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AIlSTIL4CT. I n  this paper 111s ritnpls (inlinitc-di~i:?nxi~>naI) Lie ~~lgcli ias n.iti1 a linitc 
liontrivial 2-gi;ldsng are dcsciihcd. under csrtuln ic:tr:ctions on the char act?^-iatic ,,I the 
field. 

Rib!i~g~.aphy: 3 i  titles. 

introduction 
1'. Main resulrs. Let Z be the ring of integers. By a 2-grading of the algebra A we mean 

a decomposition of this algebre into a sum of sul;::pe.ces, i'; = X,, ,Ai ,  such that A,Ai c 
.4,,,. The grading is finite if  the set ( i  E Zl.4, # 0) is finite. The grading is nontrivial if 
C,,,A, i 0. The goal of this paper is a description of the simple (infinite-dimensionalj Lie 
algebras with a iinite nontrivial Z-grading under certain restrictions on the characteristic 
ol' the field. 

THEOREM 1. Sicppoie 9= 1: ,,9; fs a si17lple graded Lie algebra over a field o/ cl~aracleris- 
ric a f  least 411 + 1 (or  of cliaracteristic 0) and I;+,, i 0. Tl1e112is  isotrzorphic to one of  
the follobr~i~zp alaebras: 

I .  [R ' - ' ,  R(-'j,'Z, where R = C",R , is a sirtzple associative 2-gradecl algebra arzd Z is rile 
cer71er of file corrlrtlurnr~r [ R (-!, R(-'1. 

11. [ k ' ( R ,  *), I<(R, *)I jZ. ~c~lzere H = C",R, is a simple associatioe Z-grader1 algebra 
wiih inuolurion *: R -, R ,  R: = R,, ar7dK(R: *) = { c i  E Rla* = - a ) .  

111. Tlze Tits-ICarrror-Koeclzer consiructio11 of the Jordan algebra of a sy?~l~?ierric bilirleor 
for171 (see 2O). 

IV. AII algebra of o t ~ e  oftlie types G I ,  F,, E,, E,, E,, or D,. 
Tlze isomorphism in cases I arid I1 preserves the gradirlg, i.e. is a graded algebra 

ison~orphisrtz. 

We can consider a more general situation. Suppose A-is a torsion-free Abelian group 
and ,4 = C,,,A, is a A-graded' algebra. As above, the grading is finite if the set 
M' = ( a  E A(A, ,  # 0) is finite, aqd is nontrivial if C,,,/i, i 0. Examples of finite 

... gradings: 
I) Suppose 2 is a Lie algebra over a field of characteristic zero and T is a split torus. 

Then the decomposition of 9 into a sum of weight subspaces relative to ad(T) is a finite 
grading. 
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2) From any Jordan algebra (Jordan pair) we can construct, by means of the T~ t s -  
Kantor-Koecher construction, a Z-graded algebra of the f o r m 9 =  2-, + 9, + Y1, 9, = 0 
for lil > 1 (see [4]-[7] and 2"). 

3) From any J-ternary algebra we can construct a Z-graded Lie algebra of the form 
9= 9-, + 9-, + dD, + 9, + P, ,Y,  = 0 for lil > 2 (see [8]-[lo]). 

We may assume without loss of generality that the group A is generated by the set A4'. 
The elements of A can be represented by lattice points in an r-dimensional real space ( r  is 
the rank of the group A). Let M denote the set of all lattice points in the convex 111111 of 
the set M'. We will say that the A-graded algebra A = C,,,A, is Ai-gradecl i f  A,, = 0 I'or 
a E M and if A = E,,,,,A,. By the width of the set M we will mean the number 

THEOREM 2. S~ippose 9 =  C a , M 2 a  is a siliipk A4-graded Lie algebra ouer a field of 

cliaracteristic at l e a f  411 + 1 (or ofcliaracterisfic 0 )  a~id C,,,,$a, i. 0. Tlieri2'is isnr~iorplzic 
to orie of thefolloivi~lg algebras: 

I. [ R ( - ) ,  R ' - ) ] / Z ,  ivhere R = E,,,,R, is a sirnpie associatioe M-gruded algebra. 
11. [ K ( R ,  *), K ( R ,  * ) ] / Z ,  ivliere R = E,,,R, is a sitiiple associurir~e M-graded algebra 

~ ~ i l h  illi10/~fi0ll *: R -+ R:  Rz = R 0 .  

111. The Tits-z~a~itor-KoecIier coiistructio~l of thc Jordan algebra of a sj~riir~etric hilinear 
forn1. 

IV. ,417 algebra of oile offlle rjipes G I ,  F,, E,: E,, E, or D,. 
Ili cases I atid I1 t l ~ e  isolizorpkisrii preserves tlze M-gradi~ig. 

Following Weil [ I l l ,  we will call an associative algebra R with an involution *: R -+ R 
an i!~volutouy algebra. With an involutory algebra (R, *) are associated the Lie algebras 
K(R,  *) = K and K1(R, *) = [ K ,  K ] / Z ( [ K ,  K ] ) .  

An involutory algebra ( R ,  *) is graded if the associative algebra R = C,,,,R, is graded 
and Rz =. R., a E M. 

An involutory algebra (R, *) is simple if the algebra R contains no proper *-invariant 
ideals. It is easy to see that in this case R either is simple or is a direct sum of two ideals, 
R = I @ I * ,  where I is a simple algebra. 

Cases I. and I1 of Theorems 1 and 2 can be combined by considering the algebra 
K1(R, *) of a simple graded involutory algebra (R, *). 

If X c 9 is a subset of the Lie algebra 9 ,  then we denote by 9 ( X )  the subalgebra 
generated by the set X,  and by Id,( X )  the ideal of 9 generated by X. 

As usual, we denote by ad(a), a E 9, the operator ad(a): 93 s -+ [x, a] ,  and by 

[a,. a,,. . . ,a, ,]  = a,ad(a2) . - .  ad(a,,) 

the right-normed commutator of the elements a,, . . .,a,, 
Even if we do not say so explicitly, we will assume that graded algebras 9= C",P8 are 

considered only over fields of characteristic at least 411 + 1 or of characteristic 0. 
2". Jordalz pairs and algebras. Tlze Tits-Kantor-Koeclier co~isfrucfioii. Of particular 

interest is the short Z-gradingP= 9-, + Yo + zl. In this case the pair of subspaces9-,; 
with the action on each other by the rule 
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is studied independently of the Lie algebra 9 (see 1121) and is called a .lore/uil l~lrir. More 
precisely, a .Jordan pair is a pair of spaces (I,'., I,") \sitli operations ( 1.'-. I..". 1 '  ) 3 

( Y  j '  ) + { x , ,  } 6 and (I)", I f - ,  I / - ' )  3 (s '. I ,  ) ( I .  . : ) E I,.' 
satisfying the identities 

( JP l )  (I", . I > - " ,  (.xn, :-", ::'],) = {.I-". (J>-',.Y", :-"}, x " ) ,  
(JP2) ((s", js-", s o ) .  j.-". :" j = { A " ,  { y - " ,  s", j,-"), :"), 

0 O ( JP3)  ( ( . Y " .  I > - " .  .x") .  : " .  ( .YO.  I " .  Y " ) )  ={I". (!,-". ( . Y  . : . . Y " ) ? ! .  " ).  .\-"I. n =i- -.  
and all (lf their pnrtial linearizations. I t  is easy to veril'y (see [ I ? ) )  (hat  llle i?pi.l-:~lii)ns 

- - - ] satisfy these identities. ~ . ~ + l . ! ~ % , . : ~ l ~ + s s - ~ + l ~ J ~ ~ l l . - i l  

Any Jordan pair can be ohtained by the method described above. Indeed. for e ieme~~ts  
u *E  C' ' we del'ine an operator L,~(u - ,  a ' ) :  1 / + 3  .Y ' - ( . Y  ' .  (I-, rr ' ) .  The t;uhspt~tc of 
End,,,([,") spanned by the operators L+(u-,  a~'.), LZ E lVi I, is closed undcr comm~rt;ltion. 
We define the 1i1:erator L(a-. u'): I '  Y ( x ,  I .  u }  analogousl)r. Cnnsider the 
space of matrices 

with comriiutation 

0 bi L _ ( b - ,  n ' )  - L + ( u - .  h' ) 0 
0 -L ( t7 - ,  e l  ) + L.(el-. 11 ' )  

The algebra K( 1') is a Lie algebra, which is called the Tirs-Kur~ror-ICo~'i'I~~~r i ' / j l l . ~ ~ ~ l ~ ~ ' l ~ l ~ l l  of 
the Jordan pair I/. Obviously I<(V) = K ( V ) _ ,  + K(l/'),, + K ( V ) , .  \vlicre K(I,')~, = 

(:.- :) and 

The concepts of subpair, ideal, and homomorphism for Jordan pairs are defined in the 
natural \riay (see [12]). 

A linear algebra is called a Jordan olgeh/.a iT it satisfies the following identities: 
(Jl) xj, = j1.x. 

(52) X ' ( ~ X )  = (X'~).X. 
EXAMPLES. 1) An associative algebra R with s)~mmetrized n~ultiplication s = 

~ ( X ~ I  + yx) is a Jordan algebra. 2) If *: R + R is an involution, then the subspace 
( u  E R I a*  = a )  of Hermitian elements is also a Jordan algebra with respect to the 
symmetrized nlultiplication. 3) Suppose]: A4 x h1 + i9 is a symmetric bilinear form on a 
vector space Mover a field @. Consider the direct sum . 1 Bi Af.  We del'ine addition and 
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scalar multiplication on the direct sum componentwise, and multiplication by the rule 

The resulting linear algetara B( f )  is a Jordan algebra and is called the Jordan a!gebra of 
the symmetric bilinear form. If dim, M > 1 and the form f is nondegenerate, the algebra 
B( f )  is simple. 

Suppose J is a Jordan algebra. We define on the space J a ternary operation 
( s ,  )I, Z )  = ( x y ) ~  + . ~ ( y r )  - ( x z ) ~ .  

A pair ( J - ,  J + )  of isomorphic copies of the algebra J ,  J = J+= J - ,  with the action 
{ x  ', j~ ', z *) = {x,  y, z ) 'is a Jordan pair. 

Conversely, if ( V - ,  Vi) is a Jordan pair and U'~E Vi, then the multiplication n -  6-= 
(a- ,  ui, 6-1 defines on V -  the structure of a Jordan algebra. 

By the Tits-Kantor-ICoecher construction of a Jordan algebra we mean the Tits- 
Kantor-ICoecher construction of the Jordan pair ( J - ,  J+), K ( J )  = K(J- .  J + ) .  In particu- 
lar, i f  J is the Jordan algebra of a nondegenerate symmetric bilinear form on a vector 
space of diinension greater than 1 over a field a, then the algebra K ( J )  is sirnple and 
locally finite-dimensional over a. 

A classification of simple (infinite-dimensional) Jordan algebras was obtained by the 
author in [13] and [14], and a classification of simple Jordan pairs and simple Lie algebras 
with a short grading-??= dD_, + dD, + Y1 in [15]. The present paper depends esseniially on 
these results. 

We acknowledge the significant influence on the present paper of the ideas of A. 1. 
Kostrikin [I], [2], [3], J. Tits [4], [5], I. L. Kantor [6], and M. Koecher [7] .  

The author would like to take this opportunity to thank L. A. Bokut' for his constant 
assistance and encouragement, and also A. I. Kostrikin for his great interesr in this 
research. 

$1. Radicals of graded algebras 
The results of this section were proved in [16]; hence we omit the proofs. 

LEMMA 1.1 (see 1161). If a graded Lie algebra9= zY,,g contains no r7ilpoter7t ideqls, the17 
the slim C",9; is direct. 

Let a d ( 9 )  = {ad(a)la E 9 ), and let R ( 9 )  = 13,,,ad(Y)h , be the asyociative subal- 
gebra of E n d , ( 9 )  generated by the set a d ( 9 ) .  

LEMMA 1.2 (see 1161). Suppose a graded Lie algebra F= E'',,L?, is ger~erated by a finite 
collectiot~ of elet~lelits a,, . . . ,a,, E U l i 0 9 , _  Theti there exists a rzatural~~ur~~ber f(rl7, n )  suc11 
tllat R ( 9 )  = Cfp' .")ad(9) ' .  

An ideal I of a graded algebra 9 is called strong if it is generated (as an ideal) by the set 
I n (ui,,,9;). 

LEMMA 1.3 (see 1161). A graded Lie algebra 9= C1 ,A?,, 3'" = z?[Y- , ,  Y,], contairzs a 
~naxirnal strong locally r~ilpoter~t ideal Locry) .  AII IJ  locglly nilpotent ideal of the quot~erit 
algebraL?= 9 / L o c ( 9 )  lies it7 Po n Z ( 2 ) .  - 

Let L o c ( 9 )  denote the preimage of the center ~ ( 2 )  under the hon~omorphism - 
94 9. Obviously, (i) any locally nilpotent ideal of the algebra 9 lies in Loc(9 ) ;  (ii) - - 
[Loc(9) ,  9 1  c Loc(9 ) ;  and (iii) the quotient algebra 9/ L o c ( 9 )  contains no nonzero 
locally nilpotent ideals. 
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The subalgebra 9 - , ,  + [9-, , ,  9 , , ]  + 9 , ,  of 9 possesses a short grading, and  he pair ol  
subspaces ( 9  -,,, 9 , , )  is a Jordan pair. 

d& LEMMA 1.4 (see [16]). Suppose I = (I- ,.. I,,) is a11 ideal c#f the Jordarl pair (Z,,. Y,,) arid f'ai 
the quotier~t pair (Y- ,,, 9 , , ) / I  cor~tair~s rlo r~orizero lo call^^ riilpoterlt ideals. Tl~eri Id ,(I - .~ ..l 
n g t , ,  = I t , , .  

LEMMA 1.5 (see 1161). Slrppose the Lie algebra Y is sirnple. Tlieri tlie Jordarr pair 
( 9 -  ,,, 9 , , )  is siri~ple. 

By the centroid r ( 9 )  of the algebra2 we mean the centralizer of the subalgebra X ( 9 )  
in the algebra End,(2) .  The centroid of :he Jordan pair V = (V-, I?') consists of the 
pairs (rp-, rpt) E End,(V-) @ End,(Vt) such that 

F / , T ) ,  C * }  { rp ' (a ' ) ,  b', c i )  = rp'({a', b', c ' ) )  = { a * ,  rp  ( 

for any elements a ', b', c 'E  I f  '. 
If an algebra 2' (Jordan pair T') is simple, then the centroid r ( 9 )  (I'(!')) is field. 

From Lemmas 1.1 and 1.5 we obtain 

LEMMA 1.6. If a ,zraded algebra Y= I! ,,,Yj, 2" = =;[9-,, Yj]. is sirilple. rlier~: 
a) I'(2).Yf = 9;, -11 < 1 $ 11, and 
b) any elernent of the cerltroid o f  the Jordan pair ( 2 -  ,,, 9 , , )  is ir~d~icecl by rhe actiori of 1117 

elernerlt o f  r ( 9 ) .  

An element a E Y is called the crusf of a thir~ sa11diviclt (see [I] and [3]) if ad(a j' = 0. A 
Lie algebra that contains no nonzero crusts of thin sandwiches is called s?yoriglv ~ rlorldegeri- 
erate (in the sense of Kostrikin). 

The smallest ideal of Y for which the corresponding quotient algebra is strongly 
nondegenerate is called the Kosrrikir~ radical o f 9 a n d  is denoted by K ( 9 ) .  

LEMMA 1.7 (see [16]). If 9= 13:,,9;, Yo = C",,[2-,, 9 ? ] ,  is a graded Lie a(zebra, il~eri 
~(9) c g c ( 9 ) .  

An element a ' E  11 of a Jordan pair I/ = ( V - ,  1ft) is called an absolzrie zero-rlicisor 
(see [17] or [12]) if {a ' ,  Y', a ') = 0. A Jordan pair containing no nonzero absolute 
zero-divisors is called rlorldegerlerate. The smallest ideal of a Jordan pair Tf for which the 
corresponding quotient pair is nondegenerate is called the McCririlnior~ radical of V and is 
denoted by M(V) .  

LEMMA 1.8 (see [16]). M((9-,,,, Y,,)) c K(V). 

