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NIL-ELEMENTS OF INDEX 2 IN MAL’TSEV ALGEBRAS
V. T. Filippov* UDC 512.48

It is proved that a Mal’tsev algebra over an associative commutative ring with 1, which contains
1/6 and is generated by a finite tuple of nil-elements of indez 2, is nilpotent, and that an ideal
of the Mal’tsev algebra over a field of characteristic 0, generated by nil-elements of indez 2, is

locally solvable.

An element a in an anticommutative algebra A is called a nil-element of indez 2 if (za)a = 0 for any
z €A

The weaker version of Burnside’s problem for a prime exponent was dealt with by Kostrikov in [1].
One of the key results used in solving that problem is Theorem 3 of [1], which states that an Engelian Lie
algebra of index n over a field of characteristic p > n, generated by a finite tuple of nil-elements of index 2,
is nilpotent.

Let & be an associative commutative ring with unity 1, containing 1/6. Zelmanov in [2] proved that
a Lie ®-algebra generated by a finite tuple of nil-elements of index 2 is nilpotent, thereby strengthening
Kostrikov’s result. In Sec. 2 of the present article, that result is fully extended to Mal’tsev ®-algebras,
namely, we prove that a Mal’tsev $-algebra generated by a finite tuple of nil-elements of index 2 is nilpotent
(Thm. 2). In so doing, essential use is made of a function f, which we brought in sight earlier (see [3, 4]),
in order to construct alternative enveloping algebras for some Mal’tsev algebras. Incidentally we prove that
an algebra E(A) generated by restrictions of right multiplications to the fully invariant ideal F(A) of an
arbitrary Mal’tsev ®-algebra A, generated by the function f, is locally nilpotent (Thm. 1), and that it is
nilpotent provided that A is finitely generated (Cor. 1).

Note that Zelmanov and Kostrikov in [5] gave a complete solution to the problem concerning the
nilpotency of a Lie ring generated by a finite tuple of nil-elements of index 2, by removing the last restrictions
on its additive group. The question of whether an analog of this result is true for Mal’tsev rings is still not
settled.

Grishkov in (6] showed that an ideal of a Lie algebra generated by nil-elements of index 2 over a field of
characteristic 0 is locally nilpotent. In this article, we use that result to prove that an ideal of a Mal'tsev
algebra generated by nil-elements of index 2 over a field of characteristic 0 (Thm. 3) is locally solvable.

The question remains open as to whether the full analog of Grishkov’s theorem applies in Mal’tsev
algebras — in other words, is it true that an ideal of an arbitrary Mal’tsev algebra generated by nil-elements

of index 2 over a field of characteristic 0 is nilpotent?
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1. IDENTITIES IN FINITELY GENERATED MAL'TSEV ALGEBRAS

For convenience, in what follows, we drop brackets from right-valued products and, unless otherwise
stated, use A to denote an arbitrary Mal’tsev ®-algebra, where ® is an associative commutative ring with
1, containing 1/6.

We introduce the following notation: J(z,y,z) = ¢yz + zzy + yzz is a Jacobian of elements z, y, and
z, {z,y,2} = zyz — zzy + 2z(yz), and y% is a differential substitution operator.

Following [7] and [3], define the functions on A4 by setting

My, 7t ,2) = warl{yz by 2ke + {vz,2,2H,

g(y,z, t,v,u, 3) = u%[]({yz,t, z},z, '") + J({y:z:, z,z}t, 1’)]’

8
iy, 2z, t,v,u,z) = u(—a—[{J(y,z,v),t,z}zz + {J{y,z,v), 2,z }¢],
z
S(z, vt aq, b) = “{J(t: a, b)a z, y} - {J(y, a, b)vtv Z} + {J(z, a, b), Y, t}r
f(z,v,t,a,b,2) = S(z,y,t,a,b)z — S(zz,y,t,q,b).

By definition, the functions h, g, and § are symmetric in u and z, and the following identity holds:
2h(y,z,t,u,z) = Ay, z,t, u + z,u + =) — h(y, z,t,u,u) — h(y, 2, ¢, z, ).

