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LIE ALGEBRAS WITH A FINITE GRADING
UDC 519.48

E. 1. ZEL'MANOV

ABSTRACT. In this paper the simple (infinite-dimensional) Lie algebras with a finite
nontrivial Z-grading are described, under certain restrictions on the characteristic of the
field.

Bibliography: 31 titles.

Introduction
1°. Main results. Let Z be the ring of integers. By a Z-grading of the algebra A we mean

a decomposition of this algebra into a sum of subspaces, 4 = ¥,.z4,, such that 4,4, C
A, The grading is finite if the set {i € Z|4, # 0} 1s finite. The grading is nontrivial if
Y, .0A; # 0. The goal of this paper is a description of the simple (infinite-dimensional) Lie
algebras with a finite nontrivial Z-grading under certain restrictions on the characteristic
of the field.

THEOREM 1. Suppose L= L, %, is a simple graded Lie algebra over a field of characteris-
tic at least 4n + 1 (or of characteristic 0) and ¥, &, # 0. Then L is isomorphic to one of
the following algebras:

I. (R, R©O)/Z, where R = L" R, is a simple associative Z-graded algebra and Z is the
center of the commutant [R©O, R,

II. [K(R,*), K(R,*)|/Z, where R = L" R, is a simple associative L-graded algebra
with involution *: R - R, R¥ = R, and K(R, *) = {a € R|a* = -a}.

I11. The Tits-Kantor-Koecher construction of the Jordan algebra of a symmetric bilinear
Jorm (see 2°).

IV. An algebra of one of the types G,, F,, E¢, E;, Eqor D,.

The isomorphism in cases 1 and 11 preserves the grading, i.e. is a graded algebra
isomorphism.

We can consider a more general situation. Suppose A is a torsion-free Abelian group
and 4 =%, _,A4, is a A-graded algebra. As above, the grading is finite if the set
M’ = {a € Al4, # 0} is finite, and is nontrivial if ¥ ,,4, # 0. Examples of finite
gradings:

1) Suppose .Z is a Lie algebra over a field of characteristic zero and T is a split torus.
Then the decomposition of .# into a sum of weight subspaces relative to ad(T') is a finite
grading.
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348 E. I. ZEL MANOV

2) From any Jordan algebra (Jordan pair) we can construct, by means of the Tits-
Kantor-Koecher construction, a Z-graded algebra of the form ¥= % | + £, + £, ¥ =0
for |i| > 1 (see [4]-]7] and 2°).

3) From any J-ternary algebra we can construct a Z-graded Lie algebra of the form
=L, +F,+ L+ L +F,,F = 0for|i| > 2 (see [8]-[10)).

We may assume without loss of generality that the group A is generated by the set M.
The elements of A can be represented by lattice points in an r-dimensional real space (r is
the rank of the group A). Let M denote the set of all lattice points in the convex hull of
the set M’. We will say that the A-graded algebrad = ¥ _,A4,is M-gradedif A, = 0 for
a & Mandif4 =Y ., A4, By the width of the set M we will mean the number

d(M) = min{|(p(M)|q> e Hom(A,Z), ¢ # 0}.

THEOREM 2. Suppose =L &, is a simple M-graded Lie algebra over a field of
characteristic at least 4n + 1 (or of characteristic 0) and = .., &, # 0. Then L is isomorphic
to one of the following algebras:

L[R©, RO /Z, where R = ¥, R, is a simple associative M-graded algebra.

IL [K(R,*), K(R,*)]/Z, where R = ¥, R, is a simple associative M-graded algebra
with involution *: R — R, R* = R.

III. The Tits-Kantor-Koecher construction of the Jordan algebra of a symmetric bilinear
form.

IV. An algebra of one of the types G,, F,, E¢, E,, Eq or D,.

In cases 1 and 11 the isomorphism preserves the M-grading.

Following Weil [11], we will call an associative algebra R with an involution *: R - R
an involutory algebra. With an involutory algebra (R, *) are associated the Lie algebras
K(R,*)= Kand K'(R,*) = [K, K]/Z(K, K]).

An involutory algebra (R, *) is graded if the associative algebra R = X, R, is graded
andR¥*=R_,a € M.

An involutory algebra (R, *) is simple if the algebra R contains no proper *-invariant
ideals. It is easy to see that in this case R either is simple or is a direct sum of two ideals,
R =1 @ I*, where I is a simple algebra.

Cases I and II of Theorems 1 and 2 can be combined by considering the algebra
K'(R, *) of a simple graded involutory algebra (R, *).

If X € & is a subset of the Lie algebra ., then we denote by £ (X) the subaigebra
generated by the set X, and by Id ,.( X') the ideal of £ generated by X.

As usual, we denote by ad(a), a € &£, the operator ad(a): ¥> x — [x, a], and by

la;, a,,-..,a,] = a;ad(a,) --- ad(a,)
the right-normed commutator of the elements a,,...,q,,.

Even if we do not say so explicitly, we will assume that graded algebras = 3" %, are
considered only over fields of characteristic at least 4n + 1 or of characteristic 0.

2°. Jordan pairs and algebras. The Tits-Kantor-Koecher construction. Of particular
interest is the short Z-grading ¥= %, + %, + %,. In this case the pair of subspaces.%_;,
&, with the action on each other by the rule

(L0, L, L) 3 (s z0) 2 {(xu s 20 ) =[x 24 €20,
(&L, Ly, L) 2 (x, y,21) = {x1, yos 20} =[x, v z]es
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is studied independently of the Lie algebra .# (see [12]) and is called a Jordan pair. More
precisely, a Jordan pair is a pair of spaces (V- V™) with operations (V -, V", V") >
(x5 yh )~ {xLyhz}eVand (V' V V) (x', y,z0) > {xt, y 2z eV
satisfying the identities

P {x° y % {x% 277 x"}} = {x°, {»~ % x° 277}, x°},

AP2) {{x% y=% x?} y7% 2%} = {x° {y™° x°, y™7}, 27},

AP3) {{x% ™ %7}, 27 (%%, y™% x° )} = (x° {377 (x% 2%, X}, y "}, x°), 0 =2,
and all of their partial linearizations. It is easy to verify (see [12]) that the operations
(X .1 Ve 241) =[x 11 y71] 2 1] satisfy these identities.

Any Jordan pair can be obtained by the method described above. Indeed, for elements
a*e V* we define an operator L (a”,a*): V'3 x*— {x*, a", a”}. The subspace of
End (V™) spanned by the operators L _(a~, a™), a*€ V %, is closed under commutation.
We define the operator L (a”,a*): V"> x = {x7,a", a”} analogously. Consider the
space of matrices

Y L.(a7,a}) a*
K(V)= ' ,at,ate V*

a AZL‘(ai_’a:—)

with commutation

[(c?" aO+)’(bO‘ b0+)]=(L+(b—’a+);L+(a_,b+) —L_(b‘,a+)0+L_(a‘,b+))’

{(z?— b0+)’(L+(a(;,a+) —L_(:',cﬁ))

The algebra K(V) is a Lie algebra, which is called the Tits-Kantor-Koecher construction of
the Jordan pair V. Obviousty K(V)=K(V)_, + K(V), + K(V),, where K(V)_, =
0 0
v- o) and

0 -L.{(a,a")b"
L (a,a*)b” 0 '

YL.(a;,a]) 0

0 -2 L (a;,a)

K(V)o = 0 V+).

, K(V)1=(O 0

The concepts of subpair, ideal, and homomorphism for Jordan pairs are defined in the
natural way (see [12]).

A linear algebra is called a Jordan algebra if it satisfies the following identities:

JD) xy = yx.

(J2) x*(yx) = (x?y)x.

ExaMPLES. 1) An associative algebra R with symmetrized multiplication xoy =
1(xy + yx) is a Jordan algebra. 2) If *: R — R is an involution, then the subspace
{a € R| a* = a} of Hermitian elements is also a Jordan algebra with respect to the
symmetrized multiplication. 3) Suppose f: M X M — ® is a symmetric bilinear form on a
vector space M over a field ®. Consider the direct sum @ - 1 & M. We define addition and
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scalar multiplication on the direct sum componentwise, and multiplication by the rule

(a-1®a)(B-10b)=(aB + f(a,b))-1®(ab+ Ba).
The resulting linear algebra B( f) is a Jordan algebra and is called the Jordan algebra of
the symmetric bilinear form. If dimg M > 1 and the form f is nondegenerate, the algebra
B(f)is simple. ‘

Suppose J is a Jordan algebra. We define on the space J a ternary operation
{x, y, 2} = (xy)z + x(yz) — (x2) ).

A pair (J~, J") of isomorphic copies of the algebra J, J = J"=J", with the action
(x* y%, 2% = {x, y, z}*is a Jordan pair.

Conversely, if (V'~, V") is a Jordan pair and v*€ V¥, then the multiplication g~ ¢ b=
{a~, v, b~} defines on V ~ the structure of a Jordan algebra.

By the Tits-Kantor-Koecher construction of a Jordan algebra we mean the Tits-
Kantor-Koecher construction of the Jordan pair (J-, J*), K(J) = K(J~, J). In particu-
lar, if J is the Jordan algebra of a nondegenerate symmetric bilinear form on a vector
space of dimension greater than 1 over a field ®, then the algebra K(J) is simple and
locally finite-dimensional over ®.

A classification of simple (infinite-dimensional) Jordan algebras was obtained by the
author in [13] and [14], and a classification of simple Jordan pairs and simple Lie algebras
with a short grading =%, + %, + %, in [15]. The present paper depends essentially on
these results.

We acknowledge the significant influence on the present paper of the ideas of A. 1.
Kostrikin [1], [2], [3], J. Tits [4], [5], I. L. Kantor [6], and M. Koecher [7].

The author would like to take this opportunity to thank L. A. Bokut’ for his constant
assistance and encouragement, and also A. 1. Kostrikin for his great interest in this
research.

§1. Radicals of graded algebras

The results of this section were proved in [16}; hence we omit the proofs.

LEMMA 1.1 (see [16)). If a graded Lie algebra ¥ = Y." ¥ contains no nilpotent ideals, then
the sum 1" | Z, is direct.

Let ad(#) = {ad(a)|a € £}, and let R(ZL) = L., ad(L)* be the associative subal-
gebra of End ,(.#) generated by the set ad(#).

LEMMA 1.2 (see [16]). Suppose a graded Lie algebra ¥ = 3" | %, is generated by a finite
collection of elements ay,. .. ,a,, € U, ., Then there exists a natural number f(m, n) such
that R(Z) = T/ " ad( L)

An ideal I of a graded algebra .Z is calied strong if it is generated (as an ideal) by the set
10 (U, .0).

LEMMA 1.3 (see [16]). A graded Lie algebra = Y", %, ¥y = LI L ;, L], contains a
maximal strong locally nilpotent ideal Lgc(.Sf’ ). Any locally nilpotent ideal of the quotient
algebra P= %/Loc( L) lies in Ly N Z(2L).

Let iBE(z) denote the preimage of the center Z(.£) under the horyﬂnorphism
&£ — . Obviously, (i) any locally nilpotent ideal of the algebra & lies in Loco(&); (ii)
[ifoz(!f ), L) € Loc(¥); and (iii) the quotient algebra .%/ Loc(.¥) contains no nonzero
locally nilpotent ideals.
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The subalgebra & _, + [Z_,, Z,] + %, of £ possesses a short grading, and the pair of
subspaces (Z_,, £,) is a Jordan pair.

-ns

LEMMA 1.4 (see [16]). Suppose I = (I_,, 1,) is an ideal of the Jordan pair (%

" &) and
the quotient pair (£_,, Z,)/I contains no nonzero locally nilpotent ideals. Then 1d (1 , )
NnNL, ,=1,,.

LEMMA 1.5 (see [16]). Suppose the Lie algebra £ is simple. Then the Jordan pair
(Z_,, Z,) is simple.

ne

By the centroid T'(#) of the algebra £ we mean the centralizer of the subalgebra R(.Z)
in the algebra End 4(#). The centroid of the Jordan pair ¥ = (V' ~, V") consists of the
pairs (¢, @*) € End (V") ® End (V™) such that

{o=(a®). b% c*} = o*({a* b7, c*}) = {a* ¢7(b7).c*)}

for any elements a*, b*, cte V *
If an algebra .# (Jordan pair V') is simple, then the centroid T'(Z) (I'(})) is a field.
From Lemmas 1.1 and 1.5 we obtain

LeMMA 1.6. If a graded algebra £= 3" %, %, = L[ L., £, is simple, then:
a)[(L)¥ =%, n<i<n, and
b) any element of the centroid of the Jordan pair (&£

e &) is induced by the action of an
element of T'(&F).

An element a € % is called the crust of a thin sandwich (see [1] and [3]) if ad(a)? = 0. A
Lie algebra that contains no nonzero crusts of thin sandwiches is called strongly nondegen-
erate (in the sense of Kostrikin).

The smallest ideal of .# for which the corresponding quotient algebra is strongly
nondegenerate is called the Kostrikin radical of # and is denoted by K(.Z).

LemMA 1.7 (see [16)). If =17, %, &, = L" [ £_,, &), is a graded Lie algebra, then
K(Z) C Loo(#).

An element a*€ V* of a Jordan pair V = (V~, V") is called an absolute zero-divisor
(see [17] or [12)) if {a®*, ¥V ¥, a*} = 0. A Jordan pair containing no nonzero absolute
zero-divisors is called nondegenerate. The smallest ideal of a Jordan pair V for which the
corresponding quotient pair is nondegenerate is called the McCrimmon radical of V and is
denoted by M(V').

LeEMMA 1.8 (see [16]). M((.Z.

—-n

L)) c K(V).

LEMMA 1.9 (see [16)). If = L" &L, Ly = 2" [ L

L), is a graded Lie algebra, then for
any ideal I <¥we have K(1) =1 N K(Z).

COROLLARY. If, under the conditions of Lemma 1.9, the algebra £ is strongly nondegener-
ate, I4¥, a € ¥, and[l,a,a]l = 0, then [I, a] = 0.

§2. Special graded Lie algebras

Suppose R = ¥" R, is an associative algebra with a given finite Z-grading and
Z, € Ry N Z(R). The grading of R induces finite Z-gradings on the associated algebra
R and on the quotient algebra R/ Z,,.
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Suppose £=3Y" % and £, =X" 1% ;. %] A homomorphism ¢. £L=3" & -
R /Z, is called a specialization if (%) € R7, i # 0. The category of specializations of
the graded Lie algebra # contains a universal object u: ¥— U"/Z,. The graded
associative algebra U = u(¥) = ¥ U, is called a universal enveloping associative algebra
of 2. It is obvious that the algebra U is generated by the set U, u(-%,); on U there acts
an involution * sending the element u(a,), a, € %, i # 0, into —u(a,). We have u(¥,) C
KU, *),i+0.