LEMMA 1.9 (see 1161). If9= C m q , Y n  = Z:,,[-Yi, 641, is a graded Lie algebra, tlier1 /or 
any ideal IodPwe have K ( I )  = I n K ( 9 ) .  

COROLLARY. If, urlder tile coriditio~ls o f  Lerninu 1.9. the algebra 9 is srrorzg!y r~orirle~ei~er- 
ate, I Q ~ ,  a E 9 ,  and 11, a ,  a ]  = 0 ,  the11 [I ,  a ]  = 0. 

§2. Special graded Lie algebras 

Suppose R = E",R, is an associative algebra with a given finite Z-grading and 

2, R ,  f' Z(R) .  The grading of R induces finite Z-gradings on the associated algebra 
R(-I and on the quotient algebra R(-)/Z,. 
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Therefore, 

[ [ ~ , , > [ b  -,,, a , , l l , [ ~ ~  -,,. c , , l l z - i < ~ ,  E [ ~ , , , [ l ~ - , , ,  ~ , , l l .  
[ [ d  - , , 7  c , , l ~ z - , l t , + [ ~ , , ~ [ ~ - , , ~ ~ , , l l ~ - , ~ [ c , , ~ d - , , l . ~ i < l  + l,V 

c [P,,. [ [ d  _,,, c , , ] , - - _ , ] I ,  + p , , - -_ , [ [ c , , , d_ , , ] , t , ] , [ I )_ , , ,  a , , ] ]  + [,I/ 
C [ p , , , [ d - , ; , c , , ] ] z - , l ,  + I+', 

[b- , , ,a , , ]  + IYL [ [~ , , , [ d - , , , c , , I ] z_ ,~ , . [b - , , , a , , l ]  + 
C [ [ ~ , , , [ d - , , , c , , l ] , [ b - , , ,  c l , , ] I - - - , l ,  + I+'. 

Consequently, [p,,, [ [ b  _,,, a,,],  [ d  _,,, c,,]]]z-,I, E 1V. The lemma is proved. 
Consider in the algebra SLie(X, 1 1 )  the graded subalgebra SLiel(X, 1 7 )  generated by the 

Set ~ o ~ ~ , ~ ~ , ,  SLie(X, 1 7 ) ~ .  

LEMMA 2.2.'SLie1( X, 1 7 )  is a17 ideal of the a1,pebr-a SLie( X, 1 7 ) .  

PROOF. It suffices to show that [ a ,  SLie(X, I ? ) , , ]  L SLiel(X: 1 7 )  for any element a E 

U(i<i,j<,, SLie(X, 1 1 ) ; .  If a E SLie(X, I T ) ; ,  i  > 0, then [ ,rr ,  SLie(X, i 7 ) , , ]  = 0. If -i7 .c i -= 0. 
then 

[ a ,  SLie(X7, 1 1 )  ,,] L S;-ie(X, 1 7 )  ,,+; c SLie'( X ,  1 1 ) .  

The lemma is proved 
For  an element a E Ass(& 1 7 )  we denote by ( a )  its trace a - a' E SkewiX, 1 7 ) .  We 

write a = b if { a  - b )  E SLie(X, 1 7 ) ;  a ,  b  E Ass(X, 1 1 ) .  It is obvious that if a. b E 

SLie(X, 1 7 ) ,  then ab = 0. 
We denote by T' = (T-I,,, T,,') the ideal of the Jordan pair (SLie(X, I ? ) _ , , :  SLie(X, t i ) , , )  

generated by the set 

[ ~ ~ i e (  X, 1 7 )  ,, , [ [ ~ ~ i e (  X, I T ) _ , ,  , SLie( X, 1 1 )  ,,I, [ ~ ~ i e (  X ,  I ? ) _ , ,  , SLie( X, 1 7 )  , , ]  I ]  
and we put T + , ,  - = T i , ,  I? SLie'(x, 1 1 )  and T = ( T  _,,, T,,). 

LEMMA 2.3. Suppose k ,  I > 0, 171 > k + I + 7 ,  a,,. . . ,alC, PI, .  . . ,Pi E (-17 < i < 1 7 )  and 
E,h'ai 4- ,Y{/3, + 11 # 0. T/7e17 

PROOF. We may assume with no loss of generality that -11 < a; < 0 for 1 ,i i ,i r- and 
c u i = O f o r r . < i < k ; - n < ~ , < O f o r l < j < s a n d ~ , = 0 f o r s < j < I .  

lo. Suppose 1v = aL1)aFA . . . with a(:),, E SLie(X, n )  ,", where at least one of the 
elements a('), Lies in SLiel(X, I ? ) _ , , .  We wiil show that 1v = 0. Suppose a!), E SLie(.Y> / I ) _ , , .  

We may assume that a!), = [x-,, J - ~ ] ,  wherex-,, E SLie(X, n ) _ .  andjb E SLie(X, 1 7 ) _ ~ ,  
0 < a , p  < i7.Then 

(1) ( 2 )  . . . a(; - ' )  , a"i-" . . . aj,dl a,, 0-,, x-e- - B  ,, 
( i - 2 )  "-"1, S-a] - . - ] = a~;')[[a?A, a::)], [aL4,),, al l j )]] ,  [ . . . [ [ a _ , ,  , a,, 

( i i - 1 1  
( i + 2 ) ]  :, . . , [Uc-21,  a(rr;l)]] .j:) . [ ~ 1 - , 3 >  [a,,  , 0-,, 

Consequently, it suffices to consider the cased = 3. We have 

(1) a,, x _ , j ~ _ ~ a ! ? '  = [a!;", I-,] [ Y - ~ ,  a!?] = 0. 
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2". By Lemma 2.1, each element of (SLie(X. I~) , , )~-"(T , ,T . , , ) " 'T , , (SL~C(X,  17),)'-' is a 

sum of words in SLie(X. n )  ,,, where each word has degree at least 3 with respect to T-,,. 
3". Noie that 

SLie( X, 1 7 )  ,, . . . SLie( X, 17) .,She( X, 17) ,, SLie( X, IZ)..,, 

Analogously. 

Note also that for 0 < a < 11 we have 

Consequently, SLie(Xr, t7),111 = 0 for any word I V  in SLie(X, 17) - , ,,. 
4". Suppose ~v = ai1),a?)a?;, . . . aLd '  - 3 ,  with a(;),, E SLie( X, n ) ,,. where at least three 

elements a?,!, a!':, a!:! lie in T-,,. We will show that for any weights 0 < a, /3 < 17 we have 

If a, p E {0, I?),  then our assertion follows from Lemma 2.1 and lo. 
If 0 < a < 17 and p E {0, IZ),  or if a E {0, n }  and 0 < P < 17, then it is enough to 

apply Lemma 2.1 and the concluding remark of 3". 
Suppose 0 < 0. P < 17. a + + 17. ra E SLie(X, I I ) ,  and j:, E SLie(X. 17)~ .  Assume 

that 

a?:,) E T-,, c [ s L ~ ~ ( x ,  11) _,,, SLie(x: 17) ,,, SLie( X .  1 7 ) _ , , ] .  

We have 

(1) ("I (3)  . . . (4  (1) ( d - 2 )  
xna-,,arj-a-,,  J =  [ [ a ] . . [  a , ,  ( d - l ) ] ]  

Therefore, we may assume with no loss of generality that d = 1. Obviously, 

(1) x,a-,,yp G a!',$,yp + [x,, a!'),] jrp = a!'),~,?~. 

We will show that for any elements a:,,, a:: E SLie(X, IT)_,, and a:,' E SLie(X, I?),, we 
have a;,, a:,'a:',:x,yp = 0. Indeed, 

I I ,  I,, t! ,,, 
a-,,a,,a_,,~.,~'p = al,,a,, [ a  .,,, s,, J ~ ]  = 0. 

since -17 + a + ,I3 # 0. The lemma is proved. 

-< lil < 17. - 
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LEMMA 2.4. The nlrrebra U conidins no DroDer. *-iriuariar~t waded ideals. ., 

PROOF. Suppose 0 + I = E2,1, is a proper graded ideal of the algebra U such that 
I *  = I. 

If I ,  n #(&, *) # 0 for some i f. 0, then. since the algebra 2 is simple, the ideal I 
contains U,,,9,. Since the algebra U is generated by the set U,,,,Y$. i t  rollo\vs that 
I = U. Contradiction. 

If I ,  n K(U,, *) 3 z ,  # 0, then [io, 5fi] 2 I ,  n K ( q . ,  *) = 0 for i + 0, which implies 
that z ,  lies in the center of U. 

If an element a lies in I,, i # 0, then a* - a E I, n K ( q . ,  *)  = 0. Thus, a" = o. No\\> 
( i O a ) *  = a*z: = -zoa and -.,a t~ I ,  n K(q, *) = 0. We have proved 111at :,I, = 0 for 
every i i 0. Consequently, ;,I is an ideal of U contained in U,,. Since the algebra U is 
generated by homogeneous elements of nonzero weight, z,IU = 0. This coniradicts the 
fact that U is semiprime. 

We have proved that I n K(U,  +) = 0. Thus, the ideal I is commutative and. since U is 
semiprime, is contained in the center of this algebra. For any elements a E I and z E '9,. 
i # 0: we have ax E I r-I K ( U ,  *) = 0, i.e.. I 9 ,  = 0. Since the algebra U  is generated by 
the set U i t o 2 , ,  it follows that IU = 0, which contradicts the fact that U  is semiprime. The 
lemma is proved. 

If U contains no proper graded ideals, then, by Lemma 1.1: U is simple. Then 

where Z ( U )  is the center of i7. 
Assume that U contains a proper graded ideal I = Z'',,I,. Then, by Lemma 2.4, 

I n  I e = O a n d I +  I * =  U.Then 

,) I7 

2= 2 I / - )  + C [I- , ,  I , ] /  C [ I - ; ,  I , ]  n Z ( U )  
O<Jil<n i= l  i--1 

It is obvious that the associativealgebra I is simple. 
In conclusio11, note that if 2'= C1, ,2 ,  is a simple graded Lie algebra. then 

[dq,,[[P-,,, 2',,],[.& -,,, 9,,]]] + 0. if and only if dim&?" 2 2, where r = T ( 2 )  is the 
centroid of 2. Indeed, it follows Erdm the classification of simple Jordan pairs (see [15]) 
that a simple Jordan pair whose spades are not one-dimensional over the centroid does not 
satisfy the identity 
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53. Finite-dimensional graded algebras 

Suppose 9= 13!,,.Y, is a simple finite-dimensional algebra over an algebraically closeif 
field of characteristic at least 417 + 1 or of characteristic 0, and suppose Y,, # 0. It is 
known that 9 is either one of the algebras A,,,, B,,,, C,,, or D,,, or one of the exceptional 
algebras G2, F4, Eh, E,  or E8. In the case char 4, = 0 this follows from the classical 
Cartan-Killing theorem, and in the case char @ = p > 411 + 1 from the Kostrikin-Strade- 
Benkart theorem (see [2], [18], and [19]), since ad(a,)P-' = 0 for i E Y,, i i 0. 

Consider the derivation of 9 sending a homogeneous element a ,  E 2', into ir i,. Any 
derivation of a Lie algebra of classical type is inner [20]. 

Consequently, there exists an element do  E Ysuch that [a,, do] = io, for any a ,  E 2;. 
-11 < i < 11. It is easy to see that do  E -Yo and the element do  o f Y  is semisimple. 

Consider realizations of the algebras A,,, B,,, C,,, and D,,,. The algebra A,,, is isomorphic 
to 4,b;ll/Z. where @,,,+, is the algebra of matrices of order rii + 1 over cI, and Z is its 
center. The algebra C,,, is isomorpllic to the Lie algebra of 2111 x 2111 matrices ol' the form 

where A ,  S,, S7 E Qni,  A + A' is transposition, and S,' = S,, i = 1,2. The algebra D,,, is 
isomorphic to the Lie algebra of 2111 x 2m matrices of the form 

where A, K,, K, E 4,,, and K l  = -K,. The algebra B,,, is isomorphic to the Lie algebra of 
(2111 + 1) x (2111 + 1) matrices of the form 

' a u, u, 

\ - K 2  -A' 

where A, K,, K ,  E 4, ,,,, cu E Q, u,, u, E ,,,, and K,' = -K,. i = 1.2. These representa- 
tions of A ,,,, B ,,,, C,,, and D,,, will be called eler,zel~tary. 

m. Tlie elerl7entary represe~ltatiolis of algebras of types A,,, a11d C,,, are specializa- 
tions for arljlfi11ite Z-grading. 

PROOF. Let R = Q,,,, in the case of A,, and R = 4,,,,, in the case of C,,,. We will show 
that all eigenvalues of the operator ad,(do): R + R belong to the set {-/I < i < rl}. In 
the case of A,,, this is obvious. 

The set of matrices of the form 

is the set of skew-symmetric elements of R under the involution 

[ A  C B ) * = ( D .  D 
-C' 

We know (see [21]) that it is equal to K(R,  *) + K(R, *)K(R: *). Therefore, the eigenval- 
ues of ad,(do) belong to the set (-211 < i < 2 n ) .  



LIE ALGEBRAS WITH A FINITE GRADING 357 

Let k ,  1 < k < 217, be the largest integer lor which the subspace R ,  is nonzero. Assume 
17 < k.  Then for any element a E R ,  we have a* - o E R ,  f' K ( R , * )  = 0, so a* = a. 
Next, a K ( R ,  * ) a  c K ( R , * )  n X t ; , R ,  = 0. Ho\vever, i t  is easy to verify that R colitains 
no nonzero elements such that a K ( R ,  * ) a  = 0. Hence R,( = 0. Contradiction. Tlie lemma 
is proved. . Henceforth in this section we will assume tliat P i s  an algebra of type D,,, or B,,,. 

Recall tliat a Carran subalgebra of 2 is a maximal Abelian subalgebra of 2 consisting 
of semisimple elements. The following lemma is due lo I. L. Kantor [6].  

LEMMA 3.2 (I. L. KANTOR). A Car1a17 subalgebra H of 64, cor~iairlir~g the ela7le11t d o  is o - 
Cartar1 sitbalgebra o f Y .  

Consider the decomposition of 9 into root subspaces with respect to ad( H j .  Every root 
subspace corresponding to a nollzero root is one-dimensional. and every honiogeneous 
componentY, is a sum of root subspaces with respect to ad(H). 

A root system of the algebra D,,, is a spstein of vectors ?I = ( + w,  + w,l I < i f j < 177 ) 
in an nl-dimensional space V = @ Y R o ,  (see [22]), and a simple subsystem is the set 

@ A root system of B,, is X = {+o, + w,, + w , / l  < i f  j < n ~ }  L @;"Rw, = If, and a 
simple subsystem is the set II = {m,,. . . .T,,,} = ( u l  - w2, wz  - w ~ . .  . . , w ,,,- - w ,,,, a,,,). 

We define a Z-linear mapping it: @ ;Zw, + Z by putting iz(aj = k if Y,, c YAP,, a E '!(. 
k  E Z.  We may assume without loss of generality that h(7i,) = k ,  2 0, 1 < 1 < 171. Then 
7 ( )  2 1 1 ( )  2 . . 2 h(w,,). 

LEMMA a) If k ,  = 0, t11e11 the gradirIgY= X!,,,$4 is special. 
b) (I. L. K ~ N T O R  [6]).  If k ,  > 0 and k ,  = 0 for 2 < i < 171. then 9= 9-,, + 9, + 2,, is 

the Tits-Kantor-Koecl~er algebra of the Jorda~z algebra of a sj~tnr?zeirlc bilir~ear for-171, urzd 
Ilzerefore (see [17]) the grading is special. 

c) If I<, > 0, I<, = 0, and Cyk,' > 0, tl7e17 rl~e gradi17g9= 13",,2, i.s exceptio17al. 

PROOF. a) Consider the elementary representation o l 9  and take as a Cartan subalgebra 
the subalgebra consisting of the diagonal matrices. Then Ye9p f 0 ( a ,  p E X )  only if 
a + p ~ X o r a + p = 2 w , , l < i < 1 7 1 .  

Obviously, $q, = C(Yui+,.l h (wi )  = Iz(wj) = h(w,)) .  Assume tliat 2- c z,,, YD 2 -PA, 
J 

a, p E 3, k  > 0, and5faYp i 0. 
Since CY + p E X ,  i t  follows that a = wi + w, and P = wi - w,; 11(wi) = h(w,) = h ( w l ) .  

