
PRIMITIVE ALGEBRAS WITH INVOLUTION 

A well known theorem of Kaplansky ([I], p. 226, Theorem 1) states 
tha t  every primitive algebra satisfying a polynomial identi ty  is  finite 
dimensional over i t s  center. Related to this result is the  following con- 
jecture due to Herstein: i f  A i s  a primitive algebra wi th  involution 
whose symmetric elements satisfy a polynomial identi ty ,  then A i s  
Jinite dimensional over i t s  center. Our main object in the present 
paper is to verify this conjecture in the special case where A is assumed 
to be algebraic. In the course of our proof we develop some results, 
which may be of independent interest, concerning the  existence of non- 
trivial symmetric idempotents in primitive algebras with involution. 

1. Some preliminary remarks. In the present section we mention 
a few definitions and observations which we shall need in the remainder 
of this paper. 

By the term algebra over 0 we shall mean an  associative algebra 
{possibly infinite dimensional) over a field @. A primitive algebra over 
@ is one which is isomorphic to a dense ring of linear transformations 
of a (left) vector space V over a division algebra A containing 0 (see 
111, p. 32). The rank of an element a of a primitive algebra is the  
dimension of V a  over A. We state without proof the following three 
remarks. 

REMARK 1. Let A be a primitive algebra with identity 1 contain- 
ing a set of nonzero orthogonal idempotents el, e,, .. ., em such that 

(a) e ,+e ,+  ... + e m  = 1 
(b) rankei = ri < a ,  i = 1,  2,  . . - ,  m. 

Then the dimension of V over A is C?=,rri < a .  

REMARK 2. Let A be a primitive algebra with center 2. If xu = 0 
for some x f 0 E Z and some a E A, then a = 0. 

REMARK 3. Let A be a primitive algebra. If a and b are nonzero 
elements of A, then aAb # 0. More generally, if a,, a,, .., a, are non- 
zero elements of A ,  where n is any natural number, then 

An I-algebra is an algebra in which every non-nil left ideal contains 
a nonzero idempotent. An algebra over 0 is algebraic in case every 
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element satisfies a non-trivial polynomial equation f ( t )  = 0,  where f ( t )  = 
x a i t z ,  ai e 0. One can show that  every algebraic algebra is an I-algebra. 
In the proof of this fact  (see [ I ] ,  p. 210, Proposition I ) ,  however, the 
following sharper result is obtained. 

REMARK 4. Let a be a non-nilpotent element of an algebraic alge- 
bra. Then the  subalgebra [ [ a ] ]  generated by a contains a nonzero 
idempotent. 

An involution* of an algebra A over (3 is an anti-automorphism of 
A of period 2,  that  is, 

( a  + b)* = a* +- b* 
(aa)" = aa* 
(ab)* = b*a* 
.** - - a  

for all a ,  b E A, a e (D. It is to be understood tha t  in the rest of this 
paper the characteristic of 0 is assumed to be unequal to 2. An element 
a is symmetric if a* = a ;  a is skew if a* = - a.  * is an involution of 
the Jirst kind in case every central element is symmetric. * is an  in- 
volution of the second kind in case there exists a nonzero central ele- 
ment which is skew. Every involution is of one of these two kinds. 

2. S,-algebras. The notion of an algebra satisfying a polynomial 
identity can be generalized according to the following 

DEFINITION. A subspace R of an algebra A over (D satisJies a poly- 
nomial identi ty  in case there exists a nonzero element f(t,, t,, a ,  t,) 
of the free algebra over (D freely generated by the t i  such that 

for all xi e R. R will be called a PI-subspace of degree d if the degree 
d of f(t,, t,, . ., t,) is minimal. 

The element f(t , ,  t,, . , t,) is multi l inear of degree n if and only if i t  
is of the form 

Ca(o)tu1t,,  . . tun, a ( n )  e 0, some a ( n )  f 0 , 
u 

where o ranges over all the permutations of (1 ,  2 ,  . . . , n). 

