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ABSOLUTE ZERO DIVISORS IN
JORDAN PAIRS AND LIE ALGEBRAS
UDC 51946

E, I. ZEL'MANOV

ABSTRACT. The following theorem is proved.
‘THEOREM. A Lie algebra over a ring @ 3 ), generated by a finite sof of elements of second
order, is nilpotent. o
" Bibliography: 6 titles. '
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Ome of the auxiliary theorems for A. 1. Kostrikin's solution of the weakened Burnside
problem for a prime exponent was

THeOREM 3 from [1] (see also [2]). An Engel Lie algebra of index n over a field of
characteristic p > n, generated by a finite collection of elements of second order, is nilpotent.

We recall that an element @ € E is called an element of second order if a** = 0, where
a® denotes the operator of Lie multiplication by the element a. If there is no 2-torsion in
£, then such elements are also called obsofute zero divisars or covers of thin sandwiches
(see §1).

Usmg the ideas and methods of Kostrikin [1}, and also of Zel'manov [4] on a problem
of A. L. SirSov, we prove the following theorem.

THEOREM 1. 4 Lie algebra over a ring of scalars ® 2 | generated by a finite collection of
elements of second order is nilpotent.

In order to prove Theorem 3 from [1] {see also [2]), Kostrikin first reduced it to the
following proposition.

ProposimioN 1. Let M be a finite set of elements of an algebra C (satisfying the
conditions of Theorem 3 from [11), and let b be an element of second order. A sequence of
elements (c,),an is constructed by induction: ¢ = [xgb), .. ., Cost = [CaX V0] X, ¥ €
M. i > 0. Then, beginning with some index m, ¢, = 0 for n > m.

In this connection. the Engel condition and restriction on the characteristic were
essential mainly for the proof of Proposition 1. In §1 of our paper we reduce Theorem 1
(basically following Kostrikin) to the following proposition.

Prorosimion Y. Let M be a finite set of elements of an algebra P (satisfying the
conditians of Theorem 1), let b, and b_ be elements of second order, and let b = [b,], b.).
A sequence (¢,) an IS constructed by induction: cp =[xgb) ..., C,yy = [Cx¥,0), X,

Y. € M. i > 0. Then, beginning with same index m, ¢, = 0 for n >_ m,
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We next note that Proposition I” in essence is equivalent to the local nilpotency of the
Jordan pair § = ([£.56,} [£.8]). Thus there emerges a connection between our
question and the question on leecal nilpotency in Jordan systems, and first of all with a
problem of A. I. SirSov {see [3] and [4]). In §2 a locally nilpotent radical is constructed in
Jordan pairs, and some of its properties are studied. Finally, in §3, using the methods of
[4] we prove the local nilpotency of the pair ¢ and with that complete the proof of
Theorem 1. In §4 it is proved by means of Theorem 1 that absolute zero divisors of a
Jordan pair without additive 6-torsion lie in the locally nilpotent radical,

§1. Sandwiches

Let £ be a Lie algebra over an associative-commutative ring ® 3 1, let 4 be some
associative enveloping algebra for £, let the algebra A = A + © - 1 be obtained from 4
by the formal adjoining of an identity element, and let £ = £ + & - 1. We shall denote
the Lie multiplication of the elements x,y € £ by [x,y], and x 'y will denote thelr
product in the algebra 4.

We denote by ) the d.submodule of the algebra A generated by products of the
typee, ... 6.6 € £.

We denote by £, ..., & Qifferent copies of one and the same module g,

Following Kostrikin {2}, we shall call the equality c&™¢ = 0 a sandwich of thickness m
of the pair {2, A), and the element ¢ the cover of a sandwich of thickness m or a
£my-element of the pair {€, A). For m < 1 we shall speak about a thin sandwich, and for
m > ) about a rhick sandwich. The cover of a thin sandwich is sometimes also called an
absolute zere divisor of the pair (£, A).

We denote by C,_(E, A) the set of cim,-elements of the pair (£, A).

I a is an element of £, we denote by a* the operator of Lie multiplication by a.
Furthermore, we denole by £* the Lie algebra {a* | a € £}, and by R(£) the subalge-
bra of the associative algebra End(£y, £y) generated by the operators a‘ a € £. Thus
R(2) is an associalive enveloping algebra for £*,

We shall call an element @ € E the cover of a sandwich of thickness m (or c(m,-elemem)
if a* € C,(£* R(£)). C(L) is the set of c(,clements of £. It is not difficult to see [1]
that every element of second order of a Lie algebra without 2-torsion lies in C(£), Le. is
the cover of a thin sandwich. )

The following three lemmas are taken from [4]. However, for completeness of the
presentation we include their proofs.

Lemma 1.} (on deletion). Ler b and ¢ be covers of thin sandwiches of the pair (C, A), and
fet k,, . .., k, be naturol numbers. Then:

) BeB[s, B .. L[, cl¥Bch C bR . .. bR, .

")bcﬁ’”‘”[b clﬁ*ﬂ {8, c]C"‘r’bc C bL‘fﬁb begs’bc

3 cbif“‘"[b c]Lz"‘) . B, C]C‘ki"bc C ch ﬂk')b bqf”bc,

4) Cbﬁk')lb c]l:"gk‘) .5, L‘}E(k*)cb c cbe("‘)b . bﬁg")b.

Proor. For any x € £ the following inclusions are valid:

By C xB0 4 PO, PO iy 4 W), (@)
By ¢ BOREHD 4 xR 5 Bk-D, <P C BR-DREM 4 PWe 4 PED (1)
By ¢ POXPU-D 4 BOEBED 4 (Pl 4 pk-D),

. . (®2
B0 ¢ P B@) 4 Pl B0 4 Btk 4 Pek-D), @)

.

P PEr i b 7
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Lemma 1.1 is now obtained by a simple induction on p and application of the
formulas (@0). (®1} and (P2).

Lemma 1.2. Let the natural numbers p > | and k > 3, the covers of thin sandwiches b
and ¢ of the pair (€, A}, and the element £ € A be such that

bEPD ... bER BRE VPRI = PP . (BD RU-NEIE m 0, -
.o Then i

[b, c]EP{b. ] ... BR [, €]B¥[ b, c])t = 0.

