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MaxeM. C60DHHK Math. USSR Sbornik
TOM 124(166) (1984), Bun. 3 Vol. 52(1985), No. 2

LIE ALGEBRAS WITH A FINITE GRADING
UDC 519.48

E. I. ZEL'MANOV

ABSTRACT. In this paper the simple (infinite-dimensional) Lie algebras with a finite
nontrivial Z-grading are described, under certain restrictions on the characteristic of the
field.

Bibliography: 31 titles.

Introduction
1°. Main results. Let Ζ be the ring of integers. By a Z-grading of the algebra A we mean

a decomposition of this algebra into a sum of subspaces, A = Σ/εΖΛ,-, such that AfAj c

Ai+J. The grading is finite if the set {/ e Z\A,Φ 0} is finite. The grading is nontrivial if

Σ,# 0Λ, Φ 0. The goal of this paper is a description of the simple (infinite-dimensional) Lie

algebras with a finite nontrivial Z-grading under certain restrictions on the characteristic

of the field.

THEOREM 1. Suppose =£?= E"n=Sf, is a simple graded Lie algebra over afield of characteris-

tic at least 4« + 1 (or of characteristic 0) and Σ,# 0°^Ί ^ 0· Then £Cis isomorphic to one of

the following algebras:

I. [/?'"', R(~^]/Z, where R = T."_nRiis a simple associative Z-graded algebra and Ζ is the

center of the commutant [R(~\ /?'"'].

II. [K(R, *), K(R, *)]/Z, where R = L".nR, is a simple associative Z-graded algebra

with involution *:R^>R,R* = Rt, andK(R, *) = {a e R\a* = -a}.

III. The Tits-Kantor-Koecher construction of the Jordan algebra of a symmetric bilinear

form {see 2°).

IV. An algebra of one of the types G2, F4, E6, E7, E& or D4.

The isomorphism in cases I and II preserves the grading, i.e. is a graded algebra

isomorphism.

We can consider a more general situation. Suppose Λ is a torsion-free Abelian group

and A = Σα<ΞΑΑα is a Λ-graded algebra. As above, the grading is finite if the set

M' = {a e A\Aa Φ 0} is finite, and is nontrivial if ΣαΦ0Αα Φ 0. Examples of finite

gradings:

1) Suppose =S? is a Lie algebra over a field of characteristic zero and Γ is a split torus.

Then the decomposition of ££ into a sum of weight subspaces relative to ad(r) is a finite

grading.
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348 Ε. Ι. ZEL'MANOV

2) From any Jordan algebra (Jordan pair) we can construct, by means of the Tits-

Kantor-Koecher construction, a Z-graded algebra of the form££ = S£_x + JSP0 + JSP15 JSP( = 0

for |i | > 1 (see [4]-[7] and 2°).

3) From any /-ternary algebra we can construct a Z-graded Lie algebra of the form

se= se_2 + JSP., + <eo + yl+ se2, <e, = o for |/| > 2 (see [8]-[io]).
We may assume without loss of generality that the group Λ is generated by the set A/'.

The elements of Λ can be represented by lattice points in an r-dimensional real space (/-is

the rank of the group Λ). Let Μ denote the set of all lattice points in the convex hull of

the set M'. We will say that the Λ-graded algebra A = Σα<=ΑΑα is M-graded if Aa = 0 for

α <ί Μ and if A = Y.aeMAa. By the width of the set Μ we will mean the number

d(M) = πύη{ |φ(Λθ |φ e Hom(A,Z),<p Φ θ} .

THEOREM 2. Suppose Jz?= Σ Λ ε Μ ^ α is a simple M-graded Lie algebra over a field of

characteristic at least An + 1 (or of characteristic 0) αηάΥ.αΦ0£'α Φ 0. Then £P is isomorphic

to one of the following algebras:

I. [/?'"', R{~^]/Z, where R = T.asMRa is a simple associative M-graded algebra.

II. [K(R, *), K(R, *)]/Z, where R = T.aeMRa is a simple associative M-graded algebra

with involution *: R -> R, R* = Ra.

III. The Tits-Kantor-Koecher construction of the Jordan algebra of a symmetric bilinear

form.

IV. An algebra of one of the types G2, F4, E6, ΕΊ, Ε% or D4.

In cases I and II the isomorphism preserves the M-grading.

Following Weil [11], we will call an associative algebra R with an involution *: R -* R

an involutory algebra. With an involutory algebra (R, *) are associated the Lie algebras

K(R,*)= Κ and K'(R, *) = [Κ, Κ]/Ζ([Κ, Κ]).
An involutory algebra (R, *) is graded if the associative algebra R = Σα<ΞMRα is graded

and R* = Ra, a e M.
An involutory algebra (R,*) is simple if the algebra R contains no proper *-invariant

ideals. It is easy to see that in this case R either is simple or is a direct sum of two ideals,

R = / θ / *, where / is a simple algebra.

Cases I and II of Theorems 1 and 2 can be combined by considering the algebra

K'(R, *) of a simple graded involutory algebra (R, *) .

If X c ££ is a subset of the Lie algebra S£, then we denote by S£(X) the subalgebra

generated by the set X, and by \ά^( X) the ideal of £C generated by X.

As usual, we denote by ad(a), a e i f , the operator ad(a): J ^ B Χ -* [χ, a], and by

[ax, a2,...,an] = αίΆά(α2) • • • ad(a n )

the right-normed commutator of the elements al,...,an.

Even if we do not say so explicitly, we will assume that graded algebras JS?= Σ"_η^ are

considered only over fields of characteristic at least An + 1 or of characteristic 0.

2°. Jordan pairs and algebras. The Tits-Kantor-Koecher construction. Of particular

interest is the short Z-gradingJS?= S?^ + J?Q + £CV In this case the pair of subspaces .£?_!,

JSP1 with the action on each other by the rule

(.SP.,, JS?!, X_x) 3 (χ_ ΐ 7 Λ , ζ . ,) -» {x_u Λ , ζ_λ) = [*_!, Λ , ζ_χ] e JSP.!,

(JSP,, JSP.!, JSP,) 3 (x,, y_1; z x) - {*!, ^ , 2 l } = [ Λ ι , y_lt Zl] e JSP,
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is studied independently of the Lie algebra i ? (see [12]) and is called a Jordan pair. More

precisely, a Jordan pair is a pair of spaces (V~,V+) with operations (F~, F + , F"~)3

(JC-, y+, z") -» {*-, j + , z"} e V- and ( F + , K", F+) 3 (*+, >r, z+) -» {x+, y, z+} e F +

satisfying the identities

(JP1) [x°, y", {x°, z~°, x"}} = {x", {y~°, x°, z~°), x"},

(JP2) {{x°, y-, x"}, y-, z°} = {x°,{y-°, x", y"), z°),

(JP3){{x°, y°, x°), z-",{x°, y-, x'}}={x",{y-, {x°, z - , x°},y-°), x°), a = + ,

and all of their partial linearizations. It is easy to verify (see [12]) that the operations

+ i) + i. ϊτ\\ ζ±\] satisfy these identities.

Any Jordan pair can be obtained by the method described above. Indeed, for elements

a * ^ V± we define an operator L+(a~, a+): V+3 χ + -> [χ+, a', a+}. The subspace of

E n d o ( F + ) spanned by the operators L+{a~, a+), a ± e V±, is closed under commutation.

We define the operator L_(a~, a+): V~^> x~^> {x~, a+,a~} analogously. Consider the

space of matrices

K(V) = ,af,a

with commutation

0
b~

0 0 0

The algebra K{V) is a Lie algebra, which is called the Tits-Kantor-Koecher construction of

the Jordan pair V. Obviously K(V) = K(V)^ + K(V)0 + K(V\, where Κ(ν)_γ =

(ν- ο) and

κ(ν)0 =

0

K{V)X =
0 0

The concepts of subpair, ideal, and homomorphism for Jordan pairs are defined in the

natural way (see [12]).

A linear algebra is called a Jordan algebra if it satisfies the following identities:

(Jl) xy = yx.

(J2) x\yx) = (x2y)x.

EXAMPLES. 1) An associative algebra R with symmetrized multiplication χ ° y =

\{xy + yx) is a Jordan algebra. 2) If *: R -» R is an involution, then the subspace

{a & R\ a* = a) of Hermitian elements is also a Jordan algebra with respect to the

symmetrized multiplication. 3) Suppose /: Μ Χ Μ -* Φ is a symmetric bilinear form on a

vector space Μ over a field Φ. Consider the direct sum Φ · 1 θ Μ. We define addition and
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scalar multiplication on the direct sum componentwise, and multiplication by the rule

(a • 1 θ α)(β· 1 θ b) = {αβ + f(a, b)) -1 ®(ab + βα).

The resulting linear algebra B(f) is a Jordan algebra and is called the Jordan algebra of
the symmetric bilinear form. If άίτηφΜ > 1 and the form/is nondegenerate, the algebra
B(f) is simple.

Suppose J is a Jordan algebra. We define on the space J a ternary operation
{x, y, z) = (xy)z + x(yz) - (xz)y.

A pair (/", J + ) of isomorphic copies of the algebra /, J = J+= J~, with the action
{ χ ±, y *, ζ *} = {χ, y, ζ}± is a Jordan pair.

Conversely, if (V~, V+) is a Jordan pair and u + e V+, then the multiplication a~ ° b~ =
{a~, v+, b~} defines on F* the structure of a Jordan algebra.

By the Tits-Kantor-Koecher construction of a Jordan algebra we mean the Tits-
Kantor-Koecher construction of the Jordan pair (J~,J+),K(J) = K(J~, J+). In particu-
lar, if J is the Jordan algebra of a nondegenerate symmetric bilinear form on a vector
space of dimension greater than 1 over a field Φ, then the algebra K(J) is simple and
locally finite-dimensional over Φ.

A classification of simple (infinite-dimensional) Jordan algebras was obtained by the
author in [13] and [14], and a classification of simple Jordan pairs and simple Lie algebras
with a short grading J5? = f̂_1 + JSf0 + JSP1 in [15]. The present paper depends essentially on
these results.

We acknowledge the significant influence on the present paper of the ideas of A. I.
Kostrikin [1], [2], [3], J. Tits [4], [5], I. L. Kantor [6], and M. Koecher [7].

The author would like to take this opportunity to thank L. A. Bokut' for his constant
assistance and encouragement, and also A. I. Kostrikin for his great interest in this
research.

§1. Radicals of graded algebras

The results of this section were proved in [16]; hence we omit the proofs.

LEMMA 1.1 (see [16]). If a graded Lie algebraaC= YJl_n£^i contains no nilpotent ideals, then
the sum Σ" ,,-S?, is direct.

Let ad(JS?) = {ad(a)|a e JS?}, and let R(SC) = Lk>1 ad(JS?)* be the associative subal-
gebra of Εηάφ(£(') generated by the set ad(£C).

LEMMA 1.2 (see [16]). Suppose a graded Lie algebra aC= YJ1_n^i is generated by a finite
collection of elements av... ,am e U^o·^/· Then there exists a natural number f(m, n) such
thatR(aC) = E/iTn)ad(.S?y.

An ideal / of a graded algebra S£ is called strong if it is generated (as an ideal) by the set

LEMMA 1.3 (see [16]). A graded Lie algebra <£= Σ1η^, &Ό = Σί[=?_,, =S?J, contains a
maximal strong locally nilpotent ideal Loc(oSP). Any locally nilpotent ideal of the quotient
algebra&= £?/\.οο{£?) lies in^0 Π Z( i?) .

Let Loc(£C) denote the preimage of the center Z(J^) under the homomorphism
&->£?. Obviously, (i) any locally nilpotent ideal of the algebra £C lies in Loc(.£?); (ii)
[Loc(^?), .£?] c Loc(i?); and (iii) the quotient algebra ££/ Loc(^P) contains no nonzero
locally nilpotent ideals.
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The subalgebra<5?_n + [&_„, £Pn] + S£n of SC possesses a short grading, and the pair of

subspaces (•£?_„, £Pn) is a Jordan pair.

LEMMA 1.4 (see [16]). Suppose I = (/_„, /„) is an ideal of the Jordan pair (•&_„, ·&„) and

the quotient pair (=£?_„, &n)/I contains no nonzero locally nilpotent ideals. Then Id_ S P(/+ n)

LEMMA 1.5 (see [16]). Suppose the Lie algebra ££ is simple. Then the Jordan pair

,&„) is simple.

By the centroid F( i?) of the algebra JSf7 we mean the centralizer of the subalgebra

in the algebra E n d $ ( ^ ) . The centroid of the Jordan pair V = (V~, V+) consists of the

pairs (φ", φ + ) e ΕηάΦ(Κ") ® Εηά φ (Κ + ) such that

{ V

± ( a ± ) , b T , c ± } = < p ± ( { a ± , b T , c ± } ) = { a ± , < p T ( b T ) , c ± }

for any elements a ±, b ±, c ± e V±.

If an a l g e b r a ^ (Jordan pair V) is simple, then the centroid Τ(ά?) (T(V)) is a field.

From Lemmas 1.1 and 1.5 we obtain

LEMMA 1.6. If a graded algebra &= ΣΙ^,^Ό = Σχ"[^_,, ^ · ] , is simple, then:

a) r(JSP)JSP, = &„ -n < / < n, and

b) any element of the centroid of the Jordan pair (=£?_„, &„) is induced by the action of an

element of T(SC).

An element a e £C is called the crust of a thin sandwich (see [1] and [3]) if ad(a) 2 = 0. A

Lie algebra that contains no nonzero crusts of thin sandwiches is called strongly nondegen-

erate (in the sense of Kostrikin).

The smallest ideal of 3? for which the corresponding quotient algebra is strongly

nondegenerate is called the Kostrikin radical of ^f and is denoted by K(JiC).

L E M M A J J (see [16]). If£?= Σ"^,, &0 = Σ"_η[^_,, &,], is a graded Lie algebra, then

c Loc(^).

An element a ± e V± of a Jordan pair V = (V~, V+) is called an absolute zero-divisor

(see [17] or [12]) if {a ±, VT, a *} = 0. A Jordan pair containing no nonzero absolute

zero-divisors is called nondegenerate. The smallest ideal of a Jordan pair V for which the

corresponding quotient pair is nondegenerate is called the McCrimmon radical of V and is

denoted by M(V).

LEMMA 1.8 (see [16]). Μ({£?_η, £?„)) c K(V).

LEMMA 1.9 (see [16]). IfSe= ΣΊ^,^Ό = Σ"^.,, Se\, is a graded Lie algebra, then for

any ideal K^we have K(I) = Ι Π

COROLLARY. //, under the conditions of Lemma 1.9, the algebra £P is strongly nondegener-

ate, I4S£, α<^&, and [I, a, a] = 0, then [I, a] = 0.

§2. Special graded Lie algebras

Suppose R = Σ"ηΛ, is an associative algebra with a given finite Z-grading and

Zo c R0C\ Z(R). The grading of R induces finite Z-gradings on the associated algebra

R( ] and on the quotient algebra R()/Za.
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Suppose Se= YT_nSei and &a = !"„[.£?_„ Set\ A homomorphism φ; jSf= Σ"_η^ ->

R^/ZQ is called a specialization if φ ( ^ , ) £ /?(">, / =£ o. The category of specializations of

the graded Lie algebra =S? contains a universal object «: JSf-» U^/ZQ. The graded

associative algebra t/ = w(-S?) = Σ"πί7, is called a universal enveloping associative algebra

ot£f. It is obvious that the algebra U is generated by the set U^owCJ?,); on t/ there acts

an involution * sending the element u(at), ai e «S?;, ;' # 0, into -u(at). We have κ (.£?,•) C

K(U, *),ίΦ 0.