If Keru N &, = 0 for i # 0, then the graded algebra .# is called special. Otherwise the
algebra % is called exceptional.

Let B be the Baer radical of the algebra U. The composition u: ¥— U /Z, —
(U/B)©/Z, + B/B is called a universal semiprime specialization, and the algebra U =
U/ a universal semiprime enveloping associative algebra, for . If K(#)= 0, then
&£ N Keru=0fori+0.

Consider the set X = {x,;|-n < i< n,j> 1} and a free associative ®-algebra Ass( X)
on the generating set X. The algebra Ass( X') possesses a Z-grading in which the weight i is
attached to the generator x, ; Ass(X) = L,z Ass(X),.

Let 7 denote the ideal of Ass(X) generated by the set L. ,Ass(X), The quotient
algebra Ass( X, n) = Ass( X)/I is a free associative graded algebra.

Consider the Lie algebra Ass( X, n)‘™ and the subalgebra SLie( X, n) generated by the
elements of X. The algebra SLie( X, n) is a free special graded Lie algebra in the sense that
if £= %", %, s a special graded Lie algebra, then any mapping x,; = &, 0 < |i| < n, can
be extended to a homomorphism SLie( X, n) — £. Of course, Ass( X, n) is a universal
enveloping associative algebra for SLie( X, n).

On the algebra Ass( X, n) there acts an involution *: Ass( X, n) — Ass( X, n) sending an
element x,; € X into —x, ;. Consider the Lie algebra of elements that are skew-symmetric
with respect to *:

Skew(X,n) = { a € Ass(X, n)|a* = -a}.

Obviously, SLie( X, n) € Skew( X, n). In this section we will study the connection between
the algebras SLie( X, n) and Skew( X, n). Let X; = {x,;|j > 1},0 <|i| < n.

LeMMA 2.1. Suppose a,, c,, p, € X, b
Then the following assertions are true:
Va,b_,c,z_t, =a,llb_,. c,l z_.]t.

n

d,€X

—n®

z ,€X andt, € X,,0 <k <n.

—-ne

[p.[(b..a,).[d_,. ¢, 1]]z i1, € SLie( X, n),
+SLie( X, n),SLie( X, n)_,SLie( X, n),,.

Proor. Assertion 1) can be verified by expanding the brackets on the right-hand side.
Let us prove 2). Let W = SLie( X, n), + SLie( X, n),SLie( X, n)_,SLie(X, n),. We have
[por[d ez st = (pad_ye, + cud_,p,) 244
=palld_,.c.l. 2 lt +e,d [ p,. [z 4 )] — cud_,tiz i,
=palld_,c.)s 2 ilte + end_ [ p [z 00 1] = ([, 4], tlz_ip,

= pn[[d—n’ cn]’ Z—-k]tk + pnz—k[[cn’ d—n] tk]mOdW
On the other hand,

[Pn, [bfna an]]Z_ktk = (pnb—nan + anb—npn)[z—k7 tk] = [pnz—ktk’ [b~n’ an]]mOd w.
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Therefore,
N2 I | S O | ESPTIC W 1 | 8
([d_.> e el te + [P [y au 2k [l enn d L 0] + W
c [plld_n.cu)s 2t + pazillenn ) 1) (b2, a, 11 + W
c [pld . cllzt + W,
(b a )+ We lp.ld,.cllz (b, a1l + W
c[[pld_nc,dl.[b s a0z sty + W.

Consequently, { p,,[[b_,, a,).[d_,, ¢, ]1z_,t, € W. The lemma is proved.
Consider in the algebra SLie( X, n) the graded subalgebra SLie’( X, n) generated by the
set Lo ij<,SLie( X, n),.

LeMMA 2.2. SLie’( X, n) is an ideal of the algebra SLie( X, n).

Proor. It suffices to show that [a, SLie( X, n),] € SLie’( X, n) for any element a €
Uo<jij<»SLie( X, n);. If a € SLie( X, n);, i > 0, then [a,SLie( X, n),] = 0. If -n <i <0,
then

[a,SLie( X, n),] < SLie( X, n),., C SLie’( X, n).

The lemma is proved.

For an element a € Ass( X, n) we denote by {a} its trace a — a* € Skew( X, n). We
write a =b if {a — b} € SLie(X, n); a, b € Ass(X, n). It is obvious that if a,b €
SLie( X, n), then ab = 0.

We denote by T’ = (T_,, T,)) the ideal of the Jordan pair (SLie( X, n)_,, SLie( X, n),)
generated by the set

[SLie( X, n),, [[SLie( X, n)_,,SLie( X, n) ], [SLie( X, n)_,, SLie( X, n),]]]
andweput7T,, =T, NSLie(X,n)and T =(T_,, T,).

LemMMA 2.3. Suppose k, [ 2 0, m =2 k + 1+ 7, ap,...,0,, By,....8,€ {-n < i< n}and
L¥a, + LiB; + n # 0. Then

SLie( X, n)q, -~ SLie( X, n) . (T,7_,)"T,SLie( X, n)p --- SLie( X, n)g, = 0.

Proor. We may assume with no loss of generality that -n < a; < 0 for 1 <7 < r and
a,=0forr<i<k;-n<pB <O0forl<j<sandB =0fors<;j</

1°. Suppose w = aPa®) - - a{? with a'), € SLie( X, n) . ,, where at least one of the
elements ') lies in SLie’( X, n)_,. We wiil show that w = 0. Suppose a) € SLie( X, n) _,,.
We may assume that ") = [x_,, y_,], where x_, € SLie(X, n)_, and y, € SLie( X, n)_,
0 < a, 8 < n. Then

o

a®a® .- al=Vx_y salith ... g®
= 0[]0, @], [0, 1], [+ ([0, ag =], v ] -
. [)’_B, [a'(1i+1)’ a(_i:2)]" . [asd—z), a(_‘ffl)]]a,(l‘”.
Consequently, it suffices to consider the case d = 3. We have

a’x_,y_ga® = [aP, x_|[v.p. ] = 0.
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2°. By Lemma 2.1, each element of (SLie( X, #)o)* "(T,T_,)"T,(SLie( X, n),)'~* is a
sum of words in SLie( X, n) , ,, where each word has degree at least 3 with respect to T_,.
3°. Note that

SLie( X, n),, - -+ SLie( X, n), SLie( X, n),SLie( X, n)_,
= (-1)"[SLie( X, n),, SLie( X, #),,...,SLie( X, n),,|SLie( X, n)_,
c SLie( X, n), + Y, o, SLie(X,n)_,, n+ Y a >0.
i=1 i=1
Analogously,
SLie( X, n)_,SLie( X, n) ,,SLie( X, n)g, --- SLie( X, n)g,

\%
el

!
c SLie(X,n)_, + X BSLie(X,n),, n+ LB
=1

=
Note also that for 0 < a < n we have
SLie( X, n),SLie( X, n)_,SLie( X, n),SLie( X, n)_,
= [SLie( X, ), SLie( X, n)_,, SLie( X, n),]SLie( X, r)_,
C SLie( X, n),SLie( X, n)_,.
Consequently, SLie( X, n) ,w = 0 for any word w in SLie( X, n) , .
4°. Suppose w = a)aPa®) --- a9 with a'¥, € SLie(X, n) , ,, where at least three
elements a'’), a), a'9 lie in T_,. We will show that for any weights 0 < &, B < n we have
SLie( X, n) ,wSLie( X, n)g = 0.
If a, B € {0, n}, then our assertion follows from Lemma 2.1 and 1°.
If0<a<nand B {0,n}, or if a € {0,n} and 0 < B < n, then it is enough to
apply Lemma 2.1 and the concluding remark of 3°.
Suppose 0 < a, 8 <n, a + B # n, x, € SLie(X, n), and y,; € SLie(X, n)s. Assume
that
a¥e T, c [SLie( X, n)_,,SLie( X, n),,SLie( X, n)_,].
We have

H,0,0 By H L@ d-2) (d-D1]] 4
x.a®aPa® - aDy, = [x,,[aY, a?],....[a% 2, al¥" Y]] aDy,.

o
Therefore, we may assume with no loss of generality that d = 1. Obviously,
1 1 1 —_ 1
xaa(—r)lyﬂ c a(—r)lxayﬁ + [xav a(—r)z] yB = a(—r)xxayﬁ'

We will show that for any elements a’ ,, a’ € SLie( X, n)_, and a] € SLie( X, n), we
have a’, a;a’;x,ys = 0. Indeed,

4 77 144 —_ 4 r? 27 =
a—nana—nxuyﬂ =a_,a [a X s yﬁ] = O’

-nn -n?

since -n + a + B # 0. The lemma is proved.
Suppose £= X", %, is a simple special graded Lie algebra such that 2, ;. ,-%; # 0 and

(£, [[Z... Z].[2... Z]]] + 0.

—-n* -

Consider a universal semiprime enveloping associative algebra U = ¥ U, for the algebra
% and identify the space .%, with its image in U, under a universal semiprime specializa-
tion,., € U,0 < il < n.
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The algebra U has an involution *: U — U sending an elementa € %, i # 0, into —a.
By Lemma 1.5, the Jordan pair (%_,, %,) is simple. Hence, £, , = T, ,. By Lemma

2.2, the algebra Zis generated by the set L ;< ,-%; and is generated as an ideal by the set
&,. Therefore, by Lemma 2.3,.%, = K(U,, *) for any nonzero weight i.

LEMMA 2.4. The algebra U contains no proper *-invariant graded ideals.

PROOF. Suppose 0 # I = X" I, is a proper graded ideal of the algebra U such that
I* =1

If I, " K(U,*)# 0 for some i # 0, then, since the algebra % is simple, the ideal /
contains U, .. Since the algebra U is generated by the set U,.,%,, it follows that
I = U. Contradiction.

If I,N K(U,,*) >z, # 0, then [z, £ ] < I, " K(U, *)= 0 for i # 0, which implies
that z lies in the center of U.

If an element q lies in I, i # O, then a* — a € I, N K(U, *) = 0. Thus, a* = a. Now
(zga)* = a*z3 = —zya and z4a € I, N K(U,, *) = 0. We have proved that z,1, = 0 for
every i # (. Consequently, z,/ is an ideal of U contained in Uj. Since the algebra U is
generated by homogeneous elements of nonzero weight, z,IU = 0. This contradicts the
fact that U is semiprime.

We have proved that I N K(U, *) = 0. Thus, the ideal [ is commutative and, since U is
semiprime, is contained in the center of this algebra. For any elements a € I and x € .%,,
i# 0, we have ax € I N K(U,*) =0, i.e., I.Z, = 0. Since the algebra U is generated by
the set U, 4., it follows that U = 0, which contradicts the fact that U is semiprime. The
lemma is proved.

If U contains no proper graded ideals, then, by Lemma 1.1, U is simple. Then

™=

Z= Y K(U,*)+

o<lil<n i

= [K(U.*), K(U,*)]/[K(U.*), K(U,*)] nZ(V),

[&(w ). k(0] L [K(0,.0), £(U. )] 0 2(0)

where Z(U) is the center of U.
Assume that U contains a proper graded ideal / = 27, I. Then, by Lemma 2.4,
INI*=0and] + I* = U Then

F= Z Ii(‘) + Zn: [I—i7 Ii]/ ﬁ: []—i’ Ii] N Z(U)
i=1 i=1

0<lil<n

-~ [](—)’ I(_)]/[I(‘), 1(-)] N Z(U).

It is obvious that the associative algebra I is simple.

In conclusion, note that if ¥=3" & is a simple graded Lie algebra, then
<. 0%, L) L, LN+0 if and only if dim%, > 2, where T = T(.#) is the
centroid of . Indeed, it follows from the classification of simple Jordan pairs (see [15])
that a simple Jordan pair whose spaces are not one-dimensional over the centroid does not

satisfy the identity

[0 ([ 2] (220 0,011 = 0.
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§3. Finite-dimensional graded algebras

Suppose #= L",.%, is a simple finite-dimensional algebra over an algebraically closed
field of characteristic at least 4n + 1 or of characteristic 0, and suppose ., # 0. It is
known that % is either one of the algebras 4,,, B,,, C,, or D,, or one of the exceptional
algebras G,, F,, E;, E, or E4. In the case char ® = 0 this follows from the classical
Cartan-Killing theorem, and in the case char ® = p > 4n + 1 from the Kostrikin-Strade-
Benkart theorem (see [2], [18], and [19)), since ad(a;)? ' =0fori € £,i # 0.

Consider the derivation of % sending a homogeneous element a, € %, into ia;. Any
derivation of a Lie algebra of classical type is inner [20].

Consequently, there exists an element d, € Zsuch that [a,, d;] = ia, for any a, € 2,
—-n < i < n. Itis easy to see that d, € %, and the element d, of £ is semisimple.

Consider realizations of the algebras 4,,,, B,,, C,, and D,,. The algebra 4, is isomorphic
to ®{7,/Z, where @, is the algebra of matrices of order m + 1 over ® and Z is its
center. The algebra C,, is isomorphic to the Lie algebra of 2m X 2m matrices of the form

A S,
S, -A')

where 4, S;, S, € ®,, 4 > A’ is transposition, and S/ = S,, i = 1,2. The algebra D, is
isomorphic to the Lie algebra of 2m X 2m matrices of the form

A K
K, -4

where 4, K, K, € ®, and K/ = -K,. The algebra B,, is isomorphic to the Lie algebra of
(2m + 1) X (2m + 1) matrices of the form

a v b
-v; A K
-v; K, -A

>

where 4, K,, K, €®,,a € ®, v, v, € ® , and K/ = -K;, i = 1,2. These representa-
tions of 4,,, B,,, C,, and D,, will be called elementary.

LEMMA 3.1. The elementary representations of algebras of types A,, and C,, are specializa-
tions for any finite Z-grading.

PrROOF. Let R = @, ; in the case of 4, and R = ®,, in the case of C,,.. We will show
that all eigenvalues of the operator ad z(d,): R — R belong to the set {-n < i< n}. In
the case of 4,, this is obvious.