But then k  = h ( B )  = 0, which contradicts our assumption. Thus, 9,,C,,,Y, = 

Ck,09kdq ,  = 0. Since the algebra 9 is generated as an ideal by the set Y,,, we have 
9i9, = 0 for i + j > 11. Analogously, 549, = 0 for i + j < -11. Thus, the grading 9= 
X l  .Pi is special. 

c) Assume that k ,  > 0, k ,  = 0, and Zi,,k,? > 0. Then 

dP, 3 +ul +9u,+u3: d i m o d q , 2 2 ,  

and C , , , , , , , ~  i 0. If the gradingY= CN,,9i is special, then, as shown in 52, the graded 
algebrado is isomorphic to either the algebra [ R ( - ) >  R ( - ) ] / Z ,  where R = CY,,,Ri is a simple 
associative graded @-algebra, or the algebra [ K ( R ,  *), K ( R ,  * ) ] / Z ,  where R = C",,Ri is a 
simple associative graded @-algebra with involution *: R + R.  



The algebra [ R ( - ) ,  R ( - ) ] / Z  has type A,,; hence2=  [ K ( R ,  *), K ( R ,  * ) ] / Z .  Since R is a 
matrix algebra over an algebraically closed field a, it follows tIiatY= K(R,  *). 

Choose elements e,, E YW, +, and e-,, E 2- - W 2  satisfying the relations [e,, ,  e _,,, e,,] = 
2 

2e,, and [e,, ,  e,,, e-,,] = 2e _,,. Then in R we have e,,e_,,e,, = e,, and e_,,e,,e_,, = e _,,. 
Consider the centralizers Z2(e  , ,,) and Z,(e - + ,,) in the algebras 2 and R.  In D,,, 
(respectively, B,,,) we have 

In R we have 

where f = 1 - e,,e_,, - e_,,e,,. 
Obviously, e,,e-,,Re,,e_,, + e_,,e,,Re-,,e,, G Ro. However, the algebras 9(9*ii(W 

and 2 ( 2 * ,  ,,,11 < i # j < 1 1 1 )  do not lie inz,,. Therefore, Z,(ei,,) = K ( / R f ,  "). But 
the algebra fk-j, hence also K ( f R f ,  "), is simple. Contradiction. The lemma is proved. 

A simple Lie algebra 2 is called an algebra of one of the types A,,: R,,. C,,. D,,, G I ,  F,. 
E,; E ,  or E ,  if the scalar extension Y @ , f ,  where T is the centroid of 2 ar:d is its 
algebraic closure, is isonlorphic to the algebra of corresponding type. 

Lemmas 3.1 and 3.3 imply 

LEMMA ? 4; Sl~ppose Y =  Z'',, 9, is a si~izple firrite-diri~errsiorlal graded algebra over a field 
@. If  P i s  ail algebra of type A,,, or C,,,, tlrer~ 2 is special. i f y i s  arl algebra of 1 ~ y e  B,,, or D,,,, 
their e i t I ler2  is special or. tlrere is a bilirrear forin f :  ( 2 - , , ,  2 " )  + T ( 9 )  S I I C I ~  t l~ot  

fa- , , ,  b,,. c-,,I = / ( a _ , , ,  b,,)c-,, + f ( c - , , ,  b, ,)a-, ,  E 2 - , , .  

[a,, ,  b-.,c,,I = f ( j - , , ,  a , , )% +f (b - , , , c , , )u , ,  

for ariy elerner~ts a ,  ., b , ,,, c . ,, lE 2 *  ,,. 

PROOF. SupposeY= Z",, 2, is an exceptional graded Lie algebra of type B,,, or D,,,, r is 
the algebraic closure of the field r = T ( 9 ) ,  L?= 2 @ , T  is the scalar extension, and 
2, = 2 ,  ;4 ,T. Then, by Lemma 3.3, 

For each index i such that h ( u i )  = h ( u l )  choose elements X + i  - E 2+(,,iw,, satisfying the 
relations [ X ,  i, X ,  i ,  X* i] = 2X+ - ( .  We have 

If the field T = r is algebraically closed, then 

is the desired bilinear form. 
Suppose P: i? + T is a linear projection, i.e., T is a linear mapping such that P(T) = T 

and P' = P. Then f ( a _ , , ,  b,,) = p(T(o_ , , ,  b,)) is the desired bilinear form in the field T .  
The lemma is proved. 
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COROLLARY. I f Y =  C:,,Y; is a simple esceptior~al graded algebra of type B,,, or D,,,. the17 
for arzy e[e~,ze~its a,,  E dq, arrd b ,  c ,  d E 2 

[ a , , ,  b ,  a , , , d , [ a , , . c , a , , ,  d l ]  = 0 

PROOF. It suffices to observe that [ a , , ,  9 ,  a,,] = [a,,, X,, ,  a,,] = T ( Y ) a , , .  
The following assertion is well known in the case char = 0, but requires a special 

proof in the case char @ = p > 0 .  

PROOF. The Jordan pair V = (If-,,, I/,,) is semisimple and is therefore a direct sun1 of 
minimal ideals (see [12]) ,  L' = If"' @ . . . @ V("',  V"' = ( I f _ ' ! ,  l</"). Let I, = Id - ,;(Ti_':,') 
= Id,(l<,("). Since the quotient pair I / /V( ' )  has no nonzero locally nilpotent ideals. it 
follows from Lemma 1.4 that 1; n Y + , ,  - = Vy!,. - We will sho\v tha l  I, is a minimal ideal 
of 9 .  

Suppose B is an ideal of 2 contained in 1; and B  i I,. Then B  n Yi. - ,, = 0 and 
[[B, V y ! , ] ,  V y ! , ]  = 0. By the coroilary of Lemma 1.9, [B, I.':!!,] - = 0. It follows easily that 
[ B ,  Id,(T/v2i,)] = 0 ,  and, in particular, [ B ,  B ]  = 0 .  Sincepis  semisirnple. B = 0. 

We now telnporarily assume that the ground field Q, is algebraically closed. The algebra 
I, is simple and, according to the Kostrikin-Strade-Benkart theorem, is an algebra of 
classical type. Suppose H, is a Cartan subalgebra of I; contained in I, n Yo, and let 
H = H, + . - . + H,. Consider the weight decomposition into weight subspaces with 
respect to ad(H). Note that weight subspaces with nonzero weight that are contained in I,, 
1 < i < s ,  are one-dimensional. Let U  denote the subspace of vectors of weight 0 wirh 
respect to H. It is easy to see that U is a graded subalgebra of 9. Choose an element 
ti E U n Y;, 0 < lil < 1 7 ,  and consider a weight subspace TV nith respect to N with 
nonzero weight that is contained in I, n Y;, 0 < I j (  < 1 7 .  Then r u ]  c [Pif, U ]  c 1V. 
Since d i m ,  W < 1, either [ f i r ,  111 = 0 or [W, u]  = TV. The latter alternative is in~possible, 
since [W, t i ]  c $4+j. Hence, [ M f ,  u ]  = 0. The subspaces of type tY generate I, as a Lie 
algebra. Consequently, [I,, U  n 3 , ]  = 0. The centralizer Z,(I,) is an ideal of 2 ,  and 
U  n 9, & ZZ,(I,.). For any weight i, -n < id 1 7 ,  we ha:e 9; c U n dq + I, where 
I =  @;I,. Thus, 9= I e+ Z,(I). Obviously, Z,(I)=C,,l,l ,,,_ ,(Z,(I) n Y ; ) .  By the 
induction assumption with respect tp 1 7 ,  Z,(I) is a direct sum of minimal ideals. The 
lemma is proved in the case where the field '3 is algebraically closed. 

Now assume that @ is an arbitrary field and 6 is its algebraic closure. We will show that 
the ideal I = @"Id,(T/,,"') is, as before, a direct summand of Y .  Let r = r ( Y )  be the 

1 - 
centroid of 9 a n d  Y= LY@ rG a simple &algebra. By what was prcved above. 

But Z @ ( I  mr6) = Z,(Z) @,G; hence3= I Q Z,(I). Now, as above, 

i.e., Z,(I) is a direct sum of minimal ideals. The lemma is proved 



360 E. 1. ZEl-' MANOV 

The following very special lemma will be needed in 94. 
Suppose 2' is an algebra of type D,, or B,, over an algebraically closed field 0. where 

12 2 4; (A',, h a [ a  E B )  is a Chevalley basis with respect to some Cartan subalgebra. and 
?I a root system. Assume that A is a subalgebra of Y, and A',Iul + w , , ,  Xi,,l ,u,, E A ;  
Rad A is the solvable radical and A-= A/Rad A an algebra D,. Choose a Cartnn 
subalgebra of A and denote the roots with respect to this Cartan subalgebra in such a way 

that 
- - 

( A ) u 1 4 Y 2  = ( ~ 4 ) w , + m 1  = qLyu, - , L , .  

Consider the subspace 
- - 

= ( a A I [ ~ .  I r m 1 + u l ]  = [ a ,  h u I + d 3  ] == u . ~  L+LJl~l w 3 ) -  

- 
Obviously, 3, -3 = ( A )  ,: . ,]. Analogously, 

I - . - 
-3 = ( a  E -41[u. h,l+,2] = [ a ,  h , i , , 3  -, = -a7 if E ( . 4 ) - w 2 - , 3  \ 

- I - 

2nd A_,*  - 3  = t4-,2-w,- Let 

Ai.3 = [ A I , ~ ,  A - 2 - 3 9  A z , ~ ] .  4 1 2 ,  - 3  + - [ kLz . - - j :  ~~~-~~ A . 2 ,  - 3 1 .  

 LEMMA^.^. a) EitherA =P(X,w + Y , l l  < i + j < 3) + Rad A .  01. 
I - 

4 . 3  c + C @XUl,,,7 A L q - 3  - c iPX'-,i + C @X-,ii,,. 
1 2 4  i > - I  

b) I j ,  u~lder. the condirions of a), .4 = P ( X , ,  *,, 11 4 i + . j  < 3) 4 Rad 4 aild 

xi-(51, 4-w2)3 X~AY, 4 - 9 )  E 3, a subalgebra of A, B - D,, tlzerz 

PROOF. a) Suppose a E A ,  , and b E A - ,  -,. It follows from the conditions [ a _  h,, + , ?  
-7 -. I 

= [ a y  h,,+,31 = a and [b,  h I = [b ,  h ,, +,3 ] = -b that 

= t X w 2 t  Y 3  + a0X;) + C a,ilywl+u,, 
i 2 4 

b = ~ y - ~ ~ - ~ ,  + BOX-,( + C P k i X - u ,  u ;  

i 3 4  - - 
Assume [q t 0. It follows from -Yzl  ( A ) W 2 ~ Y 3 1  ( A ) Y 2 t Y l  ] = 0 that 

Analogously, 

Thus, the subalgebra 
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is solvable. But 

We define inductively two sequences of con~mutators  in the variables s. -1. as rollows: 
tvl = 5, v 1  = jf? 117,1+1 = [IC;,. v,,. 1t;,] and a,,, , = H:,, ul i ] .  There exists a naturaI number 
m 1 such that 

Now 

p ,  q 2 1- Analogously. X- ,? -. ,; E -4.  Thus, 

I f p ( X  , , i , ,  11 G i + j  a 3) g A,  then eitherA2,, c i- Zi24@1Yu I ,.r, - o ~ A - ~ , - ~  
G @x-,, + 1 i > 4 @ X - u 1  + In either case, 

This proves a). 
b) Choose a Cartan subalgebra of B and choose roots with respect to this Cartan 

subalgebra so that 

In view of a), if B i Z ( X ,  u , F u , ] l  < i i j < 3), then 

On the other hand, if 0 i b k,,2,. ,,, Il k ( w Z + ~ 3 ) )  then 

Ll i( U ,  t w , )  a i :X, (d2+w3)  + Rad A .  

a&+ 0. Hence n + X d 2 + u ,  + 0-t: ~ - x - , , _ ~ ~  + b-E Rad A ,  where b + ~  - @ X , , ,  - + 
Ci24'Xk a,  5 W, and a,a-+ 0- Therefore, the subalgebra generated by the elements 
%-x2+w3 and %x-022-Y3 is sohable, which leads to a contradiction. The lemma is 
proved. 

54. Locally finite-dimensional graded algebras 

A system of subalgebras { A  G 2'1 A E 9 ) of an algebra 2' -. is called local if (i) 
U{ A [ A  E 9 J = 64, and (ii) for any subalgebras A, B B there exists a subalgebra C E ? 
such that A, B g C. 

I 

- . . 
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A system of h011~0111orphisms {qA: A --+ X,  ( A  E .P ) is called locul i f  A c B, where .4, 
B E 8, implie& Kercp, Q A Ker +.A. A local system of homomorphisms is said to be 
upp,-osit~laring if n{Ker cp, ] A  E 9 } = 0. 

For any element a E 9 consider the subsystem Po = { A  E P l a  E A ) .  'The system 
{ POI a E 2 ) is centered and is therefore embeddable in an ul trafil ter .F(see [23j). Every 
local system of homomorphisms ( 9,: A -+ 9,, jA E 9) defines a homomorphism 
n,, ,,cp,/g: A?-, n, ,,911/Finto an uliraproduct. If the system ( t-p,.,: A -+ 2., [ A  E 9) 
is approximating, then K e r n ,  ,,~-.,,/p= 0- From this we obtain 

4.1. A graded Lie a/,rebi-a Y-- C" ..2, tlzut possesses at7 app1.0,~i17zufi)?h+ S ) > . Y I ~ U ~  of^ 

.specializatiorzs is special. 

.LEMMA 4.2. Suppose 2= EI ,,5fi is a sinzple ,yrabed algebra tlzat i.r /oca/[tj fi~il~-di17~~~- 
siolral over ils cerrti-oid r. The/? there are three possibilities. 

1 )  3 is a?? algebra o j  one of tlze tjtpes G7, F4, Ehl E7 01- E8. 
2)  There is a bilii~ea~.fornzf: (Y-,,, PI,) + l-' suclz that 

[ a _ , , ,  b,,: c-,,I = f ( a  -,,- Ll , , ) i . - , ,  +f(c-,,, b , , ) ~ , , .  

for a i~y  eleilze~zts a - , ,,, b , ,,, c ,, - p+ - 11- 
3 )  2 is special. 

I 

PROOF. We may assume with no loss of generality that the centroid r is an algebraically 
closed field. 

Consider a free graded algebra Lie(X, n )  and two ideals: the ideal T consisting of the 
elements identically equal to zero in all graded algebras of types G,, F,, E6, E, and E,: 
and the ideal B generated by the set 

1". Assume that T ( 9 )  = 0. Then the multiplication algebra R (9) = C y  a d ( 2 ) " '  
satisfies a polynomial identity. Since 9 i s  simple, the algebra R ( 9 )  is prime and, by 
Lemma 1.2, locally finite-dimensional. Let Z be the center of R ( 9 ) .  Since r is algebrai- 
cally closed, Z = T. By the Markov-Rowen theorem (see [24] and [XI), R ( 2 )  is 
finite-dimensional over T'. Consequently, d i m r 9 <  dirn,R(T) < m. It now remains to 
use Lemma 3.4. 

2". Assume that P ( 2 )  = 0. It follows from the classification of simple Jordan pairs (see 
[IS]) that the identity P = 0 is satisfied only for simple pairs of r-spaces ( I f - .  if') on 
which is defined a bilineat form f: (V-, Vt) -+ I' such that 

[ a i ,  b-, c + ]  = f ( b - ,  a+)c*+ f(b-,  c ' ) a f ,  

[ad, b', c - ]  - f (a-, bi-)c-+ f (c-, b + )  a +  

for any elements a *, b *, c * E V &. Thus, case 2) of the lemma holds, 
3", T ( 9 )  = P ( 9 )  = 3. Let 9' denote the set of all subalgebras of 9 generated by 

finite sets of elements of Ui,,9i. The system of subalgebras 9 = {T(  A )  n P ( A )  (,4 E 9') - 
is local in 3, and the system of homomorphisms { q,: B -t B/ - Loc(3) IB E 9 )  is local 
and approximating. We will show that the graded algebra B/ Loc(B), where B = T{ A )  fl - - - - 

P ( A ) ,  A E @', is special. Indeed, B a A ,  Loc(B) = B n Loc(A), and B/ Loc(3) = T ( A )  - 
n ~ ( z ) ,  where 2 = A /  Loc(A). By Lemma 3.5, = -7, @ . - - A, a direct sum of 
simple graded algebras. If the graded algebra 4 is exceptional, then, by Lemma 3.4, either 
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~ ( 2 , )  = 0 or ~ ( 2 , )  = 0. Thus, the ideal ~ ( s l )  n P(;?) is the sum of those n~inirnal ideals 
A,, 1 G i < s,  whose grading is special. By Lemma 4.1, the algebra 9 is special. The 
lemma is proved. 