PROOF. a) We shall show that [b, c}¢P(b, c} . .. PD 66 et = 0. By (@1) we have
pop ¢ PpRk=1 4 pPt) 4 P-D_Therefore

(5. c]B@ ... B2 bef®bet
C[b,c]RP ... BD 1bc(bR® + PWpRK.—D 4 k-t
S, c]BP ... EQ befOBRK-Tct +]b, c]RP ... BR bR~ Veg,

We have
[B.c]EP ... BR beBWpRENcg () BOBEPS . .. D pR@BENE = 0,
Furthermore,
[ b c]éﬁz’ f‘lm bci:i”‘")c& C(z) E(‘)cé?) fgﬂ) BVt =,
b) We shall show that [5, ¢ beB®eb = 0, By (92) we have E‘*’c c & 4

PO -0 o PRIk 4 Pk-2) Therefore
C[Bc]BP .. BR bef®che
Qb c]EP ... B beB@RU-Dbg + b, c]BP ... ED heRk-Dpg,

We have . _
[, c]BP ... BR beRPDeE*-Dpg C(2) BMefPe . ., cBR cBD K m g,
Furthermore,

(b, c]EP ... B2 beRB*-Dpr (%) BWBEPS . .. bBD bR*-1pg = g,
This proves the lemma.
If B is a subset of the algebra £, then we define the solvable powers of B inductively
by B = B and B+ = {[p, ] | b, ¢ € BHY,

Lemma 13. Letp > land M = (b & B | 625 = 68Pb . . . bEDb = 0). There exists a
Junction f(r), with argument a natural number r > 3, such that for any ¢  M'S

ISP cém c=0.

PrOOF. We construct in descending succession p + 1 functions Jorr oo« fy such that
for any of the numbers 1 < g < p+ 1, r » 3, and for any element ¢ & MU the
equality

cBPe. . BPeR) e, . cBic =0

("} Lemma 1.1, with c deleted,
(3} Lemma 1.1, with 4 deleted,
%) Lemma 1.1, with & deleted.
{*) Lemma 1.1, with ¢ deleted.
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is satisfied. We set f,, (r) = l. Suppose we have constructed the functions f,,y .. .. fj
for r > 3. We define a function f,_, by setting

Hdn=&m&-~-+r+l+ﬂ+rm2rf%ii%iﬂj+r—2

For brevity set r, = (r* + 5r — 10)/2. Then for any a € MA@l -
atPa. .. aégl]a.ﬂ‘;‘) . égl)lg = (.
By Lemrma 1.2 (we set & = 3), for any ¢ € MU+ ye have
CE?”C N Cég)_\cég"—‘)c . Cé(;.i.):ﬂ =0,
Applying Lemma 1.2 r — 2 times, we obtain that for any ¢ € MUAtr0+7-2
2@ .., cé"’ cé(”c@(") c... cé"Q c =0,

Consequently, the function f, _ is the one we need. It now only remains to take fl as the
desired function. This proves the lemma.

LeMMA L4, Let the elements x,, ..., x, lie in C(E, A). Then for any indices 1 <
v+ s inyy S n it is possible to rewrite the element x, ... x,  in the form %, ... X
Z, WV, where w, is some ward from {x,}, and y, is a commutator from {x} of weight
greater than 1.

The proof is obvious.

LeMMA LS. Ler a Lie algebra C be generated by a collection of elements x,, . . ., x, (we

write £ = Lie{x,,...,x,>) and x> =0, | <i < n. Then the algebra [C, B} is finitely
generated,

PROOF. We shall show that [€, £] is generated by commutators from the set
=%mﬁ-”ﬁﬂlgﬁgmlgkgn+ﬁ-

In fact, consider the commutater x; x7 . - X}, where p > n + 3. It is clear that x* €
C,{E*, R(LY). Therefore, using Lemma 14 we can rewrite x' xf in the form
x,:. cxt =2, w,v¥ where w, € R(£) and y, € [E, £]. By mducuon the elements
X KW, and ¥a lie in the subalgebra Lie{M ). This means the element xxt ... xt also
hes m Lie{ M 3, which proves the lemma. ’

LesMa 1.6, Let £ = Lie{x,,...,x,)> be a solvable Lie algebra, A an associative
encveloping algebra for €, and x, € C(£, A), | <i < n. Then A is nilpotent.

Proar. By Lemma L5 the algebra [, £] is finitely generated. Consequently, carrying
out an induction on the degree of solvability, we can assurne the set [£, €] is associa-
tvely nilpotent, say of degree m. Then A is nilpotent of degree not greater than
{n + 1)m. In fact, any word w(x) from {x,} of degree (n + 1)m can be represented in
the form w = w, ... w, where w,=x _...x . 1<ij,<n+1 By Lemma 14,
w, = t,v, where y, €[C, 2]. Hence w & A4[E, 8]...[€, €] =0. This proves the
lemma.

COROLLARY. Ler B = Lie<x,. ..., x,> be a solvable Lie algebra and x** =0, | < i <
n, Then £ is mlpo:em.

ProoF. 11 1s easy to see that x* € C(E*, R(2)), 1 </ < n. This means the algebra
R(L} is nilpotent by Lemma 1.6, and from this {ollows the nilpotency of £.

~

o mimm  p—————————— o
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LEmMa 17, Let £ = Liedx,, ..., x,», A an associative enveloping algebm of €, and
X, €E Cy(. A). 1 € i < n. Then A is nilpotent.

Proor. 1} We shall show that A is generated as a ®-module by the elements of the
form /, .../, where /, € £ and k& < n. We denote the ¢-module generated by elements
aof the form L... L. L EC, 1<i<k<n by 8 Unlike £, the existence of an_
identity element is not assumed in ™. For each index 1 </ < n we consider the
. O-module I, = &x, + (€, x}. I is easy 10 sec that MM, = Oand £ = =] ;. We shall
show that every product a, . ..a,,, of elementis g, € £, | <i < n+ 1, lies in £, In
this connection, without loss of generality we can assume that each factor 4, lies in one
of the modules Mz, | < B < n. This means there can be found distinct indices i and j,
1 <7 <j < n-tl, such that the elements g; and g; lie in some module M. We note that
the factors a,, | < @ < n + 1, in the product a, . a,,, are permutable modulo £,
Rearranging the factors so that a4; and g; are adjacent, we obtain a,...a, =0
{mod ™). This means 4 = £, '

2) If A4 is not nilpotent, it can be assumed to be semiprime. Then, by 1), C (€, 4) =
By Lemma 1.3 for some r > 1 we have (C,(E, A))Y* € C,(E, 4) = 0. This means the set
Cy(t. A) is solvable. Furthermore, by Lemma 1.1, [Cy(£, A), C\(E, 4)] C CLL, A).
Therefore £ = ®C4(E, A), ie. £ is generated as a d-module by the sert Cy(2, A).
Consequently, £ is solvable. The nilpotency of 4 now follows from Lemma 1.6. This
contradicts our assumption, which proves the lemma.