4 5
S, A

The set of matrices of the form
is the set of skew-symmetric elements of R under the involution
(A B )* _| D -B
C D -C' A’ )

We know (see [21]) that it is equal to K(R, *) + K(R, *)K(R, *). Therefore, the eigenval-
ues of ad ,(d,,) belong to the set {-2n < i < 2n}.
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Let k, 1 < k < 2n, be the largest integer for which the subspace R, is nonzero. Assume
n < k. Then for any element a € R, we have a* —a € R, N K(R,*)=0, so a* = a.
Next, aK(R, *)a € K(R,*) N L2" R, = 0. However, it is easy to verify that R contains
no nonzero elements such that aK(R, *)a = 0. Hence R, = 0. Contradiction. The lemma
is proved.

Henceforth in this section we will assume that % is an algebra of type D, or B,,.

Recall that a Cartan subalgebra of & is a maximal Abelian subalgebra of . consisting
of semisimple elements. The following lemma is due to I. L. Kantor [6].

LEMMA 3.2 (I. L. KANTOR). A Cartan subaigebra H of £, containing the element d is a
Cartan subalgebra of & .

Consider the decomposition of .# into root subspaces with respect to ad( H ). Every root
subspace corresponding to a nonzero root is one-dimensional, and every homogeneous
component.?, is a sum of root subspaces with respect to ad(H).

A root system of the algebra D, is a system of vectors A = {+w, + w)|l <i#j< m}
in an m-dimensional space V = @ "R, (see [22]), and a simple subsystem is the set

D={m,....7,} = {0, — @y, 0; — 03,...,0,,_ | — @ + w,}.

% m—1

> Om—1

A root system of B, is A = {tw; + w, tw|l <i#j<m}C ®"Rw; =V, and a

simple subsystem is theset Il = {7,,...,7,} = {0, — @5, W) — @03,..., @, — &, ®,,}.
We define a Z-linear mapping /: @ "Zw, > Z by putting h(e) = kif £, C &, a € ¥,
k € Z. We may assume without loss of generality that k(7)) =k, > 0, 1 < i < m. Then

h(w)) > h(wy) = -+ > h(w,).

LEMMA 3.3. a) If k; = O, then the grading £= 3" %, is special.

b) (I. L. KANTOR [6]). If ky, > 0 and k, =0 for 2 <i<m,then¥=%_,+ L, + &L, is
the Tits-Kantor-Koecher algebra of the Jordan algebra of a symmetric bilinear form, and
therefore (see [17]) the grading is special.

Q) Ifk, > 0,ky,=0,and L7k? > 0, then the grading ¥ = L." , %, is exceptional.

PrOOF. a) Consider the elementary representation of & and take as a Cartan subalgebra
the subalgebra consisting of the diagonal matrices. Then £,.%; # 0 (a, B € %) only if
a+BeUora+B=20,l<i<m.

Obviously, &, = Z{.‘?wi+m/|h(wi) = h(w;) = h(w;)}. Assume that &, C Z,, %, C Z,,
a,B €U k>0 and &%+ 0.

Since a + B & U, it follows that « = w; + w;and B = ©, — w; h(w;) = h(w) = h(w)).
But then k = h(B) =0, which contradicts our assumption. Thus, Z,X,. %, =
Y0 L, = 0. Since the algebra % is generated as an ideal by the set #,, we have
&% =0 for i + j > n. Analogously, £,.%, = 0 for i + j < -n. Thus, the grading &=
Yr &, is special.

c) Assume that k; > 0, k, = 0,and £, ,k? > 0. Then

LOL, L+ L dimg -2, > 2,

w) +wy wytws

and X y<,%; # 0. If the grading = }" | &, is special, then, as shown in §2, the graded
algebra £ is isomorphic to either the algebra [R¥, R9]/Z, where R = " R, is a simple
associative graded ®-algebra, or the algebra [K(R, *), K(R, *)]/Z, where R = 1" R,is a
simple associative graded ®-algebra with involution *: R — R.
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The algebra [R?, R]/Z has type 4,,; hence £= [K(R, *), K(R, *)]/Z. Since R is a
matrix algebra over an algebraically closed field @, it follows that #= K(R, * ).

Choose elements e, € £, |, ande_, €ZL_, _, satisfying the relations [e,, e,l=
1 2 ~-n?
2e, and [e,, e, _,,]— 2e_,. Then in R we have ee_e,=e, and e_ee_ =e_,.

Consider the centralizers Zy (e, ,) and Zg(e ,,) in the algebras ¥ and R. In D,
(respectively, B,,) we have

Zo(e.,) = (2 -., +[ Lo 2 o) ¥ Lo w1)®$($+wv+w|3si#j<m)

(respectively,.,?(,?t(wl_wz)) @Z( Lsw l3 i< m))

In R we have
ZR(ein) = ((ene-nRene—n + e—nenRe—n n) N ZR(e+n)) ®fRf
wheref=1—e.e_, e_nen

Obviously, e,e_,Re.e e,Re_.e, C R,. However, the algebras L(L & (o))

and .?(Ziw’_iwjll i#j< m) do not lie in .%,. Therefore, Z (e , ) = K(fRf, *). But
the algebra fRf, hence also K( fRf, *), is simple. Contradiction. The lemma is proved.

A simple Lie algebra .# is called an algebra of one of the types 4,, B,. C,. D,, G,, E,,
E,, E, or E, if the scalar extension #® I, where T" is the centroid of % and T is its
algebraic closure, is isomorphic to the algebra of corresponding type.

Lemmas 3.1 and 3.3 imply

LEMMA 3.4. Suppose L= 1", %, is a simple finite-dimensional graded algebra over a field
®. If Lis an aigebra of type A, or C,,, then L is special. If Lis an algebra of type B,, or D,,,,
then either % is special or there is a bilinear form f: (¥£_,, £,) > T (.,5,” )} such that

[a—n’ n’c—n] =f(a—n’ n)c—n +f(c—n’ n)a
[an’b—n’cn] =f(b-n’an)cn+f(b—n7cn)an

for any elementsa , ., b ,,c,, €L ,.

PROOEF. Suppose L= ¥", %, is an exceptional graded Lie algebra of type B, or D,,, T is
the algebraic closure of the field I' = I'(.#), P=2® rf is the scalar extension, and
& =% ® I Then, by Lemma 3.3,

2, =T Zorulr(@) =h(a))}, 2, =T{ 2, _,Jh(w)=h(a)).

For each index i such that #(w;) = h(w;) choose elements X, ; € &£, ., , satisfying the
relations [X _;, X5, X, ,]=2X,, Wehave

[ZaiXii’ 2B Xz, ZaiXii] = 2(Zaiﬂi)zaixii'
If the field I' = I is algebraically closed, then

f(zi‘.a,-x_w Zi:BiXi) = 2;‘1“31'

$ i

is the desired bilinear form.

Suppose P: T' > Tisa hnear pro_;ectlon i.e., I is a linear mapping such that P(I') =
and P2 = P. Then f(a = P( f (a_,, b,)) is the desired bilinear form in the field F
The lemma is proved.

-n? ”
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COROLLARY. If &= ¥" %, is a simple exceptional graded algebra of type B,, or D,,, then
for any elements a, € ¥, andb,c,d € &

[(1", b’ a,, d7 [an’ ¢, ay, d” =0.

PRrOOF. It suffices to observe that [a,, &£, a,] = [a,, £_,, a,] = T'(¥)a,.
The following assertion is well known in the case char ® = 0, but requires a special
proof in the case char ® = p > 0.

nondegenerate Lie algebra over a field ® of characteristic p > 4n + 1. Then the algebra £ is
a direct sum of minimal ideals.

.
LEMMA 3.5. Suppose &= 3L", &, Lo=L" (L., L), is a finite-dimensional strongly

ProOF. The Jordan pair V = (V_,,V,) is semisimple and is therefore a direct sum of
minimal ideals (see [12]), V=V® @ --- & VO, YO = (VD ) Let I, = 1d (V1))
= Id (V). Since the quotient pair ¥/V (" has no nonzero locally nilpotent ideals, it
follows from Lemma 1.4 that I, N &, , = V) We will show that I, is a minimal ideal
of £.

Suppose B is an ideal of & contained in I, and B # I. Then BN.¢, =0 and
(B, V{1, V] = 0. By the corollary of Lemma 1.9, [B, V{),] = 0. It follows easily that
[B,Id (V)] = 0, and, in particular, [ B, B] = 0. Since % is semisimple, B = 0.

We now temporarily assume that the ground field @ is algebraically closed. The algebra
I, is simple and, according to the Kostrikin-Strade-Benkart theorem, is an algebra of
classical type. Suppose H, is a Cartan subalgebra of I, contained in I, N.%,, and let
H=H,+ ---+ H,. Consider the weight decomposition into weight subspaces with
respect to ad( H). Note that weight subspaces with nonzero weight that are contained in 7,,
1 < i < s, are one-dimensional. Let U denote the subspace of vectors of weight 0 with
respect to H. It is easy to see that U is a graded subalgebra of . Choose an element
uelUNnY, 0<|il<n, and consider a weight subspace W with respect to H with
nonzero weight that is contained in [, N.%, 0 <|j| < n. Then [W,u]C [W,U]C W.
Since dimg W < 1, either [W, u] = 0 or [W, u] = W. The latter alternative is impossible,
since [W, u] € %, ;. Hence, [W, u] = 0. The subspaces of type W generate I, as a Lie
algebra. Consequently, [I,,U N %] = 0. The centralizer Z,(I,) is an ideal of .#, and
UNZ, C Zy(I). For any weight i, -n<i<n, we have &, C UNZ, + I, where
I = &;1. Thus, £=1& Zy(I). Obviously, Zo(1) = Lo jicn-1(Ze(1) NZ). By the
induction assumption with respect to n, Z,(I) is a direct sum of minimal ideals. The
lemma is proved in the case where the field ® is algebraically closed.

Now assume that @ is an arbitrary field and @ is its algebraic closure. We will show that
the ideal 7 = @ilq_y(Vn(i)) i§, as before, a direct summand of Z. Let T = ['(¥) be the
centroid of &£ and .£= ¥ ® . ® a simple P-algebra. By what was prcved above,

P=(18:®)® Z,(1 ®.9).
But Z,(1 ®I-(i>) = Zg, (1) ®®; hence =1 ® Z,(I). Now, as above,

Z ()= ¥ (Z ,1)nZ),

oglilsn—1

i.e., Z4([1) is a direct sum of minimal ideals. The lemma is proved.
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The following very special lemma will be needed in §4.

Suppose £ is an algebra of type D, or B, over an algebraically closed field ®, where
nz=4; {X, h,|ac U} is a Chevalley basis with respect to some Cartan subalgebra, and
% a root system. Assume that A4 is a subalgebra of &£, and X, ;u,) X1 4w, € 45
Rad 4 is the solvable radical and A = 4/Rad A an algebra D,. Choose a Cartan
subalgebra of 4 and denote the roots with respect to this Cartan subalgebra in such a way
that

(D) oray =X, 0y (Aoyrw, = PX, oy
Consider the subspace
Ary={acd|a h, ] ={0 hore]=ad (D)0}
Obviously, A, ; = (A), 4.,
A, 5= {a e A|[a, hwlﬂ,z] = [a, hwl+w3] =_-a,4¢€e (Z)_wz_wg},
andA_, ;= (A4)_,,_,, Let
Ay = [Az Ay 3 A2‘3], AL, 5= [A-z.-sv 4,3, A-z,-3]-
LEMMA 3.6. a) Either A = #(X,, ., {1 <i#j<3)+ Rad 4, or
Ay, C ®X, + ) ®X, ;w A, S ®X , + Y oX

i>4 e e
b) If, under the conditions of a), A =2L(X, w,iwjll i#j<3)+ Rad A4 and
X € B, a subalgebra of A, B = D,, then

B=$( Xiw,-iayh Si#j< 3)'

Analogously,

X

+(w) +wjy)? 7t (w) +w3)

PROOF. a) Suppose a € 4, and b € 4_, _;. It follows from the conditions (a, 4, . ]
= (a, h |=aand(b, b, ,]1=1[b A, .,]=-bthat
a=4§X, ., *ogX, + Ya, X
i>4
b = nX—wz—‘w:, + BOX—WI + Z BiiX—wl—w,'
iz4

Assume £n # 0. It follows from [(4)_,, _ ., (A) 4, 40 (A)y, 40,1 = O that

w) +w;

2t Wy wptw?

Xy -y @5 ) = (+a0X +23 a,.a_,.x_wl_wz)

Wy —wy
i=4

+2§(aon3 + Y ai,me,) € Rad 4.

iz4
Analogously,
82
[ Wt wy? b, b] ( X““’x*'"’z +2 24‘3 ’8— “’1+w2)
i>
+2n(BoX_¢.,3 + X Bi,-X_m“i) € Rad 4.
iz4 i

Thus, the subalgebra
g(aOXwg + Z aiin3iu,7 BOX—w3 + Z BiiX-w3iw,)

iz4 i>4
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is solvable. But

"S/p(aOXau + Z atingiw,’ iBOX—hJ; + Z BiriX—auiw,)

i>4 iz4

:.,s,ﬂ(aoxml + Yo Xy BoX o, T X Bi,»X.wliw,)-
i>4 i>4
We define inductively two sequences of commutators in the variables x, y as follows:
W, =X, 0, = Y, W1 = [W,, U,,w,} and v, ,, ={v,, w,, v,). There exists a natural number
m = 1 such that

Wm(aOle + Z aiinliw,’ BOX—wl - Z BiiX—wliw,) = O

iz4 iz4

Now

wo(a, b) = w,(£X, v 1X 0, o))

+wm(a0le + Z aiin]+w,’ BOX—wl + Z IBiiX—wliw,)

iz4 iz4

= ‘fp'anw = A’

2t ws

P, q = 1. Analogously, X € 4. Thus,

TwWyTwy

A=2( X, ,1<i*j<3)+Radd.

w

If L(X, .1 <i#j<3)gA, then cither 4, ; C ®X, +X,.,0X, .
COX , +X. X, .. Ineither case,
Ay, X, + Y OX, ., A, ;C0X , + ) dX

iz4 i>4

ordA_, _,

wtw;’

This proves a).
b) Choose a Cartan subalgebra of B and choose roots with respect to this Cartan
subalgebra so that

B dX B LiD¢

o +wy) T +{wy +w;)? o twy) +(w; tw;3)”

In view of a), if B ¢$(Xiwliw/|l < i #j < 3), then
Bi(‘*’z*"":«) - QXiwl + Z (DX:*:“’xiwl'

i>4
On the other hand, if 0 # b (..., € B ; (o, +q,) then

b oyt € 41X, (4,0, + Rad 4,
a,# 0. Hence a,X,,, +b,, a X, _, +becRadd, where b, € ®X ,  +

Yisa®X,., 1, and a,a # 0. Therefore, the subalgebra generated by the elements
o, X and a_ X_, is solvable, which leads to a contradiction. The lemma is

wy+ w3 —wy—ws

proved.
§4. Locally finite-dimensional graded algebras

A system of subalgebras {4 C |4 € #} of an algebra £ is called local if (i)
U{A|4 € £} = &, and (ii) for any subalgebras 4, B € £ there exists a subalgebra C € &
such that A, B C C.
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A system of homomorphisms {@,: A — 2Z,|4 € £} is called local if A C B, where A,
B € 2, implies Kerp, N 4 C Ker ¢ . A local system of homomorphisms is said to be
approximating if N{Kerg, |4 € #} = 0.