Similar identities hold also for g and §. It is known [8, 7] that the function h is skew-symmetric in y

and z, g and § are skew-symmetric in y, z,t, v, and the following identity holds:
g9y, z,t,v,z,2) + §(y, 2, t,v,z,z) = 0. (1)
For any function f(z,y,z2,...), define the operator §(z, y, z) by setting

5($,y,2)f($,y,2,-~-) :f(z,y,z,...)+f(z,:v,y,...)+f(y,z,:1:,...).

Denote by H(A), G(A), and F(A) fully invariant ideals of A generated by all elements A, g, and f,
respectively.

We know from [3] that G(4) C F(A) C H(A). Moreover, if A is a free Mal’tsev algebra on k > 5 free
generators, then G(A) # 0; consequently, F(A4) # 0; see [7].

Let Hy(A), G1(A), and F;(A) be ®-submodules of the ®-module A4 generated by all elements k, g, and
f, respectively.

On A4, the equalities H(A) = Hy(A), G(A) = G1(A), and F(A) = Fi(A) hold (cf., resp., Lemma 2 in
[8], Cor. 1in [9], and Lemma 2 in [3]).

On A, the following identities hold (see [10]):

2J(z,y, z)t = 6(z,y,2)J (¢, zy, 2), 2)
h(J(a,b,¢c),y,z,u,z) = %5(a,b, c)g(ab,c, vy, z,u, ), (3)
A2, T (a,b,c), w ) = ~ 58(a, b c)g(ab,e,y, 2,u,2), (4)
{z.v,2} = —{=z,2,4}, (5)



{:c,y,z}+{z,a:,y}+{y,z,:z:}: 0, (6)

{yz,y,z} =0, (7)
J({z,y, 2}, t,v) = {J(z,t,v),y, 2} + {z, T (v, t,v), 2} + {z, v, T (2, ¢, v)}, (8)
{y,t,z}z = {z,tz,y}. (9)

LEMMA 1. An algebra A satisfies the identity
2h(y,t,z, J(a,b,¢), z) = é(a,b,c)[f(z, v, t,ab,c, ) + g(ab, z,y, ¢, t, 2) + g(ab, z,t,¢,y, z)]. (10)

Proof. Applying (in this order) the definition of k, (5), identity (7) linearized w.r.t. y, and then (9),
(5), and again (9), we obtain

1
§h(y, z,t,z,z) = {yz,t, 2}z + {yz, 2,2}t = {yz,t,z}c — {yz, 2, t}z+
a{ t}t = t,z}z + {yz,t }:c+:ca{:z:zt}t—za{ t,z}z+
x8t yT, z, —{yzy 1y T T yT,, 2 ot yz, 2, - 3z Yz, i,z
8 8 a 8
‘ca{yz,zlt}t = —zg{t%y, z}z + za{y%zat}t = —25*2‘{”,% z}e+

z%{t, zt,yz} = ~{tz,y,z}z - {tz,y, 2}z + {z, zt, yz} + {t, zz,yz} =
{t,zz,yz} + {tz,z, y}z + [~{tz,y,z}z + {z, y=, tz}] = {t, zz, yz} + {tz, z, y}=.
Consequently, A satisfies the identity
4 h(y,z,t,z,z) = 2{t, zz,yz} + 2{tz, z, y}=. (11)
Applying (in this order) the definition of S, (6), double (8), identity (5), and again (6), we obtain
S(z,y,t,a,0) = —{J(t,q,b),2,y} — {J(va,b),t, 2z} + {J(z,a,b),y,1} =
"{J(y, a, b))tr Z} - {tv J(zv a, b), y} - {yv tr J(z)a': b)} =
~[J(¢, a,b), z, ¥} + {¢, I (2,,b),y}] — {J(y,a,b),t, 2} + {v,t, T (z,a,b)}] =
[{t» Z, J(y,a, b)} - J({t, Z, y},a, b)] + [{y» J(t! a, b)r z} - J({y,t, z}'a’ b)] =
{t$ zZ, J(ya a, b)} - {y: z, J(t) a, b)} - J({tv z, y} + {y) ta Z}) a, b) =
{t,2,J(y,a,0)} — {v, 2, I (t, ¢, 0)} + T ({2, 9,1}, 0,b). (12)

