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Abstract. We show that a strongly prime Jordan algebra having a primitive local
algebra is primitive. As a tool, similar results concerning one-sided primitivity and
�-primitivity of associative algebras are established.

Introduction. The notion of local algebra of a Jordan system, introduced in [17], has
proved to be a basic tool in the study of primitivity [3, 4, 7]. Unlike the algebra case,
primitivity of a Jordan pair is considered at a particular element, and shown to be equivalent
to primitivity of its local algebra at this element, under the assumption of strong prime-
ness [4]. As a consequence, the results on local inheritance of primitivity in Jordan algebras
[9] were an important tool to have some possibility of changing the element at which
primitivity holds, which is essential in the description of primitive Jordan pairs and triple
systems given in [4].

In this paper we show the inheritance of primitivity by a strongly prime Jordan algebra
from any primitive local algebra. Apart from its intrinsic interest, this result will play an
important role in the definite solution of the above problem on the ªlocationº of primitivity
for Jordan systems [5], as one could expect.

The main ingredients of the proofs are the general properties of primitivity and its local
inheritance in Jordan algebras [8, 9], as well as some facts concerning primitive pairs and
triple systems [3, 4]. After a preliminary section, collecting known results which will be used
in the sequel, we begin in Section 1 with the study of local-to-global inheritance of one-sided
primitivity and �-primitivity in associative algebras. The corresponding result for Jordan
algebras splits into two cases: the hermitian case and the ªfiniteº case. Due to the fact that
the initial object is the local algebra, the above two cases are those of non-homotope-PI and
homotope-PI Jordan algebras. This forces us to use the theory of pairs and triple systems, so
that results on the relationship of a Jordan algebra and its underlying triple system are
needed. Non-homotope-PI Jordan algebras are studied in Section 2 using the main result of
Section 1, while the homotope-PI case in Section 3 follows directly by an argument involving
Peirce decompositions and the socle. We unify the different cases in the main theorem of
Section 4, getting also an important consequence on inheritance of primitivity from Peirce
components.
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0. Preliminaries.

0.1. We will deal with associative and Jordan algebras over an arbitrary ring of scalars F.
The reader is referred to [8, 9, 12, 16] for basic results, notation and terminology.

0.2. Algebras and triple systems. Due to the nature of the results, we will be led to consider
associative and Jordan triple systems. For general facts, notation and terminology, see [2, 3, 4,
12]. We will mainly deal with triple systems coming from algebras:

± If R is an associative algebra with product denoted by juxtaposition xy, for any x; y 2 R,
we can consider the associative triple system structure on R given by the product xyz, for any
x; y; z 2 R.

± If J is a Jordan algebra with products x2;Uxy, for any x; y 2 J, one can consider a Jordan
triple system structure on J given by Pxy � Uxy for any x; y 2 J.

Notice that ideals of an algebra are always ideals of the underlying triple system, while
the converse is obviously false [in the algebra of polynomials in a single variable R � F�X�,
the F-module spanned by fXn j n is oddg is an ideal in the triple sense but not an algebra
ideal]. However, semiprimeness, primeness and �-primeness coincide for an associative
algebra and its underlying triple system (cf. [2]). With respect to Jordan algebras, we have an
obvious coincidence of nondegeneracy of the algebra and the underlying triple system, while
strong primeness can be handled using a ªtight unital hull argumentº (cf. [6, 1.12]): since
ideals in the triple and algebra senses coincide when the algebra is unital, we transfer strong
primeness from a Jordan algebra to a tight unital hull which is then strongly prime as an
algebra and as a triple system; this provides strong primeness of the original system by
[14, 2.5], since it is an ideal of the unital hull.

0.3. Primitive Jordan algebras are defined in [11] following the corresponding notions of
primitivity and �-primitivity of associative algebras in terms of modular one-sided ideals
[7, Section 0; 18, p. 306]. Thus a Jordan algebra J is primitive if there exits a proper inner
ideal K (K �j J), called a primitizer of J such that (cf. [8, 0.5, 0.6]):

(i) K is e-modular for some modulus e 2 J [11, 2.2, 2.3, 2.4].
(ii) I �K � J for any nonzero ideal I of J.

0.4. One can obtain Jordan systems from associative systems by symmetrization: If R is an
associative algebra, we can obtain a Jordan algebra denoted by R���, over the same
F-module, with products built out of the associative product by x2 � xx, Uxy � xyx, for any
x; y 2 R. Similarly, a Jordan triple system R��� can be obtained from an associative triple
system R by defining Pxy � xyx, for any x; y 2 R.