For any element a € % consider the subsystem £, = {4 € Pja € A}. The system
{2,la € £} is centered and is therefore embeddable in an ultrafilter % (see [23]). Every
local system of homomorphisms {g,: 4 — %Z,|4 € #} defines a homomorphism
Il o9 /F: F— 11, c0%,/F into an ultraproduct. If the system {p,: 4 — Z, |4 € #}
is approximating, then KerIl, . »9,/% = 0. From this we obtain

LEMMA 4.1. A graded Lie algebra ¥ = ¥" | %, that possesses an approximating system of
specializations is special.

LEmMMA 4.2. Suppose = 1", &, is a simple graded algebra that is locally finite-dimen-
sional over its centroid T'. Then there are three possibilities.

1) Z is an algebra of one of the types G,, F,, E,, E, or Ej.

2) There is a bilinear form f: (¥_,,, £,) = 1 such that

[a—n’ ns —n]=f(a "o n)c-n+f(c»—n’ n)a—n’

[an’ b—n’ Cn] =f(b—n’ an)cn +f(b—ﬂ’ Cn)an

for any elementsa , ,,b , ,,c, ,EZ,,.
3) Zis special.

PrOOF. We may assume with no loss of generality that the centroid I is an algebraically
closed field.

Consider a free graded algebra Lie( X, n) and two ideals: the ideal T consisting of the
elements identically equal to zero in all graded algebras of types G,, F}, E,, £, and Ej,
and the ideal P generated by the set

{la,. b,a,, d,[a,. c a, dllla, € Lie(X,n),; b,c, dec Lie( X, n)}.

1°. Assume that T(#)= 0. Then the multiplication algebra R(.¥) = L ad(.¥)"
satisfies a polynomial identity. Since £ is simple, the algebra R(.Z) is prime and, by
Lemma 1.2, locally finite-dimensional. Let Z be the center of R(.&). Since I is algebrai-
cally closed, Z = I'. By the Markov-Rowen theorem (see {24] and [25]), R(.¥) is
finite-dimensional over I'. Consequently, dim.#< dim R(.#) < co. It now remains to
use Lemma 3.4.

2°. Assume that P(%) = 0. It follows from the classification of simple Jordan pairs (see
[15)) that the identity P = 0 is satisfied only for simple pairs of I'-spaces (V' ~,V*) on
which is defined a bilinear form f: (¥ -, V) = T such that

[a*, b7, c*)=f(b",a*)c*+ f(b,c*)a*,
[a-, b, e ]=f(a,b )+ f(c,b")a"
for any elements a %, b, c*€ V %, Thus, case 2) of the lemma holds.

3°. (L) = P(ZL)=2L. Let #’ denote the set of all subalgebras of £ generated by
finite sets of elements of U, ,-%;. The system of subalgebras # = {T(A4) N P(A)|4 € ¥’}
is local in &, and the system of homomorphisms {¢z: B — B/ ] ﬁ(B)lB € P} is local
and approximating. We will show that the graded algebra B/ Loc(B) where B = T(A4) N
P(A), A€ P, is spec1a1 Indeed, B< A, Loc(B) =BnN Loc(A) and B/ Loc(B) = T(A)
N P(A), where A=A/ Loc(A) By Lemma 35, A=A, & --- & A,, a direct sum of
simple graded algebras. If the graded algebra 4, is exceptional, then, by Lemma 3.4, either
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T(A,) = O or P(A,) = 0. Thus, the ideal T(4) N P(A) is the sum of those minimal ideals
A,, 1 <i < s, whose grading is special. By Lemma 4.1, the algebra .# is special. The
lernma is proved.

LeEMMA 4.3, Suppose L= 2", %, is a simple exceptional graded algebra that is locally
finite-dimensional over its centroid I" and dim %, > 2. Then % is either an algebra of one of
the types G,, F,, E¢, E,, E; or D,, or the Tits-Kantor-Koecher construction of the Jordan

algebra of some symmetric bilinear form.

PrROOF. Assume that .Z is not of one of the types G,, F,, E, E,;, E; or D,. Then, by
Lemma 4.2, there is a bilinear form f: (%Z._,, %,) = I such that

[ —n’ n’ ——n]_f(a—n’ n)c—n+f(c n’b)a—n’
[an’b—nicn]=f(b—n7an)cn+f(b—n’cn)an

for any elementsa _,, b, ,,c,, €% ,. Chooseelementse , ., g,, €L, satisfying the
relations

fle s e,) =f(g_n, g.) =1, f(e_n, 8.) =f(g . e,) =0,
= [e_,. e,], =g, 8.l
1°. Assume that # is an algebra of type D, or B3 Let T" be the algebraic closure of T

and let = 2@ I We may assume that Te _, =$+(w +oy) and &, = .,? + Ewlﬂ,a
Then

h)

Zp(ey,) =L( L io-up) = sha(T)

and h(w, — w,) > 0. Since Zz(e_,, e,) = Zy(e_,, e,) ® L, it follows that

-n>

Zy(e_,.e,)=Ta_,+T[a_,a])+Ta,=sl,(T), a,,€P,, i+0.

Consider the elements e , , = e, , + a,, and eq = [e._y, ey)]. It is easy to verify that
Te 4 + Teyp + T e(z) = 5/,(I') and the transformation ad(e,) has eigenvalues -2, 0, 2.
Let =4 _, + % + £, be the decomposition of £ into weight subspaces with respect
to ad(e ). The operation £y X £5, D (x, y) = [x, (_5,, y] defines on Z,, the structure
of the Jordan algebra J of a symmetric bilinear form in a 3-dimensional space over the
field T, and % is obtained from J by the Tits-Kantor-Koecher construction.

2°. Assume that .# is an algebra of one of the types B,,, m > 4, or D,, m > 5. As above,
we assume that T'e = ji(wlﬂ)z) and I'g, , = .,?i(wﬁw}). Then

Z.?(ein’ gin) =$( giw,tw,“’ < i ;éj < m)
in the case of D, and £(& . , |4 < i < m) in the case of B,,. Consequently, either

Z3(Zg(erns 8an)) =3’(§?MIMJ‘1 <i*tj< 3),

or
Zo(Zg(erng.))=2( 2.1 <i<3)
Also,
Zy(en 8en)=Zolesy8un) 1T
and

Z.?(Z.?(etn’ gin)) = Z.?(Z.?’(ein’ gin)) ®I‘f‘
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Thus, &' = Zy,(Zy(e . ,, &, ,)) is a simple Lie algebra of type D; or B;. As in 1°, we
choose elements a , ; € £/ ; such that the operator ad([e_, + a_;, e, + a,]) has eigenval-
ues -2, 0, 2. The decomposition into weight subspaces with respect to this operator yields
the desired representation of the algebra.

3°, Assume the algebra .# is infinite-dimensional over its centroid. We will show that:

DW= Z ([Ly(ey 8), Zo(eg, 80)]) is a simple algebra of type D, or B;.

) Zy(e_,,e,)=Ta_,+Tay+ Ta,=sl,(I'),a,, €& ,i>0.

3) The transformation ad(e, + a,) has eigenvalues -2, 0, 2, and the decomposition of &
into weight subspaces with respect to ad(e, + a) yields the desired representation of .£.

Since any @-form of the Jordan algebra of a symmetric bilinear form is again a Jordan
algebra of a symmetric bilinear form, we may assume with no loss of generality that the
field is algebraically closed.

Let £ denote the system of I'-subalgebras of & generated by finite sets of the form
{€.. 810} YU B, where B C U, %, Itis obvious that Zis a local system of subalgebras
in Z. For any algebra A € £ consider a decomp051t10n of the algebra 4 = A/ Loc(A)
into a direct sum of minimal ideals, A =1, & --- ® I_. Since [#,¢,,¢,] = Te,, th
element &, lies in one of the ideals I,. It is easy to see that the elements &_,and g, ,, also
lie in 7. Let x, denote the projection of 4 onto I, and ¢, the homomorphism ¢,:
A D a - x,(A). We will show that {¢,|4 € £} is a local approximating system of
homomorphisms.

Suppose 4 C B, where 4, B € &, and a € A N Ker ¢p. Then [a,1d4(e,)] © EE(B);
hence [a,1d ,(e,)] € Loc(4) and a € ¢,. Thus, 4 N Ker ¢, € Kerg,.

We will show that N{Kerg,j4 € £} = 0. For any element a € % there exists an
operator V in the multiplication algebra R(.#) such that a = ¢, V. Let a,,...,a, € Lbe
the elements occurring in the expression for V = V(a,,...,a,). If a # 0, then for certain
elements by,...,b, € U,,oZ, the element a does not lie in Loc(£ (4, b,,...,b,)). Consider
the subalgebra 4 = (e, a;,...,a,, by,...,b,). Obviously, a & Loc(A4) and a € 1d (e,).
Consequently, ¢, (a) # 0.

As above, we denote by % the ultrafilter in & generated by the family of subsets

={A€Plac A}, a . There exists a set £, € # such that for any subalgebra
A € P, the image @,(A) is an exceptional graded algebra; otherwise the embedding
I1, cs®4/F would be a specialization. Moreover,

Py={A4e€PloA4)#G,, F,,E, E,, Eq, D,} €F

By Lemma 3.1, Z 3, U Z ) € F, where 4 € P ,if 4 € P N P, with p,(A) an algebra
of one of the types B,,, m > 5, and 4 € 2, if 4 € £, N P, with ¢,(4) an algebra of
one of the types D,,, m > 5. By a property of an ultrafilter, either &5, € For # ;) € %.
Assume for definiteness that & 5, € #. The case &, € F is handled analogously with
some simplifications.

Choose in each algebra ¢ (A4), 4 € #,;,, a Cartan subalgebra H, and denote the roots
with respect to this Cartan subalgebra in such a way that

q)A(Fe 4 ") = (PA(A)i(wl+wz)a ‘PA(rgi n) = q’A(A)t(w1+w3)'
Obviously,

(PA(Z (eo, go)) = qu(A)((pA(eO) (PA(gO)) = +$( ‘PA(A)+w|’ )

(pA([ZA(eO’ g0)» Z4( e, go)]) ='$( ‘PA(A)wirili = 4)'
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Also,
p (AN W)C (pA(ZA([ZA(eO’ 80): Z4(eo, go)])) c Zqu(A)(g( (PA(A)iw,|i = 4))

= 2(o.(4) .1 <i<3),
an algebra of type B,. Consequently, dimp W < 21 = dim B,.
Suppose A € 2, ,. Consider the preimage of the subalgebra
L[ A)sosul <inj<3)

under the homomorphism 4 — 4/ Loc(A), and denote it by A. Then 4/Rad A is an
algebra of type D;. If A C C € P, and @c|, is an embedding, then the pair ¢.(A) C
@ (C) satisfies the conditions of Lemma 3.6. According to Lemma 3.6, {4 C C € 24, }
= P* U P> where 2*) contains those subalgebras 4 C C € 2, for which

9c(A) 2 9 9(C)suzufl <i#j<3),
and 2{**) those subalgebras for which
Pc(A) 12,43 € P(C)w + X 0c(C) by 2
i>4

Consequently, either Z{*) € For Z{**) € .

Assume that Z{**) € F, 4, € P{**) and 4, € #{**) € #. We will show that #{*)
€ #. Indeed, suppose Z{**) € Fand Q € N{P{**|0 < i < 2}. Choose elements a; €
(4431 =0,1,2, 50 that g, (Ta,) = 9, (4,),, ;.- We have

g, = gpla,) € (pQ(Q)wl + 2 Po(Q) w0,

iz4

It is easy to choose coefficients o, a;, a, € T, at least two of which are nonzero, such that

2
Z a;q; € Z q)Q(Q)mliw,-
i=0

i»4

Then, as shown in Lemma 3.4,

2 2 2
[e—n’ Y g, 2 aiqi:| €T} agq,.
i=0 i=0 i=0
Since either oy # 0 or a; # 0, it follows that aya, + a;a, # 0. If a, # 0, then

2

— ’
Z aa;l=a +a,;,
i=0

Pu,
where
0+a’ € (pAZ(AZ)wz + .gaq)Az(AZ)wliw,’ 0+#a,,€ (PA2(A2)w2+w3’
i>
and

[(pAz(AZ)—w1~w2’ a + a3, a + a2‘3] = r(a, + aZJ)'

It was shown in the proof of Lemma 3.6 that such an inclusion is impossible. If a, = 0,
then aya, # 0. As above,

<PA1(0‘0“0 +aqa)=a + 433 0+a' e ¢A1(A1)w,iw,,

0+a,5€ ‘PA,(Al)w2+w3,
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and
[‘PA,(A1)-w,—w2, a'+a,;,a + 02,3] er(a’ + ay4),
which also leads to a contradiction.

Thus we have proved that there exists a subalgebra 4 € &/ such that 2*) € #.
Suppose C € P{*), ie.,

Pc(A) = L 9c(C)zes0l <i#j < 3) + Rad g (4).

Let A’ = q)CI(‘S,”(qJC(CLw cull ST#FL3)NA Thend S e, ,, g, ,1s an algebra of
type D, and it follows from Lemma 3. 6b) that for any subalgebra Q € #{*) we have

q)Q(A ) = ((pQ(Q)W,A ol <i#j< 3).
In particular, [ 4, [Zy(es 80)» Zo(eq 8 S Loc(Q). For any subalgebra Q ¢ Q' € P
we have

[z‘f', [ZQ(eOa 80)> Zo(eq, go)” - [/f/’ [ZQ’(eO’ g0)s Zy (eos go)” c Loc(Q’).
Thus, [A,[Zy(eo, 80), Zo(€o, 8011 € Loc(L) = 0,ie, 4’ C W.
For any subalgebra Q € #{*) we have

L(9p(@)raru)l <i#j<3) = 9p(A) € pp(W) C L 9o(Q) 0l <i<3).
Since ZL(pp(Q) . o, o, |1 <i#j< 3)is a maximal subalgebra of £(gy(Q) ., |1 <i<
3), it follows that either po(W) = Z((pQ(Q)iw‘inH i#j<3) or (pQ(W) =
Lpp(Q) ;11 <i<3). Consequently, W is an algebra of type D, or By; Z (e, ,) =
Ta_;+Tag+Ta;, ay=[a_,a], [a,,a))l= +2a,;, a,, €L, i+#0, and for any
subalgebra Q € #{* the eigenvalues of the operator ad (pQ(Q)(‘PQ(‘—’o) + @p(ag)) belong to
the set {-2,0,2}. This implies the assertion of the lemma.

