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N I L - E L E M E N T S  OF I N D E X  2 IN MAL'TSEV A L G E B R A S  

V. T. Filippov* UDC 512.48 

It is proved thai a Mal2sev algebra over an associative commutative ring with I, which contains 

1//6 and is generated by a finite tuple of nil-elements of index 2, is nilpotent, and that an ideal 

of the MaUtsev algebra over a field of characteristic O, generaled by nil-elements of index 2, is 

locally solvable. 

An element a in an ant icommutat ive  algebra A is called a nil-element of index 2 if (xa)a = 0 for any 

~ :EA.  

The weaker version of Burnside's problem for a prime exponent was dealt with by Kostrikov in [1]. 

One of the key results used in solving that  problem is Theorem 3 of [1], which states that  an Engelian Lie 

algebra of index n over a field of characteristic p > n, generated by a finite tuple of nil-elements of index 2, 

is nilpotent. 

Let i be an associative commutat ive  ring with unity 1, containing 1/6. Zelmanov in [2] proved that  

a Lie if-algebra generated by a finite tuple of nil-elements of index 2 is nilpotent,  thereby strengthening 

Kostrikov's result. In Sec. 2 of the present article, that  result is fully extended to Mal ' tsev if-algebras, 

namely, we prove that  a Mal ' tsev if-algebra generated by a finite tuple of nil-elements of index 2 is nilpotent 

(Thm. 2). In so doing, essential use is made of a function f ,  which we brought in sight earher (see [3, 4]), 

in order to construct alternative enveloping algebras for some Mal'tsev algebras. Incidentally we prove that  

an algebra /~(A) generated by restrictions of right multiphcations to the fully invariant ideal F(A)  of an 

arbi trary Mal ' tsev if-algebra A, generated by the function f ,  is locally nilpotent (Thm. 1), and tha t  it is 

nilpotent provided that  A is finitely generated (Cot. 1). 

Note that  Zelmanov and Kostrikov in [5] gave a complete solution to the problem concerning the 

nilpotency of a Lie ring generated by a finite tuple of nil-elements of index 2, by removing the last restrictions 

on its additive group. The question of whether an analog of this result is true for Mal ' tsev rings is still not 

settled. 

Grishkov in [6] showed that  an ideal of a Lie algebra generated by nil-elements of index 2 over a field of 

characteristic 0 is locally nilpotent. In this article, we use that result to prove tha t  an ideal of  a Mal ' tsev 

algebra generated by nil-elements of index 2 over a field of characteristic 0 (Thm.  3) is locally solvable. 

The question remains open as to whether the full analog of Grishkov's theorem apphes in Mal ' tsev 

algebras - -  in other words, is it true that  an ideal of an arbitrary Mal' tsev algebra generated by nil-elements 

of index 2 over a field of characteristic 0 is nilpotent? 
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1. I D E N T I T I E S  IN F I N I T E L Y  G E N E R A T E D  M A L ' T S E V  A L G E B R A S  

For convenience, in what follows, we drop brackets from right-valued products and, unless otherwise 

stated, use A to denote an arbitrary Mal'tsev ,l~-algebra, where ,1~ is an associative commutat ive ring with 

1, containing 1/6. 

We introduce the following notation: J(z ,  y, z) = zyz  + z zy  + yzz  is a Jacobian of elements z, y, and 

z, {z,  y, z}  = zyz  - z zy  + 2z(yz), and y ~  is a differential substitution operator. 

Following [7] and [3], define the functions on A by setting 

0 
h(y, z, t, u, z) = u-~z [{yz, t, z } z  + {yz, z, z}t], 

~(y, ~, t, v, ~,, ~) = ~ , ~  [{z(y,  z, ~), t, ~}~  + {.r(y, ~, v), z, ~}t],  

s(~,  y, t, ~, b) = - { J ( t ,  a, b), ~, y}  - {J(y ,  a, b), t, z}  + {J(~ ,  ,~, b), y, t},  

y ( z , y , t , ,~ ,b ,~ )  = S ( z , y , t , ~ , b ) ~  - S(z~,  y , t ,~ ,  b). 