If Ker Μ η JSf, = 0 for ;' # 0, then the graded algebra £C is called special. Otherwise the

algebra £f is called exceptional.

Let Β be the Baer radical of the algebra U. The composition u\ .£?-» U{)/Zo ->

(U/BY~)/Z0 + B/B is called a universal semiprime specialization, and the algebra i/ =

[// a universal semiprime enveloping associative algebra, for J?. If A^(^) = 0, then

J5f, Π Ker Μ = 0 for i Φ 0.

Consider the set X = {xu\-n < i < «,y > 1} and a free associative Φ-algebra Ass(X)

on the generating set X. The algebra Assi^) possesses a Z-grading in which the weight;' is

attached to the generator x,y, Ass( A') = Σ,·<=ζ Ass( X)t.

Let / denote the ideal of Ass(A') generated by the set L|,|>nAss(A') ;. The quotient

algebra Assi^Y, n) = Ass( X)/I is a free associative graded algebra.

Consider the Lie algebra Ass(Jf, «)*"' and the subalgebra S\Ae{X, n) generated by the

elements of X. The algebra SLie( Χ, η) is a free special graded Lie algebra in the sense that

if «SP= Σ " Π ^ is a special graded Lie algebra, then any mapping xtJ -> JS?;., 0 < |/| < n, can

be extended to a homomorphism SLie(X, n) -»JSf. Of course, Ass(X, «) is a universal

enveloping associative algebra for SLie( Χ, η).

On the algebra Ass( Χ, η) there acts an involution *: Ass( Χ, η) -> Ass( Χ, η) sending an

element x ; y e X into -x,7. Consider the Lie algebra of elements that are skew-symmetric

with respect to *:

Skew{X,n) = { a e Ass(X, n)\a* = - a } .

Obviously, SLie(yY, n) c Skew( A', n). In this section we will study the connection between

the algebras S L i e ^ , n) and Skew(A; n). Let X,• = {xtj \ j > 1}, 0 < |z| < n.

LEMMA 2.1. Supposean, cn,pn e ^ , fe_n, i/_n e X_n, z_k e X_kandtk e A^, 0 < A: < n.

Then the following assertions are true:

! ) a

n

b-nc

n

z-kh = an[[b_n, cj, z_k]tk.

2)
[pn[[b-n,an],[d.n,cn]]]z_ktkeSUe(X,n)n

+ SLie( Χ, η) nSLie( Χ, η )_nSLie( A', «) „.

PROOF. Assertion 1) can be verified by expanding the brackets on the right-hand side.

Let us prove 2). Let W = SLie(X, «)„ + SLie(X, n)nSLie(X, n)_nSLie(X, n)n. We have

[PnAd-n,cn]]z_ktk= (pnd_ncn + cnd_nPn)z_ktk

= Pn[[d-n,cn],z_k]tk + cnd_n[pn,[z_k,tk]] - cnd_ntkz_kPn

= Pn[[d.n,cn],z_k]tk + cnd_n[pn,[z_k,tk]] -[[cn,d_n],tk]z_kPn

= P»[[d-*<C*]> Z-k]*k + PnZ-k[[c»> <I-n]tk]mO*W
On the other hand,

[pn,[b-n, an]]z_ktk = (pnb_nan + anb_npn)[z_k, tk] = [pnz_ktk,[b_n, an]]modW.
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Therefore,

[[Pn,[b-n,an]],[d_n,cn]]z_ktke [pa,[b.n, <*„]],

[[d_n,cn],z_k]tk+[pn,[b.n,an]]z,k[[cn>d_n],tk] + W

£ [PnA[d-n>cn], z.k]tk + pnz.k[[cn, d_n], tk],[b_n, an]] + W

£\p«Ad-n,cn]]z_ktk+W,

[b.n, an] + W^[[pn, [d_n, c j ] z . k t k , [b_n, an}] + W

c [[Pn,[d-n,cn]],[b-n,an]]z^tk+ W.

Consequently, [pn,[[b-n, on],[d_n, cn]]]z_ktk e W. The lemma is proved.

Consider in the algebra SLieiA', «) the graded subalgebra SLie'CA', n) generated by the

setE0 < |,-|< nSLie(X, «),·.

LEMMA 2.2. SLie'( A', n) is an ideal of the algebra SLie( X, n).

PROOF. It suffices to show that [a, SLie(A\ «)„] c SLieXA', «) for any element a e

U 0 < | , | < nSLie(A r, «),. If a e SLieiA', «),, / > 0, then [a,SLie(A', «)„] = 0. If -n < i < 0,

then

[a, SLie(*,«)„] c SLieiZ, «)„ + ,· c SLie'(A", n).

The lemma is proved.

For an element a e AssiX, n) we denote by {a} its trace a — a* e Skew^, «). We

write a = b if {a — b] e SLieiA1, n); a, b e Ass(A', «). It is obvious that if a, b e

SLieCA', n), then α& Ξ 0.

We denote by T' = (T!n, Tn') the ideal of the Jordan pair (SLie(X, n)_n, SLie(Z, «)„)

generated by the set

[SLie(A',«)n,[[SLie(A', n)_n,SUs{X, « ) „ ] , [SLie(X, «)_„, SLie(X, «)„]]]

and we put T± „ = T'±n Π SLie'( Ar, «) and Τ = (J_n, Tn).

LEMMA 2.3. Suppose k, I > 0, m > /c + / + 7, ^ o^, βλ,...,β, e {-n < / < n} and

Σία, + Σ(^• + rt # 0.

SLie(X, n)ai • • • SLie(A\ n)ak(TnT_n)
mTnSUe(X, « ) A · · · SLie(A\ Λ ) Α = 0.

PROOF. We may assume with no loss of generality that -n < a, < 0 for 1 < i < r and

a, = 0 for r < i < k; -« < β] < 0 for 1 < y < s and β} = 0 for s < j < /.

1°. Suppose w = α^α™ • • • a^ with afn e SLie(Ar, «) ±n, where at least one of the

elements a(j}

n lies in SLie'(X, «)_„. We will show that w = 0. Suppose al'^ e SLie(X, n)_n.

We may assume that a^l = [x_a, >'_^], where x_a e SLieiZ, n ) ^ a andj^ e SLieiA", / J ) , ^ ,

0 < α, β < η. Then

Consequently, it suffices to consider the case d = 3. We have
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2°. By Lemma 2.1, each element of (SLie(X, n)0)
k-r(TnT_n)

mTn(SLie(X, n)0)'-s is a
sum of words in SLie(X, η) + n, where each word has degree at least 3 with respect to T_n.

3°. Note that

SLie(X,n) a i · · · SLie(X,n)BrSLie(X,n)nSLie(X,n)_n

= {-l)r[SUe(X,n)n,SUe(X,n)ar,...,SLie(X,n)^}SUe(X,n)_n

r r

c SLieiX n)n + Σ a,-SUe( Jf, «)_„, η + £ a, > 0.
i = l / = 1

Analogously,

, «)nSLie(Ar, «)„, • · · SLie(X, n)fie

ι ι
c SLie(*,«)_„ + Ε jB,SLie(X,n)n, η + £ β]> 0.jB,SLie(X,n)n, η + £ β]

7 = 1 7 = 1

Note also that for 0 < α < η we have

, n)aSUe(X, n)_nSLie{X, n)nSUe(X, n)_n

= [SLieiX, n)a>SUe(X, n)_n,SLie(X, n)n]SLie(X, «)_„

c SLi(

Consequently, SLie(X, n ) ^ = 0 for any word w in SLie(Χ, η) + n.
4°. Suppose w = a^la^a^l • • • a(_dJ with a(^n e SLie(Ji, «) + „, where at least three

elements a^l, a(Jl, ai^ lie in T_n. We will show that for any weights 0 < α, β < η we have

) β = 0.

If α, β e (0, «}, then our assertion follows from Lemma 2.1 and 1°.
If 0 < α < η and β e (0, «}, or if α e {0, n) and 0 < β < η, then it is enough to

apply Lemma 2.1 and the concluding remark of 3°.
Suppose 0 < α, β < η, α + β Φ η, x a e SLie^, n)a and γβ e SLieCX, η)β. Assume

that

a[dJ e T_n c [SLie(X, n)_n,SUe(^, /i)B,SUe(A", «)_„].

We have

r flffl.P)/)... (d) _ Γ Γ (l) (2)1 \n(el~2) ai-d~l)\\a(d)v
Xaa-n"n a-n "-η/β [Xa> [a-n' an J ' --->L"-« ' "η JJ"-n//8·

Therefore, we may assume with no loss of generality that d = 1. Obviously,

x^lyp £ e ^ * e ^ + [xe, αϊ1»] ̂  ^ α^ηχαγβ.

We will show that for any elements a'_n, a'_"n e SLie(X, n)_n and â ,' e SLie(^, «)„ we
have α'_π α'η'α"χαγβ = 0. Indeed,

α'-»α'ήα'_"ηχαγβ = a'_na';\a'"n, χα, γβ\ = 0,

since -η + α + β Φ 0. The lemma is proved.
Supposei?= Σ"η=5?, is a simple special graded Lie algebra such that E0<|;|<n-Sf/ ^ 0 and

Consider a universal semiprime enveloping associative algebra U = Σ"πί// for the algebra
^ and identify the space ̂  with its image in Ui under a universal semiprime specializa-
t ion,^ QUt,0< \i\ < «.
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The algebra U has an involution *: U -» U sending an element a e «Ŝ ., / Φ 0, into -a.

By Lemma 1.5, the Jordan pair (&_„, -S?,) is simple. Hence, •& +„ = Γ + η . By Lemma

2.2, the algebra =S? is generated by the set Y.0<w<n£Ci and is generated as an ideal by the set

£fn. Therefore, by Lemma 2.3, f̂, = K(Uj, *) for any nonzero weight /.

LEMMA 2.4. The algebra U contains no proper * -invariant graded ideals.

PROOF. Suppose 0 Φ I = Σ"_ηΙ,is a proper graded ideal of the algebra U such that

/ * = /.

If /, Γι Km,*) Φ 0 for some / Φ 0, then, since the algebra J? is simple, the ideal /

contains U^o-S7,. Since the algebra U is generated by the set U,^o=^> it follows that

I = U. Contradiction.

If Io η K(UQ, *) 3 ζ0Φ 0, then [z0, JS*] C /,. η AT(c/, *) = 0 for / Φ 0, which implies

that z 0 lies in the center of U.

If an element a lies in /,, i Φ 0, then a* - Λ e /, η K(U,, *) = 0. Thus, a* = a. Now

(zoa)* = tf*z* = -zoa and z0i3 e /, Π Κ{υ(, *) = 0. We have proved that z0/, = 0 for

every /' Φ 0. Consequently, zol is an ideal of U contained in Uo. Since the algebra U is

generated by homogeneous elements of nonzero weight, z0IU = 0. This contradicts the

fact that U is semiprime.

We have proved that Ι Π K(U,*) = 0. Thus, the ideal / is commutative and, since U is

semiprime, is contained in the center of this algebra. For any elements a e / and χ e J?,,

;' Φ 0, we have ax e Ι η ΑΓ({7, *) = 0, i.e., /if, = 0. Since the algebra U is generated by

the set (J^Q^CJ, it follows that IU = 0, which contradicts the fact that t/is semiprime. The

lemma is proved.

If U contains no proper graded ideals, then, by Lemma 1.1, ί/is simple. Then

?= Σ Jf(^,*)+ Σ [Jf(i/.i.*U(yi.*)]/i; [*(£/.,·), Jf(ii,«)] ηζ(ί/)
0 < | ι | < « ι = 1 ; = 1

- [K(U, *), K(U, *)]/[K{U, *), K(U, *)] η Z(U),

where Z( U) is the center of U.

Assume that U contains a proper graded ideal / = Σ",,/,. Then, by Lemma 2.4,

/ Π / * = 0 and / + / * = t/. Then

*~ Σ ir + Σ [/-,-, /,·]/ Σ [/.,-, /,·] η ζ(υ)

It is obvious that the associative algebra / is simple.

In conclusion, note that if SC= Σ"^ is a simple graded Lie algebra, then

[jSfw,[[JSf_M, Sen\,{Se_n, &„]]] Φ Ο if and only if dim r if n > 2, where Γ = Γ ( ^ ) is the

centroid of Jif. Indeed, it follows from the classification of simple Jordan pairs (see [15])

that a simple Jordan pair whose spaces are not one-dimensional over the centroid does not

satisfy the identity

[Xn>[[y-n,t»],[Z-n,O*]]] = 0 .
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§3. Finite-dimensional graded algebras

Suppose S£— Σ " π ^ is a simple finite-dimensional algebra over an algebraically closed

field of characteristic at least 4M + 1 or of characteristic 0, and suppose &n Φ 0. It is

known that & is either one of the algebras Am, Bm, Cm or Dm or one of the exceptional

algebras G2, F4, E6, ΕΊ or £ g . In the case char Φ = 0 this follows from the classical

Cartan-Killing theorem, and in the case char Φ = ρ > An + 1 from the Kostrikin-Strade-

Benkart theorem (see [2], [18], and [19]), since adia,) ' ' " 1 = 0 for / e J5P(, / φ 0.

Consider the derivation of JS? sending a homogeneous element at e jSf. into ί'α,. Any

derivation of a Lie algebra of classical type is inner [20].

Consequently, there exists an element d0 e i f such that [at, d0] = iai for any a, e <£t,

- « < / < « . It is easy to see that d0 e i? 0 and the element d0 of i f is semisimple.

Consider realizations of the algebras Am, Bm, Cm and Dm. The algebra Am is isomorphic

to Φ^Ιι/Ζ, where Φ^ + 1 is the algebra of matrices of order m + 1 over Φ and Ζ is its

center. The algebra Cm is isomorphic to the Lie algebra of 2m X 2m matrices of the form

S2 -A']'

where A, Sv S2 ε ΦΜ, Α -» A' is transposition, and Sf = S,·, i = 1,2. The algebra Dm is

isomorphic to the Lie algebra of 2m X 2m matrices of the form

Ά Κ, \

K2 -A']'

where A, Kv K2e Φη and K- = ~Kt. The algebra Bm is isomoφhic to the Lie algebra of

(2m + 1) X (2m + 1) matrices of the form

α

-ν'2
-ν'

Α

Κ2

ν2

Κι

-Α'

where A, Kx, K2 e ΦΜ, a e Φ, υλ, ν2 e Φ1 m and K( — -Kt, i = 1,2. These representa-

tions of Am, Bm, Cm and Dm will be called elementary.

LEMMA 3.1. The elementary representations of algebras of types Am and Cm are specializa-

tions for any finite Z-grading.

PROOF. Let R = Φη+1 in the case of Am and R = Φ2 / π in the case of Cm. We will show

that all eigenvalues of the operator a.dR(d0): R -* R belong to the set {-n < i < «}. In

the case of Am this is obvious.

