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In this paper we give a complete description of primitive Jordan algebras over 
fields of characteristic not two in the spirit of E. I. Zel'manov's classification of 
prime Jordan algebras (1983, Siberian Math. 5. 24, No. 1, 73-85). We also prove 
that associative tight envelopes of special primitive Jordan algebras are also 
primitive. 7- 1994 Academs Press. ~ n c  

Unital primitive linear Jordan algebras were first introduced in [lo]. 
The notion of primitivity was then extended to general (quadratic and non- 
necessarily unital) Jordan algebras by Hogben and McCrimmon in [2]. 
Primitive Jordan algebras were used in the proof of Zel'manov's Prime 
Dichotomy Theorem [lo, 71. 

Apart from this important application, primitive Jordan algebras are 
basic in a structure theory of Jordan algebras, making use of the Jacobson 
radical since this radical equals the intersection of all primitive ideals 
(ideals which, when factored out, create primitive algebras) [2]. Thus a 
Jacobson semisimple Jordan algebra is semiprimitive (subdirect sum of 
primitive algebras) and Jacobson semisimple algebras are obtained as 
quotients by the Jacobson radical, which, compared to other radicals, has 
the advantage of admitting a "local" characterization [8]. Moreover, 
there is a procedure of imbedding nondegenerate Jordan algebras in 
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semiprimitive Jordan algebras [5]. Hence, many problems on algebras of 
the first class can be reduced to problems on algebras of the latter, hence 
on primitive algebras. 

It is known that primitive Jordan algebras are prime and nondegenerate 
[2], hence the structure theorem for these algebras [8] applies to them. 
Nevertheless this remark does not give a precise description of primitive 
Jordan algebras since the class of prime and nondegenerate Jordan 
algebras includes many more than primitive algebras. Such a description is 
known for primitive Jordan algebras, over fields of characteristic not two, 
satisfying a polynomial identity: these are simple and unital, hence finite 
dimensional over their centers, or Jordan algebras of a nondegenerate 
quadratic form [ l l ] .  A theorem of classification of primitive Jordan 
algebras was announced by Skosyrsky in the Materials of the Soviet 
Algebraic Conference in L'vov (1987). The exact terms of such classifica- 
tion are unknown to us and a proof of it has not appeared to this day. 

The main result in this paper (Theorem (3.1)) gives a complete descrip- 
tion of primitive Jordan algebras over fields of characteristic not two. As 
said before, such a description should distinguish primitive algebras among 
prime nondegenerate algebras. According to this, our theorem is based in 
a case by case consideration of the algebras appearing in Zel'manov's 
Strongly Prime Structure Theorem [ l  I ,  83. We can cope with Albert rings 
and Clifford type algebras by means of the above mentioned Zel'manov 
characterization of primitive PI linear Jordan algebras. What remains is 
considering hermitian algebras: algebras trapped between an ideal of the 
form A+  or H(A, *), for A an associative algebra, and Q(A)+ or 
H(Q(A), *), where Q(A) is the two-sided Martindale ring of quotients of A .  
Here, what we prove is that primitive algebras are precisely those for which 
A is primitive. The proof of this fact splits into two parts: showing that 
primitivity transfers from an algebra to any of its ideals and back (done in 
Section 1 ) and showing that it also transfers from A + or H(A, * )  to A and 
back (done in Section 2). The latter result stems from the more general 
assertion that primitivity transfers to any associative envelope. 

In Section 1 we also develop our main tool, which consists of an ideal 
of Zel'manov polynomials that interacts well with inner ideals. Later in the 
paper, we make use of the techniques and tools of [ l l ,  83, in particular of 
hearty eater ideals. 

Our basic reference for notation and definitions is [8]. We deal with 
quadratic Jordan algebras: modules over @, a ring of scalars, having 
products U ,  y and x2 which are quadratic in x and linear in y. The axioms 



PRIMITIVE JORDAN ALGEBRAS 665 

satisfied by these products can be found in [8]. The linearizations of these 
products are denoted by 

{ xyz )  and xo y. 

We also have the standard inner derivations 

The main examples of Jordan algebras come from associative algebras. 
Any associative algebra A yields a quadratic Jordan algebra A + via U ,  y = 

.~yx ,  x 2  = xx. A Jordan algebra is called special if it is isomorphic to a 
Jordan subalgebra of some A +. A particular case of this is obtained when 
A is equipped with an involution *, by taking H(A, *) = { x ~  A I x* = x), 
which contains all the traces t ( x )  = .u + x*  of elements x E A. 