By definition, the functions h, g, and ff are symmetric in u and z, and the following identity holds: 

2h(y , z , t , u , z )  = h(y ,z , t ,  u + z ,u  + z ) -  h(y ,z , t ,  u,u) - h ( y , z , t , z , z ) .  

Similar identities hold also for g and ~. It is known [8, 7] that the function h is skew-symmetric in y 

and z, g and .~ are skew-symmetric in y, z, t, v, and the following identity holds: 

9 ( y , z , t ,  v , ~ , ~ )  + ~ (y , z , t ,  , , ,~,~)  = o. (1) 

For any function f ( z ,  y, z , . . . ) ,  define the operator 5(z, y, z) by setting 

6(~, u, z )y (~ ,  y, z , . . . )  = f (~ ,  y, z , . . . )  + f ( z ,  ~, y , . . . )  + f (u,  z, ~,...). 

Denote by H(A),  G(A), and F(A) fully invariant ideals of A generated by all elements h, g, and f ,  

respectively. 

We know from [3] that G(A) C_ F(A) C_ H(A).  Moreover, if A is a free Mal'tsev algebra on k > 5 free 

generators, then G(A) # 0; consequently, F(A) # 0; see [7]. 

Let Hi(A),  GI(A),  and FI(A) be ff-submodules of the if-module A generated by all elements h, g, and 

f ,  respectively. 

On A, the equalities H(A) = Hi(A),  G(A) = GI(A), and F(A) = FI(A) hold (cf., resp., Lemma 2 in 

[8], CoL 1 in [9], and Lemma 2 in [3]). 

On A, the following identities hold (see [10]): 

2J(~,  ~, ~)t = ~(~, y, z )J ( t ,  zy ,  ~), (2) 

h(J (a ,b ,c ) , y , z ,u ,x )  = 15(a,b,c)g(ab, c ,y , z ,u ,  zz), (3) 

h(y, z, J(~,  b, c), ~, ~) = - ~6(~, b, c)~(~b, c, y, z, ~, ~), (4) 

{~,y, z) = -{~ ,  ~, y), (5) 
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{~, y, ~} + {z, ~, y} + {y, ~, ~} = 0, (6) 

{y~, y, ~} = 0, (~) 

z ( { ~ , ~ , z } , t , ~ )  = {~(~ , t , , ) ,~ ,  ~} + {~,~(y, t , ,~) ,z}  + {~ , y , J ( z , t , ~ ) } ,  (s) 

{y,  t, ~}~ = {~ , t~ ,  ~}. (9) 

L E M M A  1. An algebra A satisfies the identity 

2h(y , t , z , J (a ,b ,c ) , z )  =~(a,b,c)[ f (z ,y , t ,  ab, c , z )+g(ab,  z , y , c , t , z ) + g( ab ,  z , t , c ,y , z )] .  (10) 

Proof .  

(s), ~ .d  again (9), we oStain 

l h(y, z, t, z, ~) = {yz,  t, z } z  + {yz,  z, z } t  = {yz, t, z}z - {yz, z, t}z+ 

0 0 z 0 
z z z-~z{yz, t, ~ { y ~ ,  z, ~}t = {yz,t ,  ~}~ + {y~, t, z}~ + ~ { y  , z, ~}t = z}~+ 

a a 0 a 
z -~z z z -Z.Tz{tZ, y, -~{yz ,  z, t}t = - z  {tz, y, z}z  + -~{y ,z , t} t  = z } z +  

�9 ~  zt, ~ }  = - { t ~ ,  y, ~}~ - {t~, y, ~}~ + {~, zt, y~} + {t, ~ ,  y~} = 

{t, zz,  y~} + {tz, z, y}z  + [-{t~, y, ~}~ + {~, y~, t~}] = {t, z~, y~} + {t~, ~, y}z.  

