , α η G / Π Ζ* and
A = £(<zi,... ,an). Suppose A^ C Loc(£). Let Β denote the set of commutators in
^[m] ρ £* of degree at most fm(n) in o i , . . . , o n (cf. Corollary 1 to Lemma 12). It is
obvious that Β C A^ C Loc(£). Suppose Br = 0. Then

A'fm(n) ς R ^ B ' ^ R{A)f^r = 0.

Thus that Ζ = Z/Loc(Z) contains no nonzero strong locally nilpotent ideals. Now let

Ρ denote a nonzero locally nilpotent ideal in Z- Then Ρ Π Ζ = 0 . By Lemma 10(b)

Ρ C Z{Z) ΓΊ Ζο, proving the proposition.

Now let Loc(£) denote the preimage of Z(Z) under the homomorphism Ζ —> Ζ. It is
obvious that

(i) each locally nilpotent ideal of Ζ is in Loc(u),

(ii) [ L c < £ ) , £ ) C L o c ( £ ) , a n d

(iii) U/Loc(£) contains no nonzero locally nilpotent ideals.
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PROPOSITION 4. K(Z) cLoc(£).

PROOF. It is sufficient to show that each crust of a thin sandwich of Ζ is in Loc(£).
Set Ci(£) = {a e Z\a'2 = 0} and let $Ci(£) denote a subspace spanned by Ci(£).
It is obvious that ΦΟι(Ζ) is invariant with respect to all automorphisms of Z. Due
to restrictions on the characteristic of Φ, for each χ € Ζ* we have exp(x') = Id +
ΣΊ=1 l/i*xH £ Aut Z- Hence every subspace in Ζ which is invariant under Aut Ζ is an
ideal. In particular, ΦΟι(Ζ) < L. By^Theorem 1 in [17], ΦΟΊ(£) is locally nilpotent.
In view of Proposition 3 ΦΟι(£) C Loc(£). The proof is complete.

An element a of M* is called extreme if there exists a homomorphism φ: Λ —> Ζ such
that ιρ(/3) < <p(a) for all /? e Μ\{α}. In this case £a and £_ Q are inner ideals of Z,
and they form a Jordan pair V = (£«,£_«).

LEMMA 14. Let α be an extreme element of M*, and I — (Ia,I-a) an ideal of the
Jordan pair V — ( £ a , £ _ a ) . Then

(Id£(/ a) ΓΊ £ Q // Q , Id£(/Q) η £_ Q + J_ a//_ a)

is a locally nilpotent ideal of the Jordan pair V/I.

PROOF. Without any loss of generality we may assume that (i) Λ = Ζ, Μ C {—η <
k < η}, α = η, (ϋ) £ is generated by a finite set of elements in £,*, and (iii) Loc(£) = 0
and, in particular, Ζ = Υ^1η -Cfc is a direct sum.

Set R(£.) = Φ Id + Ε Γ £'fc· W e consider a subspace

τ Γ Γ Λ Γ l / r n + l c T

Obviously

fc = l

Since the sum Y^ln Lk is direct, we have

Uz(Jn)nCn = Jn

fc=l

whence la^(Jn) Π Ln C /„. Now it is sufficient to show that Id£(In)/Id.c( J n ) is a locally
nilpotent algebra. But this is implied by In C ii(£/Id£(Jn)) and by Proposition 4. The
proof is complete.

COROLLARY. Let a denote an extreme element of Μ and V — ( £ Q , £ _ Q ) . Suppose
that V/I contains no nonzero locally nilpotent ideals, I being an ideal of the form I =
{Ia,I-a)<V. Thenldc(Ia)n£a = Ia.

§3. Proof of Theorem 1

LEMMA 15. Let Ζ be a Lie algebra over a field Φ of characteristic zero. Any ideal
of Ζ generated by a set {a G Ζ \ [Ζ, a, a] C Φα} is locally nilpotent.

PROOF. Let A be a subalgebra of Ζ generated by elements of the form

where 1 < i < η and 1 < j < Π{, and let [£, â , â ] C Φα ,̂ a ·̂ € Ζ and 21 — {ai, aij \ 1 <
i < n, 1 < j < n^}.
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We consider a free Lie algebra C(X) freely generated by a finite set X — {xi,Xij \ 1 <
i < n, l<j<nt} and its ideal I generated by \Ji[C(X),xi, xt]. Let " : £(X) -> £{X)/I
denote the natural homomorphism. We consider elements of the form Zi = Xi Π"=ι ΧΊ
and their images ~Ζχ. By a theorem of Grishkov [12], Ζ{ζτ\1 < i < n) is a finite-
dimensional subalgebra. Let ΰχ,... ,vs form a basis of Z{z% | 1 < i < n) over Φ, and let
Vi,..., vs denote preimages οϊ ϋι,... ,vs.