,LEMMA 4.3. S ~ ~ p o o s e ~ =  XL,, 
~ e ~ ~ s i o ~ i a l  over its ce~itroid -- T ~ and dim I .Y ,i 2 . -:-. 2 Tlierl .. 2' is e ther  a~iaI,qeh~.c~ or orie 
tlie FA. Eh. E,, Ep  or D4, or tlie Tits-Karltor-Koecher co~isfructio~i of the Jorduri - -- 
~ - ~ ~ s ) ~ r n r w e t r . i c  bilirlear forvi. 

PROOF. Assume that 9 is not of one of the types G,, F,, E,, E,, E, or D,. Then, by 
Lemma 4.2, there is a bilinear formf: (9- , , ,  Y,,) + T such that 

[ a  -,,, b,,,c-,,I =/(a-,,,b,,)c-,,  + f ( c -  ,,, I ,,,)a-,,, 

[a,,, b-,,, c,,l =Ah- , , ,  a,,)% +f(b-, , :c, ,)a, ,  

for any elements a ,;: b ,,, c, ,, E 9& ,,. Choose elements e + - ,,, g +  ,, E P.,, .. satisfying the 
relations 

, , = = 1 f (e - , , , g , , )  = f ( g - , , , e , , )  = 0. 

e, = [e-,3> e,,l, so = [ s - , , ,  s,,l. 
lo. Assume that 9 is an algebra of type U ,  or B,. Let i? be the algebraic closure of F 

and let Y= 98 ,f. We may assume that r e i  ,, = L?,(W, + W 2 )  - and<, + L? 
W , i W i '  

Then 

and h(wl - wl) > 0. Since Zp(e  _,,, e,,) = Z,(e _,,, e,,) @,-f, it follows that 

Z,(e -,,, e,,) = h-, + T [ u - ~ ,  a,] + Ta, = sl.,(T), a + ,  EY+, ,  - i i 0. 

Consider the elements e( = e , ,, + a & ,  and e(,, = [e( _,,, e(,)]. It is easy to verify that 
+ reo) + re(,, = sI,(T) and the transformation ad(e(,,) has eigenvalues -2, 0. 2. 

Let Y= + 2'(,, + 9(2, be the decompositioll of 9 into toeight subspaces with respect 
to ad(e(,,). The operationS?(,, x Y(l) 3 (x, y) + [x, e(_,,, y ]  defines onY(,, tlie structure 
of the Jordan algebra J of a symmetric bilinear form in a 3-dimensional space over the 
field T, and 9 is obtained from J by the Tits-Kantor-Koecher construction. 

2". Assume tha tYis  an algebra of one of the types B,,,, 111 2 4, or D,,,, 111 2 5. As above. - - 
we assume that Te + ,3 = 9,(,, + u 2 ,  and Fg+,, = Then 

in the case of D,, and Y ( 9 +  ,,I4 G i d in) in tlie case of B,,. Consequently, either 

Also, 

Zp(e, , , ,  s , , , )  = Zde . , , ,  sit,) @rf 
and 

Z p ( Z p ( e + , , ,  g*,,)) = ZLe(Z,(e,,,, g,,,)) @rT 
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,(Z,(e ,,,, g * , , ) )  is a simple Lie algebra of type D, or B,. As in lo, we Thus, 2'' = Z - 
- 

choose elements a , ,  E 9;, such that the operator ad([e_,, + a _ , ,  e,, + a,]) has eigenval- 
ues -2, 0, 2. The ~~.ecornposition into weight subspaces with respect to thi: operator yields 
the desired representation of the algebra. 

3". Assume the a lgebra9  is infinite-dimensional over its centroid. We will show thai: 

1) = Z,([L,(eo, go), Z,(eo, g,)]) is a simple algebra of type D, or B,. 
2 ) Z  ,,. ( e  _,,, e,,) = Ta-, + r a , +  Ta, = ~ l ~ ( T ) , a . , . ~  - E Y L D , , , i  > 0. 
3) The transformation ad(e,, + a,) has eigenvalues -2, 0, 2, and the decomposition o i 'P  

into weight subspaces with respect to ad(eo + a,,) yields the desired representation of 9' 
Since any @-form of the Jordan algebra of a symmetric bilinear form is again a Jordan 

algebra of a symmetric bilinear form, we may assume with no loss of generality that the 
field is algebraically closed. 

Let -P denote the system of r-subalgebras of 9 generated by finite sets of the form 
( e  , ,;: g,  ,,) U B, where B 2 U,,,q. It is obvious that 9 i s  a local system of subalgebras - 
in 2. For any algebra A E 9 consider a decomposition of the algebra .x = A/ Loc(A) 
into a direct sum of minimal ideals, 2 = 6 @ . . . e <. Since [Y ,  e,,, e,,] = I 'E , , ,  the 
element Z,, lies in one of the ideals 5. It is easy to see that the elernerits P-,, and ,? - .,. ,, also 
lie in I,. Let xi denote the projection of 2 onto i , ,  and q,d the homomorphism q.,,: 
A 3 :I  + Xi(x ) .  We will show that {q#,lA E 9 )  is a local approxim-ting system of 
liomomorplusrns. - 

Suppose A c B, where A ,  B E 9 ,  and a E A n Ker rp,. Then [ a ,  Id,(e,,)] c Loc(B); - 
hence [a, Id,(e,,)] c Loc(A) and a E qA. Thus, A n ICer rp, _c Ker rp,. 

We will show that n{Kerq/,lA E 9 )  = 0. For any element a E 2 there exists an 
operator V in the multiplication algebra R ( 9 )  such that a = e,,V. Let a, ,  . . . ,a ,  E 9 b e  
the elements occurring in the expression for V = V(a,,. . .:a,.). If a i 0, then for certain 
elements b,, . . . ,b, E Ui,09i the element a does not lie in Loc(P(a ,  b, ,  . . . , b,)). Consider - 
the subalgebra A = 9 ( r , , ,  a,,. . .,a,, b,,. . . ,b,). Obviously, a @ Loc(A) and a E Id,(e,,). 
Consequently, qA(a)  + 0. 

As above, we denote by .F the ultrafilter in 9 generated by the family of subsets 
.Pu = { A  E 9 l a  E A ) ,  n €2. There exists a set 9, E .Fsuch that for any subalgebra 
A E PI the image qA(A) is an exceptional graded algebra; otherwise the embedding 
l7, ,,p,,/.F would be a specialization. Moreover, 

9, = ( A E ~ ( Q ( A )  S GG,, F,, E,, E,, E,, D,} E .F. 

By Lemma 3.1, 9(,, U 9(,,, E .F, where A E 9(,, if A 6 P ,  n .Pz with q,.<(A) an algebra 
of one of the types B,,, 111 z 5, and A E 9(,, if A E 9, n 9, with % ( A )  an algebra of 
one of the types D,,,, ~n > 5. By a property of an ultrafilter, either P,,, E .For 9(,,, E .F. 
Assume for definiteness that P(,, E 9. The case P(,, E F i s  handled analogously with 
some simplifications. 

Choose in each algebra q>,(A), A E 9 ( , , ,  a Cartan subalgebra H ,  and denote the roots 
with respect to this Cartan subalgebra in such a way that 

4 , = ' I +  ~ A i r g + , ~ )  = vA(A)i(Y,i-W,). 
Obviously, 
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Also, 

= -Y( ~ ( ~ ) i , , l l  < i < 3) ,  

an algebra of type B,. Consequently, dim, FV < 21 = dim,.B,. 
Suppose A E .P(,,. Consider the preimage of the subalgebra 

under the homomorphism A + A/ Loc(A), and denote it by A. Then / i / ~ a d  is an 
algebra of type D,. If A C C E P(,, and q c J ,  is an embedding, then the pair q,(A) c 
qc(C) satisfies the conditions of Lemma 3.6. According to Lemma 3.6, ('-1 c C E 9(,,) 
= PA*' U PJ**), wherepj* )  contains those subalgebras A c C E 9(,, for which 

~ ( 2 )  2 q ( q c ( C ) i w , j u , ( l  < i * j < 3 ) ,  

and P,j***' those subalgebras for which 

' ~ C ( 4 ' , 2 . ~ 3  C (Pc(c)lu, + C 9) r (C) iu , iu . .  
,24 

Consequently, either Pi*' E .For Pi*") E .F .  
Assume that 9.4 ***' E .F 5 A I E .9! *") and A, E p,j,***' E .F. We will show that P,j,*) 

A, 
E .F. Indeed, suppose Pj,**' E . F a d  Q G n{,Pj . , **'lo < i < 2 ) .  Choose elements a ,  E 
(Ji)>.,, i = 0,1,21 so that (p,2(raj) = qA,(Ai)u2+wj.  We have 

4; = ' ~ e ( a ; )  E qQ(Q)u,  + C (Po(Q)w,iu,. 
i 2 4  

It is easy to choose coefficients a,, a,, a2 E T, at least two of which are nonzero; such that 

Then, as shown in Lemma 3.4, 
1 1 I 2 

e- , , ,  aiqi, 2 aiqi E r c a,q,. 
i = O  i-0 i=O 

Since either a, + 0 or a, f 0, i t  follows that a,a, + a,a, f 0. If a ,  f 0, then 

where 

and 

[4)r12(~2)-W,-u2> a' + ~ 2 . 3 ,  a' + a!.,] E T(a '  + -. 3 ) .  

It was shown in the proof of Lemma 3.6 that such an inclusion is impossible. If a, = 0, 
then a,a, f 0. As above, 
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and 

[ ( P ' r , ( ~ l ) - W , - W 2 ,  n 1  + a ,  -. . , .  o f  + a, -. ,] E r ( u r  + 0, -. . ? ) .  

which also leads to a contradiction. 
Thus we have proved that there exists a subalgebra A E P(',jl such that .P.i:';' E .&. 

Suppose C E Pj*', i.e., 

c p )  = 9 ( , , l  < i i j  < 3) i   ad ~ , . ( k ) .  

L ~ L  A' = cp;'(9(cp,(~) - , ,, i,,/l 6 i # , I  < 3)) n A.  hen A' 3 e ,  ,,, g ,, is an algebra of 
type D, and it follows from Lemma 3.6b) that for any subalgebra 6 E .P,j:" we have 

qQ(K') =9( ( ~ ~ ( Q ) ~ ~ , i ~ , / l  < i i j  < 3). - 
In particular, [A', [ZQ(eo, go), ZQ(eo, go)]] c Loc(Q). For any subalgebra Q c Q' E 9,:"' 
we have - 

[ZQ('"> g,l)_ ZQ(eLl.  go)]] C - [A'? [ z , ' ( e U 2  go)- ZQ'(eilr gjl)]] 

Thus, [.$, [ZQ(e,,, g,), ZQ(eo. go)]] c L o c ( 9 )  = 0. i.e., k' c TV. 
For any subalgehra Q E Yj*' we have 

Y(cpQ(Q)i-.,,,,ll < i i j  < 3) = qQ(A')  c qQ(J.I/) ~ 9 ( q ~ ( ~ ) ~ , , / l  < i < 3). 

Since 9(cp,(Q) - i,tk,, 11 < i i j < 3) is a maximal subalgebra of 9(q!,(Q) - i,rll < i < 
3), it lollows that either qQ(lV) = LP(qQ(Q) ,, +, 11 < i i j  < 3) or qQ(M.;) = ' -  i 

9(cpp(Q) .,,11 < i < 3). Consequently, t i /  is an algebra of type D, or B,; Z,$,(e ,,,) = 

r a - ,  + r a o  + Tu,, a ,  = [ a _ , ,  a,], [ a i i .  no] = &2a+, ,  - a, ,  E ~ Z ' ~ , ,  - i i 0. and for any 
subalgebra Q E 9 2 " '  the eigenvalues of the operator ad,Q,,,(cpQ(e,,) i- cpQ(uo)) belong to 
the set {-2,0,2). This implies the assertion of the lemma. 

It follows from Lemma 4.3 and the results of 52 that if d l l lT9 , ,  >, 2, then any simple 
graded Lie algebra 9 =  E",9, that is locally finite-dimensional over r is an algebra of 
one 01 the types I-IV (see Theorem 1). 

LEMMA 4.4. Suppose 9 =  =,%. is a sirnple locally ,finite-di~nerlsioiml graded Lie algebra - - 

with d i m , 9 +  - ,, = 1. ~ l ~ e ~ e i t h e r  9 is a , l~~lgebra  of O I I ~ I ~  types I-IV or: 1) 9, = 0 for 
i E (-11, -11/2,0, 11/2, 17); 2) $0 + e *,, €9 ,,,, e, = [e _,,, e,,], [e  ,,,, eo] = +2e  ,,,, rherz 

-Yi_r1/2=(a[a, eo] = +a},  yo = Z3(eo). - r - 
PROOF. Suppose the Lie algebraY= L",9i satisfies the conditions of the lenima and is 

not an algebra of one of the types I-IV. Let 

~ , k = { a ~ ~ ~ [ a , e o ] = k a ) ,  o < ~ i ~ < r ~ , - ~ < k < ~ .  

Assume we have defined a Z-grading 9= En' - ,!I 9(,, on 9 ,  so that: 1) any subspace $4., 
lies in one of the s u b ~ p a c e s 9 ( ~ , ,  and if i > 0, then9,,,  c Y(j,, j  > 0. while if i < 0: then 
y,., c y(,i,. j  < 0; and 2 ) Y i  ,, C yi ,,,,,, with dim,Y( ,,,, > 2. 

If the grading 9 =  En' - ,a? 9 ( , ,  is exceptional, then, by Lemma 4.3, Y is the Tits-Kantor- 
Koecher construction of the Jordan algebra of a symmetric bilinear form. 

Assume the grad ing9= 111',,,9(i, is special. Then there exist a simple involutory graded 
algebra ( R  = Er,,,R (i, ,  *) and an ison~orphism cp: 9+ K '( R, *), where cp(S?<,,) = 

K(R(,, ,  *) for i i 0 and 
,,, 

' ~ ( 9 0 )  = C [ K ( R ( - , ) ,  * )> K ( R ( , ) ,  * ) ] / z .  
i=l  
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It is easy to see that the algebra R is generated by the set U ( 2 , .  ,I2,, , 2, ,,. j i 0). We 
define on R a new Z-grading by putting 

To prove that R; = 0 for lil > 17 it suffices to show that q ( e , , ) ~ ; ,  , = 0 for i > 0 and 
a,., E rp(q , , ) .  If k = 0, then 6$,, c 9 ( , , ,  j > 0 ;  hence r p ( e , , ) ~ , , ~  = 0. Assume li = 1. 
Since q ( e  + - ,,)' = 0, the transformation ad([q(e_,,), q(e,,)]): R - R has eigenvalues -2. 
-1, 0 1, 2. However, rp(e,,)aj., is an eigenvector belonging to the eigenvalue 3. Thus. 
R = E!,,,R,. It is easy to show tha!Y= K'(R = C",Ri, "). Contradiction. 