LEMMA 1. Let R be a PI-subspace of degree n of an  algebra A. 
Then R satisfies a mult i l inear polynomial identi ty  of degree n. 

This lemma is a slight generalization of [ I ] ,  p. 225, Proposition 1. 
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The same proof carries over directly and we therefore omit it. 
Our main purpose in this paper is to study algebras of the follow- 

ing type. 

DEFINITION. Let A be an algebra with an  involution * over 0. 
Suppose that  the  set S of symmetric elements is a PI-subspace of degree 
5 - n. Then A will be called an &-algebra. In case * is of the first 
(second) kind, we shall refer to A as an S,,-algebra of the first (second) 
kind. 

It is surprisingly easy to analyze &-algebras of the second kind, as 
indicated by 

THEOREM 1. Let A be a primitive &-algebra of the second kiqzd. 
Then A i s  finite dimensional over i t s  center. 

Proof .' According to Lemma 1 S satisfies a multilinear -polynomial 
identity of degree n: f(t,, t,, . . , t,) = 0. Let x be a nonzero central 
element of A which is skew. If k  is skew, then 

and hence xk is symmetric. Therefore we have 

for all k, E K, si E S, where K is the set of skew elements. By Remark 2 
f(k1,s2,s3, . - . , s , )=O.  I t  follows that  f(xl, s,, s3, . ., s,) = 0 for all z, E A, 
si E S, since every x E A can be written x = s + k ,  s E S, k E K. Continuing 
in this fashion we finally have f(x,, x?, . . . , x,) = 0 for all zi E A. The 
conclusion then follows from the previously mentioned theorem of Kaplan- 
sky ([I], p. 226, Theorem 1). 

3. Some basic theorems. The assumption tha t  the symmetric ele- 
ments of an &-algebra satisfy a polynomial identity is used chiefly to 
prove 

THEOREM 2. Let A be a primitive &-algebra over 0. Then there 
exist a t  most n orthogonal non-nilpotent symmetric elements. 

Proof. Suppose s,, s,, , s,,, are n 'r 1 orthogonal non-nilpotent 
symmetric elements. Using Remark 3 and the fact  that  the st are non- 
nilpotent we may choose elements x,, x,, e . , x, E A so that  

s:z,s;x, . . S ~ , X , S , ~ ~  # 0 . 
A similar proof was communicated orally to the author by I. N. Herstein. 
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Now set ui = si~isi+l  + si+,x;si, i = 1 ,  2 ,  -, n. By Lemma 1 S satisfies 
a multilinear identity of degree n :  

where o ranges over all the permutations of ( 1 , 2 ,  . . , n) except the 
identity permutation I. f(u,,  u,, . . , u,) = 0 since the ui are symmetric. 
To analyze the right hand side of (1)  we first note that  if uiuju, # 0, 
i ,  j ,  k distinct, then either j  = i + 1 and k = i + 2,  or j = i - 1 and 
k = i - 2,  because of the orthogonality of the si. It follows that 

f ( u l , u , ,  "', u,) = U1U2 ..- U ,  + au,u,-I U1 

for some a E @. Hence 

Multiplying (2)  through on the left by s,, we have 0 = s:x,s;x, s:x,s,+,, 
a contradiction. 

An idempotent e of an  algebra A is called non-trivial in case e f 1 
(if A has an identity) and e f 0. 

THEOREM 3. Let  A be a primit ive I-algebra w i t h  a n  involution*. 
Then: 

(a) If there exists a n  x # 0 E A such that  xx* = 0 ,  then either A 
contains a non-trivial symmetr ic  idempotent or A i s  isomorphic t o  the 
total ma t r i x  r i n g  A,, where A i s  a divis ion algebra. I n  the latter case 
E $  = E,,, where the Eij are the y n i t  matrices,  i, j  = 1 , 2 .  