Given an element ν e C(X), we denote by degw the degree of ν in X; that is, the
maximal weight of a commutator which enters a linear combination of commutators
equal to υ with a nonzero coefficient. Set d = max(degiii,..., degws). We show that A
is contained in the subspace spanned by commutators in 21 of weight at most d. Indeed,
we consider υ G £ ( z i , . . . , zn). degf = m > d. We have

V =

where at € Φ, and Wik and Wikj are commutators in X. Obviously

max deg wik + ^ deg wlk3 = d.
hk \ J )

Moreover,
s mik

v{%) e Σ a ^ ( a ) + Σ Φα« Σ wW(a)'
* = 1 3=1

whence ν(21) is a sum of commutators in 21 of weight less than m, proving the lemma.

LEMMA 16. Let £ be a simple finite-dimensional Lie algebra over an algebraically
closed field F of characteristic zero satisfying an identity of degree n. Then £, is isomor-
phic to one of the algebras G2, Fi; E6, E7, Es, Ak, Bk, Ck or Dk, k < [n/2].

The proof trivially follows from the observations that no matrix algebra Fm satisfies

an identity of degree less than 1m and that the Lie algebra i 4 can be embedded in

any of the algebras Am, Bm, Cm or Dm.
We will need some more definitions and results concerning Jordan pairs.
We consider a Jordan pair V = (V+,V~). Given elements o + £ V+ and a" 6 V~,

we introduce an operator T(a+,a~) e Εηάφ(ν+ ®V~) acting by the rule

T{a+, α " ) : χσ -^ χσ - {χσ, α~σ, ασ} + \{ασ, {α~σ, χσ, α'*}, ασ}.

A pair (a+,a~) is called quasi-invertible if T(a+,a~) is an invertible operator. An
ideal of V is called quasiregular if each element in it is quasi-invertible. The sum of all
quasiregular ideals of V is a quasiregular ideal called the Jacobson radical of the pair
(and denoted by J{V) = (J(V)+, J(V)~)). Similarly to the case of associative algebras,
applying a well-known trick due to Amitsur we derive the following.

LEMMA J P 1 (Amitsur [19]; see also McCrimmon [20]). Let V be a Jordan pair over
a field F such that

CardF > max(dim^ν+,άϊτηρV~).

Then J{V) = Nil(V).

A subpair Β = {Β+,Β~) is called an inner ideal if {Βσ, V-a,Ba} C Βσ, σ = ±. Fix
a+ £ V+ and a~~ G V~. Following Hogben and McCrimmon [21], an inner ideal Β is
called (ασ, a~a)-modular if



550 Ε. Ι. ZEL'MANOV

{i)V°T{a+,a-)CB°,
(ii) for arbitrary νσ G V, Ψ G Βσ

{6σ, α-σ, υσ} - \{ba, {α~σ, υσ, α" σ}, ασ} Ε Βσ,

(π) \{ασ,α-σ,ασ}-ασ (ΞΒσ.
A Jordan pair V is called +-pnmitive if it contains an (a+, a~)-modular inner ideal

Β (where o + G V"+ and a~ G V~) such that JB + 1 = V for any nonzero I <V.
Let P(o+,a~) denote the set of all maximal (a+ ,a~)-modular inner ideals, and let

P+=
(a+,a

Given an inner ideal Β e P+, we denote by I(B) the maximal ideal of V contained in B.

LEMMA J P 2 . J(V)+ =f]BeP+I(B).

It is easy to see that V/I(B), where Β G P+, is a +-primitive pair. Lemma JP2 means,
in fact, that any Jacobson semisimple Jordan pair is residually a +-primitive pair.

LEMMA J P 3 . Let V be a primitive Jordan pair over an algebraically closed field F
of sufficiently large cardinality:

Cardi1 > max(dimF V+jdimp V").

// V satisfies a polynomial identity, then
(a) V is a simple pair, and
(b) There exists a nonzero element a+ 6 V+ such that {a+, V~,a+} C Fa+.