The set of matrices of the form
Ά Sx

S2 A'

is the set of skew-symmetric elements of R under the involution

A B\* = ( D' -B'
C D) \ _ C ' A'

We know (see [21]) that it is equal to K(R, *) + K(R, *)K(R, *). Therefore, the eigenval-

ues of adR(d0) belong to the set {-2« < ι < 2«}.
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Let k, 1 < k < In, be the largest integer for which the subspace Rk is nonzero. Assume

η < k. Then for any element a e Rk we have a* - α e Rk Π AT(i?, *) = 0, so a* = a.

Next, aK(R, *)a c ΛΓ(Λ, *) η Σ2

η"+ι^, = 0. However, it is easy to verify that R contains

no nonzero elements such that aK(R, *)a = 0. Hence Rk = 0. Contradiction. The lemma

is proved.

Henceforth in this section we will assume that «S?is an algebra of type Dm or Bm.

Recall that a Cartan subalgebra of =5? is a maximal Abelian subalgebra of =S? consisting

of semisimple elements. The following lemma is due to I. L. Kantor [6].

LEMMA 3.2 (I. L. KANTOR). A Cartan subalgebra Η of£f0 containing the element d0 is a

Cartan subalgebra ofSC.

Consider the decomposition of ̂ C into root subspaces with respect to ad(//). Every root

subspace corresponding to a nonzero root is one-dimensional, and every homogeneous

c o m p o n e n t ^ is a sum of root subspaces with respect to &d(H).

A root system of the algebra Dm is a system of vectors 21 = { ±ω, + ω,|Ι «ξ i Φ j < m)

in an m-dimensional space V = φ "Λω, (see [22]), and a simple subsystem is the set

Π = {<ηι,...,πηι} = {ωι - u2,u2 - ω 3 , . . . , « „ _ ! - ωη, um_1 + wm}.

A root system of Bm is 21 = { ± ω , ± ω,·, ±ω, |1 < ;' Φ j < m) c ®™Rwt = V, and a

simple subsystem is the set Π = {π1>... ,irm) — {ω1 — ω2, ω2 — ω 3 , . . . ,com_1 — wm, wOT).

We define a Z-linear mapping h: φ ("Ζω, -» Ζ by putting h{a) = k if i? a c ^ , α e 31,

έ ε Ζ . We may assume without loss of generality that h(7ri) = kt ^ 0, 1 < / < m. Then

Α ( ω ι ) > Α ( ω 2 ) > · · · > A ( « J .

LEMMA 3.3. a) Ifkx = 0, then the grading££= Σ " η ^ , is special.

b) (I. L. KANTOR [6]). Ifkx>0 and k, = 0 for 2 < / < m, then £C= <?,„ + SCo + £>„ is

the TitS'Kantor-Koecher algebra of the Jordan algebra of a symmetric bilinear form, and

therefore {see [17]) the grading is special.

c) Ifkx > 0, k2 = 0, andZfkf > 0, then the grading&= Σ"η^ is exceptional.

PROOF, a) Consider the elementary representation of £C and take as a Cartan subalgebra

the subalgebra consisting of the diagonal matrices. Then i ? a ^ Φ 0 (a, / ? e 3 l ) only if

α + β<='Άοτα + β = 2ω,, 1 < / < m.

Obviously, Sen = Σ { ^ ω / + ̂ |Λ(ω,) = h(u;) = h(Ul)}. Assume that ^Ca c SCn, <?β c S£k,

α, β e 3t, k > 0, a n d . 2 ^ # 0.

Since α + β £ 31, it follows that α = ω, + ω̂  and β = ω,• — ω ;̂ Λ(ω,) = ^(ω^) = h(iu1).

But then A: = /i(jS) = 0, which contradicts our assumption. Thus, •^πΣΑ:>0=2'Α =

Σ Α > 0 ^ ? Α ^ Ρ η = 0. Since the algebra =S? is generated as an ideal by the set SPn, we have

= 0 for i + j > n. Analogously, i ? ^ = 0 for i +j < -n. Thus, the grading ^ =

"η»5?, is special.

c) Assume that kx > 0, k2 = 0, and Σ,>3λ:,2 > 0. Then

and Σ 0<|/|<Β ·^- ^ 0. If the grading.£?= Σ " Β ^ , is special, then, as shown in §2, the graded

algebra i f is isomorphic to either the algebra [R(~\ R{)]/Z, where R = Σ"η/?,- is a simple

associative graded Φ-algebra, or the algebra [K(R, *), K(R, *)]/Z, where R = Σ"ΒΛ,-is a

simple associative graded Φ-algebra with involution *: R -* R.
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The algebra [R<-~\ R^]/Z has type Am\ hence JSP= [K(R, *), K(R, *)]/Z. Since R is a

matrix algebra over an algebraically closed field Φ, it follows that.S?= K(R, * ) .

Choose elements en e &ωι+ω2 and e_n e ^ _ ω ] _ ω 2 satisfying the relations [en, e_n, en] =

2en and [«·„, e n , e _ J = 2e_n. Then in R we have ene^nen = en and e_nene_n = <?_„.

Consider the centralizers Z£>(e±n) and Z R ( e ± n ) in the algebras .SP and i?. In Dm

(respectively, Bm) we have

(respectively,^(^± ( ω ι_ω 2 )) ®£>(i? ± J 3 < i < m)).

In /? we have

w h e r e / = 1 - ene_n - e_nen.

Obviously, ene_nRene_n + e_nenRe_nen c Ro. However, the algebras ι 2

a n d & ' { 2 ' ± ω , ± ω . | 1 *ζ i Φ j < m) do not lie in.S?0. Therefore, Ζ^(β ± n ) = K(fRf, *) . But

the algebra fRf, hence also K(fRf, *), is simple. Contradiction. The lemma is proved.

A simple Lie algebra =S? is called an algebra of one of the types An, Bn, Cn, Dn, G2, F4,

E6, ΕΊ or £ 8 if the scalar extension .5?®ΓΓ, where Γ is the centroid of 3? and Γ is its

algebraic closure, is isomorphic to the algebra of corresponding type.

Lemmas 3.1 and 3.3 imply

LEMMA 3.4. Suppose i f = Σ " η JSP, is a simple finite-dimensional graded algebra over afield

Φ. If\Sfis an algebra of type Amor Cm, then aC is special. If£Cis an algebra of type Bm or Dm,

then either £P is special or there is a bilinear form f: (&_„, &„) -> Γ(^?) such that

[an, b_n, c j = /(*>_„, an)cn + f(b_n, cn)an

for any elements a ± „, b ± „, c ± „ e &± n.

PROOF. Suppose.£? = Σ " η JŜ - is an exceptional graded Lie algebra of type Bm or Dm, Γ is

the algebraic closure of the field Γ = F(JS?), £>=£?®ΤΓ is the scalar extension, and

SPi = JSPV <S> Γ Γ. Then, by Lemma 3.3,

n = Σ { ^»Ι+«(|Α(«/) = A(«l)}, &-n = Σ {

F o r each index i such that Λ(ω,) = /i(wi) choose elements X±i e •5?±(U)1 + U.) satisfying the

relations [X±i, Χτι, X±i] = 2X±t. We have

«,*±ί, Σβ,Χτ» Σ«,Χ±] = 2 ( Σ « , Α ) Σ « , * ± , ·

If the field Γ = f is algebraically closed, then

)
i ' i

is the desired bilinear form.

Suppose Ρ: Γ -» Γ is a linear projection, i.e., Γ is a linear mapping such that P(t) = Γ

and P 2 = P. Then/(a_n, bn) = P(f(a_n, bn)) is the desired bilinear form in the field Γ.

The lemma is proved.
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COROLLARY. //=S?= Y,1n-Sfj is a simple exceptional graded algebra of type Bm or Dm, then

for any elements an e .S?n and b, c, d e ££

[an,b,an,d,[an,c,an,d]]=O.

PROOF. It suffices to observe that [an, Se, an\ = [aa, £P_n, an] = T{&)an.
The following assertion is well known in the case char Φ = 0, but requires a special

proof in the case char Φ = ρ > 0.

LEMMA 3.5. Suppose &= Σ1η^, &Ό = Σ"_η[^_ί, if,], is a finite-dimensional strongly
nondegenerate Lie algebra over a field Φ of characteristic ρ ^ An + 1. Then the algebra £? is
a direct sum of minimal ideals.

PROOF. The Jordan pair V = (V_n,Vn) is semisimple and is therefore a direct sum of
minimal ideals (see [12]), V= Vm θ · · · θ V(s\ Va) = (V}'n\ Vn

(i)). Let /,. = Id^(F_(^)
= ld^(Vn

(l)). Since the quotient pair V/V{l) has no nonzero locally nilpotent ideals, it
follows from Lemma 1.4 that /,· Π 3?' +n = νψη. We will show that /, is a minimal ideal
off?.

Suppose Β is an ideal of Sf contained in /, and Β Φ I,. Then Β r\J?+n = 0 and
[[B, V(i\], Vi\] = 0. By the corollary of Lemma 1.9, [B, V^n] = 0. It follows easily that
[Β, \ά^{νψη)] = 0, and, in particular, [B, B] = 0. Since^is semisimple, Β = 0.

We now temporarily assume that the ground field Φ is algebraically closed. The algebra
/, is simple and, according to the Kostrikin-Strade-Benkart theorem, is an algebra of
classical type. Suppose //, is a Cartan subalgebra of /, contained in /,· Π JiC0, and let
Η = Hx + · - · + Hs. Consider the weight decomposition into weight subspaces with
respect to ad(//). Note that weight subspaces with nonzero weight that are contained in /,,
1 < / < j , are one-dimensional. Let U denote the subspace of vectors of weight 0 with
respect to H. It is easy to see that U is a graded subalgebra of SP. Choose an element
w e U Π SCj, 0 < \i\ < n, and consider a weight subspace W with respect to Η with
nonzero weight that is contained in Ik η <?ρ 0 < \j\ < n. Then [W, u] c [W, U] Q W.
Since dimo W < 1, either [W, u] = 0 or [W, u] = W. The latter alternative is impossible,
since [W, u] c Sfi+J. Hence, [W, u] = 0. The subspaces of type W generate Ik as a Lie
algebra. Consequently, [Ik, U Pi =S?] = 0. The centralizer Z^(Ik) is an ideal of JiC, and
U Π .δ* c Z^(Ik'). For any weight /, - « < / < « , we have «Sf, c U η =S?; + /, where
/ = Θ*/,, Thus, &= Ι θ Zj?(I). Obviously, Z^(7) = Σ 0 < | ' | < η - ι (2>(/) n ^ · ) · By the
induction assumption with respect to n, Z^>(I) is a direct sum of minimal ideals. The
lemma is proved in the case where the field Φ is algebraically closed.

Now assume that Φ is an arbitrary field and Φ is its algebraic closure. We will show that
the ideal I = e^Id^(F n

( i )) is, as before, a direct summand of &. Let Γ = Γ ( ^ ) be the
centroid of <£? and^"= Jif<8> ΓΦ a simple Φ-algebra. By what was proved above,

&= (Ι ®ΓΦ) ® Z^(7 ®ΓΦ).

But Zjj,(I ®ΓΦ) = Ζ^.(7) ®ΓΦ; hence=S?= / θ Ζ^,(Ι). Now, as above,

i.e., Z<f{I) is a direct sum of minimal ideals. The lemma is proved.
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The following very special lemma will be needed in §4.

Suppose J£? is an algebra of type Dn or Bn over an algebraically closed field Φ, where

η > 4; { Xa, ha\a e 31} is a Chevalley basis with respect to some Cartan subalgebra, and

21 a root system. Assume that A is a subalgebra of Z£, and X+(Ul+Ul), Χ±(ωι + ίύ}) ε Α;

Rad A is the solvable radical and A = Λ/Rad A an algebra D3. Choose a Cartan

subalgebra of A and denote the roots with respect to this Cartan subalgebra in such a way

that

Consider the subspace

Λ 2 , 3 = { α ε Λ | [ α , Λ ω ι + ω 2 ] = [ α , Α ω ι + ω 3 ] = α,Α

Obviously, Z 2 3 = (Α)ωι+ω^. Analogously,

2,3 = 1-^2,3' - ^ - 2 , - 3 ' ^ 2 , 3.1' -^-2,-3 = 1-^-2,-3' -^2,3 '-^-2,-3J ·

LEMMA 3.6. a) Either A = ^(Χ±ω .±ω.\1 < i * j < 3) + Rad A, or

^2.3 e ΦΧωι + Σ Φ ^ ω ι ± ω / > ^'-2.-3 £ ΦΑ-.ωι + Σ
ι>4 ΐ>4

b) //, under the conditions of a), A = ^ ( ^ ± ω ι ± ω J l < i ^ 7 < 3) + Rad A and

± ( ω ι + ω2)> ^±(» 1 + »,) e β ' α subalgebra of A, B = Z)3, A '

PROOF, a) Suppose a e ^ , and b e ^4_2 _3. It follows from the conditions [a, hu + ]

= [fl,AU l + M j] = a and [ft, A J I + < 0 2 ] = [b, hji+aj] = -ft that

ί>4

6 = η * - ω 2 - ω 3 + /80Α-_βι + Σ β±ίΧ-αι-α,-
ΐ>4

A s s u m e ^ # 0. It follows ί « Μ η [ ( ί ) _ ω ΐ _ ω ι , ( ί ) ω ΐ + ω 3 , ( ^ ) Μ ι + ω 3 ] = 0 that

-Ul-«2> β. β] = ( ± « ο ^ ω ι - ω 2 + 2 Σ « ;«-,^-ω ι-ω 2

^ ί > 4
ί > 4

Analogously,

ι>4

ο * - ω , + Σ 0 + ,*-ωι + ω ) ε ^
ι>4 " ' '

Thus, the subalgebra

ΐ > 4
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is solvable. But

/ > 4 i> 4

;>4 ι>4

We define inductively two sequences of commutators in the variables x, y as follows:

Wj = χ, υλ = _y, wB + 1 = [wn, un, wn] and υΛ + 1 = [«;„, wn, vn]. There exists a natural number

m > 1 such that

Now

wm(a, b) = w

,q> 1. Analogously, Χ,,,, _ω 3 e .4. Thus,

If JSf(JT±u) ± ω / | 1 < ι # 7 < 3) 1 A, then either Λ 2 3 c ΦΖ ω ΐ + Σ Ι > 4 Φ ^ ω ι ± ω _ or Λ_2>_3

c Φ Ι _ ω ι + Σ, > 4 ΦΑ Γ _ ω ι ± ω . . In either case,

^2.3 £ Φ ^ ω ι + Σ Φ ^ , 1 ± » , , ^-2,-3 C Φ * _ ω ΐ + Σ ΦΧ-αι±ωι.
ι> 4 ί> 4

This proves a).

b) Choose a Cartan subalgebra of Β and choose roots with respect to this Cartan

subalgebra so that

ω1+ω,)> D ± (ω[ + ω3) ~~ Ψ Λ ± (ω,

In view of a), if 5 * &{ X± ω. ± U J1 < / ^ j < 3), then

O n the other hand, if 0 # & ± ( u ) 2 + l J 3 ) e 5 ± ( α > 2 + ω 3 ) , then

b±(*2 + o,3)
 e a ± ^ ± ( W 2 + a>3) + R a d Λ,

a ± ^ 0 . Hence α + Λ-ω2 + α)3 + b+, a_X_ai_Uj + i _ e Rad ^ , where / ) ± ε Φ Ι ± Β ] +

Σ / > 4 Φ Α Γ

± ω ι ± ω and α + α_Φ 0. Therefore, the subalgebra generated by the elements
α + ̂ ω 2 + ω3

 a n d α -^-ω 2 -ω 3 i s solvable, which leads to a contradiction. The lemma is

proved.