It follows from Lemma 4.3 and the results of §2 that if dim.%, > 2, then any simple
graded Lie algebra = ¥" %, that is locally finite-dimensional over I is an algebra of
one of the types I-1V (see Theorem 1).

LEMMA 4.4. Suppose L= 3" & is a simple locally finite-dimensional graded Lie algebra
with dim % , , = 1. Then either £ is an algebra of one of the types 1-1V or: 1) &, = 0 for
i€ {-n,-n/2,0,n/2,n};2)if0#*e,, E,‘?in, eg=le_,. el le,, el= t2e,,, then

& {a€|la,e] = +a}, L= Zy(e,).

PROOF. Suppose the Lie algebra = 3" %, satisfies the conditions of the lemma and is

not an algebra of one of the types I-1V. Let

& ={acZla, el =ka}, O<lil<n, -1<k<]1

1

tn/2

Assume we have defined a Z-grading = 1", ;) on %, so that: 1) any subspace ., ,
lies in one of the subspaces %, ), and if i > 0, then,? C & y,J > 0, while if i <0, then
ZoCZ,yj<0and2)#,  ,CZ, ., with dlmr.,‘ZQm) = 2.

If the grading ¥= X" %, is exceptional, then, by Lemma 4.3, & is the Tits-Kantor-
Koecher construction of the Jordan algebra of a symmetric bilinear form.

Assume the grading #= ¥, %,,, is special. Then there exist a simple involutory graded
algebra (R =1X", R,*) and an isomorphism ¢: #— K'(R,*), where @(%,)) =
K(R ), *) fori # 0 and

(3)—Z[K - *), K(Ry, )] /2.
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It is easy to see that the algebra R is generated by the set U{ %, ,|.Z, , € &),/ + 0}. We
define on R a new Z-grading by putting

{ZAk

iy ky Eq)(.&’ kn),,?’in,kne,?j),jaéo Zl =1}

To prove that R, = 0 for |i] > n it suffices to show that q;(e,,)a,-‘,( =0 for i > 0 and
a, r €E9(Z; ;) If k=0, then &£, , €%, j>0; hence p(e,)a, , = 0. Assume k = 1.
Since @(e i,,)2 = 0, the transformatlon ad([e(e_,), ¢(e,)]): R = R has eigenvalues -2,
-1, 0, 1, 2. However, ¢(e,)a; , is an eigenvector belonging to the eigenvalue 3. Thus,
R = X" R, Itiseasy toshow that = K’(R = ¥" R,, *). Contradiction.

Assume the conditions of the lemma are satisfied and

Y{Zn/2<i<n}+o0.
Let

2—k,
n—ig’

max{i__]:‘,?i'k £0,0<i<nk= 0,1} _
Then the grading &, = ):{.SF @ — k)i — (n—iy)k =)} satisfies the requirements
enumerated above, ¥=Y" %, m =2 — ko)n — 2n — i) = 2iy — nky> 0,and &, ,
+ &k, € Lmy- Thus, Z{$|n/2 < i< n}=0. Analogously, X{Z|-n <i < -n/2} =
0.

Assume that &, , o # 0. Then the grading &, = L{Z, ,|4i — nk = j} also satisfies
these same requirements, = X", =2n,and %, , + &, ;o € &, Thus, Z,
L /21

Assume %, #0, 0 <i<n/2. Then [e_,, L]C¥ .., -n<n+i<-n/2; hence
le_,, Z]=0and ¥ =2, . Leti, = max{i|0 <i < n/2, % = 0}. The grading

Lo=2{ L 2i —(n—ig)k =}

satisfies the above requirements, = L7, % ;,, m = 2iy, and &, , + &, , € Z,,,. Thus,
E=% +&L ,,+t&+ L, +Z, Thelemmais proved.

(/)’ /2=

LEMMA 4.5. Suppose a finite-dimensional Lie algebra £ over a field ® is generated by
elements a and b; ad(a)* = ad(b)* =0, : L — ¥/Rad ¥= Lis the natural homomor-
phism, and P = ®A +®[ A4, b] + ®b = si,(®). Then there exist preimages a’ and b’ of A
and b such that [a’, b, a’] = 2a’ and [b', a’, b'] = 2b’.

PROOF. We may assume with no loss of generality that (Rad #)? =0 and Rad ¥
contains no proper .Zsubmodules. Since ad(a)* = ad(b)* = 0, it follows that dim 4, Rad &
< 4. Consequently, the eigenvalues of the operator ad([a, b]): £ — Zbelong to the set
{-3,-2,-1,0,1,2,3}. The weight subspaces .#_, and .%, of the weights -2 and 2 form a
finite-dimensional nilpotent Jordan pair. Since idempotents are understood modulo the nil
radical in Jordan pairs (see [12]), there eixsts an idempotent (a’, b") of the pair (&_,, %)
that is a preimage of the idempotent (A4, »). The lemma is proved.

LEMMA 4.6. Suppose = Y.*,%, is a simple graded Lie algebra of nonexceptional type,
I'=sI(#%),&L,,=Te, ,,eg=[e_y,e;]and ¥, = {a € Z|[a, e;] = a}. Then there exists
a finite Galois extension P /T of T such that it is possible to define on the algebra = £ ® P
a finite Z-grading L= Y7 %, of type 1 or 11 (see Theorem 1).
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Proor. 1°. If dim £ < oo, there exists a finite Galois extension P /T of I" such that the
algebra #= #® P is splittable (see [20]). We can choose a Cartan subalgebra of .#and
roots with respect to this Cartan subalgebra so that

£ if Zisof type 4,,,

H(w—wy)
Pe  ,=1{ - e .
+2 & (w+w) ifLisoneof thetypes B, C,, D,,1 <i,j<m.

In the cases of D, and C,, we have £=2 | + £, + #,, and in the case of B, we have
P=2 ,+ P+ P+ P +P,, where P, = Za+ﬁ=ki’aw‘+ﬁwj.

2°. Assume that the algebra % is infinite-dimensional over I' and satisfies the conditions
of the lemma, but the desired extension P/I" does not exist.

We will show that for any natural number n > 1 there exist a Galois extension P,/T’
and a grading " = @ P, = L™, &, such that

dim, £M>n, 2LV se.,, Y #mazo.
0<|i<m,
Assume the extension P,/I" has been constructed. Since the grading £ = ¥ Z(" is

not of type I or II, it follows from Lemma 3.4 that there exists a bilinear form f:
(25, £") - P, such that

" [a+’b—’c+]=f(b—’a+)c++f(b—’c+)a+’
[a—’ b+’C—] =f(a—v b+)C_+f(C_, b+)a-

for any elementsa ., b ,, ¢, € £{"), . Choose in the spaces £ and £," dual bases with
respect to f, namely g, ;, 1 < i < n, such that f(g_;, g;) = §;; (the Kronecker symbol) and
8+1 = €42

Let 2 denote the system of all finite-dimensional subalgebras of £ containing £{") ,
graded with respect to the grading £ = L. %", and generated by elements of nonzero
weight with respect to ad([e_,, e,]). For each subalgebra 4 € # we decompose the
quotient algebra 4 = A/Rad A into a direct sum of minimal ideals, 4 = 4, ® --- ® 4.
We will assume that £") C A, and that 4, is an algebra of classical type over P,. Since
[4,,&,,&,] = Pe, the P-algebra 4, is central. As above, we can embed the algebra .# "
in the ultraproduct of the algebras 4,, 4 € P, with respect to the ultrafilter #. Conse-
quently, for some algebra A € & the algebra 4, has one of the types 4,,, B,,, C,, or D,
where m > n + 3. It is known [20] that there exists a Galois extension P, /P, of P, such
that the algebra 4, = 4, ® p P, 118 splittable.

Assume the algebra 4, has type C,. Then n = 1 and we may assume that P, &, =
(A,)3,,- Choose elements 0 # 4 € (4,),, ,,, and b € (4,)_,, _,, so that [4, b, A] = 24
and [b, 4, b] = 2b. The elements 4 and b have weights 1 and -1, respectively, relative to
the transformation ad([é_,, &,]). In turn, & , , is an eigenvector of ad([b, A]) with weight
+2. Note also that there exist eigenvectors of ad([b, 4]) with weight 1 that do not lie in
20, 8P,

Assume A, has tzpeA,ﬂ. Then we may assume thatP, g8, = (/fl)_ig_»l—w,-l)’ 1gign
Choose elements 4 € (4,),, _,, ., and b € (4,) _(,, -, ,,) WithL(4, b) = sl,(P,,,); the
elements A and b have weights +1 with respect to ad([é_,, &,]); & (i",),," is a proper
subspace relative to ad([b, A]) with weight +1. Moreover, there exist eigenvectors of
ad([b, A]) with weight 1 that do not lie in £{"), ®, P, ,,.

The cases of B,, and D,, are analogous to that of 4,,.

w
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For the elements 4 and b we choose preimages a and b under the homomorphism
A — A such that a and b are homogeneous elements of the grading

Lo =g ®p P, = Yz ®pPuirs
i

a and p are eigenvectors of the transformation ad([e_,, e,]) with weights 1 and -1,
respectively; e , , is an eigenvector of ad([b, a]) with weight k, € {1,2}.

Note that ad(a)* = ad(b)* = 0. If c € L"*Y and cad(a)*# 0, then c € P,,e_,,
cad(a)* € P, je,, and ¢ad(A4)* # 0. But it is easy to verify that [é_,, 4, A] = 0. Conse-
quently, the subalgebra .#(a, b) satisfies the conditions of Lemma 4.5.

By virtue of Lemma 4.5, we may assume without loss of generality that [a, b, a] = 2a
and [b, a, b] = 2b. We decompose the subspace £" "1 into weight subspaces with respect
to ad([d, a]), ie, LV =L, L5, Let iy = max{0 <i < n|¥,, # 0}. We define a
new grading on ¥ "+ by putting

L= TEE, L4 = {2~ ko) + k(m, — i) = i)
i

It is easy to see that
max{ I\ZET 0} =2m, —iokg,  LE iy D Lar ®p Py + LY,

thenZ "1 = £, £ 1% 1 is the desired grading.
Suppose P = Py, &= LerP=1", L, L, D e,,, dim «9+m 5and Ly ycm
# (. If the graded algebra$ is special, then, by the results of §2,.% is an algebra of type I

or II. Consequently, & is exceptional. By Lemma 4.2, commutation of the subspaces 2.,
and 2, is defined by a bilinear form f (&, 2,)— P. As above, we choose dual

elementsg,, =e,,andg,,,2<i<5,f(g.,,8 /) §,;, and a system 2 of finite-dimen-
sional graded algebras containing { 8 J1<i<g 5} For each subalgebra A € & consider
the decomposition 4 = A/Rad 4 = 4, & - LA D3 1+ 1 <i<5, and the homo-

morphism ¢,: 4 —> 4,. The system of homomorphisms {p4ld € .@} is local and ap-
proximating; the algebra #can be embedded in the ultraproduct of the algebras ¢,(A4),
A € 2, with respect to the ultrafilter #. Since the graded algebra .# is exceptional, the set
P’ = {A € P|p,(A) is an algebra of one of the types B,,, D,,, m > 5} lies in #. Suppose
Ae P, p,(A) is an algebra of one of the types B, or D,,, m > 5, P'/P is a Galois
extension of P splitting the algebra ¢, (A4), P is the algebraic closure of P, and %’
£2®,P’. We choose a Cartan subalgebra of ¢,(4) ® ,P’ and a root system so that

(‘PA(A) ®pP’ )+(wl+w,+1) Pq’A(gﬂ) I<igs,

and let A denote the preimage of the algebra Z((¢,(A) ® ,P’ )tw )l Si#j<6)
under the homomorphism 4 ® ,P’ = A ® ,P’. Consider the subspaces

Ayi vieny = { aec Al[a’[g—i’ gi” = [a, g+ gi+1]] = -a,
A€ (A@P) .}
A,ii.i(iﬂ): “/iix’, i(i+1)s1‘f$i,¢(i+1)]’/fii.i(i+1)]-

By Lemma 3.6, for any subalgebra 4 C B € #’ and for any index i, 2 < i < 5, either
(PB(A') N (pB(B ®l"i))¢au,-+-m,-*1 # 0
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or

(PB(A.'?.:'+1) C ¢y(B ®Pp)m1 + Z ‘PB(B ®PP/)wl+w,'
i>4
As in the proof of Lemma 4.3, it is easy to show that not all of the images @z( 4] ;).
2<i<5 liein
¢5(B ®PP)¢.,1 + Z ¢5(B ®PP)w1+w,'

i>4
Thus, there exists an index i, 2 < i < 5, such that
q)B(/f) N qoB(B ®P}~))wlﬂ,,+1 #* 0.

1t follows that for any index j, 2 < j < 5, we have
‘PB(/I) Neg(B ®Pi))w,+w,+1 #0;

in particular, the algebra A is splittable, 4 = 4, + Rad 4. Let { X totws Piw o) beER
Chevalley basis of 4y, X, (10, =8ep 2 <i<bandh=h,  , +hy o +h, o+
Boprog t hoo-In \:iew of what was said above, the eigenvalues of the transformation
ad ¢z(h); pg(B) ®,P — @yz(B) ®,P belong to the set {-4,-2,0,2,4}. Thus, the eigen-
values of ad(h): L®,P" —> £®,P’ also belong to {-4,-2,0,2,4}. The decomposition
into weight subspaces £’ =%/, + %', + &, + L + &£/ with respect to ad(k) is the
desired grading. The lemma is proved.

Suppose (R, *) is an involutory algebra. An automorphism g of the algebra R is called
an automorphism of the involutory aigebra (R, *) if it commutes with the involution *.

We will need the following theorem of Martindale [26].

wptw w3ty

THEOREM (W. MARTINDALE). Suppose (R, *) is a simple involutory algebra containing
nonzero orthogonal idempotents e, and e, with e} = e,, e¥ = e, and e, + e, # 1. Then any
automorphism of the algebra K’(R, *) is induced by a unique automorphism of the involutory
algebra (R, *).