COROLLARY. Let £ = Lie{xy, ..., x,» and x; € Cy(L), | < i < n. Then € is nilpotent.
LEMMA 1.8. Suppose that £ = ®C(L). Then DCLE) is a locally nilpotent ideal in F.

ProoF. As we noted above, [C)(£), C(E)] C Cy(£). Therefore ®C,{L)is an ideal of £.
“The local nilpotency of $C,{E) follows from Lemma 1.7, This proves the lemma.

LEMMA 19, Ler £ = Lie{xy, ..., x>, € C(E), | €i < n, and let S be the set of
* commutators from {x,| 1 < i < n)."Let S, be a maximal subset of S generating a locally
nilpotent ideal I in B, and @ £ — € /1 the natural homomorphism. Then no nonzero subset
of 8% generates a locally nilporent ideal in CF.

PrOOF. Suppose on the contrary that some nonzero subset of the set S¥ generates a
locally nilpotent ideal in £%, We denote by S, the inverse image of this subset under the
mapping S_:) S+ I/1.s08; 2 S,. We shall show that the ideal J generated in £ by S,
is locally nilpotent, which will contradict the maximality of the subset S|. It is easy to see
that J = &{J n §). We choose arbitrary elements a,...,q, €£J NS, and set E, =
Lieda,. ..., q, ). By assumption some solvable degree £ of £, falls into the ideal J. By
Lemma 1.5 the alpebra £471 is finitely generated. Since the ideal / is locally nilpotent, this
means £, is solvable. By the corollary to Lemma 1.6, £, now is nilpotent. Since the

choice of a|, .. ., g, was arbitrary, J is locally nilpotent. This proves the lemma.
We shall henceforth denote the left-normalized commutator - x,xf ... x* by
[x,...x,]

LEmMMA 1.10 (see [1]). Let aq, a,, ay a,, a, € £, let A be an associative enveloping
algebra for £, and let ay, a,, a, a, € C(£, A). Suppose that for any permutation
(iiaisi) = (1 23 4) the equality ¢ = [ap0ay0:0,) = [apa;a,0,a,] holds. Then ¢ €
CAHE, A)
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Proor. We assume below that | <4, iy, /i, iy, iy < 4.

D cq;, € [E, g)a; = 0. Analogously, g,c = 0. Furthermore, for each element x & £ we
have [cxa) € [Pa;xg;) = 0. Hence cxa; + g,xc = 0.

2) We consider ci‘:l‘”a,.'a,. a, . By (®1) we have E‘l)al.‘ c a,.lf‘lu’ + E“)a,'é(“ + B, Hence

A -
cl?;u)dﬁa,-:ﬂ'h c cé“)a;,é{-”“i,“i, + ‘:Em"h"h = al’ﬁ(i)a'lé(‘)ca‘,: + a,lén)cah w (). -~
) We consider cf‘fmﬂ;lﬂ.-,aoﬂ.',af.- We have 7
cBPa, g ama, C o(a,BP + BVg O 4 BW)g. a0,
= ci?.ma:.émai,auﬂt,ai.. +e ém"lz"ﬂ"f;"h

= aﬂﬂma,ié“’a,,aom,‘ + atﬁma,’agca,‘ - 0,

4) We consider cﬂ‘z’a;'aﬂaiza,,a,‘. We have .
2y B 4 P, PO 1
eEPa apa aa, C c(a, LD + £Mg B8O + alt ’)aoa,:a,ja,.
o), PQL . 1
= ¢£Wq £Waya g, g, +‘cE‘ )ﬂo"i,ﬂi,ar,

Pt 1
C g £ o laya, a; a0, + c‘:"l(”aﬂa,.:aha,‘ = 0

by 1) )
5) We consider c¥®ayq, 4,0, a, C c£%; 0,4, a,. We have

iy iy,
céma,-la,.:ai,a,-. C c(a,-lém + E{“a,.ﬁm + é(z’)a,zaﬁa,‘
= cE‘”a,'E’.(z’ai:a,.!ai‘ + cf‘i(z’aiza,-,a,.
= qlE"‘)cEmaﬁa,.la,‘ +cl®a g0, =0
by 1). This proves the lemma.

We now assume that Proposition 1’ is true, and following Kostrikin [1] we shali prove
Theorem 1. Let £ = Liedx,, ..., x,», and x*? =0, 1 < i < 1. We shall show that any
finite set {y5. .. ..y,) of commutators from {x;} of weight not less than 2 generates a
nilpatent subalgebra £, = Lie{y,, ...,y of €. Hence it will follow that the algebra
{£, £]is locally nilpotent. This means, by Lemmas 1.5 and 1.6, that £ is nilpotent.