Assu~iie the conditions of the len~ma are satisfied and 

Let 

Then the grading 9(,, = C{$4,,1(2 - ko)i - (11 - i,)k = j )  satisfies the requirements 
enumerated above, 9 =  1311',,9tj,, in = (2 - k,,)n - 2(17 - i,) = 2i, - nk,, > 0, and .Y,,,? 
+ 54 (,,,,, c 9, ,,,,. Thus, Y(Yj11i/2 < i < 17) = 0. Analogously: C { ~ , / : / - - I I  < i < -11/2) = 

0. 
Assume that 2',,/1,0 i 0. Then the grading 9,j, = E{Yi, ,14i - ~ i k  = j )  also satisfies 

these same requirements, 9= E!',,,2'( j , ,  111 = 212, and Y8, .- , + 9,1,92, ,, c 2 (,,, , . Tlius, 2,, , ,, - = 

q,/2.1. 
Assume Pi + 0, 0 < i < 17/2. Then e ,  2 '  2 '  -17 < 7 + i < - /  hence 

[e _,,, T i ]  = 0 and% = 9;, , .  Let in  = max(il0 < i < 17/2, = 0). The grading 

satisfies the above requirements, 9= Z"',,9(j), 111 = 2i,, and 9 ,,,, + 2,<,., C 2( ,,,,. Thus, 
9= 9-,, + 9-,,,/, + 9, + PrID2 + 9,,. The lemma is proved. 

LEMMA 4.5. Suppose a fi11ite-dimeiuio17al Lie algebra 2 over a field @ is gerierated bj, 
elenzelzts n and b;  ad(^)^ = ad(b)4 = 0, -: 2'- 9/Rad 2'= 2 is the riatural llor~ionior- 

- - 
phisrn, and L?= @A + @ [ A ,  b] + @b = sl,(Q). Tlze17 tlzere exist preirnages a '  and 6' of 2 
and b suclz that [a', b', a'] = 2a' and [b', a', 6'1 = 26'. 

PROOF. We may assume with no loss of generality that (Rad 2')' = 0 and Rad 9 
contains no proper~submodules.  Since  ad(^)^ = ad(b)4 = 0, it follows that di~ii,~,Rad 9 
< 4. Consequently, the eigenvalues of the operator ad([a, 61): 2'- Zbelong to the set 
{-3, -2, -1,0,1,2,3}. The weight subspaces 2'-2 and 9, of the weights -2 and 2 form a 
finite-dimensional nilpotent Jordan pair. Since idempotents are understood modulo the nil 
radical in Jordan pairs (see [12]), there eixsts an idempotent (a', 6') of the pair (Z2, Y,) 

- - 
that is a preimage of the idempotent ( A ,  6). The lemma is proved. 

LEMMA 4.6. Suppose 9 =  E!z9, is a sirlzple graded Lie algebra of 170/iexcepriorial type, 
r = r ( 9 ) , 9 , Z  = re,,.  e, = [e-', e,] a n d 9 ;  = { a  E 9 l [ a ,  en] = a ) .  Tile11 there exists 
a fitlife Galois extellsio17 P/T of r sucll tlzat it is possible to define 011 the cllgebra L?= 28 ,P 
nfinite ~ - ~ r a d i r l ~ p =  C I ' , , ~ ,  of type I or. I1 (see Tlieoreln 1). 
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PROOF. lo. If d i n i r Y <  w, there exists a finite Galois extension P/T of I' such thal [lie 
a lgebraP= Y@,P is splittable (see [20]). We can choose a Cartan subalgebra of P a n d  
roots with respect to this Cartan subalgebra so that 

Y i ( ~ , - w L )  i f  Y i s  of type A,,,, 
Pi., = ( 1 

Y i ( U , + W , )  
i f Y i s  one of  he types B ,,,, C ,,,, D ,,,, 1 6 i, j 6 ril 

In the cases of D,,, and C,,, we have L?= P'_, + 9" + PI, and in the case of B,,, \\,e have 
P=P'_, +P-l +Po +P, +PL. wherePk = E,,+8=,.q y,,,,,u,. 

2". Assume that the algebra9 is infinite-dimensional over I' and satisfies the conditions 
of the lemma, but the desired extension P/r does not exist. 

We will show that for any natural number 11 > 1 there exist a Galois exlension P,,/I' 
and a gradingY(") = Y@,P,, = C'I';, ,~/"'such that 

Assume the extension P,,/I' has been constructed. Since the gading 2""' = x,Y,'"' is 
not of type I or 11, i t  follows from Lemma 3.4 that there exists a bilinear form j: 
(da_'z,'? 9,(3::1) -f P,, such that 

[o,, b _ , c + l  =f(b- ,  a , . ) c++f (b - , c , . ) a+ ,  

[c, bi.. c - ]  = / ( a _ ,  b+)c_+/(c . ,  b - ) ~  

for any elements a *, b ,, c +E  Yp),,,; - Choose in the spacesY-(::,' and Y,:)"' dual bases with 
respect to f ,  namely g i  ;, 1 < i < 11, such that f (g_ , ,  g,) = 1 3 , ~  (the Kronecker synlbol) and 

- 
gI1 - e,z. 

Let 9 denote the system of all finite-dimensional subalgebras of 9 containing YF!,,,,. 
graded with respect to the grading P("' = C,2,("), and generated by elements of nonzero 
weight with respect to ad([e_,, el])  For each subalgebra ' 4  E 9 we decompose the - 
quotient algebra A = A/Rad A  into a direct sum of minimal ideals. = 4 e . . . @ A ,. - 
We will assume that Yy?, and that 4 is an algebra of classical type over P,,. Since 
- - - 

[A,, e, , ,  Z,,] = P,,F,,, the P,,-;lgebra 2, is central. As above. we can embed the algebra Po" 
in the ultraproduct of the algebras A, A E 9, with respect to the ultrafilter .B. Conse- 
quently, for some algebra A E 9 the algebra 4 has one of the types A  ,,,, B ,,,, C,,, or D ,,,. 
where 111 3 11 + 3. It is known [20] that there exists a Galois extension P,,+,/P,, of P,, such 
that the algebra A, = 4 @pnP,,+, is splittable. 

Assume the algebra has type C,,. Then 11 = 1 and we may assume that P,,+,Zz = 
- -  - 

Choose elements 0 f 2 E 
- - and 8 E (2,)-,,-W2 so that [ A ,  b, A ]  = 2 2  

and [&, A, b] = 28. The elements 2sand 6 have weights 1 and -1. respectively. relative to 
the transformation ad([E_,, - ?,I). - In turn, Z*, is an eigenvector of ad([&, A]) with weight 
+2. Note also that there exist eigenvectors of ad([b, A]) with weight 1 that do not lie in 

9:"!,,, @ P .P n t l '  
- 

Assume A, has type A,,. Then we may assume that P,,+,g , = (A,) +(,, 1 G i < 11.  
- - 

Choose elements A E (2,) 
" J - ~ , , + I  and 5 E (&-(u,-W,,ir) with Y ( A ,  b) -- = sI,(P , j . , .  ,): the 

elements A and b have weights +1 with respect to ad([?_,> P7]); PYA,,, is a proper - - - - 
subspace relative to ad([b, A]) with weight - +I. Moreover, there exist eigenvectors of 

ad([z, 21) with weight 1 that do not lie i n 9 E , , ,  - W p n P  ,,,. ,. 
The cases of B,, and Dm, are analogous to that of A ,,,. 
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For the elements 2 and we choose preiiilages a and b under Ihc Iiomo~norpliism 
A - 2 such that a and b are honlogeneous elements of the grading 

y ( ,Hi  I '  = 9(") @,,,P ,3.,. = x2ii11' @ P,, P ,, 4- 1 . , 
i 

a and 6 are eigenvectors of the transformation ad([e_,, - e , ] )  - with weights I and -1. 
respectively; e , I is an eigenvector or ad([b, a]) with weight k, E {I,  2). 

Note that ad(a14 = ad(b14 = 0. If c E 9 i " + . L 1  and c ad(o)% 0, then c E P,, ,e. ,. 
- - 

cad(a14 E P,,+,e,. and ~ a d ( 2 ) ~  + 0. But it is easy to verify that [Z.,, A ,  A ]  = 0. Conse- 
quently, the subalgebra9(al 6) satisfies the conditions of Lemma 4.5. 

By virtue of Lemma 4.5, we may assume without loss of generality that [ t r ,  h,  ( 1 1  = 2r1 

and [b, a, b] = 26. We decompose the subspace9i("+') into weight subspaces with respect 
to ad([b, a]), i.e., 9i("+') = C,9i!';+11. Let i, = max{O < i < IIIY,,, + 0).  We define a 
new grading on 9 ( " + ' )  b y putting 

It is easy to see that 

then-p(u+l) - - X j ~ $ ; l " '  is the desired grading. 
- - 

Suppose P = P,, 2=9@,~  = E'!',,,,g, 9 ,,,, 3 ei2 ,  dim,2*,,, 2 5 and X,,,, ,<,,, 9, 
+ 0. If the graded a lgebra2  is special, then, by the results of 5 2 , Y  is an algebra of type I 
or 11. Consequently, 2 is exceptional. By Lemma 4.2, commutation of the subspaces *-,,, 
and Po, is defined by a bilinear form f: (2-n,r g,,) + P. As above, we choose dual 
elements g +, = e k I  and g k i ,  2 < i < 5, f (g_, .  g j )  = ai,, and a system 9 o f  finite-dimen- 
sional graded algebras containing {g, 1 < i < 5). For each subalgebra A E 9 consider 
the decomposition A= A/Rad A = 4 @ . . . @ A, 2, 3 g, i, 1 < i < 5, and the homo- 
morphism cp,: A + 4. The system of homomorphisms { ) is local hnd ap- 
proximating; the algebra Ycan  be embedded in the ultraproduct of the algebras qA(.4). 
A E 9, with respect to the ultrafilter 9. Since the graded algebra Y is exceptional, the set 
9' = {A E 9 Ig?,(A) is an algebra of one of the types B,,,, D,,, 171 2 5) lies i n s .  Suppose 
A E 9 ,  qA(A) is an algebra of one of the types B,, or D,,,, 171 2 5, P' /P is a Galois 
extension of P splitting the algebra %(A), p is the algebraic closure of P, and 2" = 

P@,P'. We choose a Cartan subalgebra of qA(A) @,PI and a root system so that 

and let A denote the preimage of the algebra 9((q.,(A) @,PI) ,, + ,,I1 < i + j < 6) , - 
under the homomorphism A @,P' -+ 2 @,P'. Consider the subspaces 

By Lemma 3.6, for any subalgebra A c B E 9" and for any index i, 2 < i < 5, either 

%(A] rl q d B  @Pp)m,+m, , ,  i 0 
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As in thc proof of Lemnla 4.3, it is easy to show that not all of the images (P,]( A: ,  ,., , ) ,  
2 < i < 5 ,  lie in 

Thus, there exists an index i ,  2 < i < 5 ,  such that 

It follows that for any index j, 2 < j G 5, we have 

in particular, the algebra 2 is splittable: 2 = 2; + Kad 2. Let { X + ,  - , -  + ,,. I7 , - ,, ~,. , ) be a 
' -  i - - Chevalley basis of A,, ,.,,, g ,  i: 2 < i < 6. arid h = h,, +,: 4- 1 1 W 2 ~  ,, + h W J i w l  + 

1 1 w 4 + w j  + /1,5,-w,. In view of what was said above, the eigenvalues of the transformation 
ad q,(lz); q , ( B )  @,P + v , ( B )  @ , P  belong to the set (-4, -2,0,2,4). Thus, the eigen- 
values of ad( /? ) :  Y@,P'  -, Y@,P' also belong to (-4. -2,0,2:4). The decomposition 
into weight subspaces 2" = 9-', i- 9-', i- deb' + 9; + 9; with respect to ad(/?) is tlie 
desired grading. The lemma is proved. 

Suppose ( R ,  *) is an involutory algebra. An automorphlsm g of the algebra R is called 
an automorplusm of the involutory algebra ( R ,  ") il' it commutes with the involution *:. 

We will need the following theorem of Martindale [26]. 

THEOREM (W. MARTINDALE). S ~ ~ p p o s e  ( R ,  *) is a simple ir~uolz~tor~~ algebra cor1tair1iug 
i.7oizzer.o or.tlzogoi~al iderlzpoter7ts e ,  arid e ,  ii~ith e? = e l ,  e: = e ,  and e ,  + e ,  + 1. T l l a ~  ariv 
~ t o m o ~ o l z i s r ~ z  o f  the a1~ebr.a K' (  R .  "1 is irzdziced by a zcr~ique autori~orphisriz of tlze ii7uolrrtor~~ 
a1~ebr.a ( R .  *). 

Thus, the automorphism group ol  the Lie algebra I< ' (R ,* )  is isomorphic to the 
automorphism group Aut(R, ') of the involutory algebra (R,  *). 

SupposeY= C!ZY: is a simple graded Lie algebra of nonexceptional type, T = T ( Y ) ,  
- Y + ,  - r e  .?, e ,  = [e..z, e l ] ,  and=Yi = {a a E I [ a ,  e,] = ia) .  By Lemma 4.6, there exist a 

finite Galois extension P / T  of the field T ,  a finite Z-grading on the algebrap= 2@ ,P = 

~:,,5?(,,, g(, ,,,, 3 e + - ,, and a simple graded involutory algebra ( R ,  *), R = C:,R (,,, 
such that L?= K ' ( R ,  *). In addition, the field P can be chosen so that R contains nonzero 
orthogonal idempotents el  and e ,  withe: = e l ,  e$ = e ,  and e ,  + e,  # 1. 

The Galois group G = G a l ( P / r )  of the extension P / T  acts in the algebra5? by the rule 

Obviously, L?= PC = { a  E P l g ( a )  = a ,  g E G) .  By  Martindale's [heorem, the group G 
is embedded in the group Aut R. Consider the subalgebra RG = { a  E R l g ( a )  = a ,  
g E G}. I t  is easy to see that K ( R ,  *)  is the P-linear span of the set K ( R ,  * ) C  = K ( R G ,  * 1. 
Therefore, 
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The algebra k"(RC;, *)  is embedded in tlie Lie algebra K1(R, "1, and its image lies in the 
algebra (K1(R,  *))" = 2 and is an ideal of 2. Since the a lgebr~ 2 is siiilple. A"= 
K'(R", *). I t  is obvious that RG is a simple involutory algehra. Also, e ,  - E R ,  ,,,, ir R ~ ; .  
Therefore, e l  - = 0 and the eigenvalues of the operator ad(?,,): R + R belong to  lie set 
(-2, -1,0,1,2). The decomposition into weight subspaces with respect LO ad(e,,) defines LI 
grading of the algehra R", and K'(RG, *)  = 9 is a graded algebra isomorphism. Thus. 2' 
is an algebra of type I or 11. 

We have proved Theorem 1 for an algebra lhat is locally fi~~itc-di111ension::I o\,er 115 

centroid. 
55. Inner ideals 

Consider a graded Lie algebraY= E",2,,. A graded subalgebra R = X",,R, is called a n  
i1717er ideal if, for any weights a;, -17 < a ,  < t ~ ,  i = 1:. . . ,117 (111 2 I), the inequality 
IE;"ail > rr implies [ 2 ,  Be,, . . . , B ,,,, ] 2 B. 

lo. Specialirariorl of irlrzer ideals. For any element h E B the operator ad(h) induces an - 
operator on the quotient space 2/B. We denote this operator by ad(B) E EnJ,,,(L<-B) 
and consider the representation 

- 
cp:  B 3 b + ad(b)  E End,,,(Y/B) 

of the algebra B. It follows from tlie definition of inner ideal that g, is a specializauon. 
Obviously, Ker cp = { b  E BILL, b] c B) .  We have proved 

LEMMA 5.1. B(l, = {b  E BI[.Y, b] c B ) is a17 ideal of B; arrd rhe rl~iorirrlr ulgehrrr BIB, , ,  
. is special (as a graded algebra). 

We define in B a descending chain of ideals B,,,,  = { h  E Blh a d ( Y ) "  c 13 :. 11 is c..fi!. 
to show that [B(l,, B(,)] _c B(,+,, for i 3 1. 

LEMMA 5.2. The ideal I = Idp([B(2,, 91) is locall~i 17ilpoier1t r17od~rlo the szihspace B,, ,. 