Thus, the automorphism group of the Lie algebra K’(R, *) is isomorphic to the
automorphism group Aut( R, *) of the involutory algebra (R, *).

Suppose L= ¥?,.%, is a simple graded Lie algebra of nonexceptional type, I' = I'(.#),
L.o=Te, ,,eq=[e_,,e)]and ¥ = {a € L|[a, e;] = ia}. By Lemma 4.6, there exist a
finite Galois extension P /T of the field T, a finite Z-grading on the algebra = @ .P =
=Ly ,Sﬁim) De,,, and a simple graded involutory algebra (R, *), R = X" R,
such that = K’(R, *). In addition, the field P can be chosen so that R contains nonzero
orthogonal idempotents e; and e, with ef = ¢,,e¥ = e, ande; + e, # 1.

The Galois group G = Gal(P/T') of the extension P /T acts in the algebra.? by the rule

Gog: Ya,®p,~2a ®g(p).

Obviously, $= #° = {a € #|g(a) = a, g € G}. By Martindale’s theorem, the group G
is embedded in the group Aut R. Consider the subalgebra R = {a € R|g(a) = a,
g € G). It s easy to see that K(R, *) is the P-linear span of the set K(R, *)¢ = K(RC, *).
Therefore,

z([k(R%,*), K(R®,*)]) € Z([K(R.*), K(R,*)]).
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The algebra K’(RY, *) is embedded in the Lie algebra K’(R, *), and its image lies in the
algebra (K’(R,*))° =% and is an ideal of .#. Since the algebra .# is simple, £ =
K'(RC, *). It is obvious that R is a simple involutory algebra. Also, e 2E€ RN R¢.
Therefore, e%_r , = 0 and the eigenvalues of the operator ad(e;): R = R belong to the set
{-2,-1,0,1,2}. The decomposition into weight subspaces with respect to ad(e,) defines a
grading of the algebra R¢, and K’(RY, *) = % is a graded algebra isomorphism. Thus, .&
is an algebra of type I or IL

We have proved Theorem 1 for an algebra that is locally finite-dimensional over its
centroid.

§5. Inner ideals

Consider a graded Lie algebra = Y", ... A graded subalgebra B = X" B, is called an
inner ideal if, for any weights a,, -n < a,<n, i=1,...,m (m = 1), the inequality
Ei'e,| > nimplies [ ¥, B, ,...,B, ] C B.

1°. Specialization of inner ideals. For any element b € B the operator ad(b) induces an
operator on the quotient space %/B. We denote this operator by ad(b) € End 4(%/B)
and consider the representation

¢: B> b - ad(b) € Endy(#/B)
of the algebra B. It follows from the definition of inner ideal that ¢ is a specialization.
Obviously, Ker ¢ = {b € B|[L, b] € B}. We have proved

LeEMMA 5.1. By, = {b € B|[#, b] C B} is an ideal of B, and the quotient algebra B/B,,
is special (as a graded algebra).

We define in B a descending chain of ideals B, = {b € B|bad(Z)" C B}. It is easy
to show that [B,,, B ;)] € B, fori > 1.

LEMMA 5.2. The ideal I = 1d ([ B, L)) is locally nilpotent modulo the subspace B,

PrOOF. We shall assume without loss of generality that the algebra % is generated by a
finite set of elements of .#*. Then, by Lemma 1.2, there exists a natural number m such
that R(£) = L7 ad(Z)". Obviously,

IdJ(B(mH)) =) B(m+1)ad($)i C By,-
i=1

We may now assume without loss of generality that B, ,, = 0. We will show by
induction on i that for 0 <i<m — 1 we have B, ,,_,,C K(Z). For i =0 there is
nothing to prove. If-B,,,,,_,) € K(&),i < m — 1, then
[Z. Biws1 sy Bimer-en] € [ Bays Bum )] € [ By Bow-i]
CBi1-nE K(Z),
from which it follows that B, ., ;.1 € K(Z). Fori = m — 1 we obtain B;) C K(&¥) C
Loc(#). Now
[Bay, 2] c [Lod( ), 2] c Loc(2),
and the ideal ] is locally nilpotent. The lemma is proved.
2°. Principal inner ideals. In this subsection we will construct an important family of
inner ideals. Suppose g, € %, and a_, € Z_,. Consider the operator
T(a_,, a,) =1d + ad(a_,)ad(a,) + L ad(a_,) ad(a,)’
and the subspaces B, = %, T(a_,, a,) for k > 0.

-n
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LEmMMA 5.3. a) [ &, B,, B;] € L{B/ for k > Q.

b)[B/, B/1< B/, fori, j > 0.

o[B!, &)< B_;fori>j>0.

PROOF. a) Note that if n = 1, then Lemma 5.3a) follows from the Macdonald identity

for Jordan pairs [12]. The general case reduces to the case n = 1. Indeed, suppose
x,€&,i>0,y, €%, andz, €%, Our goal is to prove that

['x—i’ ynT(a—n’ an)’ sz(a—n’ an)] c "gn+k—iT(a—n’ an)'

Consider the commutative associative ®-algebra ® = ®(1, a, 8) defined by the relations
a? = B2 = 0, and the scalar extension = £ ®,d. It suffices to show that

[Bx—i’ ynT(a—n’ an)’ aZkT(a~n’ an)] - "?n-kk-iT(a—n’ an)‘
Consider the subspaces
K1="?n+a2’?iaan’yn’azk; K—lzj—n+32°?iab—n’ﬁx—"

i>0 i<0
Then K = K_, + [K_;, K;] + K, is a Z-graded algebra. It now suffices to apply Mac-
donald’s identity to the Jordan pair (K _;, K,).
b) We will prove that for any elements x; € %, and y;, € £, i, j > 0, we have

[xT(a_,. a,). yT(a_p. a,)] = [x;, y]T(a_,. a,).
If i = norj = n, then both expressions are equal to zero. Suppose i < n andj < n. Then
xT(a_,,a,)=x;+[x,a_,.a,],  yT(a_, a,)=y+[y, a, a,l;
[ +[x;a_,, a,], ,+[y.a_,.a,]]
= [xi, 1l +[xi,a_,, a,, 5]
i EN SN | S | EORP R N A |
We have
[x0 [y @_ms @] =[x (35 6201, a0] =[x 400 [ 0L,
=[x [y as0) 0] =[x, 0 0, a,] =[x a0, 95 4,

Obviously, [x,, a_,, a,, y;] = [x,, a_,, ¥, a,]. Therefore,

[x0 [y acn a,]] +1xis acns @, 3] =[x, 30 0y, a,).
Also,

[xisa_ an [y a_nsa,]] = [xiacus an [y as,) a,] =[x sy a0 00,00 aL,]]
=[x a an [y a2,), 4]
We have
ad(a,)ad([y,, a_,])ad(a,) = i(ad(a,)*ad([y;, a_,]) + ad([y;, a_,])ad(a,)?).

Therefore,

[ s au Ly a_). a,] = 2% a_n (30 0], a0 a,).
Now

[0 a_ns L3y aal] = [0 a_ns v @] =[x @y s 3]

- -1
=[x a_,,y.a_,]=13lx,y,a_,,a.,]
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Finally,
[X0s s @[3 a_ps @] = 3,0 3,0 0o @y s ).
We have proved that
[xT(a_,, a,), yT(a_,, a,)] =[x, 1T(a_,, a,) € B,
c¢) We will show that for any elements x, € &, and y, € £, i > j > 0, the equality
[xT(a_,, a,), 3] = ([x 3]+ [y} 0 [xs a2,]]) T(a,, a,)
holds. We have
f=[xT(a_,, a,), 5]
=[x, yl +lxia_,a,, yl + 3lx,a 0., a,, 0, 5]
g =[xy 1+ [y an[x,,0.,]])T(a_,, a,)
=[x 2 )+ [y an [xo @] +[x0 0, a0 a,]
tlyanlxeas a e + 3y anlxal a a_ g, a,].
We compare homogeneous elements with respect to a_, and a,,:
[y amlxia ] = ~[xi.a .1y a,]]
~[xi,a_,, v, a,) +[x,a,,a,, y_]

_[xi’ y—j’ a—n’ an] +[Xi7 a_", ll", y—j]

It

Therefore,
h=lxna a,y )=y, a.lx,a ]| +Ix.y ;. a_,,a,1=g.
Furthermore,
ad(a,)’ad(y_;) + ad(y_;)ad(a,)’ = 2ad(a,)ad(y_,)ad(a,).
Therefore,
fa=ilxia a0, 0,y 1= 30x,0a_,,a .0,y ;4a,]

On the other hand, [x,, y_;,a_,,a_,, a,,a,] = 0and

—-n» Y n»

84 = [y—j’ a,, [xﬁ a—n]’ a_p an] == ['xi’ a_y, [y—j’ an]’ a_p, an]'
As above, we have
ad(a—n)ad([y—j’ an])ad(a—n) = %(ad(a—n)zad([y—j’ an]) + ad([y—j’ an])ad(a—n)z)’
from which it follows that
_[xi’ a_,, [y—j’ an]s a_,, a—n] = _%[xi’ a_,,a_,, [y—j’ an]’ an]'

Observe that [x;,[y_,, a,]] € &, = 0, since / > j. Furthermore,

—j+n
1 = 1

_E[Xi’ a_y>d_y, [y-j’ an]’ an] - —2[xi’ ad_y, a_y, y—j’ A an]
1

+ Z[xi’ (1_", a_na an’ y_,-, an]

= %[xi’ A_y> d_y, Ay, y—j’ an] = f4'
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It now remains to observe that [y.joamlxina_,la
n. Thus, g, = 0 and f = g. The lemma is proved.
Put B, = B) and

€L 5, =0,sincei —j <

{[B’, _,...,g_a”,]]ai>0,,,_xﬁa,_:k}

i=1
fork > 0; set B, =%, fork < 0.

LEmMMA 5.4. B(a_,, a,) = X", B, is an inner ideal of the graded algebra &£ .

Proor. We will show that B(a

for all i and j such that -n < i,j <
If i < 0 orj < 0, then the 1nclu51on is obvious. Assume i > O andj > 0. Then it suffices

a,) is a subalgebra of %, i.e., [B,, Blc B(a_,,a,)

—ns

to establish that [B,, &, ,....Z , , B,] C B for arbitrary weights a; > 0,1 < i < m.
We will show by mductlon on m that for any weights k > 0and a; > 0,1 < i < m, we
have
|B), o Z P Bi| S B(a_,,a,).

We know that
[, _a,B']c[ z [ -y ”

If a,, # k, it suffices to use the induction assumption.
Suppose a,, = k. If m = 1, then [B,, & __, B;] € B, by Lemma 5.3a). Suppose m > 2.

-ay?

Then
AN NS A K 1A N N E A )
B 2| 2B 2
+[B, 2L st B 2],

and we can now again use the induction assumption. We have proved that B(a
subalgebra.
Ifa, + -+ + a, < —-n, then
[¢.B,....B, ] € X # < B(a_,a,).
k<0
If e, + -~ +a,>nand [£, B,,...,B, ]# 0, then i <0. Thus, &, C B(a_,, a,).
Since B(a_,, a,) is a subalgebra, it follows that

(£.B,.....B, | € B(a_,.a,).

a,)isa

—ns

—n?

The lemma is proved.
§6. Primitive graded Lie algebras

1°. Primitivity and the Jacobson radical in Jordan pairs. Assume that the pair of ®-spaces
V = (V~, V" forms a Jordan pair. According to the definition given in the Introduction,
this means that V'~ and V™" are subspaces of weights ~1 and 1, respectively, of some
Z-graded Lie algebra K(V) =V +[V ", V*]+ V", where the weight subspaces of the
weights k, |k| > 1, are equal to zero.
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[+3 a

An ordered pair of elements a™%, a°, 6 = £, is called quasi-invertible if the operator

T(a°a’)

i VO3 x° > x° +[x% a % a’] + §[x°, a % a % a° a°]

is invertible.

An element a® € V° is called properly quasi-invertible if for every element ¢~ € V~°
the pair (a™¢ a°) is quasi-invertible. The set of all properly quasi-invertible elements
forms an ideal of the pair V called the Jacobson radical of V and denoted by Jac(V) (see
[12]). It is easy to see that Jac(V') is the sum of all quasi-invertible ideals of V (i.e., those
ideals in which every pair of elements is quasi-invertible).

A subspace B C V™ is called an inner ideal if [V, B, B] C B.

An inner ideal B C V* is called modular with modulus (a, a*) (see [29]) if (i)
V*T(a",a%) C B, (ii) V*(ad([a", b] — % ad(a)?ad(a™)ad(b))) C B for every b € B, and
(iii)[a*,a",a"]—2a* € B.

If a pair of elements (a¢~, a™) is a modulus of an inner ideal B and b € B, then the pairs
(a~,a*+ b)and (a~, a” ad([a", a™])™), m > 1, are also moduli for B.

It was shown in [29] that an (a~, a *)-modular inner ideal containing a* coincides with
|28

A proper modular inner ideal B € V* of a pair V is called a primitivizer if for each
nonzero ideal 74V we have B + I"= V™. In this case the pair V is called primitive. A
Jordan pair that is semisimple in the sense of the Jacobson radical can be approximated
by primitive Jordan pairs (see [15]).

Let us recall a few more facts about Jordan pairs. A pair of elements (a~, a*) is called
algebraic if there exists a polynomial f(x) & x®[x] such that f(ad(a",a™])=0. A
Jordan pair is called algebraic if every pair of its elements is algebraic.

A Jordan pair V is called a nil pair if for any elements a~ and a* there exists a natural
number m such that ad([a~, a™])™ = 0. The maximal nil ideal of ¥ is called its nil/ radical
and is denoted by Nil(V).

By the resolvent Res(a™, a*) of a pair (a~, a*) we mean the set of coefficients a € ®
such that the pair (aa”, a™) is quasi-invertible, and we define

Spec(a™,a*) = ®\ Res(a, a™).

As in the case of associative algebras, we obtain by means of Amitsur’s resolvent method
{(see [28]) the following

LemMA 6.1. a) If card Res(a™, a*) > dimg, V'™, then the pair (a”, a*) is algebraic.

b) If card ® > dimg, V', then Jac(V) = Nil(V).

A pair (a”, a*) is called idempotent if [a*, a™, a*] = 2a*and [a", a™, a] = 2a".

Idempotents (a7, a;') and (a3, a}) are orthogonal if [a], a5 ) = [a3, a ] = 0. Suppose
(a7, af),...,(a,, a},) are pairwise orthogonal idempotents. Then the pair formed by the
elements a™= L{"a; and a*= X[a; is also idempotent.