If €, is nol nilpotent, then by Lemma 1.9 without loss of generality we can assume
that no nonzero set of commutators from {yg ..., ¥} generates a locally nilpotent
ideal. In addition, carrying out an induction on &, we can assume that Liey,, ...,y
is nilpotent. Consequently, there exists a commutator ¢, from {y, ..., ¥} commuting
with all the elements y,. I <i < k. If [cg gl = 0, then ¢, would lie in the center of E,.
This means [¢4. Y] # 0. By Lemma 1.6 the operators *, | <7 < k, generate a nilpotent
subalgebra in R(t,). Let s be the maximal number with the property that for somme
numbers 7. . ... =2 N k) the commutator [coyp¥;, - - - ;] is different from zero,
In addition, Tet p be the least number for which there exist commutators f, . . . \ fy from
{¥w- .. ¥} of total depree s such that ¢; = ey, f; - . . f,] # 0. Then by the maximal-
ity of s the element ¢, commutes with y,, I <i < k, and by the minimality of p for any
permutation {/y...4&,) = {1...p} we have [eopof; ... fl=lcoyafy .- - fol=rc, I

p < 1, then ¢; would lie in the center of £,. If p > 3, then ¢, = ~{yocof, - - . J,] would be
a ¢p-¢lement by Lemma 1.10. But we have assumed that no nonzero commutator from
{¥a -.-.):) generates a locally nilpotent ideal, and so such a commutator is not a

cy-element. This means p = 2. Acting this same way with the element ¢;, we find
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commutators f; and f, from {y,, ..., .} such that [¢, po f3 fy] # 0, and so on. This gives
an infinite sequence of nonzero elements, which contradicts Proposition I’. Thus we have
deduced Theorem 1 from Proposition 1"

For the proof of Proposition 1’ we need the concept of a Jordan pair (see [6]).

Let P* and P~ be ®-modules with quadratic mappings U°: P - Hom(P ™, P?) (here
and below, s € {+, -}). -~
3 We define trilinear mappings P° X P~ X P° — P° (x,», z}— {xyz}, and bilinear
“mappings ¥°: P X P*—End(P°) by the formulas {xyz} = 2V}, = yU;,, where
Us, = Ug,, — U} — U?. Ttis obvious that {xyz} = {zyx} and {xyx} = 2yU}.

DEFINITION. A pair P = (P*, P} of ®-modules with a pair of quadratic mappings
U?®: P° - Homg(P ™, P°) such that in the above notation the following identities and all
their partial linearizations are satisfied 15 called a Jordan pair:

ViUs" = U°Vy5, (1)
—g g :
yUg.y - x‘rugﬂ'v (2)
Usyo = UWUUL. | 3)

Subsequently, where it does not cause ambiguity, we shall often omit the symbols + g in
the notation for the operators and write U,, U, , and V¥, , instead of Uy, U7, and V.

A pair h=(h*, k) of ®-linear mappings A°: ¥°— P° such that h°(yU?S) =
h(¥)Upyy is called a homomorphism of the Jordan pairs (V*, ¥7) and (P, P7).
Linearization gives us h°({xyz}) = {h°(x}A™(y)h°(2)}.

A pair P = (P*, P") of submodules of a Jordan pair ¥ = (V*, V") is called a subpair
{respectively ideal) if P Uz, © P° (respectively V°Up. + P Up. + (VV TP} C P°).
Other concepts are defined in a natural manner, and they can be found in [6]. ‘

We note that in an arbitrary Jordan pair the following identities are satisfied (see [6]):

Ve Van] = Vx.y.vu_,, — Vxl/u.u.w (4)

UeVye = Urav, ,— ValUs, ' (5)

Ur Uy = Vi yVoy — VX.zUy? (6)
UlUe.=V,Vy.— Vau o0 (N

UdlUz + VU U = Upepey — Vie JUzUy e — Uzuyu e (8)

Let L = L3+ L5+ Ljbea Z,-graded Lie algebra over a ring of scalars ® 3 § such
that {L_7. L ;] =[L;, L7j] = 0. Then the pair of ®-modules (L3, L_3) with trilinear
product {x.v 2} = [[xv_ ]2} x,. 2, € L7, ¥_, € L_51. is a Jordan pair (see [6]).

A ®-submodule X of a Lie algebra L is called an inner ideal if [LKK]C K, Let K+
and K be abelian inner ideals. Then K* + K™+ [K*, K7} is a Z;-graded Lie algebra,
and | K ™, K7} is a Jordan pair. '

We now return 10 our previous situation. Let £ be a Lie algebra satisfying the
conditions of Theorem 1, and b, b_& C(2). ThenJ* = (£, 5, ]and J~ =[£, b_] are
abelian inner ideals. We denote by § the Jordan pair they constitute. Suppose that a
sequence of elements (c,),.,,, ... is constructed according to the rule ‘

e =[%b b i =[x b b, xuy, €80, € (+,-).
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LemMma L1 Any element ¢, can be rewritten in the form ¢, =W, b_), where
W, =Z W is a sum of words of a pair 5 from {{x, b} Iy, b) 0<i<n=—1),
W, € V. In addition the composition of each term [W\9, b_, ] coincides with the composi-
tion of c,.

= -

ProorF. We carry out an induction on the number n. We have ¢, =[xy &} b4}
Assume that the lemma is true for ¢, | <k <n. Let ¢, = [oby, - - b b= [W, b ]
Then ‘

I

{eaxwyab b ] ={xg... b, b xp,b,b]

=[xg. . 0,0 X[y b, 18] +]x. .. bob yu[x,b.]6_]
=[ Wb x,[ v b, 1o ] +[ Wb y[x.b,]b_]

=[Wi[6 = 5, 1[02. 8] +[W[b_3,] [0 £, 1] =[ Warb.],

where W, = W(Vy heat Vit st b ) €T and
2) =

[cn'rnynb-b* ] = [ W"b—x“'yﬂb-b"‘] = [ W"[b" x"][y"’ b"]b“'] = [ W""‘ P b"’]'
where W, = -W. Uy _ay61 €5
This proves the lemma.
Lemma 1.11 shows that for the proof of Proposition I’ it is sufficient to verify the local
nilpotency of the pair § = ([, 2, ].{E, b_]). Therefore we turn to the study of local

nilpotency in Jordan pairs, and first of all to the construction of a locally nilpotent
radical,

§2. The locally nilpotent radical in Jordan pairs

Our construction in many respects is analogous to the construction of the locally
nilpotent radical in Jordan algébras (see [5]). The calculations are greatly simplified if it
is assumed that & D ;. However we prefer not to impose a restriction on the ring ¢ in
this section.

We recall that the solvable powers of a Jordan pair P = (P*, P™) are defined by
induction: P = P, Pl = (P-U,., P*U,), and Pi+1 = (Pl A pair P is called
softable if P = 0 for some natural number n. The least number with this property is

called the degree of solvability of the pair P. As in [5), the keys to the construction of the
locally nilpotent radical are the following theorems.