We also consider n-fads, the associative polynomials ( x ,  x, . . . x, ) = 
.r,x,....u,,+x,...,u,x,. Note that { . r , }  =2x, ,  { x , x 2 )  =x ,ox2 ,  {x,x,x,}  = 
(.u,x,x,} are Jordan polynomials in the algebra H(Ass(X), *), obtained 
from the free associative algebra with standard involution. In fact 
f , y 1  g2 . . . y,, } = r ( ) I ,  y2  . . . y,), whenever g ,  , ..., y,  are *-symmetric elements 
of Ass(X). If n 3 4, { x ,  . . . x,) is not a Jordan polynomial. However, they 
can be reverted into Jordan polynomials when the x,'s take values in 
hermitian ideals [8]. More generally, there can be found nonzero ideals 
H,(X) in the free special Jordan algebra FSJ(X) (generated by X in 
Ass(X)+) which "eat" F-n-tads, for any adic family F. In particular they 
eat imbedded n-tads 

Properties of these ideals can be found in [a]. We remark that if f E @ 
any tetrad-eater ideal P(X), 

is hermitian and eats pentads [8]. 
Let K be an inner ideal of a Jordan algebra J. K is called e-modular, for 

~ E J ,  if 

are contained in K [2] (recall that j is the unital hull of J). In this case 
e is called a modulus for K. If J is unital, this amounts to saying that 
1 - e E K. So any inner ideal in a unital Jordan algebra is 1-modular. In 
general K is e-modular if and only if K =  K +  @(l  - e )  is an inner ideal of 
j. An e-modular inner ideal is said to be e-maximal if it is maximal among 



all e-modular proper inner ideals. A maximal-modular inner ideal is an 
e-maximal inner ideal for some modulus e [2]. 

A Jordan algebra is called primitive if it has a maximal-modular ideal 
with zero core. Such an inner ideal is called a primitizer [2, 101. Primitivity 
behaves well with respect to unital hulls [2]: 

(0.1 ) J is primitive if and only if 1 is primitive. 

We can obtain new moduli from known ones: 

(0.2) If e is a modulus for K, so are en, for all n, and e + k, for all k E K  
C2l. 

If K  is e-maximal, all its moduli can be obtained from e :  

(0.3) If K is e-maximal, then K  is f-maximal for f any of its moduli, and 
all of them have the form e + k with k E K  [2]. 

Note that K  is an ideal in K +  @e. Thus, from (0.2) and (0.3) we have: 

(0.4) Ufe is a modulus for a maximal-modular inner ideal K, whenever 
e and f are moduli for K. 

Having many moduli at our disposal, we can more easily check whether 
K  is proper or not: 

(0.5) An e-modular inner ideal K is proper if and only if e 4 K  [2]. 

Any proper e-modular inner ideal is contained in an e-maximal one [2 1. 
In this way, to obtain a primitizer from an e-modular proper inner ideal K, 
it suffices that K  be comaximal to all nonzero ideals: K + I = J for all non- 
zero I, ideal of J. Such an inner ideal we call a proto-primitizer. Hence: 

(0.6) J is primitive if and only if it has a proto-primitizer. 

Note that any primitizer is a proto-primitizer. Clearly any nonzero ideal 
I contains a modulus for any proto-primitizer: as K +  I= J,  any modulus 
e of K  can be displayed as e = y + k with y E I, k E K. Thus, by (0.2), y is 
a modulus for K. This can be extended to nonzero subideals: 

(0.7) Let J be a Jordan algebra, I an ideal of J, and M a nonzero ideal 
of I. If K is a proto-primitizer of J ,  then there exists a modulus for K which 
lies in M. 

To see this, take e, a modulus for K  in L, the ideal generated by M in 
J. By the "light" version of the Andrunakievich lemma (4.10 of [4]), some 
power of e falls in M. Hence apply (0.2). 

We now list some known results on primitive Jordan algebras which will 
be used in the sequel. 
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(0.8) Any primitive Jordan algebra is prime and nondegenerate [ 2 ] .  

For PI algebras over fields of characteristic not two we have a precise 
description due to Zel'manov [ 1 1 1. 

(0.9) A primitive Jordan PI algebra over a field of characteristic not two 
is simple and unital. 