Consequently, A satisfies the identity 

Applying (in this order) the definition of S, (6), double (8), identity (5), and again (6), we obtain 

s(~,  y, t, a, b) = - { J ( t ,  a, b), ~, y }  - { J ( ya ,  b), t, z }  + {J(~,,~, b), y, t }  = 

- { 1 ( y ,  a, b), t, z} - {~, J(z,  a, O, y} - {y, t, J(z,  ~, O} = 

- [J ( t ,  ~, O, z, y} + {t, J(z,  a, b), y}] - [{J(y, a, b), t, ~} + {y, t, z(~, ~, 0}] = 

[ { t ,  ~, J (y ,  a, b)} - z( { t ,  ~, y}, ~, b)] + [{y,  J( t ,  ,~, O, ~}  - J ( { y ,  t, ~},  a, b)] = 

{t ,  ~, J (y ,  a, b)} - {y,  ~, J(t, ,~, b)} - J ( { t ,  ~, y}  + {y, t, z} ,  ,~, b) = 

{t, ~, J(y,  ~, b)} - {y, z, J( t ,  ~, b)} + J({z, y, t}, ~, b). 

Further, denote the Jacobian J(a, b,c) by J. In view of (12) and (2), 

,~(~, b, ~)s(z, y, ~,,~b, ~) = ~(a, b, ~){t,  z, J (y ,  ,~b, ~)} - 

6(a, b, ~){y, z, J( t ,  ~b, ~)} + 6(a, b, ~)J({~, y, t}, ~b, ~) = 

2{t, z, Jy} - 2{y, ~, Jr} - 2J{~, y, t} = -2[{~, z, ~ }  - {~, z, t~} + {~, ~, t}~]. 

Linearizing (11) w.r.t. ~ (and then cancelling by 2) yields the identity 

~(y, z, t,,,, ~) = {t, z,~, y~} + {t, ~ ,  y,~} + {t,,, z, ~}~ + { ~ ,  z, y},,. 

Applying (in this order) the definition of h, (5), identity (7) linearized w.r.t, y, and then (9), 

It follows that 

h(y, t, ~, :, z) : {~, t: ,  yz} + {~, tz, y J}  + {~J, t, y}z + {~z, t, y}.r. 

(11) 

(12) 

(13) 

(14) 
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Applying (in this order) (13), (14), double (9), and (5) gives the following: 

~(~, b, c)S(z~, y, t, ~b, c) + 2h(y, t, ~, S, z) = -2[{t ,  z~, y J}  - {y, z~ , tS}  + 

{z~ ,y , t } J ]  + 2[{~,tJ,  yz} + {~. tz .yJ} + {~J, t ,  y}~ + {~z , t , y}J ]  = 

-2[{t ,  ~ ,  y.r} _ (y, z~, t J}  - (~, ty, yz} - (~, ~ ,  y J}  - {~.r, t, y}z] = 

- 2 [ - ( ~ ,  ~t, ~ ] }  + 1 s  z~, y J}  + {~, zy, ~Jt - y s  = , t  J}  - 

(~,tJ,  u~} - {~,tz,  u J}  - {~J, t, u)z] = - 2 [ - { ~ ,  zt, u J )  + 

.[:~, ~z, y J}  - {~.7, t, y}z] = - 2 1 t ~ { y . , ,  ~, :~}~ - y o~{t.T, ~, ~}~ - 

(~.r, t, y}~] = -2[{~.r, ~, ~}~ + (y.r, ~, ~,}t - { t z  ~, y}~ - ( t  J, ~, ~}y - {,~.r, t, y}z]. (15) 

On the other hand, by the definition of S and in view of (2), 

~(~, b, c)S(z, y, ~, ~b, c}~ = 6(~, b, ~ ) [ - ( 4 1 ,  ~b, ~), z, y}~ - 

{J(y, ab, c),t, z Iz  +{J(z ,  ab, c),y, t}z]= -2[-{ tJ ,  z,y}z - { y J ,  t . , z Iz+{zJ ,  y,t}z]. (16) 