§4. Locally finite-dimensional graded algebras

A system of subalgebras {Α (Ζ-&ΊΑ e # } of an algebra ϋ? is called local if (i)

U{ A \A G 0>} = <£, and (ii) for any subalgebras A, B <E 0> there exists a subalgebra C E #

such that A, B c C.
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A system of homomorphisms {φΑ: A -* 3?A\A e &} is called local if A c B, where A,
Β e <?, implies Kerq>B n ^ c Kerqp,,. A local system of homomorphisms is said to be
approximating if fl{Ker φ^ \A e &} = 0.

For any element a e Jz? consider the subsystem ^ o = {v4 e f |o e A}. The system
{^a\a e i f } is centered and is therefore embeddable in an ultrafilter J^see [23]). Every
local system of homomorphisms {φΑ: A -»S£A \A e @>} defines a homomoφhism
Π.4^OWA/^'· -S?-* Π,,^»&A/&:into an ultraproduct. If the system {φΑ: A -^ S?A\A e &}
is approximating, then ΚεΓΠ/1ε^φ/(/^Γ= 0. From this we obtain

LEMMA 4.1. A graded hie algebra JSf= Σ"η=5Ρ, ί/ΐαί possesses an approximating system of

specializations is special.

LEMMA 4.2. Suppose af= E"n^f, is a simple graded algebra that is locally finite-dimen-

sional over its centroid Γ. Then there are three possibilities.

1)-S? is an algebra of one of the types G2, F4, E6, E7 or Es.

2) There is a bilinear form f: (SC_n, SCn) -* Γ such that

[a.n, bn, c_n] = f(a_n, bn)c_n + / ( c _ B , bn)a_n,

[ a n , & . « , c j =f(b_n,an)cn+f(b_n,cn)an

for any elements a ± „, b ± „, c ± „ e SC± n.

3) JSf is special.

PROOF. We may assume with no loss of generality that the centroid Γ is an algebraically
closed field.

Consider a free graded algebra Lie(X, n) and two ideals: the ideal Τ consisting of the
elements identically equal to zero in all graded algebras of types G2, F4, E6, E7 and Es,
and the ideal Ρ generated by the set

{[an, b , a n , d, [ a n , c, a n , d ] ] \ a n e Ut{X, n ) n ; b , c , d & Ue(X, « ) } .

1°. Assume that T(JS?) = 0. Then the multiplication algebra R(£C) = Σ? adC-S?)"1

satisfies a polynomial identity. Since JSfis simple, the algebra R(^) is prime and, by
Lemma 1.2, locally finite-dimensional. Let Ζ be the center of R(SC). Since Γ is algebrai-
cally closed, Ζ = Γ. By the Markov-Rowen theorem (see [24] and [25]), R(^f) is
finite-dimensional over Γ. Consequently, dim r^?< dimTR(JiP) < oo. It now remains to
use Lemma 3.4.

2°. Assume that P(^C) = 0. It follows from the classification of simple Jordan pairs (see
[15]) that the identity Ρ = 0 is satisfied only for simple pairs of Γ-spaces (V, V+) on
which is defined a bilinear form/: {V~, V+) -» Γ such that

[a + , b; c+] = f(b-, a + )c++ f(b-, c+)a + ,

[a', b+, C] = f{a-, b + )c-+ f(c~, b + )a~

for any elements a±,b±,c±e V±. Thus, case 2) of the lemma holds.
3°. T{£f) = P(JS?) = <£. Let &' denote the set of all subalgebras of .£? generated by

finite sets of elements of U,^o^,. The system of subalgebras 9 = [T\A) Π Ρ(Α)\Α e &'}
is local in^f, and the system of homomorphisms (φ Β : Β -» B/_Loc(B)\B e £?} is local
and approximating. We will show that the graded algebra B/ Loc(£), where Β = T(A) η
P{A), A e &>', is special.Jndeed, B<A, Loc(S) = 5 η Loc(y4), and B/ Loc(5) = Γ(1)
η P(A), where J4 = A/ Loc(^4). By Lemma 3.5, A = Ax θ · · · θ As, a direct sum of
simple graded algebras. If the graded algebra A{ is exceptional, then, by Lemma 3.4, either
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T(At) = 0 or P(At) = 0. Thus, the ideal T(A) η Ρ(Α) is the sum of those minimal ideals

Aj, 1 < / < s, whose grading is special. By Lemma 4.1, the algebra 3? is special. The

lemma is proved.

LEMMA 4.3. Suppose Jif= YJlnS^i is a simple exceptional graded algebra that is locally

finite-dimensional over its centroid Γ and dim τ^η > 2. Then £f is either an algebra of one of

the types G2, F4, E6, ΕΊ, Ε% or D4, or the Tits-Kantor-Koecher construction of the Jordan

algebra of some symmetric bilinear form.

PROOF. Assume that ££ is not of one of the types G2, F4, E6, E7, Es or D4. Then, by

Lemma 4.2, there is a bilinear form/: (&_„, £Pn) -* Γ such that

[a-n, K, c_J = /(a_ n, bn)c_n + f(c_n, bn)a_n,

Un, b_n, cn]=f(b_n, an)cn + f(b_n, cn)an

for any elements a ±n,b ±n,c ±n e_S? ± / i . Choose elements e ±n, g + n e <£ ±n satisfying the

relations

f(e_n, en)=f{g_n, gj = 1, /(*_„, gn)=f(g.n,en) = 0,

1°. Assume that Sf is an algebra of type D3 or Bv Let f be the algebraic closure of Γ

and let JS?= &®rf. We may assume that Ye±n = ^±(ωι+ωι) and& n = g^ + Ui + &Ui + li3.

Then

and h(u1 — ω2) > 0. Since Zg{e_n, en) = Z#(e_n, en) ® rf, it follows that

a ± , e i ? ± , . , / # 0.

Consider the elements e ( ± 2 ) = e ± « + α + < a n d ̂ (o) = te(-2)» e(2>]· It *s e a s Y t o verify that

Fe ( _ 2 ) + Fe ( 0 ) + Γβ(2) = ί/2(Γ) and the transformation ad(e ( 0 )) has eigenvalues -2, 0, 2.

Let=S?= ·5^_2) +°^(0) +-^(2) ^ e the decomposition of SC into weight subspaces with respect

to ad(e ( 0 )). The operation-S?(2) x ^ ( 2 ) 3 (JC, j ) -> [JC, e (_2 ), >>] defines οη,δ?^ the structure

of the Jordan algebra / of a symmetric bilinear form in a 3-dimensional space over the

field Γ, and ££ is obtained from / by the Tits-Kantor-Koecher construction.

2°. Assume that 3? is an algebra of one of the types Bm,m > 4, or Dm, m ̂  5. As above,

we assume that fe±n = ^ ± ( ω ι + ω 2 ) and Tg±n = ^ ± ( ω , + ω 3 ) . Then

±n, g±n) =

in the case of Dm and^C(aC±<i>\4 < / < m) in the case of Bm. Consequently, either

or

ι < 3).

Also,
z^(^± n> g±J = zAe±n, g±n) ®r r

and
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Thus, J2" = Z_S P(Z£,(e± n, g±n)) is a simple Lie algebra of type D 3 or B3. As in 1°, we

choose elements a±, ^3"±i such that the operator ad([e_n + a_/5 en + a,.]) has eigenval-

ues -2, 0, 2. The decomposition into weight subspaces with respect to this operator yields

the desired representation of the algebra.

3°. Assume the algebra^is infinite-dimensional over its centroid. We will show that:

1) W = Z^{\L^e0, g 0), Zj?(e0, g0)]) is a simple algebra of type D 3 or B3.

2) Zw{e_n, en) = Ta_t + Ta0 + Γα, = sl2(T), a ±, e &±t, i > 0.

3) The transformation ad(e 0 + a0) has eigenvalues -2, 0, 2, and the decomposition of i ?

into weight subspaces with respect to ad(e 0 + a 0 ) yields the desired representation of .£?.

Since any Φ-form of the Jordan algebra of a symmetric bilinear form is again a Jordan

algebra of a symmetric bilinear form, we may assume with no loss of generality that the

field is algebraically closed.

Let & denote the system of Γ-subalgebras of Z£ generated by finite sets of the form

{e + n, g + n) U 2?, where Β c U , # o · ^ . It is obvious that 0>is a local system of subalgebras

in =SP. For any algebra A e. £P consider a decomposition of the algebra A = A/ Loc(A)

into a direct sum of minimal ideals, A = lx® • · • θ ls. Since [&, en, en] = Ten, the

element en lies in one of the ideals /,. It is easy to see that the elements e_n and g + „ also

lie in /,. Let χ, denote the projection of A onto It, and φ,, the homomorphism φ^:

A 3 a -* χΧΑ). We will show that {φ^ΙΛ e <?} is a local approximating system of

homomorphisms.

Suppose A <z B, where Α, Β e 0>, and a e A n Ker(pf i. Then [a,ldB{en)] c Loc(5);

hence [a, ldA(en)] Q Loc(^) and a e φ^. Thus, A n Ker cpB c Ker <pA.

We will show that 0{Ker φΑ \A e $P} = 0. For any element a e <£ there exists an

operator V in the multiplication algebra R(S£) such that a = enV. Let ax,... ,ar e «S?be

the elements occurring in the expression for V = V(a1,... ,ar). If α Φ 0, then for certain

elements b1,...,bq^ U ^ o - ^ i t n e element a does not lie in Loc(^_(a, bx,.. .,bq)). Consider

the subalgebra^ =£?(en, av...,ar, bv.. .,bq). Obviously, a <£. Loc(yl) and a e \aA(en).

Consequently, φΑ(α) Φ 0.

As above, we denote by & the ultrafilter in @ generated by the family of subsets

@a = {A e 0>\α e Α}, α ε ί . There exists a set &x e J^such that for any subalgebra

A e 3PX the image φΑ(Α) is an exceptional graded algebra; otherwise the embedding

/^ would be a specialization. Moreover,

By Lemma 3.1, ^> ( Β ) U @(D) e J^, where yl e ^> ( B ) if ^ e @x η ^ 2 with φ,,ί^) an algebra

of one of the types Bm, m > 5, and A e ^ ( £ ) ) if A e ^ Ί η &>2 with φ,,ί^Ι) an algebra of

one of the types Dm, m > 5. By a property of an ultrafilter, either &>(B) e J?"or ^ ( £ ) ) e J^.

Assume for definiteness that ^(B) e J^. The case 0>(D) e J^is handled analogously with

some simplifications.

Choose in each algebra ψΑ(Α), A e ^ ( Β ) , a Cartan subalgebra //^ and denote the roots

with respect to this Cartan subalgebra in such a way that

Obviously,

<pA(ZA(e0, g 0 )) = Ζ φ / ) Μ ) ( φ Λ β ο ) , φ Λ * ο ) ) = ^ +·« ' ( ΨΑ(Λ)±α,\ΐ > 4),

9 ^ ( [ Z ^ ( e 0 , g 0 ) , ZA(e0, g 0 )]) = i f ( φ^(^) ω ± / | « > 4).
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Also,

<z <pA(ZA([ZA(e0, g0), ZA(e0, g0)])) c ΖφΑΑ)(&( φΑ(Α)±ω\ί > 4))

an algebra of type B3. Consequently, dim r W =ς 21 = dimrfi3.
Suppose A G. £P(Br Consider the preimage of the subalgebra

&(q>A(A)±Ul±aj\l < i # y < 3 )

under the homomorphism A —»Λ/ Loc(yl), and denote it by Λ. Then yl/Rad A is an
algebra of type D3. If Λ c C e ^ ( Β ) and φΓ | / 4 is an embedding, then the pair φΓ(Λ) c
φc-(C) satisfies the conditions of Lemma 3.6. According to Lemma 3.6, {A Q C ^ ^%)}
= ^ j * ' U &>(**\ where ^j*» contains those subalgebras i c C e ^ { i ) for which

<Pc(A~) 2 φ( φο(^)± ω ί ± ω , | ΐ < / Φ j < 3),

and ^κ**> those subalgebras for which

Consequently, either ̂ <*> e J^'or^**> e J5".
Assume that ^>

/{o**) e f , i , e ^i,,**' and A2 e ^ i * * ) e J*\ We will show that ^"j
e J^. Indeed, suppose ^ a j 2 ** ) e J^and β e n f ^ j . * * ^ < i < 2}. Choose elements a,
(^,.)'2,3,1 = 0,1,2, so that ψΑ2(Τα,) = φΑι(Α,)ω2 + ω[. We have

ί>4

It is easy to choose coefficients a0, av a2 e Γ, at least two of which are nonzero, such that
2

Σ «,•?,·e Σ«ρβ(β)ω,±ω,·
1 = 0 i> 4

Then, as shown in Lemma 3.4,
Γ 2 2

y ν
L 1=0 i=0

Since either a0 Φ 0 or ax Φ 0, it follows that aoaQ + a1a1 Φ 0. If a2 Φ 0, then
2

where

0 Φ a' e φ / ( 2 ( ^ 2 ) ω 2 + Σ <ΡΑ2{Α2)ωι±ωι, 0 ^ «2,3 e φΑ2(Α2)ωι + αι,

and

[φ^ 2 (^2)- ω ,-« 2 . «' + «2,3> «' + «2,3] e Γ(α ' + α 2 ι 3 ) .

It was shown in the proof of Lemma 3.6 that such an inclusion is impossible. If a2 = 0,
then a^ Φ 0. As above,

= a' + a23, 0 Φ a' e φ ^ ί ^ ! ) , , ^ ^ ,

=# a23 ^ψΑι(Α1)ω2 + ω},
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and

^ ( ^ ι ) - ω , - ω 2 > α> + a2,s> a' + a23] e T(a' + a2 3 ) ,

which also leads to a contradiction.

Thus we have proved that there exists a subalgebra A e ^ ( ' Β ) such that ^ j * ' e J "̂.

Suppose C G ^>j*\ i.e.,

<p c ( i) = &[ <p c (C) ± U l ± u , | l < ι # 7 < 3) + Rad<pc(y4).

Let Λ' = y-c\Se(yc(C) ± ω ( ± ω J 1 < i # j < 3)) η Λ. Then i ' 3 e ± „, g ± „ is an algebra of

type D3 and it follows from Lemma 3.6b) that for any subalgebra Q e ^ j * 1 we have

φβ(Α')=&( φ β ( β ) ± ω , ± ω , | ΐ < / Φ) < 3).

In particular, [A', [ZQ(e0, g0), ZQ(e0, g0)]] c Loc(g). For any subalgebra Q c β ' e ^ * >

we have

[i', [Ze(e0, g0), Ze(e0, g0)]] c j i ' , [Ze,(eo, g0), Ze-(e0, g0)]] cΕοΐ(β')·

Thus, [ i ' , [ Z e ( e 0 , g0), Z e ( e 0 , g0)]] c L o c ( ^ ) = 0, i.e., A' c W.