PROOF.; We shall assume without loss of generality that the algebra P is generated by a 
finite set of elements of Y * .  Then, by Lemma 1.2, there exists a nat~lral numher 111 SLICII 
that R ( 2 )  = E;"ad(2)'. Obviously, 

l l i  

Id,(B(,,,+l,) = C B ( , , , + I , ~ ~ ( Y ) '  c Bu,. 
i = l  

We may now assume without loss of generality that B(,,,+,, = 0. We will sho\\~ by 
c K ( Y ) .  For i = 0 there is induction on i that for 0 < i < 171 - 1 we have Bl , , ,+,_, ,  - 

nothing to prove. If.B(,,+l-i) c K ( Y ) ,  i < 171 - 1, then 

[ + - + I  + - ]  [YED, B(2). ~( , , , - i ) ]  C [ ~ ( 1 ) ,  ~ ( , > r - i , ]  

- C B(,,,l-,, c K ( Y ) >  

- C K ( 9 ) .  For i = 111 - 1 we obtain BPI K ( Y : )  5 from which it follows that BI,,,+, -(,+ ,,, - 
Loc(2 ) .  Now - 

[ B ( ~ , ,  -ED] c [ ~ o c (  2 1 ,  21 c L o c ( 2 ) ,  

and the ideal I is locally nilpotent. The lemma is proved. @ 

2". Prirrcipal irliler ideals. In this subsection we will construct an important family of 
inner ideals. Suppose a,, E 3, and a_,, E 2-, , .  Consider the operator 

T ( a  _,,, a,,) = Id + ad(a_, ,)ad(a, ,)  + S ad(a_,,)'ad(ii,,)' 

and the subspaces Bk = YkT(a  _,,, a,,) for k > 0. 

Magomez
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,LEMMA 5.3. a) [5?> B,;, B;] & E;B( for /i > 0. 
b) [Bl, By] C Bl+.j for i, j > 0. 
C) [B(, 31 Bl_,for i > j > 0. 

PROOF. a) Note that if 17 = 1, then Lemma 5.3a) follows from the Macdonald identity 
for Jordan pairs [12]. The general case reduces to the case 17 = 1. Indeed, suppose 
r_; E 9-i, i > 0, y,, E 9,, and i, E Yk.  Our goal is to prove that 

[>Y-;, )l,,T(a-,,, a,)), z , ~ T ( ~ - , , ,  a,,)] C ~ , + A - ; T ( ~ - , , ~  a, ,) .  

Consider the commutative associative @-algebra 6 = @(I, a, P) defined by the relations 
a* = P* = 0, and the scalar extensionP= 9@,6. It suffices to show that 

[Px-;, ~l,,T(a-,,, a, ,) ,  az,T(a-,,, a,,)] Cp,r,.k-;T(a-,,> a,,). 

Consider the subspaces 

K, = ~ , + c u C P ; 3 a , , , j : , , a ~ ~ ;  K - l = P - , , + P C P j 3 b _ , , : P ~ . i .  
i > O  t < O  

Then K = K-, + [K-,, K,] + K, is a Z-graded algebra. It now suliices to apply Mac- 
donald's identity to the Jordan pair (K..,, K,). 

b) We will prove that for any elements xi  E 3; and J> 1; E., i _  j > 0, we have 

[ x , ~ ( a _ , ,  a,,), y,T(a-,,, a,,)] = [xi ,  y,IT(a-,,, a,! 

If i = 11  or j = ri, then both expressions are equal to zero. Suppose i < ri and j  < 1 1 .  Then 

X;T(U _,,, a,,) = xi +[x i ,  a _,,, a,,], )>T(a _,,; a,,)  =I: +[I:, a_.. a,,];  

[x ,  +[x ir  a _,, ,a, ,] ,  Y, +[Y,,  a-,,, a,,l] 

= [xi. ~ ' j ]  + [xii a-,,, a,,, Y;] 

+[x;:[)>,a_.,a, ,I]  +[[.;,a -,,> a,,I,[.l:,a-,,: a,,]]. 

We have 

[x;, [y i '  a-,,' a,,]] = [x;, [Y,, .-,,I! a,,] - [xi> a,,, f?:? .-,,I] 
- - [xi, [j:, a_,,], a,,] = [xi, Y,; a_, , ,  a,,] - [x i ,  a-,,, J;, a, , l .  

Obviously, [xi, a -,,, a,,, )>I = [xi, a_,, 15, a,,]. Therefore, 

[x;,[);,a_,,a,,]] +[x;.a-,,,a,,,):] = [ x ; , ~ , , a - ~ , a , , l .  

Also, 

[xi ,a- , ,a , , , [y , ,a- , , ,a , l ]  = [ x ; , a - , , , a , , [ ~ : . , a _ , , l , a , , ]  - [x ; , a - , , , a , , a , , , [~> ,a - , , I ]  

- 
- [xi, a -,,> a,,,[y,, a_,,], a,,] 

We have 

ad(a,,)ad([.v,, a-,,l)ad(a,) = f(ad(a,,)*ad([y,, a_,,]) + ad([!:, a-,,l)ad(a,)'). 

Therefore, 

[-xi, a _,,, a,,, [y,, a_,,], a,] = f [xi,  a_,, ,  [I:, 0-,,l3 a,,] 

Now 
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Finally, 

[.yi, ~ - , , . u , ~ , [ J > ,  a -,?, a, , ]]  = + [ - y j 3  J; ,  a  -,,, a -,,, a , , ] .  

W e  have proved that 

[.yiT(a-,,, a , , ) ,  J ! ~ T ( ~ - , , ,  a , , ) ]  = [ I , ,  ~ $ l T ( a - ~ ,  a , , )  E B;*,,. 

c )  We  will show that for any elements x i  E 2, and y, E P,, i > j > 0, the equality 

[ x i ~ ( a - , , ,  a , , ) ,  J ) ]  = ( [ x i .  151 + [-I,-,, a,, ,  [s,. a _ , , l ] ) ~ ( a _ , , ,  a , , )  

holds. W e  have 

./= [x ,T (a - , , ,  a , , ) ,  JJ-,] 

1 
= [ x i .  !:I + [ x i ,  a _ , ,  a,,, ~ $ 1  + d x j i  a_ , , ,  a_ , , ,  a,,, a , , ,  J ~ L ~ I ;  

9 =  ( [ x i ,  J J - , ~ ]  + [ ? r , , , a , , : [ s , : a - , , ] ] ) ~ ( a _ , , , a , , )  

= [ x i ,  J J - , I  + [ J J - ~ ,  a,,, [ x i ,  a _ , , ] ]  + [ x i ,  11-,, a  -,,: a,,] 

+ [ J L , ,  a , , , [ x i ,  a _ , , ] ,  a  _,,, a,,] + ~ [ J J . , ,  a , , , [ x i ,  a _ , , ] :  u-, , ,  u _,,, a,,, a , , ] .  

W e  compare homogeneous elements with respect to a _ ,  and a,,: 

[J!-,. o , , : [ x ; , a - , , ] ]  = - [ s t ,  a _,$. [J',. a,,]] 
- 
- - [ x i ,  a_ , , ,  J - , ,  a ,]  + [ x i ,  a _,,, a,, ,  !~_ , ]  
- - - [ ~ , . ~ ~ _ , , a _ , , , a , , l  + [ x i , a  _,,, u, , ,J>-,] .  

Therefore, 

f i = [ x i , a  -,,. a , , y _ , ] =  [ y _ j , a , , , [ x i , a _ , , ] ] + [ s , , j l - j , o  -,,. a , , ] = g z .  

Furthermore, 

ad(a , , ) 'ad(y_ , )  + ad(y_,)ad(a,,)" 2ad(a , )ad(y_ , )ad(a , , ) .  

Therefore, 
1 1 .f4 = z [ x i ,  a-,,, a  -,,, a,,, a,,, - I J L , ]  = ? [ x i ,  a-, , ,  a-,,, a n ,  jT-,>a,,1. 

On the other hand,  [ x i ,  jJ-,. a_,,  a_ , ,  a,,, a,,] = 0.and 

g4= [ J J - , 7 a , , [ ~ i . a _ , , l , a _ , , , a , , ]  = - [ x i , a - , , , [ j ~ , , a , , l , a  _,,, a , , ] .  

As above, w e  have 

ad(a-.)ad([y-, ,  a,,l)ad(a_.) = t ( a d ( a _ , , ) ' a d ( [ ~ r , ,  a , , ] )  + ad([?,,. a , , ~ ) a d ( a _ , , ) ' ) ,  

f rom which it follows that 

I - [x i ,  a- , ,[y- , ,  a , ] ,  a  _,,, a_, ,]  = - - [ x i :  a_ , , ,  a  _,,, [ IJ- , :  a , ,] .  

Observe that [x i ,  [y-,, a,]] E 2i-j+,, = 0 ,  since i > j. Furthermore, 

-4 [xi. a_ , ,  a_ , ,  [Y-,, a,], a,,] = -+[-yir a  _,,, a _,,, JIL,, a,,, a,,] 

+ + [ x , , a _ . , a  _,,, a, , ,y_ , ,a , , l  

- 1 - 21xir  a_, , ,  a_,,, a,, J L ~ ,  a,,] = f 4 .  
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It now remains to observe that [.I>_,, a,,, Is,, a_ , , ] ,  -,,. [I,,] E 9,-, - 2 , ,  = 0, since i - j < 

n .  Thus, g,  = 0 and f = g. The lemma is proved. 
Put B,, = B,: and 

for k 2 0; set B ,  = 9, fork  < 0. 

LEMMA 5.4. B(a-, , ,  a,,) = E",,Bi is an irir~er ideal of the graded algebrrr 2. - 
PROOF. We will show that B ( a  _,,, a,,) is a subalgebra of 9 ,  i.e.. [,B,. B,] 5 B ( a  _,,, a,,) 

. . 
for all i and j such that -11 < I ,  J < 1 7 .  

If i < 0 or j i 0, then the inclusion is obvious. Assume i 0 and j 2 0. Then it suffices 

to establish that [B,:, 9 . . , 9  B,:] C B for arbitrary weights a, > 0, 1 < i < 111. 

We will show by induction on 111 that for any weights k > 0 and a, > 0. 1 < i < 111. we 
have 

B ' 9  9 [ ,,, , - U 2 1 . . . , 9  -o,,, , B;] 2 B ( N - , , -  Q,, ) -  

We know that 

[B:, 9 - , , , . . . l ~ a , , , ,  ~ n ]  G [B:,  9 -,,,. . . -9 -,,,,-,. [g - , , ,  , ~ ; ] l  
+ [B,:, 9 -4P,,. . . .9-"" ,-,> Bi.> 9-<",,,]. 

If a,,, + /c, it suffices to use the induction assumption. 
Suppose a,, = k. If 111 = 1, then [B:, 9-,,, B;]  C B,: by Lemma 5.3a). Suppose 111 2 2. 

Then 

5a c B,;, 9-Eo_.,,. . . , [9 -,,,,.,, [2 -,,,,, ~ n ] ] ]  [B: ,  9 -=,, 9 - a 2 3 . .  . >- -',,,,..,> B;.] - [ 
+ [B: ,  9 - " * ,  , . , 3 [Y  -a,,,> : 9 -,,,,- ,] 
+ [BL, 9 . . ,9 -a,,,-,> B i >  9 -a,,, ] > 

and we can now again use the induction assunlption. We have proved that B ( u _ , , ,  a,,) is a 
subalgebra. 

If a, + - - - + a,, < -17, then 

c C 9, c B ( a _ , , ,  a, ,) .  [9> Ba,, . . .>Ban,]  - 
k<O 

If a, + + a ,  > i and 254, B ,,,. . . ,Barn,] + 0, then i < 0. Thus, Yi c B ( n  _,,, a,,). 
Since B(a_, ,  a,,) is a subalgebra, it follows that 

[64> B ,, ,... 3 B ,,,, ] c B ( a  -,,, a,,).  

The lemma is proved. 

§6. Primitive graded Lie algebras 

lo. Prilnitiuity and the Jacobsorl radical in Jordaiz pairs. Assume that the pair of @-spaces 
V = (V - ,  I/') forms a Jordan pair. According to the definition given in the Introduction, 
this means that V -  and V+ are subspaces of weights -1 and I, respectively, of some 
&graded Lie algebra K ( V )  = I / -+[V- ,  V'] + V+, where the weidlt subspaces of the 
weights k, l/cl > 1, are equal to zero. 
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An ordered pair or elements a-",  a", u = + , is c a l l e d _ q ~ ~ s ~ ~ r ~ ~ . ~ ~ e ~ : t i b I ~ ,  if the operator 

T (a - " ,  a")/ , ; . :  V" 3 so + so i- js", a-", a"]  + +[xn. U-",  a-", a". a" ]  

is invertible. 
An element a "  E V o  is called ~ g ~ ~ e ~ ~ ~ , , g ~ ~ a _ $ ~ - ~ ~ ~ e ~ : l ~ b ~ .  if for every element a - "  E V - "  

the pair (a-",  a " )  is quasi-invertible. The set of all properly quasi-invertible elements 
forms an ideal of the pair I/ called the .Ja~&~o!l~a~c_al. .o_fJ< and denoted by Jac(V) (see 
[12]). I t  is easy to see that Jac(V) is the sum of all quasi-invertible ideals of T i  (i.e.. those 
ideals in which every pair of elements is quasi-invertible). 

A subspace B c V+ is called an - i l l~~<i&i f  [V-, B, B] c B. 

An inner ideal B C V+ is called ~ ~ ~ ~ ~ ~ ~ k ~ ~ = ~ ~ L ~ ~ ~ ~ . ~ r ~ ~ o & 1 ~ ~ . ~ g ~ : , ~ o ~ ~ ~ ~  (see [291) if (i) 
V+ T(u-, a+)  c B, (ii) V+(ad([a-, b] - $ ad(a-)%d(a'-)ad(b))) c B for every h E B, and 
(iii) [ a f ,  a-, at] - 2 a + E  B. 

If a aair of elements (a-, a- ')  is a modulus of an inner ideal B and b E B, then the pairs 
(a-. a t +  b)  and (a-,  a' ad([a-, a'])"'), 111 > 1, are also moduli for B. 

It was shown in [29] that an (a-, a')-modular inner ideal containing a' coincides with 
V+. 

A proper modular inner ideal B c Tf+ of a pair T/ is called a_~~i~n&iu~~ if fur each 
nonzero ideal 14' we have B + I+= V'. In this case the pair .ILiS,calle_dp~~!!~fi~~e~ A 
Jordan pair that is semisimple in the sense of the Jacobson radical can be approximated 
by primitive Jordan pairs (see [15]). 

Let us recall a few more facts about Jordan pairs. &_pair of elementsE,g')is called 
algeb~:ak if there exists a polynomial f ( x )  E x@[x] such that f(ad([o-, a'.])) = 0. A 
Jordan pair is called algebraic if every pair of its elements is algebraic. 
AJor~~~~~~~rrVissscca_!l~dd-d-~a~i~~~~~rif for any elements a -  and a' there exists a natural 

number m such that ad([n-, ail)"' = 0. The maximal nil ideal of V is called its 17il radical 
and is denoted by Nil(V). 

By the resolveilt ,.Rg(g.a~2, of a pair (a-, a+) we mean the set of coefficients a E 4, 

such that the pair (an-: a+) is quasi-invertible, and we define 

As in the case of associative algebras, we obtain by means of Amitsur's resolvent method 
(see [28]) the following 

LEMMA 6.1. a) If card Res(a-, a') > dim, V+, tlzeiz thepair (a-, a+) is algebraic. 
b) If card Q > dim, V+, tlzeil Jac(J/) = Nil(V). 

A,p_air ----- (a -.- 1 i.,,.- a +)jskcal!ed . ~ ~ . .  ider?zpoteilt if [ a +  --.-.L--~- a -  !=---.~~ a'] = =-.~..-~~-=.. ? a +  and [a- :.:...-~i.-- a' a-] -- = 20-. . ~. . .. 
Idempotents (a;, a:) and (US, a:) are orthogonal if [a;, a;] = [a;, a:] = 0. Suppose 

(a;, a:), . . . , ( a , ,  a:) are pairwise orthogonal idempotents. Then the pair formed by the 
elements a-= E;"a; and a + =  E;"al is also idempotent. 

With an idempotent a = (a-, a') is associated a Peirce decomposition of the pair V: 

V = Po(a ,  V) + Pl,,(a, I/) + Pl (a ,  V); PP(a, V) = ~ " a d ( a ~ " ) ~ a d ( a " ) ~ ,  

P;,,(a, I/) = Ti"(ad([a-", a"]) + $ a d ( a - " ) ' a d ( a u ) ~ ) ,  

P,"(a, 17) = v"T(a-", a" ) ,  a = 



The following conditio~ls are equivalent: 
1) The idempotents a ,  = (0;. a;'.), a, = (a , ,  a:  ) are orthogonal. 
2) 0, P,(a,, V ) .  
3) a, E f',(a,, V)- 
It  is easy to show that an algebraic Jordan pair that is not a nil pair eolltaills a n  

idernpotent. 
2". Prinzitioe graded Lie al~ebrus. Consider a graded Lie algebra P= X ! , , Y , ,  2(, - 

C;'[9-,, Pi], and an imer ideal B = C",B,. Wg _wiSlsaythat the i~l~>e~_idealxdBs !_z~r~dzrl(r~- - -  . 