If we subtract (15) from (16), use (5), collect similar terms, and then apply the definition of f to the 

left-hand side of the above identity, we have 

5(a, b, c)f(z, y, t, ab, c, ~) - 2h(y, t, z, J, z) = 2[{z J, t, y}z + {y J, z, z}t - {t J, z, z}y - {z J, t, y}z]. (17) 

By the definition of g, using (5) and collecting similar terms, we obtain 

~(~, ~,~,b,t ,  ~) + O(~,~,~,b,~,~) = (J(~, ~ ,b) ,y , t )z  + {J (~ ,~ ,b ) , y , z ) t+  

{ ] ( a ,  t, b), ~, z}y + {J(~,  z, b), ~, t}y + {J(,~, ~, b), t, y}~ + {J(~,  ~, b), t, ~}y+  

( J (~ ,  y, b), z, ~) t  + {J(~,  ~, b), z, ~)t  = -{ .r(~,  ~, b), t, ~ ) ~ -  

( : ( ~ ,  ~, ~), ~, ~}t + ( : ( t ,  ~, ~), z, ~}~ + { : (~ ,  ~, ~), ~, ~)~. 

From this, in view of (2) and (7), 

~(,~, ~, ~)[O(~, ~, ~, c, t, z) + 0 ( ~ ,  ~, t, c, ~, ~)] = ~(~, ~, ~)[-{.r(z ,  ~ ,  ~), t, ~ } ~ -  

{.r(~, ~ ,  ~), z, ~}1 + { : ( t , , ~ ,  c), z, ~}~ + {~(~, ~ ,  c), 1, ~)~] = ~[{zJ, 1, ~ ) ~ +  

{ ~ ,  ~, ~) t  - {t] ,  z, ~)~ - ( ~ ,  t, ~}~] = ~(~, ~, ~)f(z, ~, 1, ~ ,  ~, ~) - ~h(~, t, ~, ~, z). 

Then, by (1), the following identity holds: 

-6 (~ ,  ~ ,c ) [~(~ ,  ~, ~,~,~, ~} + ~(~,z ,~ ,~,~,~) l  = ~(~, ~, c) ; (z ,  ~,~, ~ ,  c, ~) - 2h(~,~, ~, J, z), 

whence (10). The lemma is proved. 

Let J(A) and J(A, A, A) be, respectively, an ideal of A and a q,-submodule of the ~-module A, generated 

by all Jacobians of A. 

In view of (2), 

J(A) = J(A, A, A). (18) 

L E M M A  2. If at least one of the elements z, y, z, t, or u of A lies in J(A), then h(y, z, t, u, z) ~ F(A). 
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Proof .  By (18), to prove the lemma, it suffices to show that [in view of the function h(y, z, t, u, z )  being 

skew-symmetric in y and z and symmetric in u and z] for any a, b, c, z ,  y, z, t, u E A, 

h(y(~, b, c), z, t, ~, ~) e F(a) ,  (19) 

h(y, z, J(a,  b, c), u, z)  e F(A) ,  (20) 

h(y,  z, t, Y(a, b,c), z) e F(A) .  (21) 

Occurrences (19)-(21) follow from identities (3), (4), (10) and from G(A) C F(A). The lemma is proved. 

Denote by Rx(A)  a subalgebra of the endomorphism algebra of the e-module A, generated by the 

identity map [ and by all right multiplication operators R~, x E A. A multiplication algebra R ( A )  of A is, 

as usual, a subalgebra of the algebra RI (A) ,  generated by all operators R~, z G A. 

L E M M A  3. Let C be an arbitrary finitely generated subalgebra of the algebra A and k the number 
of generators for C. Then 

f ( z , y , t , a , b , z ) X z l . . . z k + l Y y l  . . . y~+lZzx  . . . zk+l  = 0 

for any z ,  y, z, t, a, b E A, X ,  IF, Z E RI (A) ,  zi ,  Yi, zi E C, i = 1 . . . .  , k + 1. 