For any subalgebra β e ^ " j * 1 we have

&{ φ β (β)±ω,±«, | ΐ < i ^ 7 < 3) = V f i ( i ' ) C <pQ(W) Q&[ φ β ( β ) ± ω , | ΐ < / < 3).

Since ^ ( φ ρ ( β ) ± ω . ± ω . | 1 < / # . / < 3) is a maximal subalgebra of ^έ?(φρ(β) ± ω |1 < / <

3), it follows that either 9 e ( W ) = ^ ( φ ο ( β ) ± Μ ( ± β ! | | 1 < 1 # y < 3) or yQ(W) =

• ^ ( φ ρ ( β ) ± ω . | 1 ^ ' ^ 3). Consequently, W is an algebra of type D3 or B3; Zw(e ±n) =

Ta_, + Ta0 + Γα,., α 0 = [a_,, a,.], [ a ± / , a 0 ] = ± 2 e ± i , a±1• ejg?± /, / # 0, and for any

subalgebra Q e ^ j * ' the eigenvalues of the operator ad,^ (g)(<pe(e0) + Ψρ(αο)) belong to

the set {-2,0,2}. This implies the assertion of the lemma.

It follows from Lemma 4.3 and the results of §2 that if dimr=S?n > 2, then any simple

graded Lie algebra .S?= Σϋη«£?, that is locally finite-dimensional over Γ is an algebra of

one of the types I-IV (see Theorem 1).

LEMMA 4.4. Suppose 3?= Σ"_η^ί is a simple locally finite-dimensional graded Lie algebra

with d i m r ^ ± n = 1. Then either & is an algebra of one of the types I-IV or. 1).S?, = 0/or

i€ {~n,-n/~2,0, n/2,n};2)if0 Φ e±ne&±n,e0= [e_n,en],[e±n,e0]= +2e±n,then

PROOF. Suppose the Lie algebra Sf= Σ"η<^, satisfies the conditions of the lemma and is

not an algebra of one of the types I-IV. Let

&uk = { a &£e\\a,e0] = ka), 0 < |/| < n, -1 ^ k < 1.

Assume we have defined a Z-grading &= Σ,™^^ on£P, so that: 1) any subspaceu^ k

lies in one of the subspaces=S?O), and if i > 0, then .δ5", 0 c Sf(J),j > 0, while if /' < 0, then

&it0 c JS?O),y < 0; and 2)JSP±B c ^ ± { ( f l ) with dimrJSf{m) > 2.

If the grading ^?= E™m^(() is exceptional, then, by Lemma 4.3, .Sfis the Tits-Kantor-

Koecher construction of the Jordan algebra of a symmetric bilinear form.

Assume the grading .5?= Σ"η^ί) is special. Then there exist a simple involutory graded

algebra (R = Σ™ΜΛ(ί), *) and an isomoφhism φ: £?-> Κ'(/?,*), where

K(R(i),*)ioTi * Oand
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It is easy to see that the algebra R is generated by the set U{if,, k\&u k c &u),j Φ 0). We

define on Λ a new Z-grading by putting

η

To prove that Rt = 0 for |/| > η it suffices to show that ψ(βη)αί k = 0 for i > 0 and

a, k e φ ( ^ . _ Α ) . If A: = 0, then if,. λ c jS?(y), _/ > 0; hence (p(en)ai k = 0. Assume k = 1.

Since φ ( β ± η ) 2 = 0, the transformation ad([<p(e_,,), <p(en)\): R -* R has eigenvalues -2,

- 1 , 0, 1, 2. However, φ(?π)α, λ is an eigenvector belonging to the eigenvalue 3. Thus,

R = Σϋ„/?,-. It is easy to show t h a t i f = K'(R = Ln_nRt, *) . Contradiction.

Assume the conditions of the lemma are satisfied and

Σ { JS*|#!/2 < ι < η} Φ0.

Let

max{ -
(2 - k
\ η — ι

if, k Φ 0 , 0 < ι < n,k = 0 , 1 =
2-kn

η - ι,

Then the grading &υ) = Σ{^- ι Α | (2 - ko)i - (η - io)k =j} satisfies the requirements

enumerated above, £f= Z"!m&U), m = (2 - ko)n - 2(n - i0) = 2/0 - nk0 > 0, and^Cn 2

+ jS«;.Oito c ^? ( m ) . Thus, Σ{^, |«/2 < i < «} = 0. Analogously, Σ{^\-η < i < -n/2) =

0.

Assume that ^?n/2,o ^ 0- Then the grading J/f(J) = Σ{^ k\4i - nk = j} also satisfies

these same requirements,£f= T/am£P(jy m = In, a.nd£?n 2 + =S?n/2 0 ^ -^(m)· Thus,JSfn/2 =

Assume if,. # 0 , 0 < / < n/2. Then [e . n , if,] c JS?_n + i, - « < « + / < -n/2; hence

?,] = 0 and «SP, = if, 0 . Let /0 = max{;|0 < / < n/2, <?{ = 0}. The grading

satisfies the above requirements, i f = E!"mif(7), w = 2i0, and ^ n 2 + if, 0 c JS?(m). Thus,

JS?= £C_n+Se_n/1+£e0+ Sen/1 + Sen. The lemma is proved.

LEMMA 4.5. Suppose a finite-dimensional Lie algebra «Sf over a field Φ is generated by

elements a and b; ad(a) 4 = ad(6) 4 = 0, ": i f -> if/Rad £?= & is the natural homomor-

phism, and £έ'= ΦΑ +Φ[Α, b] + ΦΒ = ί/2(Φ). Then there exist preimages a' and b' of A

and b such that [a1, b', a'] = 2a' and[b', a', b'] = 2b'.

PROOF. We may assume with no loss of generality that (Rad i f ) 2 = 0 and Rad =Sf

contains no properif-submodules. Since ad(a) 4 = ad(i>)4 = 0, it follows that d im $ Rad i£

< 4. Consequently, the eigenvalues of the operator ad([a, b]): J?-> £Cbelong to the set

(-3, -2, -1,0,1,2,3}. The weight subspaces£i'_2 and J^2 of the weights -2 and 2 form a

finite-dimensional nilpotent Jordan pair. Since idempotents are understood modulo the nil

radical in Jordan pairs (see [12]), there eixsts an idempotent (a', b') of the pair (i?_ 2, J/C2)

that is a preimage of the idempotent (A, l·). The lemma is proved.

LEMMA 4.6. Suppose J?= Σ2_2&'ί is a simple graded Lie algebra of nonexceptional type,

Γ = r ( i f ) , i f ± 2 = Te±2, e0 = [e_2,e2] and^ = {a e i f | [ a , e 0 ] = a}. Then there exists

a finite Galois extension P/T of Τ such that it is possible to define on the algebra £P=

a finite rL-grading&= Y,"!m^'i of type I or II (see Theorem 1).
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PROOF. 1°. If dim r.S?< oo, there exists a finite Galois extension P/Y of Γ such that the

algebra £?= JSf® rP is splittable (see [20]). We can choose a Cartan subalgebra of ^

roots with respect to this Cartan subalgebra so that

Pe = ( -
± 2 Ι^-κω. + ω) if-SPis one of the types Bm, Cm, Dm, 1 < /,y < m.

In the cases of Dm and Cm we have £!?= &_x + £?Q + £PX, and in the case of Bm we have

ρ ι β /

2°. Assume that the algebra i f is infinite-dimensional over Γ and satisfies the conditions

of the lemma, but the desired extension P/Y does not exist.

We will show that for any natural number η > 1 there exist a Galois extension Pn/Y

and a g r a d i n g ^ " * = &® τΡη = Lm"m^(n) such that

Assume the extension ΡΜ/Γ has been constructed. Since the grading £f(n) = Σ,-£?,<") is

not of type I or II, it follows from Lemma 3.4 that there exists a bilinear form /:

?_(£\ JS?J£>) -» Ρη such that

for any elements a +, b + , c + e ^^"m · Choose in the spaces JSfj^ and = ^ n > dual bases with

respect to/ , namely g + ; , 1 < 2 < n, such that/(g_,, gy) = 5/y (the Kronecker symbol) and

g±l =e±2-

Let & denote the system of all finite-dimensional subalgebras of .S? containing Sf^+l,,

graded with respect to the grading^ 7 < n ) = Σ,-S?,*"', and generated by elements of nonzero

weight with respect to ad([e_2, e2]). For each subalgebra A e & we decompose the

quotient algebra A = Λ/Rad A into a direct sum of minimal ideals, A = Ax θ • • • ® As.

We will assume that 3>{+iXn £ Al and that Ax is an algebra of classical type over Pn. Since

[Αλ,βη,βη] = Pnen, the Pn-algebra Ax is central. As above, we can embed the algebra SC{n)

in the ultraproduct of the algebras Αγ, A e £P, with respect to the ultrafilter &. Conse-

quently, for some algebra A e & the algebra A1 has one of the types Am, Bm, Cm or Dm,

where m ^ η + 3. It is known [20] that there exists a Galois extension Pn + l/Pn of Pn such

that the a l g e b r a ^ = A1 S>PPn+1is splittable.

Assume the algebra A1 has type Cm. Then η = 1 and we may assume that Pn + Xe2 =

(AJ^. Choose elements 0 Φ Α &_(Α1)ω^+ωι and b e ( Λ ) - ω ι - ω 2

 s o t h a t \A, b, A] = 2A

and [6, ^4, b] = 2Z>. The elements A and i» have weights 1 and - 1 , respectively, relative to

the transformation ad([e_2, e2]). In turn, e±2 is an eigenvector of ad([b, A]) with weight

+ 2. Note also that there exist eigenvectors of ad([fe, A]) with weight 1 that do not lie in

has type Am. Then we may assume that Pn+lg±, = {Αχ) ±l^>i_iil^i), 1 < i < n.

Choose elements^ e ( Λ ) ω , - ω , + 2 and 6 e (Λ)- ( ω ι -ω η ± 2 ) with^?(J, fcj ^ j / , ( P n + 1 ) ; the

elements A and 6 have weights ± 1 with respect to ad([e_2, e2]); ^><±i,n is a proper

subspace relative to ad([fe, Λ]) with weight + 1 . Moreover, there exist eigenvectors of

ad([Z>, A}) with weight 1 that do not lie in3>(+Ιη ®/>/"„ +1·

The cases of Bm and Dm are analogous to that of Am.
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For the elements A and l· we choose preimages a and b under the homomorphism

A -> A such that a and b are homogeneous elements of the grading

α and 6 are eigenvectors of the transformation ad([e_2, e2]) with weights 1 and - 1 ,

respectively; e ± 2 is an eigenvector of ad([£, a]) with weight &0 e {1,2}.

Note that ad(a) 4 = ad(Z>)4 = 0. If c e ^ < " + 1 ' and cad(a) 4 # 0, then_c e PM + 1e_ 2,

c a d ( a ) 4 e i>,, + 1 e 2 , and cad(^l) 4 ^ 0. But it is easy to verify that [e_2, A, A] = 0. Conse-

quently, the subalgebra =S?( a, b) satisfies the conditions of Lemma 4.5.

By virtue of Lemma 4.5, we may assume without loss of generality that [a, b, a] = 2a

and [b, a, b] = 2b. We decompose the subspace^?,(" + 1> into weight subspaces with respect

to ad([Z>, a]), i.e., ^ / " + 1 ) = Σ^%+1). Let i0 = max{0 < / < n\£Ci2 Φ 0). We define a

new grading o n ^ ( " + 1) by putting

It is easy to see that

max

then^? (" + 1) = Σ,^+1) is the desired grading.

Suppose Ρ = P5,£=&®TP = Lm

m<?i,J?±m a e±2, d i m ^ , , , > 5 and Z0<l,l<mJ?,

Φ 0. If the graded algebra •S' is special, then, by the results of §2,J& is an algebra of type I

or II. Consequently,^" is exceptional. By Lemma 4.2, commutation of the subspaces J?_m

and SPm is defined by a bilinear form /: (=^_m, &m) -* P. As above, we choose dual

elements g±l = e ±2 and g±,·, 2 < / < 5,/(g_,, g,) = 5,7, and a system^of finite-dimen-

sional graded algebras containing {g + , | l < / < 5}. For each subalgebra A e ^"consider

the decomposition A = A/Rad A = Ax ® · · · θ As, A1 3 g + i, 1 < i < 5, and the homo-

morphism φΑ: A ^> Av The system of homomorphisms {φ^Μ G &} is local and ap-

proximating; the algebra .S?can be embedded in the ultraproduct of the algebras φΑ(Α),

A e &, with respect to the ultrafilter &. Since the graded algebra JSP is exceptional, the set

0>' = {A e £P\<pA(A)is an algebra of one of the types Bm, Dm,m > 5} lies in IF. Suppose

A e &>, φΑ(Α) is an algebra of one of the types Bm or Dm, m > 5, P'/P is a Galois

extension of Ρ splitting the algebra φΑ(Α), Ρ is the algebraic closure of P, and £?' =

J&<8>pP'. We choose a Cartan subalgebra of ψΑ{Α) ®ΡΡ' and a root system so that

(<pA(A) 9PP')Mat + ai+l) = P'<PA{g±,), 1 < i < 5,

and let A denote the preimage of the algebra £?{{φΑ(Α) ®ΡΡ')±ω.±ω | 1 < i Φ)' < 6)

under the h o m o m o φ h i s m ̂ 4 «SpP' -» 1̂ ® P P ' . Consider the subspaces

±-, ±o-+i> = { a

By Lemma 3.6, for any subalgebra A c Β e &>' and for any index /, 2 < / < 5, either
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or

Φ Β ( < , + Ι) C φΒ{Β 9PP)Ul + Σ ΨΒ(Β ®,i")«1 + <v

As in the proof of Lemma 4.3, it is easy to show that not all of the images ψΒ{Α'ί , + 1),
2 < / < 5, lie in

φΒ(Β®ΡΡ)ωι+
i>A

Thus, there exists an index /, 2 < J < 5, such that

It follows that for any indexy, 2 < _/ < 5, we have

in particular, the algebra A is splittable, A = At + Rad Λ. Let {X± ^ ± ω., h ± ω. ± ω.} be a
Chevalley basis of Au XMai+Ui) = g±l, 2 < i < 6, and h = /ζωι + ω2 + Αω'2+ω3 + λω'3+ω4 +
Λω4+ι)5 + Λω5 + ωι· In view of what was said above, the eigenvalues of the transformation
ad φΒ(Α)ί φΒ(Β) ®ΡΡ -• φΒ(Β) ®PP belong to the set (-4, -2,0,2,4}. Thus, the eigen-
values of ad(A): &®ΡΡ' ^&®ΡΡ' also belong to {-4,-2,0,2,4}. The decomposition
into weight subspaces &' = ̂ ?.'4 + ̂ _'2 + JS?0' + Sf{ + if4' with respect to ad(A) is the
desired grading. The lemma is proved.

Suppose (R, *) is an involutory algebra. An automorphism g of the algebra R is called
an automorphism of the involutory algebra (R, *) if it commutes with the involution *.

We will need the following theorem of Martindale [26].

THEOREM (W. MARTINDALE). Suppose (R,*) is a simple involutory algebra containing
nonzero orthogonal idempotents eY and e2 with ef = el, e% = e2 and ex + e2 Φ 1. Then any
automorphism of the algebra K'(R,*) is induced by a unique automorphism of the involutory
algebra (R,*).