Now we are in a position to prove Theorem 1. Let Ζ be a Lie algebra over a field
Φ of characteristic 0 whose adjoint representation is algebraic. Suppose that L satisfies
a polynomial identity. It is known [11] that an algebra whose adjoint representation is
algebraic contains a maximal locally finite-dimensional ideal and the quotient algebra
over this ideal has no nonzero locally finite-dimensional ideals. Therefore the proof will
be complete if we prove that £ contains a nonzero locally finite-dimensional ideal. Using
Grishkov's theorem [12], we may assume that Ζ is strongly nondegenerate. If Ζ is Engel,
then Proposition 1 gives the desired conclusion. Otherwise let α be a non-Engel element
in Z. Let F be an algebraically closed extension of Φ of sufficiently large cardinality:
CardF > dim,!, Z. Set Ζ = Ζ ΘΦ F. By Proposition 2, K{£) Π Ζ C K(Z) = 0. Hence
we may assume that Ζ is embedded in the quotient algebra Ζ = Z/K(Z).

We represent Ζ as the direct sum of weight subspaces with respect to the derivation
a!:Z = E A G F ^ A - Set Μ = {λ G F \ ~Ζχ φ- 0} and Μ* = M\{0}, and let a G M* be an
extreme element in M. We consider an ideal

p= Σ ^+ Σ Ρ ^ - Α ]
λεΜ* λεΜ·

of Ζ and the Jordan pair V = (Za->Z-a)· Every absolute zero divisor of V is a crust
of a thin sandwich in Z; hence M(V) = 0. By Lemma JPl and Theorem JP1 we get
J{V) =Ku{V) = M(V).

Choose a maximal modular inner ideal Β Ε Ρ+ in V, and then consider I(B) —
(I{B)+,I(B)-) <s V and ldP(I(B)+) < P. By the corollary to Lemma 14 we have
IdP(/(B) + ) η Ja = I{B) + . Let ϊ Β / Η Ρ ( / ( β ) + ) be a maximal M-graded ideal in
P/ldp(I(B)+) whose intersection with
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is trivial. Now P/IB contains no nonzero strong nilpotent ideals. By Lemma 10 each
nonzero ideal of P/IB contains a nonzero homogeneous ideal; hence its intersection with
£a + IB/IB is nonzero. By Lemma JP3(a), P/IB is simple; and by Lemma JP3(b)
together with Lemma 15, P/IB is locally finite-dimensional over F. Bakhturin [22]
has proved that any simple locally finite-dimensional over its centroid Pi-Lie algebra
of characteristic 0 is finite-dimensional over the centroid. By the choice of the field F
the centroid of P/IB coincides with F; hence άϊτηρ P/IB < oo. Suppose Ζ satisfies an
identity of degree n. Then, by Lemma 16, P/IB is isomorphic to one of the algebras G2,
F4, Ee, E7, Eg, Ak, Bk, Ck oi_Dk, where k < [n/2]. _

We consider an ideal ldjr(Za) of Ζ generated by Za- It is obvious that Id-^(Ca) =

LEMMA 17. {f]BeP+ ΪΒ)nmT(Za) = 0.

PROOF. Set / = Γ\ΒΕΡ+ ΪΒ- We have

(ϊΒητα)=
BeP+ BeP+

Hence [I, Za, Za] C / π Za = 0. Since Ρ is strongly nondegenerate, by Corollary 2 to
Proposition 2 we have [I,Z~a] = 0. Hence [I,IdP(£a)] = 0; that is, / Π Id P (Z a ) is a
trivial ideal of P. Thus / Π Idp(£a) = 0, proving the lemma.

Now ld^(Ca) intersects Ζ trivially. For, otherwise, each element of Ζ would be anni-
hilated by a power of Π/3εΜ\{α}(α' ~~ Ζ^0-), and then we would have Za — 0. By Lemma
17, Idj(£ a ) ΓΊ L can be embedded in a subdirect product of P/IB, Β 6 P+, each of
these latter algebras being isomorphic to one of G2, F4, E&, E7, Eg, Ak, Bk, Ck or Dk,
k < [n/2]. Hence ld-^(Ca) Π Ζ satisfies all the identities of a finite-dimensional algebra
F4 φ Eg φ An. By Lemma 7, Id^-(£Q) Π £ is a locally finite-dimensional algebra. Now
the proof of Theorem 1 is complete.

The author wishes to express his gratitude to L. A. Bokut' for his help and support,
and to A. I. Kostrikin for the attention he paid to this paper.
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