A Jordan system (algebra or triple system) is said to be special if it is a subsystem of R���

for some associative system R.

0.5. A particularly important example of special Jordan systems are ample subspaces or
subsystems of associative systems with involution:

± If R is an associative algebra with involution �, a F-submodule H contained in the set of
symmetric elements H�R; �� is said to be an ample subspace of R if it contains all traces and
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norms of the elements of R (x� x�; xx� 2 H for any x 2 R) and xHx� 7 H for any x 2 R
[13, p. 387; 16, 0.8�]. Obviously, H is a subalgebra of R���.

± If R is an associative triple system with involution � (� : Rÿ!R is a linear map of period
two, reversing products: �xyz�� � z�y�x�), an ample subsystem H is a submodule of
symmetric elements (H 7 H�R; ��) containing all traces x� x� of the elements of R and
satisfying xHx� 7 H, for any x 2 R. Obviously, H is a subsystem of R���.

0.6. Local algebras of Jordan systems are introduced in [17] generalizing the correspond-
ing notion for associative systems:

± Given an associative triple system R, the homotope R�a� of R at a 2 R is the associative
algebra over the same F-module as R with product x �a y � xay, for any x; y 2 R. The subset
Ker a � KerRa � fx 2 R j axa � 0g is an ideal of R�a� and the quotient Ra � R�a�=Ker a is
called the local algebra of R at a.

± Given a Jordan triple system J, the homotope J�a� of J at a 2 J is the Jordan algebra over
the same F-module as J with products x�2;a� � x2 � Pxa, U�a�x y � Uxy � PxPay, for any
x; y 2 J. The subset Ker a � KerJa � fx 2 R j Pax � PaPxa � 0g is an ideal of J�a� and the
quotient Ja � J�a�=Ker a is called the local algebra of J at a. When J is nondegenerate,
Ker a � fx 2 J j Pax � 0g.

For an associative or Jordan algebra, local algebras are given by the above definitions,
applied to its underlying triple system.

0.7. Global-to-local inheritance in Jordan and associative algebras. Basic results
on local algebras of associative and Jordan algebras can be found in [9]. We stress the
following local inheritances [9, 0.1, 4.1], some of whose converses are the main results of this
paper:

(I) Let R be an associative algebra (resp. an associative algebra with involution �), and
let 0 �j a 2 R (resp. 0 �j a 2 H�R; ��).

(i) If R is semiprime, then Ra is semiprime.
(ii) If R is prime (resp. �-prime), then Ra is prime (resp. �-prime).

(iii) If R is left (right) primitive (resp. �-primitive), then Ra is left (right) primitive
(resp. �-primitive).

(II) Let J be a Jordan algebra, 0 �j a 2 J.

(i) If J is nondegenerate, then Ja is nondegenerate.
(ii) If J is strongly prime, then Ja is strongly prime.
(iii) If J is primitive, then Ja is primitive.

1. Associative algebras. We will begin with the associative version of the main result of the
paper. Its proof is much simpler than in the Jordan case, due to the linearity of the
notion of one-sided ideal, which allows a direct construction of primitizers. Apart from
its independent interest, the inheritance of �-primitivity will be explicitly needed in the
sequel.
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1.1. Theorem. Let R be a prime (resp. �-prime) associative algebra (resp. �-algebra) such
that Ra is left (right) primitive (resp. �-primitive) for some 0 �j a 2 R (resp. 0 �j a 2 H�R; ��).
Then R is primitive (resp. �-primitive).

P roof. Assume, for example, that �R � Ra is left primitive (resp. �-primitive) and let �K be
a primitizer (resp. �-primitizer) of �R. It is clear that �K � K=Ker a, for some proper left ideal
K of R�a�. For any modulus �e � e�Ker a of �K, R�1ÿ ae� � fxÿ xae j x 2 Rg is a left ideal of
R contained in K by �e-modularity of �K.

Let L be the sum of R�1ÿ ae� for all e 2 R such that �e � e�Ker a is a modulus for �K.
Thus we have that

(i) L is a proper left ideal of R

since it is contained in K. Moreover, R�1ÿ ae� 7 L reads

(ii) L is ae-modular for any e such that �e is a modulus for �K.