Thus, the automorphism group of the Lie algebra K'(R,*) is isomorphic to the
automorphism group Aut(/?, *) of the involutory algebra (R, *).

Suppose SC= Σ^2"^;l& a simple graded Lie algebra of nonexceptional type, Γ = F(J5?),
JiC±2 = re ± 2 , e0 = [e_2, e2], and=Sf, = {a e S£\\a, e0] = ia). By Lemma4.6, there exist a
finite Galois extension P/T of the field Γ, a finite Zrgrading on the algebra£?= £P® rP =
E"mj£ ( / ), J f ( ± m ) 3 e ± 2 , and a simple graded involutory algebra (R,*), R = Lm

mR(n,
such that.^= K'(R,*). In addition, the field Ρ can be chosen so that R contains nonzero
orthogonal idempotents ex and e2 with ef = elt e% = e2 and ex + e2 Φ 1.

The Galois group G = Gal(P/T) of the extension P/T acts in the algebra££ by the rule

GB g: Σ β / ® Λ -»Σα,-® « ( Λ ) ·

Obviously, JSf= ̂ G = {a e J?\g(a) = a, g e G}. By Martindale's theorem, the group G
is embedded in the group Aut R. Consider the subalgebra Rc = {a e R\g(a) = a,
g e G}. It is easy to see that K(R, *) is the P-linear span of the set K(R, * ) G = K(RC, *).
Therefore,
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The algebra K'(RC, *) is embedded in the Lie algebra K'(R, *), and its image lies in the

algebra (K'(R, *))G = .S? and is an ideal of ^?. Since the algebra & is simple, JS?=

K'(RC, *). It is obvious that ,RC is a simple involutory algebra. Also, e + 2 e /?( + m ) Π Λ0.

Therefore, e2

± 2 = 0 and the eigenvalues of the operator ad(e0): R -> R belong to the set

{-2, -1,0,1,2}. The decomposition into weight subspaces with respect to ad(e0) defines a

grading of the algebra .Rc, and K'(RC, *) = J? is a graded algebra isomorphism. Thus, ££

is an algebra of type I or II.

We have proved Theorem 1 for an algebra that is locally finite-dimensional over its

centroid.

§5. Inner ideals

Consider a graded Lie algebra jSf = Σ"η«2Ί-. A graded subalgebra Β = Σ."_ηΒι is called an

inner ideal if, for any weights a,-, -n ^ a , < n, /' = \,...,m (m > 1), the inequality

|ΣΓ«,| > η implies [SC, Bai,.. .,BaJ c 5.

1°. Specialization of inner ideals. For any element b ^ Β the operator ad(£>) induces an

operator on the quotient space £?/B. We denote this operator by ad(£)

and consider the representation

φ: £ 3 6 -> ad(Z>)

of the algebra 5. It follows from the definition of inner ideal that φ is a specialization.

Obviously, KerqD = {b e B\[L, b] c B). We have proved

LEMMA 5.1. B(l) = { i » e Β\[&, b] c B) is an ideal of B, and the quotient algebra B/B(l)

is special (as a graded algebra).

We define in £ a descending chain of ideals B(n) = {b e 5|6ad(=5?)" c B). It is easy

to show that [B(l), 5(I)] c B(i + 1 ) for / > 1.

LEMMA 5.2. The ideal I = Id^([5 ( 2 ) , ^ ] ) is locally nilpotent modulo the subspace B(1).

PROOF. We shall assume without loss of generality that the algebra =5f is generated by a

finite set of elements of if*. Then, by Lemma 1.2, there exists a natural number m such

that R(SC) = E r a d ( ^ ) ' . Obviously,

We may now assume without loss of generality that 5 ( m + 1) = 0. We will show by

induction on i that for 0 < / < m - 1 we have B(m + l_i) c K(J?). For / = 0 there is

nothing to prove. If B(m + 1_:) c K(£f), i < m - 1, then

[ · 2 ' . B ( m + l-(, + l))' 5(m+l-(/+l))] ^ [-^' 5(2)' 5(m-/)] - [ 5 ( D ' 5 ( m-i)\

from which it follows that 5 ( m + 1_ ( / + 1 ) ) c K(^C). For i = m - 1 we obtain 5 ( 2 ) c AT(^f) c

Loc(JS?). Now

[B(2), &\ c [Loc(jSP), ^?] c Loc(^f),

and the ideal / is locally nilpotent. The lemma is proved.

2°. Principal inner ideals. In this subsection we will construct an important family of

inner ideals. Suppose an e £Pn and a_n e £f_n. Consider the operator

T(a.n, an) = Id + ad(a_ B )ad(e B ) + \ a d ( a _ J 2 a d ( a n ) 2

and the subspaces B'k = £CkT(a^n, an) for k > 0.
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LEMMA 5.3. a) \&, B'n, B'k] c LWfor k > 0.

PROOF, a) Note that if η = 1, then Lemma 5.3a) follows from the Macdonald identity
for Jordan pairs [12]. The general case reduces to the case η = 1. Indeed, suppose
x_, e Sf_t, i > 0, yn e ifM and zk e <£k. Our goal is to prove that

[*_,., ynT{a.n, an), zkT(a_n, an)\ c <?n+k_,T(a_n, an).

Consider the commutative associative Φ-algebra Φ = Φ(1, α, β) defined by the relations
a2 = β2 = 0, and the scalar extension^= ·5?®ΦΦ. It suffices to show that

[βχ_,, yj(a_n, an), azkT{a_n, an)\ c ^η + Ιί_:Τ(α_η, αη).

Consider the subspaces

* i = &n + « Σ ^ ^ an,yn, azk; K_, =&_η + βΣ &, 3 b.a, /?*_,.
/>0 ;<0

Then Κ = Κ_λ + [Κ_γ, Κλ] + ̂  is a Z-graded algebra. It now suffices to apply Mac-
donald's identity to the Jordan pair {Κ_γ, Κγ).

b) We will prove that for any elements xt e SPi andjy e £pj, i, j > 0, we have

[xiT(a_n, an), yjT{a_n, an)\ = [x,, yj]T(a_n, an).

lfi = noTj = n, then both expressions are equal to zero. Suppose / < η andj < n. Then

x,T(a_n,an) = xi+[xi,a.n,an], γ}Τ{α_η,αη) = y}•+ [y}, a_n, aj;

[x, + [Xi, a_n, an], yj+[yj, a_n, an]]

ι, [yj, a_n, an]\ + [[xt, a_n, an], [yJt a.n, an]].

We have

[xi,[yj> a_n,an]] = [xi,[yj>a_n],an] - [ x , , an, [ y j t a_n]\

= [*i, [yj, a_n],an] = [x;,yj,a_n,an] - [ x , , a_n, y y , an].

Obviously, [x,, a_n, an, yj] = [x,, a_n, yp an\. Therefore,

[x,, [yj, a_n,an\] +[xt, a_n, an, j j = [x,, y}, a_n, an\.

Also,

[x,, a_n, an, [yj, a_n, an]\ = [x,, a_n, an, [yJt a_n], an] - [x,, a_n, an, an, [yp a.

= [x,, a_n,an,[yj, a_n],an\.

We have

ad(ejad([^, a_j)ad(aj = \(&a{anf *a{[yj, «_„]) + ad([j,, a_n\)*a{anf).

Therefore,

[x,, a.n, an, [y^ a_n], an] = ^[xt, a_n, [yJt a_J, an, an].

Now

[x,, a_n, [yj, a . j ] = [x,, a_n, yjt a_n\ - [x,, a_n, a_n, yj]

= [x,, a_n, yj, a . J = \[xt, yjt a_n, a_n\.
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Finally,

[x,, a_n, an, [yj, a_n, an}\ = \[x,, y}, a_n, a_n, an, an].

We have proved that

[χ,Τ(α_η, an), yjT(a.n, an)\ = [χ,, %]Τ(α_η, αη) e B'i+j.

c) We will show that for any elements xt e £Ct and yt e =S?, i > j > 0, the equality

[xiT(a_n,an),yj] = ([Xi,yj\ + [y.j, an, [χ,, α_η]])τ(α_η, αη)

holds. We have

/ = [χ,Γ(α.η,αη),^_;]

= [Xi,yj] +[Xi,a-n,an,yj] + \[xt, a_n, a_n, an,an, y_j];

g = {[xi, y.j] + [v-n, an, [χ,, α_η]\)Τ{α_η, αη)

_j, an, [x,, a.n], a_n, an] + \[y_j, an, [χ,, α_η], a_n, a_n, an, an].

We compare homogeneous elements with respect to a_n and an:

[y_j, an, [xh a_n]\ = -[x,, a_n, [y_Jt an]]

= -[x,,a_n,y_j,an] +[*,., a_n, an, y_j]

= -[Xi,y-j,a_n,an] +[xi,a_n,an,y_j}.

Therefore,

h = [Xi,o.n,an,y_j] = [y.j,an,[xi,a_n]] +[xt, y_jy a_n, an] = g2.

Furthermore,

Therefore,

Λ = U*,·. <*_„, a_n, an, an, y_j] = \[xt, a_n, a_n, an, y_j, an].

On the other hand, [xjt y_Jt a_n, a_n, an, an] = 0 and

g 4

= [y-j>aa,[Xi,a_n],a_n,an] = - [x,·, a_n, [y_y, an], a_n, an\.

As above, we have

ad(«_>d([>>_,, flJ)ad(e.J = i ( a d ( a _ J 2 a d ( [ j _ y ) «„]) + ad([j/_,., an])ad(a_n)
2),

from which it follows that

-\x,, a.n, [y_j, an], a_n, a_n] = -ΐ[χ,-, α_η, a_n, \y_}, an\, aH].

Observe that [x,, [y.j, an]] e SC._J+n = 0, since / > j . Furthermore,

i, a_n, a_n, [y_j, an], an] = -\[χ(, α_η, a_n, y_j, an, an]

+ %[xi,a_n,a_n,an,y_j,aj

= |[x,., a_n, a_n, an, y_j, an] = f4.
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It now remains to observe that [y_j, an, [xf, a_n], a_n, an] e ^i_j^ln = 0, since i — j <
n. Thus, g6 = 0 and/ = g. The lemma is proved.

Put Bn = B'n and

for k > 0; set Bk = &k for k < 0.

LEMMA 5.4. B(a_n, an) = Y,"_nBj is an inner ideal of the graded algebra J?.

PROOF. We will show that B(a_n, an) is a subalgebra of if, i.e., [£,., £,·] c B(a_n, an)
for all / and/ such that - « < / , / < « .

If / < 0 or/ < 0, then the inclusion is obvious. Assume / > 0 and/ > 0. Then it suffices
to establish that [B'n, JSf_ ,... ,i?_am, 5 ]̂ c Β for arbitrary weights a, > 0,1 < i «ξ m.

We will show by induction on m that for any weights k > 0 and a, > 0, 1 < / < m, we
have

[B'n,Se_ai><?_ai,...,S?_am,B'k\QB{a_n,an).

We know that

If a m # /c, it suffices to use the induction assumption.
Suppose am = k. If m = 1, then [5n', JS? , B'k] c 5n' by Lemma 5.3a). Suppose m > 2.

Then

and we can now again use the induction assumption. We have proved that B(a_n, an) is a
subalgebra.

If a! + · · · + am < -n, then

If a i + · • • + am > η and [JSf̂ ., Bai,... ,BaJ Φ 0, then / < 0. Thus, JS?(. c Β(α_η, απ).
Since B(a_n, an) is a subalgebra, it follows that

The lemma is proved.

§6. Primitive graded Lie algebras

1 °. Primitivity and the Jacobson radical in Jordan pairs. Assume that the pair of Φ-spaces
V = {V~, V+) forms a Jordan pair. According to the definition given in the Introduction,
this means that V~ and V+ are subspaces of weights -1 and 1, respectively, of some
Z-graded Lie algebra K(V) = V'+[V~, V+]+ V+, where the weight subspaces of the
weights k, \k\ > 1, are equal to zero.
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An ordered pair of elements a'°, α", σ = +, is called quasi-invertible if the operator

T(a~°, a°)\v.,: V° 3 x° ^ x° + [x°, a~°, a"] + \[x°, a~°, a'", a°, a"]

is invertible.
An element a" e V is called properly quasi-invertible if for every element a~° e V~a

the pair (a~a, a") is quasi-invertible. The set of all properly quasi-invertible elements
forms an ideal of the pair V called the Jacobson radical of V and denoted by Jac(F) (see
[12]). It is easy to see that Jac(F) is the sum of all quasi-invertible ideals of F(i.e., those
ideals in which every pair of elements is quasi-invertible).

A subspace fie F + is called an inner ideal if [V, Β, Β] c B.
An inner ideal Β c V+ is called modular with modulus (a~, a+) (see [29]) if (i)

V+T(a', a+) c B, (ii) V+(ad([a', b] - \ ad(<T)2ad(a+)ad(&))) c Β for every b e B, and
(iii)[a+, a~, α + ] - 2 α + ε Β.

If a pair of elements (a~, a+) is a modulus of an inner ideal 5 and b & B, then the pairs
(a", a + + b) and (α~, α+ ad([a~, a+])m), m > 1, are also moduli for 5.

It was shown in [29] that an {a', a+)-modular inner ideal containing a+ coincides with
F + .

A proper modular inner ideal Β c V+ of a pair V is called a primitivizer if for each
nonzero ideal KV we have 5 + / + = V+. In this case the pair V is called primitive. A
Jordan pair that is semisimple in the sense of the Jacobson radical can be approximated
by primitive Jordan pairs (see [15]).

Let us recall a few more facts about Jordan pairs. A pair of elements (a', a+) is called
algebraic if there exists a polynomial f(x) e χΦ[χ] such that /(ad([a~, a+])) = 0. A
Jordan pair is called algebraic if every pair of its elements is algebraic.

A Jordan pair V is called a nil pair if for any elements a~ and a+ there exists a natural
number m such that ad([a~, a+])m = 0. The maximal nil ideal of Fis called its nil radical
and is denoted by Nil(F).

By the resolvent Res(<z~, a+) of a pair (a~, a+) we mean the set of coefficients α e Φ
such that the pair (aa~, a+) is quasi-invertible, and we define

Spec(iT, a + ) = Φ \ Res(a", a + ) .

As in the case of associative algebras, we obtain by means of Amitsur's resolvent method
(see [28]) the following

LEMMA 6.1. a) 7/cardRes(a~, a+) > dim0 F
+ , then the pair (a', a+) is algebraic.

b) //card Φ > dim0 F
+, then Jac(F) = Nil(F).

A pair (a', a+) is called idempotent if [a+, a~, a+] = 2a+ and [α~, α+, α'] = 2a~.
Idempotents (af, ax

+) and (aj, a2) a r e orthogonal if [αϊ, a^] = [aj, af] = 0. Suppose
(af, «i1"),... ,(a^,, a^) are pairwise orthogonal idempotents. Then the pair formed by the
elements a~= H\a~ and a + = Σί"α,+ is also idempotent.