(b) If xx* f 0 for  all  x + 0 E A, then  either A i s  a division 
algebra or A contains a non-nilpotent symmetric  element which has 
no inverse in A. If xx* f 0 for  all  x f 0 E A and A i s  algebraic over 
0, then either A i s  a d iv i s ion  algebra or A contains a non-trivial 
symmetric idempotent.  

Proof. Suppose first that  there exists an x # 0 E A such that xx* = 0. 
We can choose an a E A such that  e = a x  is a nonzero idempotent, be- 
cause A is an  I-algebra. Since xx* = 0, e # 1. From the equations 
ee* = (ax)(ax)* = axx*a* = 0 i t  is easy to check that  e + e* - e*e is a 
non zero symmetric idempotent. We may thus assume that I E A and 
e + e* - e*e = 1. eAe is a primitive I-algebra ([I], p. 48, Proposition 1, 
and p. 211, Proposition 2). If eAe is not a division algebra, then it contains 
an idempotent f = ebe, f # 0 ,  f # e. Since f f  * = ebee*b*e* = 0, 
f + f * - f * f  is a nonzero symmetric idempotent. I t  is unequal t o  1 
since otherwise e = e( f + f * - f * f )  = f .  We may therefore assume 
that eAe is a division algebra and consequently tha t  rank e = 1. Since 
(1 - e*)( l  - e)  = 1 - (e + e* - e*e) = 0,  a repetition of the above argu- 
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ment allows us to assume tha t  1 - e is also an idempotent of rank 1. 
It follows from Remark 1 that  A is the complete ring of linear trans- 
formations of a two dimensional vector space V over a division algebra A. 

If e*e = 0 as well as ee* = 0 i t  is easy to show that  relative to a 
suitable basis of V e = El, and e* = E,,. In this case we are finished. 
Therefore suppose e*e # 0. We shall sketch an  argument, leaving some 
details to the reader, whereby a non-trivial symmetric idempotent can 
now be found. First find a basis (u,, u,) of V such tha t  u,e = u,, u,e = 0 ,  
ule* = 0 ,  u,e* =hu,+u, ,  where X f  O f  A. By setting v,=h-lu, and 
v2 = u, we obtain a basis (v,, v,) of V relative to which e = El, and 
e* = E,, + E,,. From this we have 

EA = E,, t E,, 

E,*, = [(E21 + Ez,)El,]* = (Ez, + E,,)E,, E,, 
EG = e - E$ = El, - E,,. 

Set E: = aE,, + PEL, + YE,, + SE,,, a ,  B,  n/, 6 f A. From the following 
three equations 

E,, - E,, = E,*, = (E,,E,,)* = EgE;", = BEll + SE,, 

E,, + E,, = E;*, = (El2EZI)* = E,*,Eg = aE2, + BE,, 

aEl1 + ,BE,, + YE,, + 6E22 = E5 = (E,,El,)* = EAE;', 

= BE,, + BE,, + SE21 + 6E,, 

we obtain a =  1,  p =  1,  r =  - 1,  and 6 =  - 1. Hence 

EZ = Ell + E,, - EZ1 - E,, 

and -E,,EI: = El, + El, is then a non-trivial symmetric idernpotent. 
There remains the case in which zx" f 0 for all x f 0 E A. We 

note that in this situation there exist no nonzero nilpotent symmetric 
elements, for, if s f 0 is symmetric, then s2 = SS* f 0. If A is not al- 
ready a division algebra then we can find an element z # 0 E A such 
that xA is a proper right ideal. It follows that  xx*A G xA is also a 
proper right ideal, and so xx* is a nonzero, and hence, non-nilpotent 
symmetric element which has no inverse. In case A is algebraic over 
@ the subalgebra [[xx*]] generated by xx* contains a non-trivial sym- 
metric idempotent, by Remark 4. 