Proof .  By Lemma 3 in [11], 

(22) 

g ( y , z , t , v , z , z ) X z l . . ,  z k+ lYy l  . . . yk+l  = 0 

for any z ,  y, z, t, v E A, X ,  Y E RI (A) ,  zi, Yi E C, i = 1 , . . . ,  k + 1. Therefore, it suffices to show that  

f(~, u, t,,~, b, ~,)X~,~... ~+1 e c ( a )  (23) 

for arbitrary z , y , z , t , a , b  E A, X E RI (A) ,  z l , . . . , z ~ + l  E C. 

Let A satisfy the identity g ( y , z , t , v , z , z )  -- 0. By Lemma 3 in [3], then, the function f ( z , y , t , a , b , z )  in 

A is skew-symmetric in all of its arguments, and the following identity holds: 

2 f ( z ,  y, t, a, b, z )w  = - 3 f ( z w ,  y, t, a, b, ~). 

For w = z, (24) implies the identity 

f ( z , y , t , a , b , z ) z  = O. 

In view of (24), the skew-symmetry of f ,  and (25), 

(24) 

(25) 

3 7 ( ~ z , y , t , a , b , z )  =- - 2 f ( ~ , y , t , a , b , z ) z  = 2 f ( z , y , t , a , b , z ) z  =- O. 

Consequently, 

f ( z z , u , t , a , b , z )  = O. 

Applying (in this order) (24), (26), (24), the skew-symmetry of f ,  and (26), we ob ta in  

4 f ( z ,  y, t, a, b, z )w  2 = - 3 . 2 f ( z w ,  y, t, a, b, z )w  "-- 9 f ( z w  2, y, t, a, b, z)  -= 

9(z~0) ~  u, t, ~, b, ~) - 9 f ( ~ ,  u, t, o, b, z~ )  = - 9 7 ( ~ o ,  v, t, ~, b, z~o) = 

9 f ( w z ,  y, t, a, b, zw)  = - 3 . 2 7 ( w ,  y, t, a, b, zw) z  = 3 . 2 f ( z w ,  y, t, a, b, w ) z  = O. 

(26) 
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Consequently, 

f ( z ,  y, t, a, b, z )w 2 = 0. (27) 

Since F(A)  coincides with the q,-submodule FI(A) of the r A, generated by all elements of the 

form f ( z ,  y, t, a, b, z),  using (27) we have 

f ( z ,  y, t, a, b, z ) X w  2 = 0 

for any X E Rx(A). 

(2s) 

In view of (25) linearized w.r.t, z and identity (27), 

f ( z ,  y, t, a, b, x ) (vw)z  = - f ( v w ,  y, t, a, b, z)z 2 = 0. (29) 

From (29) and (25) linearized w.r.t, z, we have 

2f(z ,  y, ~., a, b, z ) (vw)u : - 2 f ( u ,  y, t, a, b, z ) (vw)z  = 

3f(u(vw),  y, t, a, b, z)z : - 3 f ( v w u ,  y, t, a, b, z)z  : 3f(z ,  y, t, a, b, x)(vwu).  (30) 

In view of (29) and (25) linearized w.r.t, z and combined with (26), 

f ( z ' y~ t~a 'b ' z ) (vw)v  ~ -f(v~y~t~a~b~z)(vw)z ~ f(vw~y~t 'a~b'z)vz ~ - f ( v w ~ y ' ~ a ~ b ~ v ) z z  ~ ~. (31) 

Denote f ( z ,  y, t ,a, b, z) by f .  In virtue of (31) and A being anticommutative, the function f ( v w ) u  is 

skew-symmetric in v, w, and u. From (28), we have 

f u v w = U ~ v f V 2 w -  f v u w = - - f v u w = - u ~ ' ~ - ' ~ f v w 2  + f v w u =  f v w u .  (32) 

Recall that  A satisfies the Sagle identity [12]: 

zyz t  + t zyz  + z t zy  + yztz  = zz(y~). (33) 

Applying (33) and (32), then (27) linearized w.r.t, w and the skew-symmetry of f ( v w ) u  in v, w, and u, 

we obtain 

f(v~o=) = - v ~ = f  = fv~o= + u f v w  + w = f v  - v = ( w f )  = 

f v w u  - f u v w  - f (wu)v  - fw(vu)  = - f ( w u ) v  - fw(vu)  ----- 

- - f (wu)v  + f ( vu )w  = f (wv )u  -- f ( vw)u  = - 2 f ( v w ) u .  