Further, denote the Jacobian J(a,b,c) by J. In view of (12) and (2),

8(a,b,¢)S(z,y,t,ab,c) = é(a,b,c){t, z, J(y, ab,c)} —
8(a,b,¢c){y, z, J(t,ab,c)} + é(a,b,c) T ({z,y,t},ab,c) =
2{t,z,Jy} — 2{y, z, Jt} — 20 {z,y,t} = —2[{t, 2,yJ} — {y, 2, 8T} + {z, v, t}J]. (13)

Linearizing (11) w.r.t. = (and then cancelling by 2) yields the identity
h(y,z,t,u,z) = {t, zu,yz} + {t, zz, yu} + {tu, z, y}z + {tz, z, y }u.
It follows that

h(y,t,z,J,2) = {z,tJ,yz} + {z,tz,yJ } + {zJ, t, y}z + {zz, ¢, y}J. (14)
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Applying (in this order) (13), (14), double (9), and (5) gives the following:
é(a, b,c)S(zz,y,t,ab,c) + 2h(y,t, z,J, 2) = <2[{t, zz,yJ } - {y, zz,tI} +
{zz,y,t}J] + 2[{z,tJ,yz} + {ztz.yT} + {z],t,y}z + {zz,t,y}J] =
=2{{t, zz, yJ} - {y, 22, tJ} ~ {z,tJ,yz} — {z,tz,yJ} — {zJ,t,y}z] =
—2[~{z,2t,yJ} +tZ{z, 22, yT} + {=, 2y, tJ} - yZ{z,22,tT} ~
{z,tJ,yz} ~ {z,tz,yJ} — {2 ], t,y}2] = —2[~{z,zt,yJ } +
tg‘;—{y.f, z,z}z + {z,zy,tJ} ~ y%{t], z,z}z — {z,tJ,yz} ~
{z,tz,yJ} ~ {cJ, t,y}2] = «Z[t-a%{y.l, z,z}z — yé%{t.f,z, T}z —
{zJd,t,y}z] = —2({yJ, z, t}e + {yJ, 2,2}t — {tJ, z,y}z — {tJ, z, 2}y — {J, ¢, y}z]. (15)
On the other hand, by the definition of S and in view of (2),
8(a, d,¢)S(z,y,t,ab, cjz = 8(a, b, c)[—{J(¢t, ab,c), z,y}z ~
{J(y,ad,c),t, 2}z + {J(2,ab,¢), y, t}z] = =2[~{tJ, z,y}z — {yJ], ¢, 2}z + {2J,y, t}=]. (16)

If we subtract (15) from (16), use (5), collect similar terms, and then apply the definition of f to the
left-hand side of the above identity, we have

8(a,b,¢)f(z,u,t,ab,c, ) — 2h(y,t, 2, ], z) = 2[{zJ,t, v}z + {yJ, z, =}t — {tJ, 2,2}y — {=J,t,y}z]. )
By the definition of §, using (5) and collecting similar terms, we obtain
§(a,z,y,b,t, 2} + §(a, z,¢,b,y,z) = {J(a,z,b),y,t}z + {J(a, z,b),y, 2}t +
{J(a,t,b),z, 2}y + {J(a, 2z, b), z,t}y + {J(a, z,b),t, ¥}z + {J(a, 2, b),t, z}y+
{J(a,9,b),z,z}t + {J(a,z,b),z,y}t = —{J(z,a,]),t,y}z—
{J(y,a,0),z,z}t + {J (¢, a,b),z, 2}y + {J(z,qa,b),¢,y}z.