We need also a technical result that follows immediately from [12, 
Lemma 81: 

(0.10) Let R be an associative algehra over a field of characteristic not 
tw70, J a Jordan subalgebra of R+, and K an inner ideal of J. Then 

where T is the verbal tetrad-eater ideal of FJ, the free Jordan algebra on a 
countable set of generators, generated bj? all linearizations of c4', where 
c = C ( X ,  y, z )  = Dx, , (Dr.  , * ( z ) ) ' .  

Recall that a verbal ideal is any ideal of FJ invariant by all 
homomorphisms of FJ. 

It is clear that nothing changes when we add a unit to J. Hence, in the 
above conditions, { T ( T ( K ) )  j j j ~ ( ~ ) )  c K. 

For an associative algebra A one knows [ 9 ]  that if A is primitive then 
so is every nonzero ideal of A, while the converse is true under the assump- 
tion of primeness: if A is prime and contains a nonzero primitive ideal, then 
A is primitive. In this section we prove the same facts for Jordan algebras. 

( 1 . 1  ) THEOREM. Let J be a Jordan algehra and I a nonzero ideal of J. If 
J is primitive, then I is primitive. 

Proof: Let K be a primitizer of J. By (0.7) there exists a modulus e~ I 
for K. It is readily seen that K n  I is an e-modular inner ideal of I. 

Let us show that for any nonzero ideal L of I, L + ( K n  I )  = I. Since 
L + ( K n  I )  is also an e-modular inner ideal of I, by (0.5) we just need to 
prove that it contains its modulus e. By (0.7), L contains a modulus m for 
K, and since K is e-maximal, e - m E K by (0.3). Hence e - m E K n I and 
e E L + ( K n  I ) ,  as we wanted to prove. I 

(1.2) LEMMA. Let R he an associative algehra over a field of 
characteristic not ~ M ' O .  Let J be Jordan subalgebra of R + ,  and K be an inner 



ideal of J. Denote by G the ideal of T in FJ, the free Jordan algebra on a 
countable set of generators, given by G = T ( T ( F J ) ) , .  Then: 

(a )  { G ( K )  j 1 . f ~ )  G K. 

(b)  I f  K is modular in J with modulus e, then { G , ( K )  j j j ( l  - e ) }  c K, 
 here G I  = G ,. 

Proof: Take t,  s E T ( T ( K ) ) ;  a , ,  a,, a ,  E j ,  k E K. Then 

by (0.10) and the fact that { s t a , a 2 a 3 ) ,  {a,a,a, k s )  E J, since s E T ( K )  and 
T is a tetrad-eater ideal, hence eats pentads. 

Let us assume that K is e-modular. Take t,  s E G ( K ) ;  a ,  a,, a ,  E 3. Then 

{tsta,a,a,(l  - e ) }  = { t { s t a , a 2 a , } ( 1  -e )}  - {ta,a,a,{ts(l  - e ) ) }  

+ U ,  ( a , a , a , ( l -  e ) s )  E { ~ j ( l -  e ) }  

+ { G ( K )  . f j j ~ }  + U K J z  K. I 

(1.3) REMARK. Let R be an associative algebra over a field of charac- 
teristic not two, with an involution * :  R -+ R ,  H = H ( R ,  *), the Jordan 
algebra of *-symmetric elements of R,  and suppose R is generated as an 
associative algebra by H. Let K be an inner ideal of H. Denote b ~ l  G the ideal 
of T in FJ, the free Jordan algebra on a countable set of generators, gioen 
bv G = T ( T ( F J ) ) , .  Then : 

(a )  t ( G ( K )  R K )  c K, where t ( S )  is the linear span of t ( x ) ,  for all 
x E S. 

(b) If K is modular in H with modulus e, then t ( G , ( K )  ~ ( 1  - e ) )  G K, 
where G I  = G 3. 

Proof: Since R is generated by H, it follows that R =  H H H =  
H +  H H +  HHH,  i.e., R is spanned by associative products of three or 
fewer elements of H. Indeed if x ,  , x,, x,, x ,  E H, then 

hence H H H H  s H + HH + HHH,  implying R G H + HH + HHH. Now the 
result follows from (1.2). 1 

(1.4) Remark. The set G contains essential identities. Indeed, take 
H(@,),  the special Jordan algebra of 3 x 3 symmetric matrices over a 
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field @. If [e,,] =e,,+e,, when i #  j, [eii] =eii  (1 Gi, j g 3 ) ,  then c([ell], 
[e 13]r  [el,]) is not nilpotent and since H(@,) is simple, we have 

The same is true for any power of G. 