This and (30) yield the identity 

f ( z , y , t , a , b , z ) ( v w ) u  = O. 

Identity (27) linearized w.r.t, w can be combined with the latter to give 

/ ( z ,  y, t, a, ~, ~)~(vw)  = - f ( z ,  y, t, a, b, ~ ) ( ~ ) ~  : O. 

The last two identities and the equality F(A)  = FI(A) produce 

f ( z , u , t , a , b , z ) X ( v w ) u  = O, f ( z , y , t , a , b , z ) X u ( v w )  = 0 (34) 

for any X E RI(A).  
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Let u = f ( z , y , t , a , b , z ) X z l . . . Z k + l ,  where z , y , z , t , a ,  bE A, X E RI(A) ,  Z l , . . . , z k + l  E C. In view of 

(28) linearized w.r.t, w, the function u is skew-symmetric in 3 1 , . . . ,  zk+l. If we appeal to equalities (34) we 

may assume 3 1 , . . . ,  zk+l to be generators of the subalgebra C. However, since the number of generators of 

C is equal to k, among the elements 31, . . . ,  Zk+l, there are at least two that coincide. Then, however, since 

u is skew-symmetric in 31 , . . .  ,zk+l,  we have u = 0. In the algebra A with g : 0, therefore, the equality 

f ( z ,  y, t, a, b, z ) X ~ l . . .  XkA_ 1 = 0 holds. And then an arbitrary Mal'tsev algebra A satisfies (23) and, hence, 

(22). The lemma is proved. 

Lemma 3 immediately implies 

P r o p o s i t i o n  1. Every finitely generated Mal'tsev O-algebra (1/6 E O) on k generators satisfies the 
identity 

f ( z ,  y, t, a, b, z ) w l  .. . w3~+3 = 0. (35) 

In Theorem 1 of [11], we proved that  the subalgebra R(A) of the endomorphism algebra of the O-module 

G(A) is locally nilpotent if generated by all restrictions of right multiplication operators to the ideal G(A).  

From Lemma 3, we can derive a stronger result, which - -  though not used below - -  still is of independent 
interest. 

Let J~  be a restriction of the operator Rx to the ideal F(A).  Denote by /~(A) a subalgebra of the 

endomorphism algebra of the O-module F(A) ,  generated by all operators / ~ ,  z E A. The action of A on 

the ideal F ( A )  is described by the following: 

T H E O R E M  1. If A is an arbitrary Mal'tsev O-algebra (1/6 E O), then the algebra /~(A) is locally 
nilpotent. 

The p r o o f  follows essentially the same line of argument as was used to prove Theorem 1 in [11] (but 

here we refer, not to Lemma 3 in [11], but to the present Lemma 3). 

From Theorem 1, we obtain the following analog to Corollary 1 in [11]. 

COI: tOLLAP~Y 1. If the Mal'tsev O-algebra A (1/6 E O) is finitely generated, then the algebra -~(A) 
is nilpotent. 

The p r o o f  is similar to that of Corollary 1 in [11]. 

Note that  if A is a free Mal'tsev algebra on a countable set of generators, then the algebra J~(A) is not 

nilpotent. This follows from Lemma 4 in [l l l ,  and from G(A) c_ F(A) .  

L E M M A  4. Let C be an arbitrary finitely generated subalgebra of A and k the number of generators 

for C. Then 

h(y, z, t, u, z ) X x l . . ,  z k + l Y Y l . . ,  y~+lZZl . . ,  zk+l = 0, (36) 

if at least one of z, y, z, t, u lies in J(A) ,  X,  Y, Z are arbitrary elements of RI(A) ,  and zi, y~, z~ are ones of 

C, with i = 1 , . . . , k  + 1. 