With an idempotent a = (a~, a™) is associated a Peirce decomposition of the pair V:

V="P(a,V)+P,(a,V)+Pl(a V), PlaV)= voad(a=°) ad(a°)’,
Pf’/l(a, V)= V"(ad([a“’, a’l) + %ad(a“’)zad(a”)z),
Pi(a,V)=V°T(a " a°), o=+.
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The following conditions are equivalent:

1) The idempotents a, = (ay, a7 ), a, = (a3, a3) are orthogonal.

2) a, € Py(a,, V).

3)a, € Py(a, V).

It is easy to show that an algebraic Jordan pair that is not a nil pair contains an
idempotent.

2°. Primitive graded Lie algebras. Consider a graded Lie algebra #=Y" %, %, =
L&, %], and an inner ideal B = L" B, We will say that the inner ideal B is modular
with modulus (a_,,a,), a_, €% ,, a, €%, if (i) B(a_,,a,)C B, and (ii)) B, is a
modular ideal of the Jordan pair (&_,, .%,) with modulus (a_,, a,).

If b, € B,, then the pairs (a_,, a, + b,) and (a_,, a,ad([a_,, a,])™"), m > 1, are also
moduli for B.

LemMA 6.2. Suppose B is a modular inner ideal of £ with modulus (a_,, a,) and a, € B.
Then B = 2.

PROOF. As noted above, it was shown in {29] that B, =.%,. Also, B 2 B(a_,,a,) 2
Y.0% If xe¥, 0<i<n, then xT(a_,,a,)=x —[x,a_,,a,]€ B and [x,a_,],
a, € B. Thus, x € B. The lemma is proved.

Let #(a_,, a,) denote the set of maximal proper inner ideals of . with modulus
(a_,,a,),andlet P=U{P(a_,,a,)la,, €L ,}.If BEP, thenI(B)=L" I(B),isa
maximal ideal of £ contained in B.

LemMA 6.3. N{ I(B)|B € 2} is contained in the Jacobson radical of (£

-n

2).

PROOF. Assume the element a, € N{ I(B)|B € £} is not properly quasi-invertible, i.e.,
there exists an element a_, €.%_, such that (a_,, a,) is not quasi-invertible. Then
B(a_,, a,) is a proper (a_,, a,)-modular inner ideal of .£. There exists an inner ideal
B & & containing B(a_,, a,). By hypothesis, a, € B. In view of Lemma 6.2, B = %. This
contradicts the assumption that B is proper. The lemma is proved.

We will call a graded algebra

-ns

n n

=L % | %=Lz, 2]
i=-n i=1

primitive if it contains a maximal proper modular inner ideal B such that 7(B) = 0. In this

case, the subalgebra B is called a primitivizer. It is easy to see that for any inner ideal

B € P the quotient algebra #/I( B) is primitive.

LEMMA 6.4. Suppose & is a primitive Lie algebra with primitivizer B = " | B,. Then the
following assertions are true:

a) I + B = 2 for any nonzero graded ideal I <% .

b) Any nonzero graded ideal of £ has nonzero intersection with %,.

) B, is a primitivizer of the Jordan pair (¥_,,, %£,)-

PROOF. a) Suppose I is a nonzero graded ideal of &£ and (a_,, a,) is a modulus of the
inner ideal B. Then B + I is a modular inner ideal of .# with modulus (a_,, a,) that
strictly contains B. Since B is maximal, we have B + I = £, Part b) follows at once from
a). Let us prove c). Suppose J = (J_,, J,) is a nonzero ideal of the Jordan pair (&_,, .&,).

Our goal is to prove that J, + B, = %,.
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" w» £,)/J contains no nonzero locally nilpotent
ideals. Then, by Lemma 1.4, J, = %, N 1d ,-(J,) and it suffices to use a).

Let us now drop the assumption that (%_,, #,)/J contains no nonzero locally
nilpotent ideals. Let J’/J be the locally nilpotent radical of (Z_,,, %,)/J,J € J’. By what
was proved above, J; + B, = %,. Choose elements x,, € J, and b, € B, such that x, + b,
= q,. Since the pair J'/J is locally nilpotent, there exists a natural number m > 1 such
that x;, = x,ad([a_,, x,])” € J,. The pair of elements (a_,, x,) is a modulus of the inner
ideal (B_, + J_,, B, + J,) of the pair (&_,, &,), and B, + J, © x/. Thus, B, + J, = %,.

The lemma is proved.

Assume first that the quotient pair (&

§7. S-1dentities in primitive algebras

1°. Free graded algebras. Consider the free Lie algebra Lie( X)) on the set of generators
X = {x;|-n <i<n,j>1} The Lie algebra Lie(X) possesses a natural Z-grading in
which the weight i is attached to the generator x,;, Lie(X) = ¥; 5 Lie(X),. Let I denote
the ideal of Lie(.X) generated by the set X, Lie(X),. It is obvious that Lie( X, n) =
Lie( X)/I is a free graded Lie algebra.

We will say that an element f(x,;) € Lie( X, n) is an identity on the graded Lie algebra
&= ¥",Z, if it is mapped into zero under every homomorphism x;, = %, 0 < |i| < n,
J = 1. In this case we write f(£) = 0.

Consider the free special graded Lie algebra SLie( X, n) (see §2) and the natural
homomorphism ¢: Lie(X, n) — SLie( X, n), under which x,, is mapped into x,,. We
denote the kernel of this homomorphism by S and call the elements of this kernel
S-identities. It is obvious that a graded Lie algebra is a homomorphic image of a special
graded Lie algebra if and only if S(.#) = 0. The ideal S is homogeneous with respect to
the generators in X. We also consider the ideals

S(X) = 1dy ey (S N Lie(X, n),) c S(X)
and
P(X) = ldpex.m({ (20 b, a0, d].[a,, ¢, a,, d]a, < Lie( X, n),;
b,c,d € Lie( X, n)}).

2°. In the rest of this section we consider a primitive graded Lie algebra ¥= " %,
Ly = L&, &), over an algebraically closed field @ such that card ® > dimg.#. Our
goal is to show that either(§ N P}.£) =0 or £ is an exceptional finite-dimensional
algebra of one of the types G,, F,, E¢, E; or Eg.

Suppose B = 1", B, is a primitivizer of & with modulus (a_,, a,,).
LemMA 7.1. By, = 0.

PROOF. Assume B, # 0. The nonzero ideal I = Id 4([B,,, £]) is locally nilpotent
modulo B. By Lemma 6.4a), there exist elements x, € I N.%, and b, € B, such that
x,+ b,=a, Forsomem > 1 wehavex, = x,ad(la_,, x,])” € B,.

The pair (a_,, x,) is, as before, a modulus for B. Thus, B = &. Contradiction. The
lemma is proved.

Consider the ideal S = [[S, S], Lie( X, n)] of the free graded algebra Lie( X, n).

COROLLARY. S(B) = 0.
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PrOOF. By Lemma 5.1, the quotient algebra B/B, is special. Thus, S(B) C B,.
Moreover, [ By, By, L] C [ B, £] = 0, from which it follows that

S’(B)  [Byy, By, £] = 0.

By the heart H = H(Z) of an algebra ¥ we mean the intersection of all its nonzero
graded ideals.

LEMMA 7.2. S'(¥) C H.

PROOF. Suppose I is a nonzero graded ideal of #. Then, by Lemma 6.4, B + I = &£,
Therefore, /I = B+ I/I = B/B N I. Thus, S'(¥/1)= 0 and S(¥) C I. The lemma
is proved.

Assume S(&) # 0. Then S'(&L)# O0and H = X" H, + 0.

LEMMA 7.3. For any elements a_,€%_, and h, <€ H,, either B(a_,, h,)=% or
S(B(a_,, h,)) =

PROOF. Assume [B(a_,, h,) ), B(a_,, h,)] # 0. The nonzero graded ideal

I= Id_g,([B(a_,,, h,,)(z), B(a—n’ hn)])

is locally nilpotent modulo B(a_,, 4,). Moreover, h, € H, C I. Thus, there exists m > 1
such that A/, = h ad(la_,, h,)™ € B(a_,, h,). The pair (a_,, h)) is a modulus for the
inner ideal B(a_,, h,). By Lemma 6.2, B(a_,, h,) = #. The lemma is proved.

—-n -n*

LEMMA 7.4 (see [13], [29]). Suppose f is a homogeneous element of the free graded Lie
algebra Lie( X, n) of degree m with respect to X (i.e., each monomial contains exactly m
letters of X) that is not an identity on % . If { B, } . is a family of inner ideals of & such that

1) f’(B,) = O for all linearizations ' of f, and

D F=%, ;C.;, where C., =Bk # i,k #j},
then the number of inner tdeals B, is at most 2m.

PROOF. If the number of inner ideals B, exceeds 2m, then any m subspaces C, ;,...,C;
lie in one of the inner ideals B,, k€& {i},i5,...,i,, ji» Jo,---+Jm ). Consequently,

(Cyps---5Ci ;) = 0. Also,
f(e...2)=f(Xc,...Xc,)=Xr(cy.---.C.j) = 0.

This contradicts our assumption that f(#) # 0. The lemma is proved.
Choose a homogeneous element f of degree m in the ideal S’ that is not an identity
on.%.

LEMMA 7.5. For any elementsh_, € H_,andh, € H,
|Spec(h_,, h,)| < 2m

PROOF. Suppose a;,...,a,,,.1 € Spec(h_,, h,), where a; # a;if i # j, 1 < i,j < 2m +
1. We will show that the element f and the inner ideals B, = B(a;h_,, h,) satisfy the
conditions of Lemma 7.4. By the corollary of Lemma 7.1, f(B;) € S’(B;) = 0. Also,
Z,<0$ c nlzm+1B

The polynomials g,(x) = (1 + a,x) T2 (1 + a,x), 1 <i < 2m+ 1, are relatively
prime. Consequently, there exist polynomials pl(x) csDPam H(x) € ®[x] such that
£2mtip,(x)gi(x) = 1.
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If0 < k < n, then

%, = 2 Lp (ad(h_,)ad(h,))g,(ad(h_,)ad(h,)))

2m+1

c T (ad(h)adh)) s L (NB)<cLc,

i=1 \j=i

When k = n the assertion being proved pertains to Jordan pairs and was analyzed in
detail in [13] and [29].
It now suffices to apply Lemma 7.4. The lemma is proved.

LeMMa 7.6. (Z_,, H,) is an algebraic Jordan pair.

€% ,and h, € H, By Lemma 7.6,
h,) = card ® > dimy, 2.

Therefore, by Lemma 6.1, the pair of elements (a
proved.

-nv

PROOF. Suppose a_

n

card Res(a

-n

h,) is algebraic. The lemma is

—n

LeMMA 7.7. The pair (£_,,, H,) can contain at most 2m pairwise orthogonal idempotents.

—n

Prook. If (e®), e®D),... (e@* D e@m+DY are pairwise orthogonal idempotents and
Q... 0,1 € O\ {0} are distinct elements of @, then the elements 1/a;,...,1/a;,,.1
lie in the spectrum of the pair (2" 1a,e), Y27 *1e{)), which contradicts Lemma 7.5. The
lemma 1s proved.

Suppose e, = (e, eV),...,e, = (e¥), e e (H
wise orthogonal idempotents of the pair (&£
e=(e_,e,),wheree_, = Xie!) and e, = Lie!", is also an idempotent.

If Py(e,(Z.,, H))) # 0, then Py(e,(%.,, H,)) is not a nil pair (see [12]); hence it
contains an idempotent. This contradicts the maximality of s. Thus,

Py(e.(Z.,. H,)) =0

_n» H,) 1s a maximal family of pair-
" H,), s € 2m. Then the pair of elements

-ns

and
.,?nT(E-,,, e,,) =Z,(Id - ad([e_n, en]) + %ad(e_n)zad(en)z) _o.

Since e, € H,, it follows that.¥, = H,.

The Peirce component P (e,,(%Z_,, £,)) of the Jordan pair (&_,, .%,) is obtained by
duplicating some unital Jordan algebra J (see [12]). The algebra J is algebraic on ® and
does not contain any nonzero nil ideals or (in view of the maximality of s) proper
idempotents. Consequently (see [13] and [29]), J is a Jordan division algebra. Since the
field @ is algebraically closed, we have J = @ - 1, ie., [Z ,, e{), e)] = Pel.

Note that H = Id ,(e!V).

LEMMA 7.8. Suppose L= L, %, is an arbitrary graded Lie algebra over a field ® and
F =2, L) If¥ Da,and|¥.,, a, a,] C Pa,, then a, generates a locally finite-
dimensional ideal of & .

PROOF. Suppose the subalgebra A C 1d ,.(a,) is generated by the elements

nﬂ
¢ =gq [T ad(a‘*?),
B=1
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wherel <casm 1< B<n,anda"P e, 1<k <n and let ¥ = {a,, a®|
l<asm1<B<n,)}.

Consider the free graded Lie algebra Lie( X, n) on the finite set X = {x,, x*®|1 < a
< m,1 < B < n,}, where the weight » is attached to the generator x, and the weight k.4
to the generator x(*A. Let

nu
2@ = x, T ad(x(®),
B=1

wherel < a s mandl1 < B < n,

Let I be the ideal of Lie(X, n) generated by the set [Lie( X, n), x,, x,1, and let
~: Lie( X, n) — Lie( X, n)/I be the natural homomorphism.

We may assume without loss of generality that the field ® is infinite. Since the algebra
Lie( X, n) is generated by the Engel elements of degree at most 2n + 1, any subspace of
Lie( X, n) that is invariant under inner automorphisms is an ideal of Lie( X, n). In
particular, the subspace spanned by the crusts of thin sandwiches of Lie( X, n) is an ideal
and the elements 7(¥, 1 < « < m, lie in this ideal.

By a result of [30], the subalgebra £(Z¥|1 < a < m) generated by the elements
7, 1< a < m, is nilpotent and finite-dimensional. Let 7,,... ,0, be a basis of
L(Z11 < « < m)over @, and let v,,...,v, be preimages of 7,,...,0,.