( 1.5 ) THEOREM. Let J be a prime Jordan algebra over a field of charac- 
teristic not two, I a nonzero ideal of J. If I is primitive, then J is primitive. 

Proof: Since I is primitive, it is Jacobson semisimple, hence 
McCrimmon semisimple. Therefore, since the McCrimmon radical is 
hereditary for ideals and J is prime, J is McCrimmon semisimple, i.e., 
nondegenerate (see [2, 131). We can assume J is unital using (0.1). 

Case 1. I is PI (satisfies an essential polynomial identity). Since I is 
primitive, I is simple and unital (0.9). If P is the unit of I, we can use Peirce 
decomposition of J with respect to e, 1 - e  to show that I is a direct 
summand of J. Since J is prime, J = I. 

Case 2. I is not PI. Then J is special. Indeed, if J is exceptional, it is 
an Albert ring since it is prime and nondegenerate [ l l ,  71. But then J and 
hence I is PI, contradiction. Thus we can find a *-envelope (R, * )  of J so 
that J L  H(R, *). Hence, this case follows from 

( 1.6) LEMMA. Let J be a special prime Jordan algebra over a jleld of 
characteristic not t\r.o, tvith *-envelope (R, * )  so that J z  H ( R ,  *). I f  J 
contains a nonzero ideal I which is a prin~itive Jordan algebra and not PI, 
then J is primitice. 

Proof: We can assume that J is unital. Since R is an envelope of J ,  it 
is readily seen that R is unital with the same unit, denoted by 1. 

Since I is not PI, 0 # T(I)  c T(J )  n I. Now T( J )  n I is a nonzero ideal, 
clearly not PI, which is a primitive algebra by (1.1 ). Thus I can be replaced 
by T ( J ) n  I and we can assume that I is tetrad closed [8]. As a conse- 
quence of Cohn's theorem [3], I=  H( ( I ) ,  *), where (I) is the associative 
subalgebra of R generated by I. By (1.3), if K is an e-modular inner ideal 
of I, then t (G(K)( I )  K), t (Gl (K)( I )  (1  - e) )  c K. 

Let K be a primitizer of I ;  since I is not PI, 0 # Gl( I )  is a nonzero sub- 
ideal of I, hence there exists e~ G, ( I )  which is a modulus for K by (0.7). 

Consider RGl(K) + R(l - e), the left ideal of R generated by G,(K) and 
1 -e.  Put L =  (RG,(K)+ R(l  - e ) ) n  J. It is clear that L is an inner ideal 
of J .  We show that L is a proto-primitizer of J. 

(a )  If M is a nonzero ideal of J ,  then M + L = J.  Indeed M n I # 0 
since J is prime. Hence I =  ( M  n I) + K and therefore G l ( I )  L Gl (K)  + 



( M n I ) .  Thus e is in G , ( K ) + M n I c M + L .  Since 1 - e e L ,  ~ E M + L  
and M + L = J .  

(b)  L is proper: otherwise 1 E RGl(K) + R ( l -  e )  and there exists an 
integer m such that 1 E JJ .'?. JG,(K) + JJ .m. J ( l  - e). 

Since I is primitive, I is prime by (0.8), hence semiprime. Thus I3 is a 
nonzero ideal of I (in fact of J). Thus, by (0.7), there exists g~ I3 which is 
a modulus for K. 

Note that 13J c (I ), since abax = a{bax) - (U,x) b E IIc (I) for all a, 
b~ I, x E J. Moreover, 13(1) Jc ( I ) ,  since (I) JG J(I) + (I) (the 
elements of I can "jump" over the elements of J by using ax = a0 x - 
x a € I + J I ,  when U E I ,  XEJ). Thus 

+ 1313 .m. 13JJ.m. J(1 - e ) c  (I)  Gl (K)+  ( I ) ( l  -e) ,  

NOW g2" =gmgm = (gm)* g m €  t (G1(K)( I )  Gl(K))  + U,-,(!((I))) + 
t (Gl (K)( I ) ( l  -e)).  Since t ( ( I ) ) c  H ( ( I ) ,  * ) = I  and U , _ , I c K  by the 
e-modularity of K, applying (1.3) gives gZm E K. But g was a modulus for 
K and then g 2m is a modulus for K contained in K, which is a contradiction 
by (0.5) since K is proper. I 

In this section we show that any tight associative envelope of a primitive 
Jordan algebra is primitive, over a field of characteristic not two. We 
apply this result to the cases R +  and H(R, * )  so showing that primitivity 
transfers from these algebras to R. 