P r o o f .  If at least one of z, y, z, t, u lies in J(A),  then h(y, z, t, u, z)  E F (A)  by Lemma 2. Then (36) 

follows from (22). The lemma is proved. 

Below we need the following identity: 

h(y, z, t, u, z )v  = h(yv, z, t, u, z)  + h(y, zv, t, u, z) + h(y, z, iv, u, z) + h(y, z, t, uv, z )  + h(y, z, t, u, zv) ,  (37) 

which is satisfied in A; see Lemma 1 in [8]. 

L E M M A  5. If C is an arbitrary finitely generated subalgebra of A, k is the number of generators for 

C, and the quotient algebra A = A / J ( A )  is nilpotent of index n, n >_ 2, then 

h ( y , z , t , u ,  Z)Vl. . .  v s , , -0XZl . . ,  z ~ + l Y y l . . . y ~ + l Z z l . . ,  zk+l = 0 (38) 
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for any x, y, z, t, u, vl . . . .  , vs,~-o E A, X, Y, Z E RI(A),  zi, y,, zi E C, i = 1 , . . . ,  k + 1. 

P r o o f .  By assumption, A n C J(A).  Applying identity (37) ( 5 n -  9) times, we obtain the equality 

. . .  = Z h(y,,z,,t,, 
i 

where in each of the summands h(y{, zi,ti ,  ui, zi), at least one of Yl, zi,ti ,  ui, zi lies in A'~; consequently, it 

also lies in J (A)  since A" C J(A).  This and (36) yield (38). The lemma is proved. 

C O R O L L A R Y  2. If  the Mal' tsev O-algebra A (1/6 E O) is finitely generated, k is the number  of 

its generators, and the quotient algebra A = A / J ( A )  is nilpotent of index n, n _> 2, then A satisfies the 

identity 

h(y, z, t, u, z)vl  . . . vS,~+ak-6 ---- 0. (39) 

2. N I L - E L E M E N T S  O F  I N D E X  2 

Let a be a nil-element of index 2 in A, Ua be an ideal of A, generated by an element a, and B = 

J(Aa,  a, A) be a @-submodule of the O-module A, generated by all elements of the form J ( z a ,  a, y), where 

z , y E  A. 

In [13, Lemma 3], it was proved that  if A satisfies the identity h = 0, then B is an ideal of A, and the 

following equality holds: 

BUa = 0. (40) 

For any n >_ 2, denote by I,,(a) a O-submodule of the O-module A, generated by all elements of the 

form a X I ( a Y I ) X 2 . . .  (aY,,-2)X,,-1(ar,,-1),  where Xi, Yi E RI(A), i = 1 , . . . ,  n -  1. 

The next l emma is a generalization of Proposition I in [13]. 

L E M M A  6. If an algebra A satisfies the identity h = 0 and a is a nil-element of index 2 in A, then 

15(a) ---- 0. 

P r o o f .  Let X and Y be arbitrary elements in RI(A).  By (40), d(Aa, a ,A ) ( a Y )  = 0. Since B is an 

ideal of A, the latter equality implies 

J(Aa,  a, A ) X ( a Y )  = 0. (41) 

Recall (see, e.g., [13, p. 544]) that  RI(A) satisfies 

R~y. = R=RvR. - R ,R=R v - Rv, R .  - RvR~,,  (42) 

via which the operator R~x,  for any X E RI(A),  can be represented thus: 

Rax = E Xi lRaYil  + E X,2Raz,Yi2, (43) 
i i 

where zl E A, Xi l ,  Yil, Xi2, Yi2 E RI(A).  

Now let A satisfy the equality J(Aa, a, A) = 0. From relations (16) and (17) in [13], it then follows that  

a Z a X ( a Y ) t  = O, aZa(az )X(aY) t  -7-- 0 (44) 

for any z , t  E A and X , Y , Z  E RI(A).  

Consider an element of the form # = aXl(aY1)X2(aY2)t, where Xi,Y} E R~(A), i = 1,2, t E A. 