Let I be a nonzero ideal (resp. �-ideal) of R. Clearly

�I � �I �Ker a�=Ker a

is an ideal of �R. Moreover �I �j 0 since otherwise I 7 Ker a, i.e., aIa � 0, which is impossible
by primeness (resp. �-primeness) of R. Therefore �I � �K � �R and it is possible to find
�e � e�Ker a 2 �I which is a modulus for �K. We can assume that e 2 I, hence ae 2 I since I is
an ideal, and

(iii) I � L � R

since L is ae-modular by (ii).
Altogether (i)±(iii) show that L is a primitizer (resp. �-primitizer) of R. h

For an idempotent e in an associative algebra R, the Peirce (1,1)-component eRe is readily
seen to be isomorphic to the local algebra Re. This, together with (1.1), yields the following
result on inheritance of primitivity from the Peirce (1,1)-components.

1.2. Corollary. Let R be a prime (resp. �-prime) associative algebra (resp. �-algebra) such
that eRe is left (right) primitive (resp �-primitive) for some idempotent 0 �j e 2 R (resp.
0 �j e 2 H�R; ��). Then R is primitive (resp. �-primitive).

2. Non-homotope-PI Jordan algebras. We will begin with an auxiliary result on the
relationship between the speciality of a Jordan algebra and its speciality as a Jordan triple
system.

2.1. Lemma. If a unital Jordan algebra J is special as a triple system, then it is special as an
algebra. Moreover, there exists a unital (algebra) envelope and a unital �-envelope of J with
the same unit element as J.

P roof. Assume that J is a subtriple of R���, where R is an associative triple system. By
[2, 1.13], there exists an associative algebra A such that R is a subtriple of the underlying
triple system of A. Thus J is a subtriple of A��� (this latter considered as a triple system), i.e.,

Uxy � xyx�i�
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for any x; y 2 J, where juxtaposition denotes the product in A. In general, one cannot prove
that x2 � xx in this situation. Indeed, this may be false, as shown when A is a unital
associative algebra and we consider a subalgebra J of �A�ÿ1����� which then has
x2 � x �ÿ1 x � x�ÿ1�x � ÿxx and unit ÿ1, though it is a subtriple of A��� since
Uxy � x�ÿ1�y�ÿ1�x � xyx. This example provides a suitable substitute for the algebra A
we are dealing with:

Let b the unit element of J. Now, J is a subalgebra of B���, where B is the b-homotope A�b�

of A, which is an associative algebra, which shows that J is special:

x2 � Uxb [since b is the unit element of J� � xbx [by (i)] � x �b x
and

Uxy � UxUby [since b is the unit element of J� � xbybx [by (i)] � x �b y �b x:

Replacing A by the subalgebra of B generated by J, we have that A is an envelope of J,
hence, with this change of notation, we also have, for any x 2 J,

x2 � xx:�ii�
Therefore

bx � b�Ubx� [since b is the unit element of J� � bbxb [by (i)]

� b2xb [by (ii)] � bxb [since b is the unit element of J� � Ubx [by (i)] � x

since b is the unit element of J. Similarly xb � x, for any x 2 J. Using the fact that A is
generated as an algebra by J the above equalities can be extended to by � y � yb for any
y 2 A showing that b is the unit element of A.

Finally, J can be considered as a subalgebra of H�C; �� where C � A�Aop, Aop being the
opposite algebra of A, and � is the exchange involution. The new algebra C still has the same
unit element as J and the subalgebra of C generated by J is the desired �-envelope with the
same unit element as J. h

The proof of local-to-global inheritance of primitivity for strongly prime non-homotope-PI
Jordan algebras begins with a lemma in which the case of ample subspaces of associative
algebras with involution is studied. In the general case, ideals of this form will be found, so that
the general result will follow from an argument on inheritance of primitivity from ideals [8, 3.2].

2.2. Lemma. Let J be a strongly prime Jordan algebra which is an ample subspace H0�R; ��
of an associative algebra R with involution �, assume that Ja is primitive for some 0 �j a 2 J.
Then J is primitive.

P roof. By factoring out a maximal �-ideal of R not hitting J, we can assume that R is
�-tight over J, hence �-prime by strong primeness of J.