From this, in view of (2) and (7),

§(a,b,c)(G(ad, z,y,¢,t,2) + §(ab, z, ¢, c,y, z)] = 6(a,b,c)[~{J(z,ab,c), ¢, y}z—

{J(y,ab,c),z,z}t + {J(t,ab,c), z,z}y + {J(z,ab,c), t, y}z] = 2[{zJ], ¢, y}z+

{yJ, z,z}t — {tJ,z,z}y ~ {zJ,t,y}z] = 8(a, b,¢)f(z,y,t,ab,c,z) — 2h(y, t,z,J, 2).
Then, by (1), the following identity holds:
—6(a, b,¢){g(ad, z,y,c,t,z) + g(ab, z,t,c,y,z)] = 6(a,b,¢)f(z,y,¢,ab,c, z) - 2h({y,t, <, J, z),

whence (10). The lemma is proved.
Let J(A) and J(A4, A, 4) be, respectively, an ideal of A and a ®-submodule of the &-module A4, generated
by all Jacobians of A.
In view of (2),
J(A) = J(A, A, A). (18)

LEMMA 2. If at least one of the elements z, y, z, t, or u of 4 lies in J(A), then h(y, z,t,u,z) € F(A).
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Proof. By (18), to prove the lemma, it suffices to show that [in view of the function h(y, z,t,u, z) being

skew-symmetric in y and z and symmetric in « and z] for any a,b,¢,z,v,2,t,u € A,

h(J(a,b,c), z,t,u,c) € F(A), (19)
h(y,z,J(a,b,¢),u, z) € F(A), ‘ (20)
h(y,z,t,J(a,b,c),z) € F(A). (21)

Occurrences (19)-(21) follow from identities (3), (4), (10) and from G(A4) C F(A). The lemma is proved.

Denote by R,(A) a subalgebra of the endomorphism algebra of the $-module A, generated by the
identity map I and by all right multiplication operators R, ¢ € A. A multiplication algebra R(A) of A is,
as usual, a subalgebra of the algebra Ry(A), generated by all operators R;, z € A.

LEMMA 3. Let C be an arbitrary finitely generated subalgebra of the algebra A and k the number
of generators for C. Then

flzyyta,b,z)Xey o 2o Yyr oo g1 221 - 2y = 0 (22)

for any z,y,2,t,a,6 € 4, X,Y,Z € R(4), zi,4:5,z€C,i=1,...,k+1.
Proof. By Lemma 3 in [11],

9(y,z,t,v,z,2) Xz1. . 21 YY1 .- kg1 =0
for any z,y,z,t,v € 4, X,Y € Ri(A), z;, % € C, i=1,...,k + 1. Therefore, it suffices to show that
f(z,y,t,a,b,2) Xz ... 241 € G(A) (23)

for arbitrary z,v,z,t,a,b € A, X € Ry(4), z1,...,2r41 € C.
Let A satisfy the identity g(y, z,t,v,z,2) = 0. By Lemma 3 in [3], then, the function f(z,y,t,a,b,z) in
A is skew-symmetric in all of its arguments, and the following identity holds:

2f(z,y,t,a,b,z)w = —3f(zw,y,t,a,b,z). (24)

For w = z, (24) implies the identity
f(z,y,t,a,5,2)z = 0. {25)

In view of (24), the skew-symmetry of f, and (25),
3f(zz,y,t,0,b,2) = -2f(z,y,t,a,b,2z)z = 2f(z,y,t,a,b,2)z = 0.

Consequently,
f(zz,y,t,a,b,2) = 0. (26)

Applying (in this order) (24), (26), (24), the skew-symmetry of f, and (26), we obtain

4f(2) Y, t)a) b) z)wz =-3- Zf(zw, yltyaybiz)w = 9f(zu)2,y,t, a7b) I) =

9(zw)%f(zw, ¥st,a,b,z) — 9f(zw, y,t,0,b,zw) = ~9f(zw,y,t,a,b, zw) =

9f(we,y,t,a,b,2w) = =3 - 2f(w,y,t,a,b, zw)z = 3 - 2f(zw, y, t, a, b,w)z = 0.
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Consequently,
f(z,y,t,a,b,:z:)w2 =0. (27