~l i t11  17zoduIus ( a -  a ) a_,, 6 2'-,,, a,, E Y,,, if (i) B(a -,,, a,,) c B. and (ii) B,, is a 
---ah -<-,TBF - ? =- - IT?=- .!I 2*-? 
modular ideal of the Jordan pair (Ye,,, d;P,,) with modulus (a_,, ,  LI,,). 

If b,, E B,,, then the pairs (a_, , ,  a,, + h,,) and ( u  -,,, a,, ad([a -,,, n,,])" ') ,  r l l  2 1, are also 
moduli for B. 

LEMMA 6.2. Suppose B is a nrodztlar i i ~ ~ t e r  ideal of 9 with nzodrrlzl.r (a_ , , ,  a, ,)  alrd a,, EZ B. 
Tl~e,? 3 = 9. 

PROOF. AS noted above, i t  was shown in [29] that B,, = PI,. Also, B 2 B(n -,,, cr,,) 2 
C,>aYl- If x E Pi, 0 < i < 11. then xT(a -,,, a,,) =. s - [x, a -,,. ci,,] f B and [s, u- , , ] -  
a,, E 3. Thus, x E B. The lemma is proved. 

Let P(a- , , ,  a,) denote the set of maximal proper inner ideals of Lp with modulus 
( a  -,,: a,,),  and l e t P =  U{.P(a-,,. u,,) la .- .,, E5?,,,}. If B E -9. then J ( B )  = C",,I(Bj, is :z 

maximal ideal of 2 contained in B. 

PROOF. Assume the element a,, E O{I(B) IB  E 9) is not properly quasi-invertible, i.e., 
there exists an element a_,, E 9-,? such that (a_,,, a,) is not quasi-invertible. Then 
B(a-,, ,  a,,) is a proper (a_,, a,)-modular inner ideal of 2'. There exists an inner ideal 
B E Pcontaining B(a -,,, a,,), By hypothesis, a,, E 3. In view of Lemma 6.2, B = 9. This 
contradicts the assumption that 3 is proper. The lemma is proved. 

We will call a graded algebra 

prdir7zitiue if it contains a maximal proper modular inner ideal B such that I ( B )  = 0. In this 
case, the subalgebra B is called a pr.inziliuizer. It is easy to see that for any inner ideal 
B E 9 the quotient algebra 9/l(B) is primitive. 

LEMMA 6.4. Suppose 9 is a pri~?litiue Lie algebra wifk p1~i17liti~~i:el' B = Cii ,,Bi- The17 the 

following assertions are true: 
a) I + 3 = 9 for arzy ~zo?zzero graded ideal 1 a.9. 
b) A77y nonzero graded ideal of 9 has ~zonzer-o iniersectiorz with Y,,. 
c) B, is a pri~nitiuizer of the Jordan pair (2-,,, PI,). 

PROOF. a) Suppose 1 is a nonzero graded ideal of 22' and (a_,,. o,,) is a modulus of the 
inner ideal B. Then 3 + I is a modular inner ideal of 9 with modulus (a_,,, a, ,)  that 
strictly contains B. Since B is maximal, we have B + I = 9. Part b) EoIlows at once from 
a). Let us prove c). Suppose J = (J-., J,,) is a nonzero ideal of the Jordan pair (2'- ,,, 2,,). 
Our goal is to prove that J, + B,, = g,,. 
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/. 

Assume first that the quotient pair (9- ,,, 9 , , ) / J  contains no nonzero locally nilpoten t 
ideals. Then, by Lemma 1.4, J,, = PI, n Id2(J,,) and it suffices to use a). 

Let us now drop the assumption that (2-,,, 2 , , ) / J  contains no nonzero locally 
nilpote~li ideals. Let I f / . /  be the locally nilpotent radical of (3-,,, Z , , ) / J ,  J L J ' .  By what 
was proved above, J,,' + B,, = z,,. Choose elements x,, E J,: and b,, 6 B,, such that x,, + b,, 
= a,,. Since the pair J ' / J  is locally nilpotent, there exists a natural number 177 >, 1 such 
that x:, = x,, ad([a -,,. x,,])"' E J,,. The pair of elements ( a _ , , ,  x:,) is a modulus of the inner 
ideal (3-,, + J -,,, B,, + J,,) of the pair (Y -,,, q,), and B,, + J,, 3 x:,. Thus. R,, -I- J,, = XI. 
The lemnla is proved. 

$7. S-Identities in primitive algebras 

lo. Free graded algebras. Consider the free Lie algebra Lie(X) on the set of generators 
X = {xljl -17 < i < 1 1 ,  j > 1). The Lie algebra Lie(X) possesses a natural Z-grading in 
which the weight i is attached to the generator x,,, Lie(X) = C,,zLie(X)k. Let I denote 
the ideal of Lie( X) generated by ihr set ZIkI,,, Lie( X), . It is obvious that Lie( X. 1 7 )  = 

Lie(X)/I is a free graded Lie algebra. 
We will say that an element f(x, , )  E Lie(X, n )  is arl i d e j z t i ~  on the graded Lie algebra 

Y = Z",Y, if it is mapped into zero under every homomorphism r ,, + 2,. 0 < J i  1 4 n ,  
j 2 I. In this case we wri teJ(3)  = 0. 

Consider the free special graded Lie algebra SLie(X. n )  (see 52) and the natural 
hornomorpl~sm +: Lie(X, 1 7 )  + SLie(Af, ~ r ) ,  under which x,, is mapped inlo z,,. We 
denote the lcernel of this homomorphism by S and call the elements of this kernel 
S-identities. It is obvious that a graded Lie algebra is a homomorphic image of a special 
graded Lie algebra if and only if S ( 9 )  =. 0. The ideal S is homogeneous with respect to 
the generators in X. We also consider the idgals 

and 

P ( X )  = IdLi,,v,,7,(( [a,,. 6 .  a,,, d l ,  [a,,, c ,  a,,, d l lo , ,  Lie(X, ~~) , , :  

7'). In the rest. of' this section we consider a prinutive graded Lie algebra 2= C",,LFi, 
Po = C;[9-i, Zi], over an algebraically closed field such that card > d i m ,  9. Our 
goal is ' to show that either(3 n P ) ( 9 )  = 0 or 9 is an exceptional finite-dimensional 
algebra of one of the types G I ,  Fq, E6, E,  or EN. 

Suppose B = C'l,,Bi is a prirnitivizer of 9 with modulus (a_,,, a,,). 

PROOF. Assume Bc2, f 0. The nonzero ideal I = Id,([B(,,, 91) is locally idpotent 
modulo B. By Lemma 6.4a), there exist elements s,, E / n PI, and b,, E B,, such that 
X, f b,, = a,,. For some 112 I we have x:, = x,, ad([a- ,,, x,,j)"' E B,,. 

The pair (a_,, ,  x:,) is, as before, a modulus for B. Thus, B = 9. Contradiction. The 
lemma is proved. 

Consider the ideal S' = [ [ S ,  S ] ,  Lie( X, t7)] of the free graded algebra Lie( X, I T ) .  
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PROOF. By Lemma 5.1, the quotient algebra B/B(,, is special. Thus, S ( B )  c B,,,. 

Moreover, [ B(,,, B(,,, 9 ' 1  [ B(,,, 21 = 0, from which i t  follows that 

By the Izeart H = H ( 2 )  of an algebra 2 we mean the intersection of all its nonzero 
graded ideals. 

PROOF. Suppose 1 is a nonzero graded ideal of 2. Then, by Lemma 6.4, B + 1 = L2. 

Therefore, 9 /1  = B + I / I  = B / B  n I. Thus, S r ( P / I )  = 0 and S f ( Y )  2 I. The lemma 
is praved. 

Assume S ( 9 )  # 0. Then S ' ( 2 )  "r 0 and H = C",,H, f 0. 

PROOF. Assume LB(a -,,, ~ , , ) ~ , , ,  B(a_,,, h, , ) ]  + 0. The nonzero graded ideal 

1 = 1 d L ? ( [ ~ b - , ~ .  /1,,1(2)> 3(0-,,, /7 ! , ) ] )  

is locally nilpotent nloduIo B(a_,,, h,,). Moreover, h,, E H,, E I. Thus, there exists rn 3 1 
such that h:, = 12 ,, ad([a  -,,, h,,])"' E B ( a -  ,,, h,,). The pair ( a  -,,, h:,) is a modulus for the 
inner ideal B ( a  -,,, It,,). By Lemma 6.2, B [ u  -,,, h,,)  = 9. The lemma is proved. 

LEMMA 7.4 (see 1131, [29]). Szrppose f is a 17ot7zogeneotrs de17zent of rhe free graded Lie 
algebra Lie(X, 1 1 )  of degree m with respeci to X (i.e., eaclz ~no~tonzial col~tairzs exactll! 171 

lelters of X) that is uot ajz ide~ztity otr 2. if ( B, ), is a falniij? of inner. ideais of 9 s z ~ h  tilar 
I) f '(Bk) = 0 jor. alE li?zearizatiu~zsf' off, a17d 
2 ) Y =  EiTjCi j ,  where C, = n { B , < l k  # i7 k ;f j } ,  

the11 tlze izuazber. ojirz~zer ideals Bk is at most 2172. 

PROOF. If the number of inner ideals Bk exceeds 2111, then any m subspaces CiLi,, . . . ; Cj,,jm 
lie in one of the inner ideals B,, k { i i . . i n ,  j j , .  . . , 1- Consequently. 
. . - , , C . ) = 0. Also, 

nJnr 

f ( 2  ,... > P )  = ~ ( C C ~ ~ , . . . , C C ~ )  = Z f f ( c  id., ' . . . , C i n j m )  = 0. 

This contradicts our assumption that f (3) + 0. The lemma is proved. 
Choose a homogeneous element f of degree I?Z in the ideal S ' that is not an identity 

on 9. 

LEMMA 7.5. For sty eie?lzeizts h-,, E H-,, alid h,, E H,, 

. . PROOF. Suppose a17. . . , n ,,,,,. , E Spec(h -,,, h ,,), where a, ii a, if i + j,  1 6 1 ,  j < 2 172 + 
1. We will show that the element f and the inner ideals Bi = B(a,h- , ,  h,,) satisfy the 
conditions of Lemma 7.4. By the corollary of Lemma 7.1, / ( B , )  E S f ( B , )  = 0. Also, 
Ei<,& G f?:nt+l~i, 

The polynomials g,(x) = (I + a,.x)-'Il,'_";*'(l + a,x), 1 4 i G 2ez + 1, are relatively 
prime. Consequently, there exist polynomials p , ( s ) ,  . . . ,pz , , ,  ,(s) E @Ex] such that 
z : n l + l p i ( x ) g i ( x )  = I. 



LIE ALCiEnRAS WITH A I'INITE GRADING 

If 0 < IC i 17, then 

When k = 17 the assertion being proved pertains to Jordan pairs and \vas analyzed in 
detail in [13] and [29]. 

It now suffices to apply Lemma 7.4. The lemma is proved. 

LEMMA 7.6. (9- , , ,  H,,) is a17 algebraic Jordan pair 

PROOF. Suppose a_,,  E 2'+, and /I,, E H,,. By Lemma 7.6, 

cardRes(a _,,, h,,)  = card@ > d i m , 9  

Therefore, by Lemma 6.1, the pair of elements (a_, , ,  h, ,)  is algebraic. The lemma is 
proved. 

LEMMA 7.7. The pair ( 9 _ , , ,  H,,) car7 co~zluir~ at rizosl 2 1 ~  poit-ioise orrl~ogor~ul tcle1i7poler7rs 

PROOF. If (e!'!, eA1)j,. . . ,(eF,yi-l), e,, (""')) are pairwise orthogonal idempotents and 

a, ,  . . . ,a, ,,,, E @ \ {0} are distinct elements of @: then the elements l,/ci,;. . . ; l /a  :,,, .. I 
7 f i t i - 1  (i) E2n1+1 [ i )  lie in the spectrum of the pair (E,,l aie_,,,  e,, ), which contradicts Lemma 7.5. The 

lemma is proved. 

Suppose e ,  = (el');, el;')).. . . ,e, = (e?!, e::)) E ( H  , _,,, H,,) is a maximal family of pair- 
wise orthogonal idempotents of the pair (2'-,,, H,,), s $ 2172. Then the pair of elements 

s ( i )  ' e = (e  _,,, e,,), where e- , ,  = Eie?), and e,, = Cle,, , IS  also an idempotent. 
If P,(e, (9 -,,, H,,)) + 0, then P , ( e , ( 9  -,,, H,,)) is not a nil pair (see [Ill); hence it 

conlains an idempotent. This contradicts the maximality of s. Thus, 

po(e>(9- , ,>  H,O) = 0 

and 

dq,T(e _,,, e,,) = d q , ( ~ d  - ad([e _,,, e,,]) +$ad(e-,,)'ad(e,,)" = 0. 

Since en E H,,, it follows thatdq, = H,,. 
The Peirce component P,(e,, (9- , , ,  x,)) of the Jordan pair (9- , , .  $q,) is obtained by 

duplicating some unital Jordan algebra J (see [12]). The algebra J is algebraic on Q and 
does not contain any nonzero nil ideals or (in view of the maximality of s )  proper 
idempotents. Consequently (see [13] and 12911, J is a Jordan division algebra. Since the 
field is algebraically closed, we have J = @ . 1. i.e., [2'-,,, e!,'), e!,"] = @e::). 

Note that H = Id,(ey)). 

LEMMA 7.8. Suppose 9= C",,9i is a11 arl~itroty graded Lie algehra ouer a field @ and 
To = xC;[2'..i, g.1. If dq, 3 a, and [2'-,,, a,,, a,,] c @a,,, then a,, ger~e/.ates a  local^! finite- 
di1?zensio17al ideal of 9 .  

PROOF. Suppose the subalgebra A 2 Id,(a,,) is generated by the elements 
J'" 

c'") = a,, I1  ad(^("^)), 
p=1 



where 1 < a 111, 1 < /3 < I?,, and a("P' E .PA ,,,,, 1 < Ikal,l < 11, and let OIL = (a,,, 1 
1 < a < tll, 1 < /3 < 11~) .  

Consider the free graded Lie algebra Lie(X, 17) on the finite set X = (s,,, . Y ' " ~ ' I ~  < a 

1~1, 1 < /3 < I?,), where the weight 11 is attached to the generator .u,, and the ateight kap 
to the generator x ( " ~ ) .  Let 

where 1 < a < 111 and 1 < /3 < IZ,. 
Let I be the ideal of Lie(X, 17) generated by the set [Lie(X, IZ), x,,, r,,], and let 

-: Lie(X, 11) + Lie(X, II)/I  be the natural homomorphism. 
We may assume without loss of generality that the field 4, is infinite. Since the algebra 

Lie(X, 11) is generated by the Engel elements of degree at most 211 + 1, any subspace of 
Lie( X, 11) that is invariant under inner automorphisms is an ideal of Lie( .Y. 11). I11 
particular, the subspace spanned by the crusts of thin sandwiches of Lie(X, 11) is an ideal 
and the elements 1 < (Y < 171, lie in this ideal. 

By a result of [30], the subalgebra Y(? '" ' I I  < (Y < 117) generated by the elements 
1 < a 4 m, is nilpotent and finite-dimensional. Let GI,. . . .6, be a basis of 

- 
LZ(i'"'l1 < a < 111) over @, and let u,, . . . ,u, be preimages o f  i,, . . . ,u,. 