4. Total matrix rings with involution. We begin by proving 

THEOREM 4. Let A be the total matrix ring A, with an inz,olutio?z 
*, where 3 i s  a division algebra over 0. Then there exists a set of 
orthogonal symmetric elements e l ,  e?, . . , e ,,,, f ,  f,, . . . , f,, such that: 

(a) The e ,  are non-nilpotent elements o f  rank 1. In case A is 
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algebraic over @, the ei a r e  idempotents of r ank  1. 
(b) The f j  a r e  idernpotents of rank 2, and  fiAfi i s  isomorphic to 

A,, with E: = E,, (see Theorem 3). 
(c) m, + 2m, = m. 

Proof. Let s,, s,, . , s, be a set of nonzero orthogonal symmetric 
idempotents, with h maximal. By the maximality of h we have 

Each s,As, may itself be regarded as a total matrix ring A,$ with an 
involution induced by *, where r, is the rank of si. We first consider 
those s,As, having the property: there exists an x f 0 E s,As, such t h a t  
xx* = 0. Theorem 3, together with the maximality of h, then says 
that s,As, is isomorphic to A,, with E,*, = E,,. Relabeling these si as 
f,, f,, . . , f,,, we have taken care of (b). 

The remaining si, of course, have the property that  xx* + 0 for all 
z + 0 E s,As,. As we have noted before, s,As, can have no nonzero 
nilpotent symmetric elements, since xxX f 0. Consider a typical s,As, 
and select from it  an  element x, of rank 1. Then y, = x,x: + 0 is a 
non-nilpotent symmetric element of rank 1. Now assume that k (<r , )  
orthogonal non-nilpotent symmetric elements y,, y,, . , y, of rank 1 have 
been found. Since the dimension of W = C;,,Vyi is less than ri ,  we 
can find an element x,,, of rank 1 such that  Wx,,, = 0. Then y,,, = 
x,+,x~,, is a non-nilpotent symmetric element of rank 1 such tha t  
WykTl = 0, that  is, yiy,+, = 0, i - 1, 2, . . - ,  k. Also y,+,y, = 0, i = 
1, 2, * .  ., k ,  since (y,,,yi)* = y?y?-, = yiY,+, = 0. I t  follows that there 
exists in s,Asi a set of ri non-nilpotent orthogonal symmetric elements 
yl, y?, . , y,,, each of rank 1. If A is algebraic over 0 the subalgebra 
[[yj]] generated by each y j  contains a nonzero idempotent x j  (necessarily 
of rank I ) ,  and so we have ri orthogonal symmetric idempotents 
x,, x,, . . . , xTi, each of rank 1 .  Repeating the argument for all the 
siAsi and labeling either all the y j  or all the x j  as e,, e,, . . ., em,,  x7e 
have completed the proof of (a). (c) follows readily from the fact tha t  
rank ei = 1,  rank f j  = 2, and Ciei  + Cjfj = 1. 

To illustrate Theorem 4 we consider the following simple example. 
Let A = O,, where 0 is a field, and define an involution * in A by: 

The reader may verify that  A contains no symmetric elements of rank 
1. Similar examples of higher dimension can also be given. 

In the remainder of this section we derive a result which tvill enable 
us, a t  least in the algebraic case, to "pass" from the total matrix r ing 
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A, to the division algebra A itself. 

LEMMA 2. Let A be the total matrix ring A,, algebraic over 0, with 
an involution *, where A i s  a division algebra ovar 0. Suppose E;;= Ezz. 
Then one of the following two possibilities must hold: 

(a) A contains a symmetric idempotent of rank 1. 
(b )  The involution * in A, i s  of the form: 

for all a ,  E A, some ,8 # 0 E A, where a - C  i s  a n  involution i n  A. 