With an idempotent a = (a', a+) is associated a Peirce decomposition of the pair F:

V = P0(a, V) + Pl/2(a, V) + ΡΎ(α, V); P'{a, V) = F°ad( a-
< ')2ad(a< ')2,

P'M"' F ) = V°{*<i([a-°, a"]) + \ za{a-°)2αά{α°)2),

Pf(a,V)=VT(a-',a"), a=±.
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The following conditions are equivalent:
1) The idempotents ax = (a{, ax

+), a2 = (a2, a2) are orthogonal.
2) ax e P0(a2, V).
3) a2 e P 0 ( f l l , K).
It is easy to show that an algebraic Jordan pair that is not a nil pair contains an

idempotent.
2°. Primitive graded Lie algebras. Consider a graded Lie algebra S£= YJln^t, «S?o =

L"[^j, SPt], and an inner ideal Β = Σ?η5,. We will say that the inner ideal Β is modular
with modulus (a_n,an), a_n <=£?_„, an e &„, if (i) B(a_n,an)Q B, and (ii) Bn is a
modular ideal of the Jordan pair (SC_n, &„) with modulus (a_n, an).

If bn e Bn, then the pairs (a_n, an + bn) and (a_B, anad([a_n, an])m), m>\, are also
moduli for B.

LEMMA 6.2. Suppose Β is a modular inner ideal ofJif with modulus (a_n, an) and an e B.
Then B=&.

PROOF. AS noted above, it was shown in [29] that Bn = S£n. Also, Β ο B(a_n,an)^
Li>0&,. If x e i » , 0 < i < n, then xT(a_n, an) = x- [x, a_n, an) e 5 and [x, a_n],
an& B. Thus, χ e 5. The lemma is proved.

Let 0>{a_n, an) denote the set of maximal proper inner ideals of & with modulus
(a_n, an), and let<?»= U{^(fl.,,, a j | « ± n e i f ± n } . If β e ^ , then 7(5) = E".n/(5),is a
maximal ideal of .5? contained in B.

LEMMA 6.3. Π{ Ι(Β)\Β e &>} is contained in the Jacobson radical of(Ji?_n, £Cn).

PROOF. Assume the element an e f){I(B)\B e £?} is not properly quasi-invertible, i.e.,
there exists an element a_ne^Cn such that (a_n,an) is not quasi-invertible. Then
B(a_n,an) is a proper {a_n, an)-modular inner ideal of .£?. There exists an inner ideal
Β e ^containing B(a_n, an). By hypothesis, an e B. In view of Lemma 6.2, Β = 3?. This
contradicts the assumption that Β is proper. The lemma is proved.

We will call a graded algebra

primitive if it contains a maximal proper modular inner ideal Β such that /(£) = 0. In this
case, the subalgebra Β is called a primitivizer. It is easy to see that for any inner ideal
Β e ^ t h e quotient algebra.Sf//(B) is primitive.

LEMMA 6.4. Suppose S£ is a primitive Lie algebra with primitivizer Β = Σ"ηβ,. 77ien i/;e
following assertions are true:

a) / + Β = 3? for any nonzero graded ideal I<£C.
b) Any nonzero graded ideal ofSC has nonzero intersection with £?„.
c) Bn is a primitivizer of the Jordan pair (&_„, &„).

PROOF, a) Suppose / is a nonzero graded ideal of ££ and (a_n, an) is a modulus of the
inner ideal B. Then Β + I is a modular inner ideal of jSf with modulus (a_n, an) that
strictly contains B. Since Β is maximal, we have Β + I = £f. Part b) follows at once from
a). Let us prove c). Suppose/ = (/_„, /„) is a nonzero ideal of the Jordan pair (.£?_„, £Pn).
Our goal is to prove that /„ + Bn — 3?n.
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Assume first that the quotient pair (·£?_„, ^n)/J contains no nonzero locally nilpotent
ideals. Then, by Lemma 1.4, Jn = JCn Γ) Id^( Jn) and it suffices to use a).

Let us now drop the assumption that (&_„, SCn)/J contains no nonzero locally
nilpotent ideals. Let J'/J be the locally nilpotent radical of («S?_n, ^n)/J, J Q J'.By what
was proved above, /„' + Bn = &„. Choose elements xn e /„' and bn e Bn such that xn + bn

= an. Since the pair / ' / / is locally nilpotent, there exists a natural number m > 1 such
that x'n = xn ad([a_n, xn])m e Jn. The pair of elements (a_n, x'n) is a modulus of the inner
ideal (B_n + J_n, Bn + Jn) of the pair (&.„, 2n\ and Bn+Jn3 x'n. Thus, Bn + Jn = 2n.
The lemma is proved.

§7. 5-Identities in primitive algebras

1°. Free graded algebras. Consider the free Lie algebra Lie(Z) on the set of generators
X = {xij\~n < ' ^ w> J** 1}· The Lie algebra Lie(X) possesses a natural Z-grading in
which the weight i is attached to the generator xip Lie(JQ = EklEZjLie(X)k. Let / denote
the ideal of L i e ^ ) generated by the set L^>nLie(X)k. It is obvious that Lie(X, n) =
Lie(X)/I is a free graded Lie algebra.

We will say that an element f{xtj) ε Lie(Ar, n) is an identity on the graded Lie algebra
=S?= Σϋ,,-S^ if it is mapped into zero under every homomorphism xtJ —> =2̂ , 0 < |/| < n,
j > 1. In this case we write f(^C) = 0.

Consider the free special graded Lie algebra SLie(X, n) (see §2) and the natural
homomorphism ψ: LieiA', n) -* SLie(Jf, n), under which xtj is mapped into x^. We
denote the kernel of this homomorphism by 5 and call the elements of this kernel
S-identities. It is obvious that a graded Lie algebra is a homomorphic image of a special
graded Lie algebra if and only if 5"(= )̂ = 0. The ideal S is homogeneous with respect to
the generators in X. We also consider the ideals

S(X) = ldUe(X,n)(S η Ue(X, «)„) c S(X)

and

P(X) = ^Liei*,*)({ K , b, an, d], [an, c, an, d]\an e Lie(X, «)„;

b,c,d& Ue(X,n))).

2°. In the rest,of this section we consider a primitive graded Lie algebra J?= Eun«S?,,
&Ό = E"[SC_j, JCj], over an algebraically closed field Φ such that card Φ > dim$^P. Our
goal is to show that either^ Π P\S£) = 0 or y is an exceptional finite-dimensional
algebra of one of the types G2, F4, E6, E7 or Eg.

Suppose Β = Σ" η 5, is a primitivizer of =Sf with modulus (a_n, an).

LEMMA 7.1. B(2) = 0.

PROOF. Assume B(2) Φ 0. The nonzero ideal / = Id_^([5(2), =£?]) is locally nilpotent
modulo B. By Lemma 6.4a), there exist elements xn e / η S£n and bn e Bn such that
xn + bn = an. For some m > l w e have x'n = xnad([a_n, xn])m e Bn.

The pair (a_n, x^) is, as before, a modulus for B. Thus, Β = JSf. Contradiction. The
lemma is proved.

Consider the ideal S" = [[S, S], Lie(Z, «)] of the free graded algebra Lie(X, n).

COROLLARY. S'(B) = 0.
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PROOF. By Lemma 5.1, the quotient algebra B/B(1) is special. Thus, S(B) c B(l).

Moreover, [B(1), Bm, &] c [B(2), £C] = 0, from which it follows that

S'(B)Q [* ( 1 ) ,2> a ) ,J2?]=O.

By the heart Η = H(&) of an algebra i f we mean the intersection of all its nonzero

graded ideals.

LEMMA 7.2. S'(£?) Q H.

PROOF. Suppose / is a nonzero graded ideal of aC. Then, by Lemma 6.4, Β + I = SC.

Therefore, SC/I = Β + I/I - Β/Β Π /. Thus, S'(£/I) = 0 and S\&) c /. The lemma

is proved.

Assume S(JSP) Φ 0. Then S'(SC) Φ 0 and Η = T.1nHi Φ 0.

L E M M A 7 .3 . For any elements a_n^S£_n and hn^Hn, either B{a_n,hn)= ££ or

PROOF. Assume [B(a_n, An)(2), B(a_n, hn)] Φ 0. The nonzero graded ideal

I = \ά#([Β(α_η, hn\2), B(a_n, hn)])

is locally nilpotent modulo B(a_n, hn). Moreover, hn e Hn c /. Thus, there exists w > 1

such that A'B = Anad([a_n, AJ) m e B(a_n, hn). The pair (a_n, A'n) is a modulus for the

inner ideal B(a_n, hn). By Lemma 6.2, B{a_n, hn) = £f. The lemma is proved.

LEMMA 7.4 (see [13], [29]). Suppose f is a homogeneous element of the free graded Lie

algebra Lie(X, n) of degree m with respect to X (i.e., each monomial contains exactly m

letters of X) that is not an identity onSC. If {Bk} kis a family of inner ideals of^C such that

Y)f'(Bk) = Ofor all linearizations f' off, and

2) J ? = L^jCij, where Ctj = ft{Bk\k Φ i, k Φ j),

then the number of inner ideals Bk is at most 2m.

PROOF. If the number of inner ideals Bk exceeds 2m, then any m subspaces C I L / I, . . . , Cimj

lie in one of the inner ideals Bk, k £ {il,i2,.--,im, ji, j2,---Jm}· Consequently,

/ ( C / l A , . . . , C i e / J - 0 . A l e o ,

This contradicts our assumption that/(.S?) Φ 0. The lemma is proved.

Choose a homogeneous element / of degree m in the ideal S' that is not an identity

LEMMA 7.5. For any elements A_n e H_nandhn e Hn

PROOF. Suppose ax,... ,a2m+l e Spec(A.n, hn), where α, Φ oij if / Φ j , 1 < i,j < 2m +

1. We will show that the element / and the inner ideals Bt = 5(α,Α_π, hn) satisfy the

conditions of Lemma 7.4. By the corollary of Lemma 7.1, f(Bt) c 5'(β,) = 0. Also,

The polynomials g,(x) = (1 + α , - χ ) " 1 ^ ^ 1 ^ + a yx), 1 < / < 2wi + 1, are relatively
prime. Consequently, there exist polynomials pl(x),...,p2m+l(x) e Φ[χ] such that
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If 0 < k < n, then

2m+l

When A: = « the assertion being proved pertains to Jordan pairs and was analyzed in

detail in [13] and [29].

It now suffices to apply Lemma 7.4. The lemma is proved.

LEMMA 7.6. (.£?_„, Hn) is an algebraic Jordan pair.

PROOF. Suppose a,n<E£?_n and hn e Hn. By Lemma 7.6,

cardRes(a_n, hn) = card Φ > dim i ) i i ' .

Therefore, by Lemma 6.1, the pair of elements (a_n, hn) is algebraic. The lemma is

proved.

LEMMA 7.7. The pair (-?!_„, Hn) can contain at most 1m pairwise orthogonal idempotents.

PROOF. If (e(}^, e^),.. .,(e(}™+1\ ej1

2m+l)) are pairwise orthogonal idempotents and

ax,. ..,a2m + l e Φ \ {0} are distinct elements of Φ, then the elements \/al,...,\/a2m + l

lie in the spectrum of the pair (Σ?Γ1

+ 1α (-β^,Σ?Γ1

+ 1ί# )), which contradicts Lemma 7.5. The

lemma is proved.

Suppose ex = (e(}\, e^),. ..,es = (e(_sJ, e(

n

s)) e (//_„, Hn) is a maximal family of pair-

wise orthogonal idempotents of the pair {£?_„, Hn), s < 2m. Then the pair of elements

e — {e_n, en), where e_n = Z J e ^ and en = Σ{β(

π'\ is also an idempotent.

If P0(e,(&_n, Hn)) Φ 0, then P0(e,(£?_„, HJ) is not a nil pair (see [12]); hence it

contains an idempotent. This contradicts the maximality of s. Thus,

and

&nT(e.n, en)=<en[\a - ad([e_n, e j ) + \ a d ( e . B ) 2 a d ( e B ) 2 ) = 0.

Since en e Hn, it follows t h a t ^ , = Hn.

The Peirce component ^ ( e , , (-S?ln, =S?n)) of the Jordan pair (=S?_n, ^fn) is obtained by

duplicating some unital Jordan algebra / (see [12]). The algebra J is algebraic on Φ and

does not contain any nonzero nil ideals or (in view of the maximality of s) proper

idempotents. Consequently (see [13] and [29]), J is a Jordan division algebra. Since the

field Φ is algebraically closed, we have/ = Φ · 1, i.e., [^_n, e*0, e^°] = Φ ^ ° .

Note that Η = Id^(e<X )).

LEMMA 7.8. Suppose SC= Σ"_η^ is an arbitrary graded Lie algebra over a field Φ and

-S?o = £?[.£?_,•, Se^. IfSen 3 an and \£e_n, an, an] c Φαη, then an generates a locally finite-

dimensional ideal ofJif.

PROOF. Suppose the subalgebra A c I d ^ ( a n ) is generated by the elements
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where 1 < α < m, 1 ^ β < na, and α(αβ) e SeKf, 1 < |fco/}| < «, and let 31 = {«„, α ( α / ! ) |

1 < α < m, 1 < β < « a }.

Consider the free graded Lie algebra Lie(JV, n) on the finite set X = {xn, χ(αβ)\1 < α

< m , l < / ? < « a ) , where the weight η is attached to the generator xn and the weight k^

to the generator χ(αβ\ Let

where 1 < α < m and 1 < β < ηα.

Let / be the ideal of LieCA', «) generated by the set [Lie(X, n), xn, xn], and let

": Lie^X, «) -» Li^X, « )//be the natural homomoφhism.

We may assume without loss of generality that the field Φ is infinite. Since the algebra

f, n) is generated by the Engel elements of degree at most 2η + 1, any subspace of

Lie(X,n) that is invariant under inner automorphisms is an ideal of Lie(X,n). In

particular, the subspace spanned by the crusts of thin sandwiches of Lie( Χ, η) is an ideal

and the elements zia\ 1 < α < m, lie in this ideal.

By a result of [30], the subalgebra ^ f ( z ( a ) | l < a < m) generated by the elements

z ( a ) , 1 < a < m, is nilpotent and finite-dimensional. Let U1,...,vg be a basis of

JS?(z ( a ) | l < α < m) over Φ, and let t>1,...,u(?bepreimages οίϋχ,.. .,oq.

For an arbitrary element υ e Lie(Ar, «) we denote its degree with respect to Xby deg v,

i.e., this is the maximal degree of a commutator appearing nontrivially in the expression of

v. Let d = max(deg vx,... ,deg vq). We will show that the subalgebra

A = ^ ( c ( a ) | l < a < m)

lies in the subspace spanned by the commutators in 31 of weight at most d. Indeed,

suppose υ e i f ( z ( a ) | l < a < m) and deg ν = d' > d. We have

1 mi

v= Σ k,Vi + Σ Κ - , *„> χη] Π ad(wy.,,),
i _ ι _,- » = 1

where /c, e Φ and the Wj and w·,, are commutators in X. Obviously,
m,

deg Wj + 2 + Σ d e 8 w

y>
 = d.

Also,

" ( « ) = ΣΜ/(81) + Σ Φ α Β Π ad(W>(8t)),
i - l " = 1

i.e., ϋ(3ί) is a sum of commutators in 31 of weight less than d'. The lemma is proved.

By Lemma 7.8, the algebra Η = I d ^ ( e ' 1 ' ) is locally finite-dimensional over Φ.