Since F(A) coincides with the ®-submodule F;(A) of the $-module A, generated by all elements of the
form f(z,y,t,a,b,z), using (27) we have

f(z,y,t,a, b,:z:)sz =0 (28)

for any X € R,(A).
In view of (25) linearized w.r.t. z and identity (27),

f(z,9,t,a, b, z)(vw)z = — f(vw,y,t,a,b,z)z° = 0. (29)
From (29) and (25) linearized w.r.t. z, we have
2f(z,y,t,0a,b, z)(vw)u = —-2f(u,y,t,a,b,z)(vw)z =
3f(u(vw),y,t,a,b,z)z = =3 f(vwu,y,t,a,b,z)z = 3f(z,y,t,a,b,z)(vwu). (30)
In view of (29) and (25) linearized w.r.t. z and combined with (26},
f(z, v tya,b, z)(vw)v = — f(v,y,t,a,b,z)(vw)z = f(vw,y,t,a,b,z)vz = — f(vw,y,t,a,b,v)zz = 0. (31)

Denote f(z,y,t,a,b,z) by f. In virtue of (31) and A being anticommutative, the function f(vw)u is

skew-symmetric in v, w, and u. From (28), we have

0 2
fuvw = uifvzw — fouw = — fvuw = —u%fvw“ + fvwu = fowu. (32)

v
Recall that A satisfies the Sagle identity [12]:

zyzt + tzyz + ztzy + yztz = zz(yt). (33)

Applying (33) and (32), then (27) linearized w.r.t. w and the skew-symmetry of f(vw)u in v, w, and ,
we obtain
flrvwu) = —vwuf = fowu+ ufvw + wufv — vu(wf) =

frwu — fuvw — f(wu)v — fw(vu) = — flwu)v — fw(vu) =
~flwu)v + fvu)w = f(wv)u — flvw)u = -2 f(vw)u.

This and (30) yield the identity
flz,y,t,a,b, ) (vw)u = 0.

Identity (27) linearized w.r.t. w can be combined with the latter to give
f(z,y,t,a,b,z)u(vw) = —f(2,9,t,0,b, z)(vw)u = 0.
The last two identities and the equality F(4) = F1{A) produce
flz,y,t,a,b,2) X (vw)u =0, flz,y,t,0,b2)Xu(vw) =0 (34)
for any X € R,(A).
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Let u= f(z,y,t,a,b,2)X ;... k41, Where 2,y,2,t,a,b € A, X € Ry(A), z1,...,2x41 € C. In view of
(28) linearized w.r.t. w, the function u is skew-symmetric in 21, ..., zx41. If we appeal to equalities (34) we
may assume Zi,...,Tk4+1 to be generators of the subalgebra C. However, since the number of generators of
C is equal to k, among the elements z;,..., 2,41, there are at least two that coincide. Then, however, since
u is skew-symmetric in zj,...,Zx41, we have u = 0. In the algebra A with g = 0, therefore, the equality
f(z,9,t,0,b,2z)Xz1... 2141 = 0 holds. And then an arbitrary Mal’tsev algebra A satisfies (23) and, hence,
(22). The lemma is proved.

Lemma 3 immediately implies

Proposition 1. Every finitely generated Mal’tsev ®-algebra (1/6 € ®) on k generators satisfies the
identity

f(z,y,t,a,b,z)wy ... waks3 = 0. (35)

In Theorem 1 of [11], we proved that the subalgebra R(A) of the endomorphism algebra of the $-module
G(A) is locally nilpotent if generated by all restrictions of right multiplication operators to the ideal G(A4).
From Lemma 3, we can derive a stronger result, which — though not used below — still is of independent
interest.

Let R, be a restriction of the operator R, to the ideal F(A). Denote by R(A) a subalgebra of the
endomorphism algebra of the ®-module F(4), generated by all operators R., = € A. The action of 4 on
the ideal F(A) is described by the following:

THEOREM 1. If A is an arbitrary Mal’tsev $-algebra (1/6 € &), then the algebra R(A) is locally
nilpotent.

The proof follows essentially the same line of argument as was used to prove Theorem 1 in [11] (but
here we refer, not to Lemma 3 in [11], but to the present Lemma 3).