Proof. I t  is well known (see for example [ 2 ] ,  p. 24, Theorem 9) 
that the involution * in A has the form: 

is a nonsingular element of A, and a-8 is an in- 

volution in A. Consider the equation E,, = E: = U-IE,,U, that is, 

I t  follows that  y = 6 = 0 ,  and hence U = 
(*OD 3- 

At this point we observe that  an element ('1 ;:) . A n7- 
nilpotent element of rank 1 ,  unless 71 + rr = 0. Now set B = ( - 1. t P  .tp 4 P  P 
I t  is easy to check that  B *  = U-I U = f B, and hence B is 

either symmetric or skew. If /3 4 1'3 = 0, i.e., 

finished. Therefore assume that  P t p f 0 .  We then apply the ob- 
servation made a t  the beginning of this paragraph to conclude that  B 
is a non-nilpotent element of rank 1. Since B is either sylnmetric or 
skew, i t  follows tha t  B2 is a non-nilpotent symmetric element of rank 
1. The proof is complete when we note that ,  as A is algebraic over 
0, the subalgebra [[B2]]  generated by B2 over @ contains a symmetric 
idempotent of rank 1. 

THEOREM 5. Let A be the total matrix ring A,, algebraic over 0, 
with an involution* *, where A i s  a division algebra over 0. Tlzen 
there exists a division subalgebra D of A such that D* = D and D is 
isomorphic to A. 
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Proof. Theorem 4 asserts the existence of either (a) a symmetric 
idempotent e of rank 1  or (b) a symmetric idempotent f of rank 2, 
where f A f  is isomorphic to A, with the induced involution * such tha t  
E,*, = E,,. In case (a) we merely set D = eAe and the required con- 
clusion follows. In case (b) A, satisfies the hypothesis of Lemma 2. If 
A, contains a symmetric idempotent of rank 1 we proceed as in case (a). 
Otherwise we conclude from Lemma 2 that  the involution * in A, is 
given by: 

Let D be the division subalgebra of d, consisting of all elements of the 

form Ja '1, n E A. D is obviously isomorphic to A. Furthermore, one 
lo a 

verifies that  

and we see that  D" = D. 

5. Division S,-algebras. We begin this section by stating 

LEMMA 3. Let A be a n  algebraic division algebra over its ce?zter 
0 for which there exists a fixed integer h suclz that the dime~zsion of 
0 ( x )  over 0 i s  equal to or less than h for every separable element 
x E 3. Then A i s  finite dimensional over 0. 

Except for the restriction of separability, this lemma is virtually 
the same as [ I ] ,  p. 181, Theorem 1. The proof appearing in [ I ]  carries 
over directly, and we therefore omit it. 

LEMMA 4. Let A be a n  algebraic S,-division algebra of tlze first 
kind over i t s  center @. Suppose E i s  a finite dimensional field exten- 
sion of 0. Then E @ , A  i s  isomorphic to the total nzatrix ring r,, 
where r i s  a division algebra and m 5 2n. 

Proof. E @  A is well known to be a simple algebra over 0 with 
minimum condition on right ideals. Hence E @ 3 is isomorphic to r,, 
where r is a division algebra and m is a natural number. 

An involution .r can be defined in E @ d as follows: 

for a E E, x E A. I t  can be verified that  7 is a well-defined involution 
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and that every symmetric element (under T) in E m  4 can be written 
in the form: 

Let f(t,, t,, . , t,) = 0 be the multilinear ~;olynomial identity of degree 
n satisfied by S. Because this identity is multilinear and because E is 
the center of E @ A, i t  follows from (3) that  the set of symmetric ele- 
ments of E @I A under T also satisfies f ( t , ,  t,, . . . , t,) = 0. 

Now regard E @ A as the total matrix ring r,, with involution z. 
By Theorem 4 there exists in r, a set of a t  least k non-nilpotent 
orthogonal symmetric elements, where 2k 2 m. Theorem 2 tells us tha t  
k 5 n,  and hence m 2 2k 5 2n. 

We are now able to prove 

THEOREM 6. Let A be a n  algebraic S,-division algebra. Then A 
i s  finite dimensional over i t s  center. 

Proof. By Theorem 1 we may assume that  d is an &-algebra of 
the first kind over its center 0. Suppose A is not finite dimensional 
over 0. Then by Lemma 3 there exists a separable element x E A whose 
minimal polynomial g(t) over 0 has degree r > 2n. Let E be a finite 
dimensional field extension of 0 containing the r distinct roots 
a,, a,, . . . , a, of g(t). 