For an arbitrary element v € Lie( X, n) we denote its degree with respect to X by deg v,
i.e., this is the maximal degree of a commutator appearing nontrivially in the expression of
v. Let d = max(deg v,,...,deg v,). We will show that the subalgebra

A =$(c("‘)|l <a<m)
lies in the subspace spanned by the commutators in % of weight at most d. Indeed,
suppose v € Z(z™|1 < a < m)and degv = d’ > d. We have

q m,
v = Z k,'v,' + Z[w]’ xn’ xn] Had(M}jv)’
i=1 j rv=1

where k; € ® and the w; and w;, are commutators in X. Obviously,

m;

degw, + 2+ ) degw;, =d.

r=1

Also,

m;

v(A) = ék,.u,.(m) + Y ®a, [T ad(w, (%)),

y=1
i.e., () is a sum of commutators in A of weight less than d’. The lemma is proved.
By Lemma 7.8, the algebra H = 1d ,.(e{P) is locally finite-dimensional over .

LEMMA 7.9. The algebra H is simple.

PRrOOF. Note that H = Id ;;(e{"). Indeed, for any operator [1" ad(w,), w, € £, we have

m

e® T ad(w,) = 27"e®ad([eD), eP])" IT ad(w,) € 1d;,(eP).
a=1 a=1

Suppose ! is an ideal of H that is not equal to H. Then I ¢V, and so [1, eV, e{V] C I
c ®e{V = 0. The algebra H is strongly nondegenerate in the sense of Kostrikin. There-
fore, by the corollary of Lemma 1.9, [/, eP] = 0. Now [1,1d ,(e{’)] = 0 and [, I] = 0.
Since H is strongly nondegenerate, I is equal to zero. The lemma is proved.
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Thus, H is a simple locally finite-dimensional graded algebra. By Lemma 4.2, either H is
isomorphic to one of the algebras G,, F,, E,, E; or Eg, or H is special, or commutation of
the subspaces H_, and H, is defined by a bilinear form f: (H_,, H,) —» @

If H is a finite-dimensional exceptional algebra and .# is infinite-dimensional, then
Z,(H) is a nonzero graded ideal of .#; hence Z,(H) 2 H and [H, H] = 0. Contradic-
tion. The second and third cases are analogous.

§8. Proof of Theorem 1 (conclusion)

Let T denote the graded ideal of the free graded algebra Lie( X, n) consisting of those
elements such that they and all of their linearizations are identities of all exceptional
graded Lie algebras. For example, any element that is skew-symmetric in 249 variables
(248 is the dimension of Eg) liesin 7. Let T = X", T, § = ¥" Sand P = ¥" P,

LemMma 8.1. S, N T, N P, C K(Lie( X, n)).

ProoOF. We shall assume without loss of generality that the ground field ® is algebrai-
cally closed and uncountable.

Let 2 be the family of maximal modular inner ideals of Lie( X, n). For any inner ideal
B € 2 the quotient algebra Lie( X, n)/I(B) is primitive. By the results of §7, SN PN T
c I(B). We will show that "{I,(B)|B € #} € K(Lie( X, n)). By Lemma 6.3, the Jordan
pair (Z_, 0 {I1,(B)|B € #)})is quasi-invertible. It follows from this and Lemma 6.1 that
ﬂ{I"(B)|B € #}) is a nil pair. Choose an element a, € ({1 (B)|B€ £} and a
generator X_,, ; € X not occurring in the expression of a,, Suppose x_, jad(a,, x_, ;D"
= 0, m > 1. The multiplication c_,°b_, = [c_,, a,, b_,] makes £ _, into a Jordan alge-
bra. By what was said above, this algebra satisfies the identity x™ = 0. It was shown in
[31] that a Jordan nil algebra of bounded degree is radical in the sense of McCrimmon. It
follows easily that a, lies in the McCrimmon radical of the Jordan pair (%Z_,, £,) and
therefore in the Kostrlkm radical of % (see §1). The lemma is proved.

If £ is a simple graded Lie algebra, then . contains no nonzero locally nilpotent ideals.
Therefore, K(Z£) C iBE(.?) = 0, and either $(#)=0or T(L)=0o0r P(£) =0

If T(%#) = 0, then R(Z) is a prime Pl-algebra which, by the Markov-Rowen theorem
(see [24] or [25]), is finite-dimensional over the field ' = I'(.#). Obviously, dim.#<
dimR(Z) < oo.

If P(#) = 0, then there is a bilinear form f: (%_,, #,) — I such that

[a,, bprc,]=f(by.a,)e, +f(b,.c,)a,

_n’

—-n’

and

[a—n’ ns -n] f(a—n’ n)c—n+f(c—n’ n)a—n

for any elements a,,, b,,, c,, €L, . If0+q,€%, then [¥,a,a,]C Ta, By
Lemma 7.8, the algebra . is locally finite-dimensional over its center. These two cases
were considered in §4.

Assume, finally, that $(.%) = 0. Since S(L)NZ, = S(L)NL, =0, it follows that
S(&) = 0. Short gradings ¥=.%_, + %, + %, were considered in [15]. We may therefore
assume that X, _; < ,<%; # 0. We may also assume that

2. .. 21z, 2] *o,

since otherwise P(£) =0
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Suppose @: SLie( X, n) = Lis a homomorphism and I = Kerg = £” I,. Let I denote
the ideal of tlle free associative graded algebra Ass( X, n) generated lzy the set Lo j<nli
then I = 2" 1,is a graded ideal. We will show that for i # 0 we have I, N SLie( X, n) = I,.
Suppose a € fio N SLie( X, n), buta & I, , i, # 0. We represent the element a as a sum of
words a = L w,(x; (, a; ), where 0 < |k|, {/| < n, a; , € I, the degree of each word w,
with respect to {4, ,} is not zero, w,(x, ;. 4, ;) € Ass(X, n), and wf = —w,.

Let T = (T_,, T,) be the ideal of the Jordan pair (SLie(X, n)_,, SLie( X, n),) intro-
duced in §2. By Lemma 2.3, there exists a natural number m such that the quantity
w,(x; «» a; Jad([T_,, T,])™ is a sum of commutators, each of which has degree at least 1
with respect to {a;,}. Thus, aad((T_,, T,)™ < I. By hypothesis, (T%,, T,) is a nonzero
ideal of the Jordan pair (&_,, %,). By Lemma 1.5, the Jordan pair (&_,, .%,) is simple.
Thus, (7%, T.7) = (%, %,) and a®ad([Z_,, Z,)" = 0. Since £ is simple, it follows
that % = 0, a € I. Contradiction. We have shown that 7, N SLie( X, n) = I,. Therefore,
the mapping %, 2 a, + I/I » a,+ I/ is a specialization. The graded algebra & is
special, and [.Z,,[[Z_,, Z,.[Z. ., Z,]l] # 0. By the results of §2, % is an algebra of type

I or II. The theorem is proved.
§9. M-Graded Lie algebras

Suppose A is a torsion-free Abelian group and M is a nonzero finite convex subset of A
containing O such that A = gr(M ). Assume that there is defined on a simple Lie algebra ¥
a nontrivial A-grading =Y _, %, L, =0 fora &€ M, dIM)<(p+ 1)/2, and M
consists of all lattice points of the convex hull of the set {a &€ A|L, # 0}.

We call an M-graded algebra £ special if there exist an M-graded associative algebra
R =Y, AR, where R, =0 for «a ¢ M, a subspace Z < Z(R) N R, and an embedding
#— R/ Z preserving the grading.

Let r be the rank of A; A=7Z & --- & Z (r summands). The convex hull of M is a
convex polyhedron in r-dimensional space with integral vertices, and each face of this
polyhedron has at least r vertices. In other words, there exists a finite family of
homomorphisms f;: A — Z such that

M= {acAlf(a)<m, melj,
Half{a)=m, &, +0}|>r foreachi.

The case r = 1 is covered by Theorem 1. Assume r > 2. If #Z is locally finite-dimensional
over its center, then by repeating the argument in the proof of Lemma 4.2 and using
Lemma 4.3 we can show that .# is either special or isomorphic to the Tits-Kantor-Koecher
construction of the Jordan algebra of a symmetric bilinear form.

Assume that the simple M-graded algebra £ is special, U = ¥, _,,U, is the universal
enveloping associative M-graded algebra for .#; U is the quotient algebra of U with
respect to the Baer radical. We identify the elements of £,, « # 0, with their images in U,.
On the algebras U and U there acts an involution * sending each homogeneous element
ae€?, a0, into —a. For r > 2 it follows from the results of §2 that %, = K (ﬁa, *),
a # 0, the involutory algebra (U, *) is simple, and £ = K '(U, *).

Our goal in this section is now to prove that a simple M-graded Lie algebra that is not
locally finite-dimensional over its centroid is special. This will complete the proof of
Theorem 2. We shall assume without loss of generality that the centroid I' is an
algebraically closed field such that card I' > dim .%#.
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LEMMA 9.1. Suppose there exists a nonzero element a € R such that a* = t+a and
a* = a[K, Kla = 0. Then the algebra R is locally finite-dimensional over T.

PRrROOF. Assume first that a € K. Then the subspace [K, K, a] lies in the Kostrikin
radical of the algebra [K, K]. The Kostrikin radical of [ K, K] coincides with its center;
hence [K, K, a] € Z((K, K]) € Z(R) Cc I". Since ¢[ K, K, a] = 0, it follows that [K, K, a]
= 0 and [a, R] = 0. Since the center of R contains no nonzero nilpotent elements, a = 0.

Let us now assume a* = a. By what was proved above, aKa = 0. Any element x € R
can be represented in the form x = x, + x,, where x* = x_and x} = -x,. Obviously,

axaya = ax,ay.a = a(x,ay, — y,ax,)a + ay,ax,a = ay,ax,a = ayaxa.

We define on the I-space R a new multiplication x * y = xay and denote the resulting
algebra by R‘“). We have shown that R“ is commutative.

The space Ann = {x € R|axa = 0} is an ideal of R“), and the quotient algebra
R /Ann is simple. In view of the restrictions on the field T we have R‘“>/Ann = T.
Thus, dimpaRa = 1. This easily implies that R is locally finite-dimensional. The lemma is
proved.

Suppose f: A — Z is a nonzero homomorphism, #= Y" %, % = L{ L, |f(e)=i}isa
nontrivial finite Z-grading, and dim.%, > 2. It was shown in §2 that there exists a simple
involutory algebra (R = X" R, *), R*¥ = R,, such that

2= ) K+ ) [K,Kl ¥ [K,K]nZ(R)

O<lijlgm O<igm O<igm

where K = K(R, *). The algebra R is generated by the set Lo ;< ,Z; S [K, K.

For any elements ¢, € £, , o, # 0,1 <i < g, when a = X{a; # O we have a; -+ a, +
a,--- a €%, Indeed, when L, ,,&; # 0 this follows from the results of §2. Suppose
F=% ,+F +Z, It follows from the results of [15] that either the Jordan pair
(Z._,,, &,) is reflexive or there is a nonzero element a,, €.%, such that [#, a,, a,] C
Ta,,. Since £ is not locally finite-dimensional, the pair (%_,,, %,,) is reflexive and again
a-ra,ta, --a€Z, ifay+ - ta,=1tm

Therefore, when i # 0 we have ¥, %,.%, C £,.%; + Z,. Thus, the subalgebra 4, gener-
ated by the subspace L, _,_,[K_, K,] lies in £}_;[K, K]', and the subalgebra 4,
generated by the space.# = ¥, &, ;liesin ¥2_|[K, K]’ Then

R=(A,+A+A4,4A)T-1+4,)+4,c Y [K,K]".

119

i

The grading of the algebra [K, K]/Z({K, K]) can be lifted to a grading of the algebra
(K, K]=Z,emlK, K],

We will show that for any convex M-grading [K, K] =X _.,[K, K], we have R =0
for a« &€ M. Since the set M is convex, it suffices to prove that for any grading
[K,K]=2X"[K, K], wehave R, = 0 for |i] > n.

Choose an element a, € [K, K],, i > 0, and consider the subalgebra I'(a,) generated by
it in R. For any element a € I'(a;) and any homogeneous subspace [K, K], we have

a[K,K],c [K,K],a+(I(a;)+T-1)[K,K],;+([(a;)+T-1).
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Therefore, a*"*![K, K], € R,and a*"*/[K, K] C Ra. By what was proved above,

a@ VR = a(2n+l)7( é [K, K]i) C Ra*"*! C Ra.
i=1

If a@"* D" % 0, then the fact that R has no *-invariant ideals implies that R = Ra®"* V'R
= Ra = aR and a is invertible. Thus, each element of the subalgebra I'(a;) is either
invertible in R or nilpotent. Assume that a, is not nilpotent, i.e., is invertible. Consider the
spectrum of a;:

Spec(a;) = { A € T|1 — Aq, is not invertible in R }.

For any coefficient A € Spec(a;) we have

7
(1 _ Aai)(2n+1)7 _ ai_(2n+1)7(ai _ }\a;)(znﬂ) -0,

1

Consequently, if [Spec(a,)| > (2n + 1)7, then a®**Y" =0, a contradiction. Thus, the
cardinality of the resolvent of a, is equal to that of the field I' and exceeds dimR. By a
theorem of Amitsur [28], a, is algebraic over I'; dimI'(a;) < co. Moreover, the subalge-
bra I'(a,) contains no proper idempotents of R. Therefore, the quotient algebra modulo
the radical, I'(4,) /N, is a division algebra. Since T’ is algebraically closed, I'(a,) = T - 1 +
N.Assumea,=a-1+n,wherea €l'andn &€ N. Then ¢, =af=a-1+n*= -a-
1 — n.Thus,2a = —n* —n € N,a = 0, g, € N. Contradiction.
Suppose a,, € £,. We have [K, K]al C a,(R + T - 1) and

[K,K]a®c [K, K] ,(R+T-1).

If a?+0, a?*! =0, d > 3, then a’[K, K]a? C a?"(R + T - 1) = 0, which contradicts
Lemma 9.1. Thus, for any element a, € %, we have a = 0. Since char I > 3, it follows
that

(K. k].[k, K],[K, K], =0.

Suppose a2 # 0. Then a?[K, K]a? € [K, K]2(R + ' - 1) =0, which also contradicts
Lemma 9.1. Thus, [K, X],[K, K], =0.1fa, € [K, K], and b, € [K, K],, then

=0, ifi # —n,
anbian=%[an’bi’an]{€$n, ifi = —-n.

Assume i > 0, a, € [K, K),, and [K, K],a; # 0. Suppose [K, K],a? # 0 and
[K, K],a?*! = 0. Choose an element a, € [K, K], such that a,a? # 0. For any element
b, € [K, K], we have

=0 ifj # -n,
2d

P

d d
a,,a,-bja,,a,.{

=3la,. b ,,a,la ifj = —n.

We have shown that [K, K],[K, K], = 0 for i > 0. It can be shown analogously that
[K,K]_,[K, K];= 0 for i < 0. It follows that R, = O for |i| > n. Theorem 2 is proved.
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