From Theorem 1, we obtain the following analog to Corollary 1 in [11].

COROLLARY 1. If the Mal’tsev $-algebra A (1/6 € @) is finitely generated, then the algebra R(A)
is nilpotent.

The proof is similar to that of Corollary 1 in [11].

Note that if A is a free Mal’tsev algebra on a countable set of generators, then the algebra R(A) is not
nilpotent. This follows from Lemma 4 in [11], and from G(4) C F(A4).

LEMMA 4. Let C be an arbitrary finitely generated subalgebra of A and k the number of generators
for C. Then

h(y,z,t,u,z) Xy ... 261 YY1 k41221 ... 2641 = 0, (36)
if at least one of z,y,2,t,u lies in J(A), X,Y, Z are arbitrary elements of R (A4), and z;, ui, z; are ones of
C,withi=1,...,k+1.

Proof. If at least one of z,y, 2,t,u lies in J(A), then h(y,2,t,u,z) € F(A) by Lemma 2. Then (36)
follows from (22). The lemma is proved.

Below we need the following identity:

h(y, z,t,u,z)v = h(yv, z,t,u, z) + h(y, zv, ¢, u,z) + h(y, z,tv,u, z) + h(y, z,t, uv, z) + h(y, z,t,u,zv), (37)

which is satisfied in A; see Lemma 1 in {8].

LEMMA 5. If C is an arbitrary finitely generated subalgebra of A, k is the number of generators for
C, and the quotient algebra A = A/J(A) is nilpotent of index n, n > 2, then

h(y,z,t,u, 2)v1. . vsn—oX 1 ... Tep1 YY1 .o k1221 ... 2541 = O (38)
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for any z,y,2,t,u,v1,...,vsn-0 € 4, X, Y, Z € Ry(A), zi, ¥,z €C,i=1,...,k+ 1.
Proof. By assumption, A™ C J(A). Applying identity (37) (5n — 9) times, we obtain the equality

h(y,z,t, v, 2)v1. .. Vsn_9g = Z h(vi, zi, i, i, i),
where in each of the summands h(y;, z;, t;, ui, T;), at least one of y;, z;, i, u;, z; lies in A™; consequently, it
also lies in J(A) since A™ C J(A). This and (36) yield (38). The lemma is proved.

COROLLARY 2. If the Mal’tsev ®-algebra A (1/6 € @) is finitely generated, k is the number of
its generators, and the quotient algebra A = A/J(A) is nilpotent of index n, n > 2, then A satisfies the
identity

h(y,z,t,u,x)vy .. . Vsn43k—6 = 0. (39)

2. NIL-ELEMENTS OF INDEX 2

Let a be a nil-element of index 2 in A4, U, be an ideal of A, generated by an element a, and B =
J(Aa,a, A) be a $-submodule of the #-module A, generated by all elements of the form J(za, a, y), where
T,y € A.

In [13, Lemma 3}, it was proved that if A satisfies the identity A = 0, then B is an ideal of A, and the
following equality holds:

BU, =0. (40)

For any n > 2, denote by I,(a) a ®-submodule of the ®-module A, generated by all elements of the
form aX;(aY1)X,... (ﬁYﬂ_z)Xn_l(aYn_l), where X;,Y; € Ri(A4),i=1,...,n— 1.

The next lemma is a generalization of Proposition 1 in [13].

LEMMA 6. If an algebra A satisfies the identity » = 0 and a is a nil-element of index 2 in A, then
Is(a) = 0.