THEOREM 2. Let P be a finitely generated Jordan pair. Then the pair P!V is also finite
genergted. N

THEOREM 3. A finitely generated solvable Jordan pair is nilpotent.

We proceed to the proof of these theorems, but first give some more definitions. Let
P=(P*, P)be a Jordan pair, and let P* & P~ be the direct sum of the ®-modules.
The operators ¥/, and U? can be extended to homomorphisms of the module P* @ £~
setting P 7V7, = 0 and P°U; = 0. The subalgebra of End,(#* @ P-) generated by the
operators V7 and U7, x € P°, y € P, z € P°, is called the multiplication algebra of
the pair P and is denoted by M(P). We denote the subalgebra -of End,{P®, P%)
generated by the set { 7} by Ass{V®), and the subalgebra generated by Ass¢¥°) and
the identity operator id: P* — P hy A?s( o).
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Let the pair P = (P ™", P7) be generated by a finite collection of elements {x,, ..., x,
€ P*yn..... ¥, EPT).

LemMa 2.1. For any elements a,,...,a,, € P° and b\, ..., b, & P the e product
{2, V., can be rewritten in the form 1L, V, by = Z; WV, o where W, EASS(V"’)
and either d, € P°Up. or ¢; € P~ Up.. e

-

“~  PROOF. Modulo the ®-submodule ? generated by operators of the form 2 W;V_,
where W, € Ass{V' ™) and either 4, & P°Up. or ¢; € P™U,., all factors ¥V, , and Vas
are permutable (see (4)). Therefore if one of the elernems g, 1 <i<4n, lles in P Up-,
then moving the operator ¥, , o the right we obtain the assertion of the lemma. Let us
assume that all elements g, ] <i< 4n, belong to the set {x,,..., x,}. Then at least 4
elements with different subscripts are equal, a = @, = g, = a;, = a,.‘. Moving the opera-
tors with subscripts £, 1 < k < 4, to the right end, we obtain on the right
Vah Vaq Voo Va by By identity (7) from §1 we have V,,,' v, ab, = U‘,(J",w,'3 + VA,U.J;, and
v, b, V U Ub-;-b.. + V% B Therefore -

Vb, Vab, Vas Vap, = Uan,.‘.r:,-,Uan- b;, = Us;ugb; v Us; b,
= Vo, v, Vo o + Vo u,o Vo ua, — Vo, ug, UdUp, b, = 0 (mod &),

This proves the lemma.

Lemma 2.2, For any elements a,,...,a, € PP and by,..., b, € P, m = 32n? the
eguality

[1;11 Vo = g WiV

kolds, where W, € Ass(V™"), ¢, € P~Up. and d; € P°Up-.

PROOF. We have

32a? 8n 4nk
JLE T NN

k=l i=dn(k—1)+1
By Lemma 2.1,
Ank
-2 W,V
imdn(k—1}+1 b‘ YU,

wherc W,:,EAss(V"’) and either r,, € P™Up or ¢, € P UP-. We consider
I, W.., ,t o, . We set

Ny = {1 <R<<8n| run, € P Up). No= {1 <k<<Bn] lho, € PUpal -~
Since |[N,| + |N_| > 8n, either |N | > 4n or |N_| > 4n. Assume that the second possi-
bility is realized. With the aid of identity (4), moving the operators ¥ s, 1O the right
end, we oblain on the right H,_, g Where g, & P7U... Even if only one element s,

I < j < 4n, lies in P *Up.. with the aid of (4) by moving the corresponding operator to
the nghl we obtain the assertion of the lemma. If {5,...,5,} C {x;,...,x,}, we
repeat the arguments of Lemma 2.1, This proves the lemma. T

We denote by M (P) the subalgebra of M(P) generated by the operators from
Ass{F?>, and we set Uf, = (US| a. b € P}, 0 € {+, -}. Let s = (64n)%,

Lemma 2.3. PUMM(P) ¢ P
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ProOF. 1) Leta, af € P?and b, b € P, 1 <i < 32n2. Then
32n?
PoU. I Uz Ups C (PP
=l

In fact. by (6) for | < i < 32n% we have Uz 2 Uy € AssCV ™). Therefore the assertion
1o be proved follows from Lemma 2.2 -

2) Let W be a word from the operators { U, gz Us b qty, Va a0 Op 0 € P°, b b e
P~} in which the operators U, , and U, 4; occur at least 64n? times. Then using (5) the
word B can be rewritlen in the form

’ aant
. ¢ 13 4 2
v SV T10, 00, ) V2
-3 =1

.
:ct.'b:cr.

where Wy € Ass¢ V=3, By 1), P ¢ PU,

3) Now let the operators U, . and U, ,, occur in the word W less than 6-4n times,
Then W cun be written in the forrn W= [I,_‘(W AW, where W, € Ass(¥") and
U € USpn 1 i <k + 1, k < 64n’. By the choice of the number s the length of some
word W, is not less than 6442 Dividing the word W, into two subwords of length not less .
than 32n? and using Lemma 2.2, we have W, = 3_ W V. _d_V, ,» Where W, € f(‘:‘l(V’
andc,, d,, r,. 1, € PU'L Furthermore, by (5) and (6), !

UW,. .. W € Ass(F®) + As( VoYU

For the praof of the lemma it is now sufficient for us to verify that if ¢, d, r, t € P,
then PV, ¥V, Un p C PPL But this follows from the identities

WedVesly = x (— Vo lloViyr — Uz.zlf,- tVd.: + UzV, A2Vt + U, W iVa, ,_.)
x XUz.er',Vd|,_. =2V Va,Vrz= 2V ViV,

+ VeVaev,, — 2VeaVav, .o € i

This proves the lemma. .

The algebra M(P) is generated by the subalgebra M,(P) and the operators U, and
U,- 1 <ij < n.Itis not difficult to see (it suffices to verify it for the generators) that for |
any operator T € M(P) we have M (P)T C M(P) + M(P)M (P). Therefore, if I is
the ideal generated in M(P) by the set M,(P), then I' = M(P)M{(P) + M(P) and
pltlys c pR

We denote by L the left ideal of M(P) generated by operators of the form U, U,
where a € P°Up. and & € PU,p-.