It can be readily seen that Ja is isomorphic to an ample subspace H0�Ra; �� of the local
algebra Ra (cf. [4, 0.5]), which is �-prime by (0.7) (I) (ii). Thus Ra is �-primitive by [8, 4.9].
Now, R is �-primitive by (1.1), and J � H0�R; �� is primitive again by [8, 4.9]. h

2.3. We will say that a Jordan algebra J is homotope-PI if there is a polynomial identity
which is satisfied by all of its homotopes. Since homotopes just depend on the triple system
structure of J (see (0.6)), a homotope-PI Jordan algebra J is just an algebra whose underlying
triple system is homotope-PI (cf. [3, p. 212]).
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2.4. Hearty eaters. Recall [1, 3.7] that an adic family on a special Jordan triple system J is a
family of n-linear maps Fn : Jnÿ!V into some F-module V for all odd n ^ 1 satisfying

(T1) Fn�. . . ; x; y; x; . . .� � Fnÿ2�. . . ;Pxy; . . .�
and which preserves all pentads fx1x2x3x4x5g � x1x2x3x4x5 � x5x4x3x2x1, xi 2 J, which fall
back in J:

(T2) Fn�. . . ; x1; x2; x3; x4; x5; . . .��Fn�. . . ; x5; x4; x3; x2; x1; . . .��Fnÿ4�. . . ; fx1x2x3x4x5g; . . .�.
In [1, 3.12, 3.16, 4.5], D�Amour shows the existence of a nonzero ideal h5�X� of the free

special Jordan triple system ST�X� on an infinite set of variables X which eats pentads of
arbitrary adic families on ST�X�: For such an arbitrary adic family fFngn odd, p 2h5�X� and
variables y1; . . . ; y4 2 X not appearing in p,

F5�y1; . . . ; p; . . . ; y4� �
Pmp

j�1
F3�qj1; qj2; qj3�;�i�

where qj1; qj2; qj3 2 ST �X�, mp is a non-negative integer. We remark that p eats pentads from
any position so that, indeed, five different equalities (i) hold, corresponding to the five
different possibilities for the location of p as an argument of F5 (that is the meaning of
F5�y1; . . . ; p; . . . ; y4�). It is shown thath5�X� is a hermitian ideal in the sense [1, 1.2] that it is
n-tad closed for all odd n ^ 5:

fh5�X� . . .h5�X�
z���������������}|���������������{n

g 7h5�X�;�ii�
where fx1 . . . xng denotes the associative polynomial x1 . . . xn � xn . . . x1, called an n-tad.
From the construction of a nonzero element of h5�X� [1, 4.5], it follows that h5�X�
contains homotope polynomials, i.e., if a special Jordan triple system J is non-homotope-PI,
then the evaluation h5�J� is nonzero [4, 2.2].

If J is a special Jordan algebra, its underlying triple system is special, so that h5�J� is an
ideal of J as a triple system. The next lemma is devoted to studying h5�J� when J is unital.

2.5. Lemma. Let J be a unital special Jordan algebra, R be a �-envelope of J with the same
unit 1 as J, and I �h5�J�. Then I is an ideal of J which is n-tad closed:

fI . . . I
z��}|��{n

g 7 I:

for all n ^ 4.

P roof. From (2.4), I is an ideal of J as a triple system. Thus I is an ideal of the algebra J
by (0.2) since J is unital. By (2.4), I is n-tad closed for all odd n ^ 5. We will show that I is
n-tad closed for all even n ^ 4. Since 1 is the unit element in both J and R,

fI . . . I
z��}|��{n

g � f1 I . . . I
z��}|��{n

g � f1I . . . I IIIII
z�}|�{#

g 7 f1I . . . I JJJIh5�J�
z�������}|�������{#

g

7 f1I . . . I IJJ
z}|{#

g � f1I . . . I JIJ
z}|{#

g � f1I . . . I JJI
z}|{#

g
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by considering the adic family of imbedded n-tads when the variables not included in # are
fixed, and using the specialization of (2.4) (i) when one of the variables yi is evaluated in the
ideal I of J, by homogeneity as in [1, 2.4]. The argument can be repeated to obtain that

fI . . . I
z��}|��{n

g 7 fJJIg � fJIJg � fJJIg 7 I

since I is an ideal of J. h

The next result will allow us to move the element at which the local algebra is considered.

2.6. Lemma. Let J be a strongly prime Jordan algebra such that Ja is primitive for some
0 �j a 2 J, and let I be a nonzero ideal of J. Then there exists 0 �j a0 2 I such that Ja0 is
primitive.

P roof. Notice that UaI �j 0. Otherwise, a lies in the annihilator of I by [14, 1.7(i)], hence
I � 0 by strong primeness of J [14, 1.6]. Thus there exists 0 �j a0 � Uab for some b 2 J.