For an arbitrary element u E Lie(X, 11) we denote its degree wit11 respect to S by deg u. 

i.e., this is the maxinlal degree of a commutator appearing nontrivially in the expression 01 
u. Let d = max(deg u,, . . . , deg u,). We will show that the subalgebra 

lies in the subspace spanned by the commutators in % of weight at most d. Indeed, 
suppose u E Y(z(" ) l l  G a G 1 1 2 )  and deg u = d'  > d. We have 

where k,  E Q and the M: and IV,,, are commutators in X. Obviously. 
,)I, 

deg\ti, + Z + degsi;,, = d. 
,,=I 

Also, 
0 I , , ,  

i.e., u(%) is a sum of commutators in % of weight less than d' .  The lemma is proved. 
By Lemma 7.8, the algebra H = Id,(el;')) is locally finite-dimensional over Q. 

LEMMA 7.9. The algebra H i s  simple. 

PROOF. Note that H = Id .(e(;"). Indeed, for any operator n;" ad(w,), l r ~  E 2, we have 
!?I 111 

eP1 fl ad(~rh) = 2-"'e?)ad([el1!, e,, '"1) "I fl ad(\va) E 1dH(e?)).  
n = l  a=l 

Suppose I is an ideal of H that is not equal to H. Then I 3 e!;". and so [I, e(:', e,(,')] C I 
@e(;" = 0. The algebra H is strongly nondegenerate in the sense of Kostrikin. There- 

fore, by the corollary of Lenlma 1.9, [ I ,  e!:)] = 0. Now [I,Id,(e(;")] = 0 and [I, I] = 0. 
Since H i s  strongly nondegenerate, I is equal to zero. The lemma is proved. 
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Thus, H i s  a simple locally finite-dimensional graded algebra. By Lemma 4.2, either H is 
isomorphic to one of the algebras G,, F,, E,, E ,  or ER, or H is special, or commutation 01 
the subspaces H-,, and H,, is defined by a bilinear form J: ( H  _,,, H,,) + 0. 

If H is a finite-dimensional exceptional algebra and 9 is infinite-dimensional, then 
Z,(H) is a nonzero graded ideal of 9; hence Z,(N) 2 H and [H, H ]  = 0. Contradic- 
tion. The second and tkird cases are analogous. 

58. Proof of Theorem 1 (conclusion) 

Let T denote the graded ideal of the free graded algebra Lie(.Y, 11) consisting of those 
elements such that they and all of their linearizations are identities ol all exceptional 
graded Lie algebras. For example, any element that is skew-symmetric in 249 variables 
(248 is the dimension ol  E,) lies in T. Let T = Pj,,T,, S = E';,,S, and P = X'',,P!. 

LEMMA 8.1. S,, n I;, n P,, c K(Lie(X, IT)). 

PROOF. We shall assume without loss of generality that the ground field 0 is algebrai- 
cally closed and uncountable. 

Let Y be the family of maximal modular inner ideals of Lie(.Y. t i ) .  For any inner ideal 
B E Y t h e  quotient algebra Lie(X, n)/I(B) is primitive. By the results of 57_ S n P n T 
c I ( B ) .  We will show that n{I,(B)(B E 9') s K(Lie(X. 11)). By Lemma 6.3, the Jordan 
pair ( 9 -  ,, n { I , , (B)  ( B  E 9')) is quasi-invertible. I t  follows from this and Lemma 6.1 that 
(9- , , ,  n{I,,(B) IB E 9')) is a nil pair. Choose an element a,, E f l {  I,,(B)IB E 9 ] and a 
generator x _,,, E X not occurring in the expression of a,,. Suppose x _,,,, ad([a,,, x _,,,, 1)"' 
= 0, 177 > 1. The multiplication c-,, b-,, = [c _,,, a,,, b-,,] makes 9 - , ,  into a Jordan alge- 
bra. By what was said above, this algebra satisfies the identity x"' = 0. It was shown 111 
[31] that a Jordan nil algebra of bounded degree is radical in the sense of McCrimmon. It 
follows easily that a ,  lies in the McCrimmon radical of the Jordan pair (2-,>,, 2 , , )  and 
therefore in the Kostrikin radical of 9 (see 51). The lemma is proved. 

If 9 is a simple graded Lie algebra, t h e n 9  contains no nonzero locally nilpotent ideals. - 
Therefore, K ( 9 )  L o c ( 9 )  = 0, and either s ( 9 )  = 0 or T ( 2 )  = 0 or P ( 9 )  = 0. 

If T ( 9 )  = 0, then R ( 9 )  is a prime PI-algebra which, by the Markov-Rowen theorem 
(see [24] or [XI), is finite-dimensional over the field r = r ( 2 ) .  Obviously, dim+< 
d i m , R ( 9 )  < m. 

If P ( 9 )  = 0, then there is bilinear form f: (9-,,, 3 , )  + such that 

and 

[a- , , ,  b,,,c-,,I = / ( a _ , , ,  b,)c-,, + J(c - , , ,  b,,)a-,, 

for any elements a +., b ,,,, c,,, E 9, ,,. If 0 # a,, E q,, then 9 ,  a a , ]  a , .  By 
Lemma 7.8, the algebra 9 is locally finite-dimensional over its center. These two cases 
were considered in 54. 

Assume, finally, that S ( 2 )  = 0. Since S ( 9 )  n q, = S ( 9 )  n Z, = 0, i t  follows that 
S ( 9 )  = 0. Short gradings9= 9 - "  +do, + 9,, were considered in [l j] .  We may therefore 
assume that Co, ,,,, 9 ,  # 0. We may also assume that 

[qz4,, [[9-,,7 q,1> [T-,,? 3,111 =+ 0:  

since otherwise P ( 2 )  = 0 



Suppose q: SLie(X', 11) -t 9 i s  a homomorphislll and I = Ker q, = Z'',,],. Let 7 denote 
the ideal of the free associative graded algebra Ass(X, 1 7 )  generated by the set C o ~ l i , G , , I i ;  
then J = Z",f, is a graded ideal. We will show that for i + 0  we have i, n SLie(,Y, 1 2 )  = I,. 
Suppose a E j,,, n SLie(X, IT), but a E I,,,, io # 0. We represent the element a as a sum of 
words a = C,,,i~,,(x-,, ,, a,, ,), where 0 < Ikl, 11 I < 17, a, ,  , E I,, the degree of each word ~i:, 

with respect to {a  ,,,) is not zero. ~i<,(x- , ,~,  a,,,) E Ass(X, n),,, and iv,; = -11, . 
'i 

Let T = (T-,,, T,,) be the ideal of the Jordan pair (SLie(X, IT).,,. SLie(X, IT), ,)  intro- 
duced in §2. By Lemma 2.3, there exists a natural number 111 such that the quantity 
II;(x,, k ,  a,, ,)ad([T_,,, T,,])"' is a sum of commutators, each of which has degree at least 1 
with respect to {a,,,}. Thus, u  ad([T-,,, T,,])"' c I. By hypothesis, (T_?:,, 7;:) is a nonzero 
ideal of the Jordan pair (K,,, Y,,). By Lemma 1.5, the Jordan pair (2 -,,, I$,) is simple. 
Thus, (TT,,, T,:) = ( 2  -,,, LFtI) and a T a d ( [ 2  -,,, T,,])"' = 0. Since LF is simple, i t  follows 
that u p  = 0, o E I .  Contradiction. We have shown that I, n SLie(X: 11) = 1;. Therefore, 
the mapping 9, 3 a,  + I/I -+ a ,  + j / j  is a specialization. The graded algebra 2 is 
special, and [2 , , ,  [ [ 2  -,,, 9,,], [ 2  -,,, P,,]]] # 0. By the results of 52, 2 i s  an algebra of type 
I or 11. The theorem is proved. 

§9. M-Graded Lie algebras 

Suppose A is a torsion-free Abelian group and M is a nonzero finite convex subset ol A 
containing 0 such that A = gr( M). Assume that there is defined on a simple Lie algebra2 
a nontrivial A-grading 2 =  X u , ,  2 m ,  = 0  lor a E M. d ( M )  < ( p  + 1)/2, and A4 
consists of all lattice points of the convex hull of the set { a  E hl L, i 0 ) .  

We call an M-graded algebra 2 special if there exist an M-graded associative algebra 
R = C,,,R,, where R ,  = 0 for a E M, a subspace Z c Z(R) n R,, and an embedding 
94 R(-) /Z preserving the grading. 

Let r be the rank of A; h = Z @ . . . @ Z ( r  summands). The convex hull of M is a 
convex polyhedron in r-dimensional space with integral vertices, and each face of this 
polyhedron has at least r vertices. In other words, there exists a finite family of 
homomorphisms fi: A -+ Z such that 

?d = { a  E AIf,(CY) < ! ? I , ,  Ill, E Z ) ,  

I ( a l f , ( a ) = i r 1 ~ , 9 ~ # O } I ~ r  foreachi 

The case r = 1 is covered by Theorem 1. Assume r 2 2. If 9 is locally finite-dimensional 
over its center, then by repeating the argument in the proof of Lemma 4.2 and using 
Lemma 4.3 we can show that Y i s  either special or isomorphic to the Tits-Kantor-Koecher 
construction of the Jordan algebra of a symmetric bilinear form. 

Assume that the simple M-graded algebra 2 is special, U = L,,,,,Uo is the universal 
enveloping associative M-graded algebra for 9; 5 is the quotient algebra of U with 
respect to the Baer radical. We identify the elements of Yaa,: a i 0, with their images in q. 
On the algebras U and 5 there acts an involution * sending each homogeneous element 
a E q, m # 0, into -a. For r 2 it follows from the results of 52 that gU = K(E,  "), 
a # 0, the involutory algebra (a, *) is simple, a n d 9 =  K' (& *). 

Our goal in this section is now to prove that a simple M-graded Lie algebra that is not 
locally finite-dimensional over its centroid is special. This will complete the proof of 
Theorem 2. We shall assume without loss of generality that the centroid r is an 
algebraically closed field such that card r > dim,5?. 
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LEMMA 9.1. Suppo~e tlzere exists rr r~orlzero elenzerzt u E R slrch tlzut a" = +a N I I ~  
7 a -  = a [ K ,  K ] a  = 0. Tlzerz the algebra R is localbfi~zite-dirtier~sionolouer T. 

PROOF. Assume first that a E K .  Then the suhspace [ K ,  K, a ]  lies in the Kostri!rin 
radical of the algebra [ K ,  K ] .  The Kostrilun radical of [ K ,  K ]  coincides with its center; 
hence [K,  K ,  a ]  C Z ( [ K ,  K ] )  Z ( R )  c T. Since a [ K ,  K ,  a ]  = 0, i t  follows that [K. K ,  a ]  
= 0 and [ a ,  R ]  = 0. Since the center of R contains no nonzero nilpotent elements, a = 0. 

Let us now assume a* = a. By what was proved above, aKu = 0. Any element .Y E R 
can be represented in the form s = s, + s k ,  where s,: = s, and r,* = -s,. Obviously, 

We define on the r-space R a new multiplication x * J) = xaj1 and denote the resulting 
algebra by R(") .  We have shown that R ( " )  is commutative. 

The space Ann = {x E Rlaxa = 0) is an ideal of R'"), and the quotient algebra 
R'"'/Ann is simple. In view of the restrictions on the field r we have R("'/,411n = I-. 
Thus, dim,aRa = 1. This easily implies that R is locally finite-dimensional. The lemni:; is 
proved. 

Suppose f :  A + Z is a nonzero homon1orphism,9= X:,,,$4,6/: = E { Y , l f ( a )  = i )  is a 
nontrivial finite 2-grading, and dim,-Y,,, 2. It was shown in 52 that there exists a simple 
involutory algebra ( R  = C!',,R,, *), Rf  = R,, such that 

where K = K ( R ,  *). The algebra R is generated by the set E,,,ir ,,,, 9, C [ K ,  K ] .  . , 
For any elements ai E 9=,, ai  i 0, 1 < i < q, when a = E,4ai i 0 we have a ,  . . . a ,  + 

a ,  . . . a ,  E Indeed, when C o c , i l ~ n r 9 j  # 0 this follows from the results of $2. Suppose 
5o= 9-",, + 9, + +,,, It follows from the results of [15] that either the Jordan pair 
(9 -,,, q,) is reflexive or there is a nonzero element a,,, E $4,, such that [z. u ,,,, a,,,] 5 
Tam. Since 9 is not locally finite-dimensional, the pair ( 9 - , , , ,  9,,)) is reflexive and again 
a ,  ... a q + n q . ~ . a l ~ 9  ?,,, i f a l +  . - . + a q =  +m. 

Therefore, when i # 0 we have 9"5P09 ,  c 9,9, + q. Thus, the subalgebra A ,  gener- 
ated by the subspace E ,,,,,, [ K - , ,  K,] lies in C ~ = , [ K ,  K ] ' ,  and the subalgebra A + - 

generated by the space9+=  Ci,,5P,, lies in C?=,[K, K]'.  Then 

The grading of the algebra [K, K ] / Z ( [ K ,  K ] )  can be lifted to a grading of the algebra 

IK: K l  = E,,,[K, KI,. 
We will show that for any convex M-grading [K, K ]  = X,,nr[K, K ] ,  we have R ,  = 0 

for a 6C M. Since the set M is convex, it suffices to prove that for any grading 
[K, K ]  = C:,[K, K] ,  we have R,  = 0 for lil > n. 

Choose an element a ,  E [K, K ] , ,  i > 0, and consider the subalgebra r ( a , )  generated by 
~t in R. For any element a E T ( a , )  and any homogeneous subspace [ K ,  K ] ,  we have 
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Therefore, a'"'-'[K, K] /  G R<, and U""'.~[K. K ]  c Ra. By what was proved above, 

(,(?.,I I 1 1 ' ~  = 1)' 1 [ K ,  K ] '  c Ra2"+' 
[,:L 1 G Rm. 

If a""+"' f 0, then the fact that R has no *-invariant ideals implies that R = RU""+"~R 
= Ra = aR and a is invertible. Thus, each element of the subalgebra T ( n , )  is either 
invertible ill R or nilpotent. Assume that a ,  is not nilpotent, i.e., is invertible. Consider the 
spectrum of a,: 

Spec(a,) = { A E TI1 - Aa, is not invertible in R }  

For any coefficient A E Spec(a,) we have 

7 (?,!+I)' 
(1 - ha , )  (7-11+1)' _ - a-(2,i+1~7(0i - h a y )  

= 0 

Consequently, if ISpec(a,jl > (211 + lj7, then aj'"'~')' = 0, a contradiction. Thus. the 
cardinality of the resolvent of a ,  is equal to that of the field r and exceeds dimrR. By a 
theorem of Amitsur [28], a ,  is algebraic over T; dim, r ( a i )  < m. Moreover. the subalgs- 
bra r ( a i )  contains no proper idempotents of R. Therefore, the quotient algebra modulo 
the radical: T(a,)/N, is a division algebra. Since r is algebraically closed, r i a , )  = J? - 1 + 
N. Assume a i  = a . 1 + 11, where (Y E r and 11 E N. Then -a, = a: = a. . 1 + IT*' = -a. . 

1 - 11. Thus, 2 a  = -ri* - 17 E N, 0 = 0, a ,  E N. Contradction. 
Suppose a,, E q,. We have [K, K ] a i  a,,(R + r . 1) and 

[K, K ] a i  C [K ,  K] , , (R  + r .  1) 

If a: f 0, a,:'+' = 0, d > 3, then a : [ ~ ,  K]a: c aii '(R + . 1) = 0, which contradicts 
Lemma 9.1. Thus, for any element a,, E T,, we have a: = 0. Since char f > 3, i t  follows 
that 

[ K ,  Kl , , [K ,  Kl , , [K ,  K l , ,  = 0. 

Suppose a: # 0. Then a i [ ~ ,  ~ ] a i  c [K, K];,(R + I? . 1) = 0, which also contradic~s 
Lemma 9.1. Thus, [ K ,  K].[K, K],, = 0. If a,, E [K, K],, and b, E [ K ,  K ] , ,  the11 

Assume i > 0, a i  E [K, K],, and [K, K],,a, f 0. Suppose [K, ~ ] , , a f  f 0 and 
[K, K],,Q;+' = 0. Choose an element a, € [K, K],, such that a,,af f 0. For any element 
b, E [K,  I<], we have 

i f j  f -11, 
7 d 11 _,,: a,,]ay , i f j  = -11. 

We have shown that [K, K],,[K, KI i  = 0 for i > 0. It can be shown analogously that 
[K, K]-,[K, K] ,  = 0 for i < 0. It follows that Xi = 0 for lil > 11. Theorem :! is proved. 
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