Lemma 24, PUICL + LM(PY) € PP

Proor. We have already noted abave that M(P) = Ass¢V =) + UZ, >
Assy ¥ 7 3 Upp. Therefore it is sufficient to verify that P“]U U, U,, € Pl forx,y € P°,
But lhﬁ follows from (7) and {5). The lemma is proved.

We denote by TTU the semigroup generated by the operatars {U 1 (‘{V/{ 1 <i,j< n}.

Lesmma 25 (ITHYY** Cc L + 1.

{We recall that / is the ideal generated in M(P) by M\(P).)
ProoF. We consider a word W € 11U, W = IIz"“(UquJ), g €{x,....x), b E

fu]

(¥ ¥ 1K@ <27 + 2. Among the elements {g]n +2 <i < 2n + 2} at least
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two elements with different subscripts are equal. By (8) we have

Ual-UbjUah + UakUbjUni = U[a‘-b‘iak}
- Vn‘ & Unkvb T UakUb tr, Ok = U{a b Jk1 (mOd])

Moving the identical operators U, to the right end modulo the submodule @(H U)Upy ™
+ I and applying Macdonald’s 1dent1ty, we obtain [1325% (U, U,) € HIIU)Upm + 1.
Analogously, 17X X U, Uy) € ©ILU)Upwn + 1. Applying (8) in succession, we move the
operators from Ugm to the right end modulo the ideal 7. This proves the lemma.

LevMa 2.6, PUKTT L +40 o (T )4+ 9epp(p) C PR,

ProOF. It is not hard to see that M(P) = ®(I1U) + (IIU)M,(P) + M, (P). For the
proof of the lemma it suffices to verify that

PRYITY )+ 4 4 (u)y*" M (P) C PP

We shall show by induction on k that for any natural numbers 0 < & < s and ¢ » O we
have PUKITU)4+48%pq (py—k+2 ¢ PP, For k = 0 this follows from Lemma 2.3. We
assume that the assertion being proved is true for & < 5. Then :

P[l] (HU)(Mﬂllkﬂ.l M-l (P)s—k—x rg P[l] (HU)HIHOk (HU)MH M (P)’ ~R—14q
& P Y (L - (TIU) My (P) -+ My (PY) M,y (P
g P[l]LMl (P)S—k—l-l'q + P[l] (H.U)“ﬂi’l)k Ml (P)s"’”'q g P[’].

For k = s we have PPYIIU)“ %1 (P)? C P, This proves the lemma.
We setd = ((4n + s — Ds + 1.

Lemma 2.7. PUMArd(P) ¢ P,

ProoF. Let W be a word from TTU, M (P) of length d. f W has degree at least 5
modulo M, (P), then W & I' and everything follows from Lemma 2.3. If the degree of
W modulo M (P} is less than s, then W = IIiZ}(W, W))W, where W, is either an
element of IIU or the identity operator and W is either an ¢lement of M,(P) or the
identity operator. By the choice of the number 4 one of the operators W, 1 < i < s, lies
in (ITU)“***. It now only remains to apply Lemma 2.6, which proves the lemma.

Remark. If 1 € &, then M\ (P) = M(P). In this case Lemmas 2.4—2.6 are not needed.

ProorF OoF THEOREM 2. It is easy to see that the algebra M(P) is generated by the
operators U, U U:::y Ugyp Ve, and V) +.. From Lemma 2.6 it follows that the pair P[“
is generated by words of degree not greater than 24 + l modulo {x, KIS < n}.Trus
proves the theorem. :

PROOF OF THEOREM 3. Let the pair P =(P™, F7) be penerated by the elements
{xpo...vx, € PYyn, ..., p, € P7} and be solvable, Carrying out an induction on the
degree of solvability (the pair P is finitely-generated!), one can assume that the pair
P is nilpotent, say of degree r. Analogously to what was done in Lemmas 2.2-2.6, it is
easy to show that

PUASs¢ Yo y™ = 0, P"iM,(P)z‘""” =0, pPNAY =g,
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For the proof of Lemma 2.5 it was noted that U, U, U, + LU U, = Ulasey {mod 1).
Therefore (TTU)Y#"*3 = M(PYUfw + Upw (mod I) = 0 (mod I). Hence (HU)(""“‘“’ c
I and (TTY)@+374m0' = 0 Let 1 = 2(mr){(2n + 2) - r- 2(mr)?]. Proceeding as in the
proof of Lemma 2.7, we obtain PUVAM'(P)=0 and M'*'(P) = 0. This proves the
theorem.

From Theorems 2 and 3 immediately follows R

THeOREM 4. Fvery Jorden pair has a lecally nilpotent radical.

We call a Jordan pair P prime if for any two ideals I = ({ *, IV and J = {J*,J ) of
the pair P the equalities / TU;-= Oand I"U,. = Oimply I = QorJ = 0.

As in the case of algebras, the radical of a Jordan pair is naturally called special if a
semisimple (in the sense of this radical) pair is approximable by semisimple prime pairs.
The analogue of a theorem of 1. P. Sestakov holds (see [5D).

THEOREM 5. The locally nilpotent radical in Jordan pairs is special.

We do not give a proof, since modulo Theorems 2 and 3 the proof does not differ from
that mentioned in [5}.

§3. Proof of Theorem 1

In this section we shall denote by % the pair & = (§*, §7), where §° ={[£, 5] As
above, it is assumed that the algebra € is generated by the set C,(£), and the ring of
scalars ¢ contains 1.

We call the set {x° € P°| x°Up~ = 0} the kernel Ker P of the Jordan pair P =
(P*, P7). It is easy to see that if P does not have 2-torsion, then Ker P is a locally
nilpotent ideal in P.

Lemma 3.). Let K* and K~ be abelian inner ideals of a Lie algebra L, and et
L=K*+ K +[K*, K"). In addition, let I = (1%,I) be an ideal of the pair K =
(K*. K*) containing Ker K. Denote by ug(l)}, the ideal of L generated by the set 1% \J I
Then K° M ug(l), = 17

PROOF. It is easy to see that ug(), =[I*, K™} + [, K*)+ J~+ I*. We assume
that a nonzero element a lies in X* nug(/),, i.e. @ =ay+ a, + a_, where g, €
[K*.K7] and a, €/°, Then a~a, EK "N (K +[K* K)) CKer XK C I This
means a € { ¥, which proves the lemma.