Recall the isomorphism Ja0 � JUab � �Ja�b�KerJa given by

x�KerJ�Uab�ÿ!�x�KerJa� �KerJa�b�KerJa�
(cf. [4, 4.3 (ii)]). Since b 2j KerJa, 0 �j b�KerJa 2 Ja, and �Ja�b�KerJa is primitive by (0.7) (II)
(iii), which implies primitivity of Ja0 by the previous isomorphism. h

2.7. Proposition. Let J be a unital, non-homotope-PI, strongly prime Jordan algebra such
that Ja is primitive for some 0 �j a 2 J. Then J is primitive.

P roof. Notice that J is strongly prime as a triple system (see (0.2)). By [19; 2, 4.1], J is
special as a triple system. Therefore, using (2.1), J is a special Jordan algebra, and there
exists an associative �-envelope R of J with the same unit element as J. By (2.4) and (2.5)
I �h5�J� is a nonzero ideal of the algebra J which is n-tad closed. By [16, 1.3], I is an ample
subspace of H�B; ��, where B is the subalgebra of R generated by I. Moreover, I is strongly
prime by [14, 2.5], since it is an ideal of J and J is strongly prime.

On the other hand, by (2.6), there exists 0 �j a0 2 I such that Ja0 is primitive. Since Ia0 is
isomorphic to a nonzero ideal of Ja0, Ia0 is primitive by [8, 3.1], hence I is primitive by (2.2),
and J is primitive by [8, 3.2]. h

3. Homotope-PI Jordan algebras. The case of homotope-PI Jordan algebras will follow by
using the Peirce decomposition and the socle. Again, to compare Jordan algebras with their
underlying triple systems, we will restrict ourselves to unital algebras.

3.1. Proposition. Let J be a unital, homotope-PI, strongly prime Jordan algebra such that Ja

is primitive for some 0 �j a 2 J. Then J is primitive.

P roof. Recall that J is strongly prime as a triple system by (0.2), hence J is a primitive
triple system by [4, 3.8] and has nonzero socle in the triple sense by [3, 6.2] since it is
homotope-PI. But inner ideals in the triple sense and in the algebra sense coincide when
there is a unit element, so that J has a nonzero socle as a Jordan algebra. By (2.6), we can
assume that a lies in the socle of J, and there exists an isotope of J�u� of J (for an invertible
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u 2 J) where a is an idempotent [10, Lemma 6]. Since primitivity and strong primeness of J
and J�u� are equivalent (ideals of J and J�u� coincide, so that a primitizer of J is a primitizer
for J�u�), and �J�u��a � Ja [9, 3.2], we can assume that a � e is an idempotent of J.

Now, Je is a primitive PI Jordan algebra since J is homotope-PI, hence Je is simple by
[8, 1.2], but, by [9, 3.3], Je is isomorphic to the Peirce component UeJ of J, so that UeJ is a
simple algebra.

We will show that the inner ideal K � U1ÿeJ is a primitizer of J. Clearly K is proper by
nondegeneracy of J, since 0 �j e and UeK � 0, and it is 1-modular as any other inner ideal of
a unital Jordan algebra (indeed, in this case K is also e-modular since e is an idempotent).
Let I be a nonzero ideal of J. As in the proof of (2.6), 0 �j UeI 7 I \UeJ, hence
I \UeJ � UeJ by simplicity of UeJ, and e � Uee 2 UeJ 7 I. But

J � UeJ �Ue;1ÿeJ �U1ÿeJ � UeJ �Ue;1ÿeJ �K 7 I �K

since e 2 I and I is an ideal of J, which shows that K complements nonzero ideals of J. h

4. Main results. To prove a Jordan version of (1.1), we just need to put together (2.7) and
(3.1) and use tight unital hulls to extend the outcome to non-unital Jordan algebras:

4.1. Theorem. Let J be a strongly prime Jordan algebra such that Ja is primitive for some
0 �j a 2 J. Then J is primitive.

P roof. Let Ĵ be a tight unital hull of J. By tightness, Ĵ is prime, while its nondegeneracy
follows by [15, 2.9 (iii)]. It is readily seen that Ja is isomorphic to a nonzero ideal of Ĵa, and Ĵa

is strongly prime by (0.7) (II) (ii). Hence Ĵa is primitive by [8, 3.2], and Ĵ is primitive by either
(2.7) or (3.1). Now J is primitive by [8, 3.1]. h

Using [9, 3.3], we obtain a Jordan version of (1.2):

4.2. Corollary. Let J be a strongly prime Jordan algebra such that the Peirce component UeJ
of J, for a nonzero idempotent e 2 J, is primitive. Then J is primitive. h
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