Since # = aX~R~y, X2(aY2)t, applying (43) to the operator Ray, and using (44), we have the equality 
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aX1(aY1)X2(aY2)t = 0. From this, in particular, we obtain aXI(aYI)X2(aY2)X3(aY3) = 0, where Xi,  Y~ E 

hi (A) .  
Consequently, in the Mal ' tsev algebra with h = 0, aXI(aYI)X2(aY2)X3(aY3)X4 E B. In view of (40), 

A then satisfies the equality 

aXI(aYI)X2(aY )X3(aY3)X,(aY4) = O, 

that  is, Is(a) = 0. The lemma is proved. 

T H E O R E M  2. A Mal ' tsev ~-algebra A (1/6 E ~)  generated by a finite tuple of nil-elements of index 

2 is nilpotent.  

P r o o f .  Let a l , . . . , a k  be generating nil-elements of index 2 in A. The quotient algebra Ji = A / J ( A )  

is a Lie algebra generated by homomorphic images a l , . . . ,  ak (under the natural  homomorphism A --+ .4), 

which are its nil-elements of index 2. By Theorem 1 in [2], A" = 0 for some n. We may assume tha t  n _> 2. 

But, by Corollary 2, A then satisfies identity (39). 

Let w be an arbi t rary  word in A 4/c+I. Since A has k generators al, i = 1 , . . . ,  k, there exists a generator 

as that  occurs in the representation of w at least 5 times. Therefore, w E 15(a~). Lemma 6 implies that  

Is(a,) C_ H(A).  Consequently, w E H(A), A 4/c+1 C H(A). By (39), A then satisfies the equality 

(...  (A = 0. 

5n-F3k-6 

From this, in particular,  we have A (5'~+w'-s) ---- 0. Using this equality and (42), we easily infer tha t  A is 

nilpotent of index rn, where m < 2(5n -F 7k - 6) + 1. The theorem is proved. 

T H E O R E M  3. Nil-elements of index 2 in the Mal' tsev algebra over a field of characteristic 0 generate 

a locally solvable ideal. 

P r o o f .  Let K be the set of nil-elements of index 2 in A, I be an ideal generated by K, B be an arbi t rary  

finitely generated subalgebra of I ,  and {b l , . . .  , b/c} be some fixed set of generators of B. Since B C_ I ,  each 
,~(~) 

of the generators bi can be written in the form bl -- ~ aijXij, where aij E K and Xij E RI(A) .  The 
j = l  

k 
number of different elements aij of K involved in the representation of bi is equal to m <_ ~ re(i). In every 

word b E B 4'~+1, there is an element ali E K involved in the representation of b at least 5 times. Therefore, 

b = b~X, where bx E Is(nay) and X e RI(A). In the quotient algebra A = A /H(A) ,  the homomorphic  

image ao" of aij is also a n•element of index 2, and since .4 satisfies h = 0, we have Is (a l / )  = 0 by Lemma  

6. Then bl "= O, bl E H(A),  and b E H(A);  consequently, 

B 4"~+1 C_ H(A). (45) 

Under the natural  homomorphism ~o : A ---* A/J(A) ,  the homomorphic image I1 of the ideal I is 

generated by images of the elements in K,  which are nil-elements of index 2 in the quotient algebra A/J (A) ,  

and since A / J ( A )  is a Lie algebra, I~ is locally nilpotent by the Grishkov theorem in [6]. Because B is 

finitely generated, the homomorphic image B1 -- ~0(B) is a finitely generated subalgebra of I1 and, hence, 

nilpotent, that  is, B~' -- 0 for some natural  n. Then 

B '~ C_ J(A). (46) 

By Theorem 4 in [14], A satisfies the equality H(A)J (A)A  = 0. Combining (45), (46), and the last equality 

yields B 4m+1 �9 B '~ �9 B = 0. This implies, in particular, that  the algebra B is solvable. Consequently, I is a 

locally solvable algebra. The theorem is proved. 
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