An element @ € P° is called an absolute zero divisor of the Jordan pair P = (P, P)
if P=U, =0. It is easy to seec that any element from §° N C,(£) is an absolute zero
divisor in §.. The pair § is therefore generated by its absolule zero divisors.

We recall that the goal of this section is the proof of the local nilpotency of the pair
We consider an arbitrary finite set of absolute zero divisors of the pair 9, and we
generale with them a subpair &) = (1", 97) and a Lie subaigebra £, = 9, + 9; +
{97,971 U the pair I, is not nilpotent, then by Theorem 3 it contains a pnrne ideal
1< “."J", modulo which the factor pair does not contain locally nilpotent ideals. By
Lemma 3.1, ug(/);, N I} = /°. Now factoring the algebra £, modulo the ideal ug(/ Je, if

~ necessary and considering 9, and £, instead of ¢ and £, respectively,” we shall assume

that the pair } is prime, does not contain locally nilpotent ideals, and is generated by a
finite collection of absolute zero divisors. We shall also assume £ is represented in the

form £ =3~ + 37+ [4". §)
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Lemma 3.2, The pair b satisfies the following identities:
nvv. =40

X7 ¥.X

DUU, =V, =V,

DUUU, + UUU, = U,
4) U U,U, = 0.

LR LU

Proof. 1) Let x €[£,5,), y =[v,b.] and z =[w, b_]. It is necessary for us to- .__
show that [Bb_xx[b_, v]X [w, b.]lw, b_]J] = 0, or in other words that

S brxtxt[b_, c]*x*b*w w*b* = 0. Any element from 9* U T is Engel of third order.

Therefore x** = 0, and for any element y € £ we have 3(x*y*x* — x*y*x*¥) =0. In
view of the absence of 3-torsion in the algebra £, for any element y € § we have
x*3*x* = x*y*x*2 Now
B x"xbix'v'bl = bLx"bx"x"u"b. = Q.

We have shown that the pair § satisfies the identity UV, U, = 0. Since Ker § = 0, the
pair § satisfies the identity U, ¥, , = 0.

2) From 1) it follows that § satisfies the identity yU, ¥, . = 0. Applying partial
linearization in x to this identity, we have aV,;, , + al, U, = 0, whence U U, = -V, .

- -Pv R

nmz)UUU+UUUm%mq—qnm.mwmmcymhm
VU,yU + U.: rol, U:JV

4)By2)and 1), U U U, = U V,,U_,=-0

This proves the lernma

We denote by U° the d-submodule of the mulhphcauon algebra M(4) generated by

the operators {U,| a € §°).

LemMa 3.3. Let b € §* and ¢ € §~ be absolute zero divisors. Then V, UV, , = V2,
= [,

ProoF. The equality V2, = 0 follows from the fact that b, ¢, [, c] € C(£). Further-
more, in an arbitrary Jordan pair the identity V, UV, = U, 4y + VUV,
U,y y, is satisfied. Setting x = b,y = ¢,z = a € J*, we obtain ¥, U,V , = 0. "This
provés the lemma.

It is known (see (4)) that the ®-module generated by the operators {(V, | x € §7,» €
471 is a subalgebra of the Lie algebra (M(3)). We denote it by V. Then Ass{¥°) is
an associative enveloping algebra for the Lie algebra F°.

Lemva 3.4. There exists a natural number m such that Ass{V ™) is generated as a
$-module by the products v, .. ., 5, EV, 1 <k <m,

PrRoOOF. Let the pair ¢ be generated by a finite collection of absolute zero divisors
{x; € ",y € §}. Then the multiplication algebra M($) is generated by the operators
u..u . V., and P;? - Hence

E 20 R AN
““=2®&+ZF +E“%#

G = ;ﬁby, + % ‘El'*Uyn,j + %‘.’T‘VM
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In other words, I = Z%,| M?, where each ®-module T consists of absolute zero
divisors of the pair . We denote by ¥, the ®-module generated by the operators ¥, »
x € M,y €M;. Then V™= 2, V, .. In addition, in view of (4), for any elements a,,
a, € M and by, b, EM; we have [V, ,. ¥, , | = 0. By Lemma 1.10 this means the set
¥, is associatively nilpotent of degree 4. In all there will be d, d_ subspaces ¥, ;. We set
m = 3d d_. From what has been said above it follows that the number m satisfies the
requirement of the lemma. This proves the lemma.

LEMMA 3.5. Let | = (I*.1°) be a nonzero ideal of the pair F, let v = Z, Vq.l; =
g €T, b€, andlet I'v=0.Then v =0,

Proor. We denote by v* the element 2, ¥, , € V'*, and show that $*v* = 0. From
the fact that & 3 } and 2) of Lemma 3.2, it follows that the ideal generated by the set
§*v* will be the pair .

P = (T o*As(V Y, THorUAss(V*)) = (P+, P).
We verify that {J°{/™P°1°}I%} = 0. In fact, for 0 = + we have
(I7(F* o AssCV )Y © (T7(F*o) 1) + {I-(To* AV D)),

and (/30" ) € ("4 Yo + (14" (7)) = 0. Hence {/"P*1") =0,

For o = - the equality {7~{7 *(§*o* UAss(V * )1 *}1~} = O follows from what was
proved above and (8). Since the pair § is prime, we now have P = (. This means p* = 0,
As above, it is easy to establish that

(G008} c{FFF )+ (FronF i) =0
Consequently, $o € Ker $ = 0 and v = 0. This proves the lemma.
LEMMA 3.6, Let the element @ € T and the operators v, € V°, | i < 4, be such that
of = g Vo = o = 0PV ™ p® = 0 and for any permutation {ijiyisi,} = {1234} the
equalify ¢ = av, ... vy = av, ... v, is valid. Then ¢ = 0.

ProoF. By Lemma 1.10 the element c is a cm-elemént and penerates a locally nilpotent
ideal in €. From this it is not difficult to deduce that the ideal generated by the element
c in the pair § will also be locally nilpotent. This proves the lemma.