We claim now that  the element x - ai is a zero divisor in E @  A, 
i = 1,2 ,  ..., r .  Indeed, 

7. 

0 = g(x) = JJ (x - a j )  = (x - a,) (x - a j )  , 
j=1 j i i  

and it suffices to show that  JJ,,,(x - a,) is a nonzero element of E @  A. 
Suppose JJ,,,(x - a,) = 0, that  is, 

Since xr-l, xT-', . , 1 are linearly independent over 0 ,  all the correspond- 
ing terms of E in (4) must be zero, which is clearly impossible. There- 
fore x - ai is a zero divisor in E @ 4. 

According to Lemma 4 E @ A is isomorphic to the total matrix ring 
r,, where m 5 2%. We may therefore regard E @ A as the complete 
ring of linear transformations of an m-dimensional vector space V over 
the division algebra r. Set Vi = {v E V I v(x - ai)  = 0), i = 1,2 ,  . . . , r .  
Vi is a nonzero subspace of V since x - ai is a zero divisor in E @  A. 
Using the fact that  the ai are distinct elements belonging to the center E, 
we have that  Vi are independent subspaces of V. It follows that 
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C r 
m 2 dim C Vi = C (dim Vi) 2 r > 2n . 

2 = 1  2 = 1  

A contradiction now arises since m 5 2n. We must therefore conclude 
that d is finite dimensional over its center. 

6. Primitive S,+algebras. We are now in a position to proceed with 
the proof of our main result. 

THEOREM 7. Let A be a primitive algebraic Sn-algebra. Then the 
center of A i s  a jield, and  A i s  jinite dimensional over i ts  center. 

Proof. Since A is primitive, A may be regarded as a dense ring 
of linear transformations of a vector space V over a division algebra 
A. According to Theorem 2 there exist a t  most n orthogonal symmetric 
idempotents. Let  e,, e,, . . , em be a set of m orthogonal symmetric 
idempotents, with m ( 5  n)  maximal. For each i ,  e,Ae, is again a primitive 
algebraic algebra with involution induced by *. The same is true for 
(1 - e)A(1 - e ) ,  where e = e, + e, + . . . + em, if A should not already 
happen to have an identity. We now use Theorem 3 in conjunction 
with the maximality of m to assert that  the rank of each ei is 1 or 2, and 
that A does have an identity 1 = el + e, + . + em. I t  follows tha t  
the dimension k of V 5 2m and consequently tha t  A is isoinorphic to 
the total matrix ring A,. The center of A is, of course, a subfield of 
A. Theorem 5 now says tha t  A is an algebraic 8,-division algebra. By 
Theorem 6 A is finite dimensional over its center. Hence A is finite 
dimensional over its center. 

COROLLARY. Let A be a primitive algebraic algebra with an  in- 
volution * such that the set K of skew elements i s  a PI-subspace of 
degree n. Then A is jinite dimensional over i t s  center. 

Proof. Let f(t,, t,, . -, t,) = 0 be the multilinear polynomial identity 
of degree n satisfied by K, according to Lemma 1. If s,, s, E S, where 
S is the set of symmetric elements of A, then s,s2 - s2sl E K. From this 
i t  follows that  f(u,vl - v,ul, u,v2 - v,u2, * .  a ,  u,v, - vnun) = 0 is a non- 
trivial polynomial identity of degree 2n satisfied by the elements of S. 
In other words, A is a primitive algebraic S2,-algebra, and the conclusion 
follows from Theorem 7. 

Note. Herstein's original conjecture was: if A is a simple ring (or 
algebra) with involution whose skew elements satisfy a polynomial identity, 
then A is finite dimensional over its center. In  this paper we have 
verified his conjecture in the special case where A is a simple algebraic 
algebra which is not a nil algebra. 
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