(2.1 ) THEOREM. Let J be a primitive special Jordan algebra over a field 
of characteristic not two. Then anj? tight associative envelope R of J is 
(one-sided) primitive. 

Proof: We can assume that J is unital. Since R is an envelope of J,  it 
is readily seen that R is unital with the same unit, denoted by 1. 

If J is PI, it is simple by (0.9). Being a tight envelope, R is also simple 
and therefore primitive. Thus we can assume that J is not PI. Let K be a 
primitizer of J. 

Since 0 # G(J )  is an ideal of J, there exists e~ G(J)  such that K is 
e-modular (use (0.7)). Since J has unit, 1 - e E K. 

Let us see that either G(K) R + (1 - e)R or RG(K) + R(l  - e)  is a proper 
one-sided ideal of R. Otherwise: 
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~ E G ( K ) J J . ~ . J + ( ~ - ~ ) J J . ~ : J ~ ~ ~  I E J J . " J G ( K ) + J J . ? . J ( ~ - ~ )  for 
some m. Thus we can display 1 in the forms 

where k, k' E G ( K ) ,  x,, y,, zi, nl, E J for all i. 
Let H,(X)  be the hearty n-tad-eater ideal in the free Jordan algebra on 

X, a countable set of generators [ 8 ] .  As above, we can find fn  E HEn(J) ,  
such that K is f,-modular for all n. Now 

T a k i n g g n = ( C k x m . . . x , + C  ( 1 - e ) y m . . . , v , )  f n ( Z z , . . - z , k l + C  l . t l , . . .  

t t . , ( I  - e ) ) ,  i t  is clear that 

G { G ( J )  j j j ~ )  + U ,  { j j j )  G K if n is big enough, by (1.2)(a). 

Analogously f ,  g,  and g, f, are in K if n is big enough. For such an n, we 
get: 
f, 0 ( f ,  + g,) = f: + 1/2( f ,  g,  + g, f , )  is in K since f, is a modulus for K, 

and then f : ~  K, which is a contradiction by (0.5), since f: is also a 
modulus for K by (0.2). 

Thus, suppose, for example, that M = R G ( K )  + R ( l -  e )  # R. We show 
that for every nonzero ideal I of R we have M + I =  R. In fact, since R is 
a tight envelope of J, I n  J # 0 is an ideal of J and, hence, J = K + ( I n  J )  
and G ( J ) G G ( K ) + ( I n J ) c _ M + I . T h e n e e M + I a n d  ~ E M + I .  Wehave 
proved M + I = R, thus R is left primitive. 1 

(2.2) THEOREM. Let R be an associative algebra over a field of charac- 
teristic not tbvo. Then, R is (one-sided) primitive if and only if R ( + )  is 
primirive. 

Proof: If R'+'  is primitive, R is one-sided primitive, using the previous 
theorem. 

The converse is Ex. (5.6) of [ 2 ] .  1 

(2.3) THEOREM. Let R be a prime associative algebra, over a field of 
characteristic not tu90, with an involution * :  R -* R, H ( R ,  * )  the Jordan 



algebra of' *-s~?rnrnetric elements in R. Then, R is primitive if and onlj, if 
H( R, *) is primitive. 

ProoJ: Suppose R is primitive and unital. Let M be a proper right ideal 
of R such that for every nonzero ideal L of R we have M + L  = R. Take 
K = t (MM* ), the linear span of elements of the form ab* + ha*, where a, 
h are in M. It is straightforward that K is an  inner ideal of H := H(R, *). 
And K is proper since it is contained in M. If I  is a nonzero ideal of H, then 
[6] there exists a nonzero ideal L of R such that L =  L* and 
t (L)  = H(L, *)  L I  (recall that we are assuming characteristic not two). We 
have 1 E M + L and 1 6 M *  + L*. Hence 

Taking traces of both sides we obtain 1 E t (MM*)  + t(L) G K + I. 
If R is not unital, then R is also primitive and the previous argument 

shows that H(R, * )  = H +  F 1  is primitive. Hence H i s  not unital (otherwise 
H + FI would not be prime) and H(R, *) is the unital hull of H, concluding 
that H is primitive. 