Proof. Let X and Y be arbitrary elements in R;(4). By (40), J(Aa,a, A)(aY) = 0. Since B is an
ideal of A, the latter equality implies

J{Aa,q,A)X(aY) = 0. (41)

Recall (see, e.g., [13, p. 544]) that R,(A) satisfies
R:z:yz = RzRsz - RxR::Ry - Rysz: - Rszu (42)
via which the operator R,x, for any X € R1(A), can be represented thus:

Ryx = Z X R, Y + Z XiZRaa:,'Kh (43)

where z; € A, Xiy, Yi1, Xi2, Yi2 € Ri(4A).
Now let A satisfy the equality J(Aa,a, A) = 0. From relations (16) and (17) in [13], it then follows that

aZaX(aY)t =0, aZa(az)X(aY)t =0 (44)

for any z,t € A and X,Y,Z € R,(4A).
Consider an element of the form u = aX;(aY1)X;(aY2)t, where X;,Y; € Ry(4), 1 = 1,2, ¢t € A.
Since 4 = aXR,y,X2(aY2)t, applying (43) to the operator R,y, and using (44), we have the equality
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aX1(aY1)X2(aY2)t = 0. From this, in particular, we obtain aX;(aY1)X;(aY2)X3(aY3) = 0, where X;,Y; €
Ry (A).

Consequently, in the Mal’tsev algebra with h = 0, aX;(aY1)X2(aY2)X3(aY3)X, € B. In view of (40),

A then satisfies the equality
aX1(aY1)X2(aY2)X3(aY3)X4(aYy) =0,
that is, Is{a) = 0. The lemma is proved.

THEOREM 2. A Mal'tsev ®-algebra A (1/6 € ®) generated by a finite tuple of nil-elements of index
2 is nilpotent.

Proof. Let aj,...,a; be generating nil-elements of index 2 in A. The quotient algebra A = A/J(A)
is a Lie algebra generated by homomorphic images &, ...,a; (under the natural homomorphism A — A4),
which are its nil-elements of index 2. By Theorem 1in [2], A™ = 0 for some n. We may assume that n > 2.
But, by Corollary 2, A then satisfies identity (39).

Let w be an arbitrary word in A**!, Since A has k generators a;, ¢ = 1,..., k, there exists a generator

a, that occurs in the representation of w at least 5 times. Therefore, w € Is(a,). Lemma 6 implies that
Is(a,) C H(A). Consequently, w € H(A), A*+! C H(A). By (39), A then satisfies the equality

(-.-(A¥FT14)A. . )A=0.
— e’
5n+3k~6
From this, in particular, we have A(3"+7¥-5} — 0. Using this equality and (42), we easily infer that A is
nilpotent of index m, where m < 2(5n + 7k — 6) 4 1. The theorem is proved.
THEOREM 3. Nil-elements of index 2 in the Mal’tsev algebra over a field of characteristic 0 generate
a locally solvable ideal.

Proof. Let K be the set of nil-elements of index 2 in A4, I be an ideal generated by K, B be an arbitrary
finitely generated subalgebra of I, and {b;,...,br} be some fixed set of generators of B. Since B C I, each

m(s)
of the generators b; can be written in the form b; = Y ai;jX;j, where a;; € K and X;; € Ry(A). The
=1

k
number of different elements a;; of K involved in the representation of b; is equal to m < 3 m(¢). In every
i=1
word b € B*™+1 there is an element a;; € K involved in the representation of b at least 5 times. Therefore,

b = b1 X, where b; € Is(aij) and X € R;(A). In the quotient algebra A = A/H(A), the homomorphic

image &;; of a;; is also a nil-element of index 2, and since A satisfies h = 0, we have I5(a;;) = 0 by Lemma
6. Then b; = 0, b; € H(A), and b € H(A); consequently,

B*™+1 C H(A). (45)

Under the natural homomorphism ¢ : A — A/J(A), the homomorphic image I; of the ideal I is

generated by images of the elements in K, which are nil-elements of index 2 in the quotient algebra A/J(A4),

and since A/J(A) is a Lie algebra, I; is locally nilpotent by the Grishkov theorem in [6]. Because B is

finitely generated, the homomorphic image B; = ¢(B) is a finitely generated subalgebra of I; and, hence,
nilpotent, that is, B} = 0 for some natural n. Then

B™ C J(A). (46)
By Theorem 4 in [14], A satisfies the equality H(A4)J(A)A = 0. Combining (45), (46), and the last equality

yields B¥™+1. B* . B = 0. This implies, in particular, that the algebra B is solvable. Consequently, I is a
locally solvable algebra. The theorem is proved.
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