LEMMA 7.9. The algebra Η is simple.

PROOF. Note that Η = I d ^ e ^ 1 ' ) . Indeed, for any operator Π™ ad(wa), wa e J?, we have
m m

e™ Π ad(wj = 2-">eyad{[e?l e™])m Π ad(wj e I d ^ i ^ ) .
a = l a = l

Suppose / is an ideal of Η that is not equal to H. Then / 3 e^\ and so [/, e£\ e'1'] c /

c Φβ^1' = 0. The algebra Η is strongly nondegenerate in the sense of Kostrikin. There-

fore, by the corollary of Lemma 1.9, [/, e<:)] = 0. Now [I,ldH(e^)] = 0 and [/,/] = 0.

Since Η is strongly nondegenerate, / is equal to zero. The lemma is proved.
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Thus, Η is Ά simple locally finite-dimensional graded algebra. By Lemma 4.2, either Η is
isomorphic to one of the algebras G2, F4, E6, E7 or Es, or Η is special, or commutation of
the subspaces H_n and Hn is defined by a bilinear form/: {H_n, Hn) -> Φ.

If Η is a finite-dimensional exceptional algebra and .5? is infinite-dimensional, then
Ζχ,(Η) is a nonzero graded ideal of JSP; hence Z^(H) 2 // and [//, if] = 0. Contradic-
tion. The second and third cases are analogous.

§8. Proof of Theorem 1 (conclusion)

Let Τ denote the graded ideal of the free graded algebra Lie(X, n) consisting of those
elements such that they and all of their linearizations are identities of all exceptional
graded Lie algebras. For example, any element that is skew-symmetric in 249 variables
(248 is the dimension of E%) lies in T. Let Τ = Σ1ηΤ^ S = Σ" Λ and Ρ = Σ1ηΡ,.

LEMMA 8.1. Sn η Tnn Ρη c K(Ue(X, n)).

PROOF. We shall assume without loss of generality that the ground field Φ is algebrai-
cally closed and uncountable.

Let ^"be the family of maximal modular inner ideals of Lie(X, n). For any inner ideal
Β e 0> the quotient algebra Lie(X, n)/I(B) is primitive. By the results of §7, S Γ) Ρ Π Τ
c I(B). We will show that Γ\{Ιη(Β)\Β e &>} c K(Lie(X, «)). By Lemma 6.3, the Jordan
pair (££_„ Π {Ιη{Β)\Β e £?}) is quasi-invertible. It follows from this and Lemma 6.1 that
(^_η,Γ\{Ιη(Β)\Β e ^}) is a nil pair. Choose an element an e C\{In{B)\B e ^} and a
generator x_n j e Ζ not occurring in the expression of an. Suppose x_n yad([an, x_n y])m

= 0, m > 1. The multiplication c_n ° b_n = [c_n, an, b_n] makes £f_n into a Jordan alge-
bra. By what was said above, this algebra satisfies the identity xm — 0. It was shown in
[31] that a Jordan nil algebra of bounded degree is radical in the sense of McCrimmon. It
follows easily that an lies in the McCrimmon radical of the Jordan pair {^_n, ^n) and
therefore in the Kostrikin radical of SC (see §1). The lemma is proved.

If .5? is a simple graded Lie algebra, then aC contains no nonzero locally nilpotent ideals.
Therefore, K(£f) c Loc(^) = 0, and either S{Sf) = 0 or T(^) = 0 or P(£f) = 0.

If T{££) = 0, then R(3?) is a prime Pi-algebra which, by the Markov-Rowen theorem
(see [24] or [25]), is finite-dimensional over the field Γ = F(if). Obviously, dim r=^<
dimrR(3C) < oo.

If P{Se) = 0, then there is a bilinear form/: (^?_n, Sfn) -* Γ such that

[an,b.n,cn]=f(b_n,aH)cn+f(b.H,cn)an

and

[a.n,bn,c_n] =f{a,n,bn)c_n + f(c_n,bn)a.n

for any elements a±n, b±n, c±n^Sf±n. If 0Φαη<=&η, then [Sf, an, a j c Γαη. By
Lemma 7.8, the algebra Sf is locally finite-dimensional over its center. These two cases
were considered in §4.

Assume, finally, that S(aC) = 0. Since S{Sf) Γ\££η = S(Sf) η J5?n = 0, it follows that
S(y) = 0. Short gradings J5?= &_η + ά?0 + &„ were considered in [15]. We may therefore
assume that Σ0<|,·|<η·^· ̂  0· We may also assume that

since otherwise P(3C) = 0.
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Suppose φ: SLie(A\ η) -* aCis a homomorphism and 7 = Ker φ = Σ"π/,·. Let 7 denote
the ideal of the free associative graded algebra Ass(.Y, n) generated by the set Σ0<|,|<π^,;
then 7 = Σ" „/,- is a graded ideal. We will show that for ;' Φ 0 we have It (Ί SLie(X, n) = /,.
Suppose a e 7, η SLiei-Y, n), but α £ 7/o, i0 Φ 0. We represent the element α as a sum of
words a = T.qwq{xik, djj), where 0 < \k\, \l\ < n, ay , e /,, the degree of each word wq

with respect to {a,,/} is not zero, wq(xik, at t) e Ass(Jf, n)j(i and H *̂ = -n^.
Let Τ = (Γ_η, r j be the ideal of the Jordan pair (SLie^, n)_n, SLie(A; n)n) intro-

duced in §2. By Lemma 2.3, there exists a natural number m such that the quantity
wq(xi k, flyi/)ad([T'_n, rj)" 1 is a sum of commutators, each of which has degree at least 1
with respect to {a,·,,}. Thus, aad([r_n, Tn])m c 7. By hypothesis, (7?n, 77) is a nonzero
ideal of the Jordan pair (.£?_„, =Sfn). By Lemma 1.5, the Jordan pair (^_n, &„) is simple.
Thus, (T\, 77) = (&_„, £fn) and a^add^L^ ^,])" 1 = 0. Since =5" is simple, it follows
that αψ = 0, α e 7. Contradiction. We have shown that 7; η SLie^, «) = 7,. Therefore,
the mapping ££t 3 a, + 7/7 -^ a, + 7/7 is a specialization. The graded algebra ££ is
special, and [Sfn, [[&_„, &„], [£?_„, &„]]] Φ 0. By the results of §2, JS? is an algebra of type
1 or II. The theorem is proved.

§9. M-Graded Lie algebras

Suppose Λ is a torsion-free Abelian group and Μ is a nonzero finite convex subset of Λ
containing 0 such that Λ = gr(M). Assume that there is defined on a simple Lie algebra £?
a nontrivial Λ-grading <£= Σ α ε Λ JS?a, &α = 0 for α ί Μ, d(M) <{p + l)/2, and Μ
consists of all lattice points of the convex hull of the set {α e Λ\La Φ 0}.

We call an M-graded algebra =S? special if there exist an M-graded associative algebra
R — Σ α ε Λ 7? ο , where Ra = 0 for α ί Μ, a subspace Z c Z ( i ) n S 0 , and an embedding
.£?-» RS^/Z preserving the grading.

Let r be the rank of Λ; Λ = Ζ θ · · · θ Ζ (r summands). The convex hull of Μ is a
convex polyhedron in r-dimensional space with integral vertices, and each face of this
polyhedron has at least r vertices. In other words, there exists a finite family of
homomorphisms/;: Λ -» Ζ such that

M= { o e A l / j ( e ) < B i j ) m i e Z } ,

|{α|/,(α) = m,·, o5?a # 0}|> r for each/.

The case r = 1 is covered by Theorem 1. Assume r > 2. If ^? is locally finite-dimensional
over its center, then by repeating the argument in the proof of Lemma 4.2 and using
Lemma 4.3 we can show that JSP is either special or isomorphic to the Tits-Kantor-Koecher
construction of the Jordan algebra of a symmetric bilinear form.

Assume that the simple M-graded algebra ££ is special, U = Σ α ε Μ £/ α is the universal
enveloping associative M-graded algebra for JS?; U is the quotient algebra of U with
respect to the Baer radical. We identify the elements of £Pa, α Φ 0, with their images in Ua.
On the algebras U and U there acts an involution * sending each homogeneous element
a e sea, α Φ 0, into -a. For r > 2 it follows from the results of §2 that ί£α = 7^(ϊ7α, *),
α Φ 0, the involutory algebra (U, *) is simple, andif = K'(U, *).

Our goal in this section is now to prove that a simple M-graded Lie algebra that is not
locally finite-dimensional over its centroid is special. This will complete the proof of
Theorem 2. We shall assume without loss of generality that the centroid Γ is an
algebraically closed field such that card Γ > dimrJS?.
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LEMMA 9.1. Suppose there exists a nonzero element a £ / i such that a* = +a and

a2 = a[K, K]a = 0. Then the algebra R is locally finite-dimensional over Γ.

PROOF. Assume first that a e AT. Then the subspace [AT, AT, a] lies in the Kostrikin

radical of the algebra [AT, AT]. The Kostrikin radical of [AT, AT] coincides with its center;

hence [AT, AT, a] c Z([K, AT]) c Z(R) c Γ. Since α [AT, AT, a] = 0, it follows that [AT, AT, a]

= 0 and [a, R] = 0. Since the center of R contains no nonzero nilpotent elements, a = 0.

Let us now assume a* = a. By what was proved above, aKa = 0. Any element j c e u

can be represented in the form χ = xs + xk, where xf = xs and x% = -xk. Obviously,

axaya = axsaysa = a(xsays — ysaxs)a + aysaxsa = aysaxsa = ayaxa.

We define on the Γ-space R a new multiplication χ * y = xay and denote the resulting

algebra by /ϊ ( α\ We have shown that i? ( a ) is commutative.

The space Ann = {x e R\axa = 0} is an ideal of i? ( a ), and the quotient algebra

R(a)/Ann is simple. In view of the restrictions on the field Γ we have Λ ( α )/Αηη = Γ.

Thus, d i m r aRa = 1. This easily implies that R is locally finite-dimensional. The lemma is

proved.

Suppose/: Λ -» Ζ is a nonzero homomorphism,i?= E™m^·, =Sf, = E{.S?J/(a) = i'} is a

nontrivial finite Z-grading, and dim r^Pm ^ 2. It was shown in §2 that there exists a simple

involutory algebra (R = !!"„,/?„ *), R* = R;, such that

where A: = K(R, *) . The algebra Λ is generated by the set Σ 0 < | , Ί < Μ ^ c [Κ, Κ].

For any elements α, ε ^ , « , # 0 , l < / < q>, when a = Efa, # 0 we have αλ · · · a +

aq • • • ax e jS?a. Indeed, when Σ0<^<η,&Ί Φ 0 this follows from the results of §2. Suppose

S^=Se_m +y0 + ym. It follows from the results of [15] that either the Jordan pair

(j£?_m, £Pm) is reflexive or there is a nonzero element am e 3?m such that \S£, am, am] c

F a m . Since JSf is not locally finite-dimensional, the pair (&_„, SCm) is reflexive and again
ai · · · a

q + a

q · · · a\ ^ & ± m ' x i « ι + · · · + « , = + w -

Therefore, when ζ Φ 0 we have^o^?oif, c JS?0JS^. + <S?,. Thus, the subalgebra y40 gener-

ated by the subspace E1</<B)[A"_,-,/£,-] lies in EjLjA^, AT]', and the subalgebra A +

generated by the space-§?±= E ; > o i ? ± , lies in Lf=1[K, K]'. Then

7

R = (A + + A_+ A+A_){T • 1 + Ao) + Ao c Σ [AT, AT]'.
i = l

The grading of the algebra [AT, K]/Z([K, K]) can be lifted to a grading of the algebra

[Κ,Κ] = Σα^Μ[Κ,Κ]α.
We will show that for any convex M-grading [AT, AT] = ΣαΙΒΜ[Κ, K]a we have Λα = 0

for a & M. Since the set Μ is convex, it suffices to prove that for any grading

[AT, Κ] = Σ"_η[Κ, AT], we have Λ,- = 0 for |/| > n.

Choose an element ai e [AT, AT],., / > 0, and consider the subalgebra Γ(α,·) generated by

it in R. For any element a e Γ(α,) and any homogeneous subspace [A", AT]y we have

a[K, K]j c [AT, K]ja + ( Γ ( α , ) + Γ · \)[K, K]J + ,{T(a,) + Γ • l ) .
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Therefore, a2n + 1[K, A], c Ra and a2n+J[K, A] c Ra. By what was proved above,

If a<2" + 1 ) 7 # 0, then the fact that R has no ""-invariant ideals implies that R = Rai2n

= Ra = aR and a is invertible. Thus, each element of the subalgebra Γ(α,) is either

invertible in R or nilpotent. Assume that ai is not nilpotent, i.e., is invertible. Consider the

spectrum of a,:

Spec(a,) = { λ e Γ|1 - λα, is not invertible in R}.

For any coefficient λ e Spec(a,) we have

(1 - λ«,) ( 2" + 1)7 = α-<2«+1>7(α, - λα, 2 ) ( 2 " + 1 ) 7 = 0.

Consequently, if |Spec(a,)| > {In + I) 7, then ap" + 1 ) ? = 0, a contradiction. Thus, the

cardinality of the resolvent of ai is equal to that of the field Γ and exceeds dim rJ?. By a

theorem of Amitsur [28], ai is algebraic over Γ; dimpIXa,) < oo. Moreover, the subalge-

bra T(cii) contains no proper idempotents of R. Therefore, the quotient algebra modulo

the radical, Γ(α,.)/Ν, is a division algebra. Since Γ is algebraically closed, Γ(α,) = Γ · 1 +

Ν. Assume α, = α • 1 + η, where α e Γ and η e Ν. Then -α, = af = a • 1 + η* = -α •

1 — η. Thus, 2α = -η* — η e Ν, α = 0, α1; e N. Contradiction.

Suppose an e jSfn. We have [Κ, K\a\ c an(R + Γ · 1) and

[K,K]a2

nQ[K,K]n(R + T-l).

If ad

n Φ 0, ad

n

 + l = Q,d>3, then ad

n[K, K\ad

n c α^+ 1(Λ + Γ · 1) = 0, which contradicts

Lemma 9.1. Thus, for any element an e jS?n we have a\ = 0. Since char Γ > 3, it follows

that

[K,K]n[K,K]n[K,K]n = Q.

Suppose α 2 Φ 0. Then a2

n[K, K]a2

n c [Α:, ΛΊ^(Λ + Γ · 1) = 0, which also contradicts

Lemma 9.1. Thus, [K, K]n[K, K]„ = 0. Ifan«= [^, A:]B and i,. e [A:, A"];, then

= 0, if / Φ -η,
e ^ i f j - = _ n .

Assume i > 0, a, e [A, A"],-, and [K, K]nai Φ 0. Suppose [K, K]naf Φ 0 and

[K, K]na
d+1 = 0. Choose an element an e [A, AT]n such that anaf ^ 0. For any element

bj e [Κ, Κ]j we have

= 0, Uj*-n,

= Han,^,an]a2d, if;--,,

We have shown that [K, K]n[K, K]- = 0 for i > 0. It can be shown analogously that

[K, K]_n[K, K]i = 0 for / < 0. It follows that Rt = 0 for |i| > n. Theorem 2 is proved.
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