Note that for every nonzero *-ideal L of R, L n  H#O. If, on the 
contrary, L n H = 0, then * acts as -Id on L and L is anticommutative: 
xy=( .uy)**=(y*x*)*=(( -y) ( - .u) )*=( j>.u)*= -yx, for all x, ) 'EL.  
Hence L' = 0, where L' denotes the associative cube of L  : .XJY = -yzs = 

ysz = -.uyz, hence .wyz = 0 for all u, y, z E L since the characteristic is not 
two. By primeness of R, we have L = O .  If I is just an ideal of R (not 
necessarily *-invariant), then by primeness L = 11* is a nonzero *-ideal of 
R. The above argument then shows that 0 # L n H E  I n  H. 

Suppose H is primitive. If H is PI, then it is simple and unital (0.9). Let 
us show that R is simple and unital. If 1 is the identity in H, it is readily 
seen that 1 acts as an associative identity for the elements of H. Thus 
l ( x +  x * )  = x +  x*, l.u*.u=.u*.u, which yields l.u2 = l ( .u+x*)x-  l x * s =  
( x + x * ) x - x * x = x 2 .  Hence l . u 2 = s 2  for all X E R .  Linearizing this 
identity we obtain ( l x - x ) l  = 1x1 - x l  = l ( x  1)-.ufl l =O. The set 
( I x  - ,u I .u E R is a right ideal with nonzero right annihilator. Since R is 
prime, this right ideal is zero, hence I s =  x for all x in R. Analogously 
xl = s and I is the identity of R. Now, if I  is a nonzero ideal of R, then 
I n  H # 0, hence 1 E H E I, by simplicity of H, so I  = R. If H is not PI, then 
the subalgebra of R generated by H is prime and contains a nonzero ideal 
of R (see [ l ,  Th. 2.1.51). Thus we may assume that R is generated by H, 
i.e., R is an envelope of H. As shown before, any nonzero ideal of R has 
nonzero intersection with H. Hence R is a tight envelope of H and we can 
apply (2.2). 

We have proved that R is one-sided primitive, hence two-sided primitive 
since R is isomorphic to RoP via *. I 
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Theorems (2.2) and (2.3) were first proved by E. I. Zel'manov (personal 
communication) using similar techniques (ideals of Zel'manov polynomials 
which interact well with inner ideals). Here we obtain them from the more 
general situation studied in (2.1). 

We apply the results of the previous sections to give a complete descrip- 
tion of primitive Jordan algebras (over fields of characteristic 2 2 ) .  In fact, 
since a primitive algebra is prime and nondegenerate, the classification 
of prime nondegenerate Jordan algebras given in [ l l ] ,  together with 
Theorems (1.1 ), ( I S ) ,  (2.2), and (2.3), and the fact that a primitive Jordan 
PI algebra is simple (see (0.9)), immediately gives: 

(3.1 ) THEOREM. Let J be a Jordan algebra over a field of characteristic 
not two. Then J is primitive if and only if one of the following holds : 

( a )  J is a simple exceptional 27-dimensional Jordan algebra over some 
extension field of the ground field. 

(b )  J is the Jordan algebra of a nondegenerate symmetric bilinear form 
on a vector space M otvr a field r (an extension field of the ground field), 
where dim, M > 1. 

(c )  J contains a nonzero ideal I isomorphic lo an algebra A'+',  ,(,here 
A is a primitive associatit.e algebra. Moreover, J can be imbedded in the two- 
sided Martindale ring of fractions of A, i.e., A '+ ' a J c (Qo(A))(+ '. The 
ideal I is invariant under autonzorphisms and deri~ations of J.  

(d )  J contains a nonzero ideal I isomorphic to a Jordan algebra 
H(A, *), where A is a primitive associative algebra with involution *. 
Moreooer, J can be imbedded in the two-sided Martindale ring of fractions 
of A, the involution * can be uniquely extended to an involution * : Qo(A) -, 
Qo(A), and H(A, *) a J c  H(Qo(A), *). 

The authors thank Professor E. I. Zelmanov for many enlightening talks about Jordan 
algebras, many valuable suggestions in the preparation of this paper, and his constant atten- 
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