LEMMA 3.7.a) Let v € V™ and v? = vAss{V " Su = 0, Then v = 0,
b) Let vE V™ and v’=0V v =0, and for any elements Dy 0 E V™ et
o, e e tttst = 0. Then v = 0,

PrROOF. a) We assume that $ v % 0. Then the set $ v generates a nonzero ideal
P=(P*,P7)in the pair §, where P~ = $0pAss{¥). By assumption, £v = 0. The
equality r = 0 now follows from Lemma 3.5.

b) If a nonzero element v € ¥~ satisfies the requirements of b), then, analogously to
what was done in §1, we can easily prove the existence of a sandwich of thickness m in

the pair (V~, Ass(} ™)), where m is the number from Lemma 3.4. However, this
contradicts a). '

This proves the lemma.

LEMMA 3.8. Let the operators u, € U° be such that u_u, = u_ u_= u, U u, = 0. Then

u_,,&(?’*)u_-—— 0.
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Proor. [f u € U and v € V7, we denote by [u, v] the operator v*u + up € U°,

The ®-module V' * is generated by the ‘operators Vos, where a_and b are absolute
zero divisors. For the proof of the lemma it is therefore sufficient to show that -
{u,. ¥, s )= 0for any such operator ¥, , . In fact, the pair of operators {u,., ¥, , ],

~*..u_ will then have the same properties as the pair u,, u_, and it is possible to conclude

that [fu,, ¥, , 1 Va5 Ju_= O for any operator ¥, . , etc.

Wesetoy = ¥, ,, and [u,, vy] = &, and show that v = & _u_= 0. For this it suffices
to verify that the element v € V'~ satisfies the conditions of Lemama 3.7b). The equalities
d,U%, =vVv=0"=0 are verified directly by means of Lemma 3.3. We now
consider arbitrary absolute zero divisors 4, € $* and ¢, € 7, | < i < 6, and operators
o =¥, € V7. Itis easy to see that

E+u_Ulva&:.u_uau‘"u}u‘ubvﬂfi;u_'= !I,,u_ ([E+, UARUEREN|
4 Gy, o) fs, 00) (11, ) T, 0] + T2, 0] Ta., 7))
x {122, U] (e, 0] + 2, vg] fuz_, vs]).

We shall show that &, u IT}.,[4,, 0,)u_, v,) = 0 for any collection of indices 1 < i,
Ji < 6. For any operators u; € U™ and 4, € U~ and any 1 <i < 6 we have

. fu,vluy 4uu,fu,u=0, [E.,.,-U;] uZE-P -+ E-;-ua [‘ZH Yl = 0.
Furthermore,

[T‘[+l Uag’ = “u+' Uu] U-'kl = [u+1 [Un! Ul'jg" - “u-i-- Ufklt Uul-

But {{u,, v ], vpJu_[u,, Uo] = —{(14. 0,1 vl v, = 0, because v, Uv§ = vy Ty = 0.
Consequently.
a = )
i H lizg, v ) [u, 0] = wpud_ 1—[ ([ter Uiy U4]) [, 7))
k=1 h=1
It now only remains to note that 4, u_and [u,, [o,, volllu_ 1, ], 1 < k < 3, satisfy the
conditions of Lemma 3.6, which proves the lemma. :

LEMMA 3.9. Let the operators u, € U® satisfy the conditions of Lemma 3.8. Then either
=0oru=10.

PRroOF. We assume that u, 7 0..Denote by P = (P, P-) the ideal generated by the
set $u,. Then P* = §u, Ass(V*>, and by Lemma 3.8 we have P *u_=0. But
u U* C V™, whence by Lernma 3.5 we have v_U* = 0. This means gf"u_(; Ker§ =
D, i.e. u_= 0. This proves the lemma.

Leta, €9% and b_, c_& 9. By 4) of Lemma 3.2 the operators U,, € U” and
U U, U, + U, U, U, € U~ satisfy the conditions of Lemma 3.8. By Lemma 3.9 this
means we have U/ U LU+ Uy U, U, = 0. Hence for any elements a,...,q, & *
and &y, ..., 8, EF - the operators v; = U, U, commute and satisfy the conditions of
Lemma 3.6. This means [I;_ (U, U,) =0, whu:h contradicts the fact that Ker § =0,
This proves Theorem 1.

CorouLary. Let £ be a Lie algebra without additive 6-torsion, and A an associative

enveloping algebra for . Suppose A is generated by the set C(C, A). Then A is locally
nilpotent.

~
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§4. The McCrimmon radical of a Jordan pair is locally nilpotent

The smallest ideal of a Jordan pair 2 = {#*, P7) modulo which the quotient pair
does not contain absolute zero divisors is called the McCrimmon radical of the Jordan
pair P (denoted Wi P)). '

We denote by Z( P) the ideal generated in the pair £ by the set of all its absolute zero
divisors. It is easy to see that Z{P) = (Z*, Z"), where Z? is the ®-module generated by
the absolute zero divisors contained in P°,

We set by definition T (P} = Z(P) and let the ideai Tt _(P) be already defined for all
ordinals a such that & < 8. If 8 is a limit ordinal, we set Mg(P) = U 5 M (P). If the
ordinal 8 is not a limit, we define Mz(P) as the ideal such that My(P)/ Ty (P) =
Z(P/Msz_\(P). The chain M(P) G - - - QM (P)C ... stabilizes at some ordinal y.
It is not hard to show that Wi (P) = Wi(P). .

In this section we shall show how Theorem | implies

THEOREM 6. The McCrimmon radical of a Jordan pair without 6-torsion is locally

nilpotent.

From what was said above it follows that for the proof of Theorem 6 it is sufficient to
prave the local nilpotency of the ideal Z(P), i.e. the following theorem.

TueoReM 7. A Jordan pair P = (P, P-) without additive 6-(orsion generated by a finite
collection of absolute zero divisors {a,", ...,a}F € P*;aj, ..., a € P} is nilpotent.

ProoF. Without loss of generality we can assume that the ring of scalars @ contains 1
The Lie algebra ¥~ is generated as a ®-module by the set of operators {V, | x € P"
and y € P~ are absolute zero divisors}. It is not difficult to see that all such operators
lie in C,(V " Ass{¥ D). By the corollary to Theorem 1 this means the algebra
Ass{¥V > is locally nilpotent. We denote by m, the degree of nilpotency of the
associative algebra generated by the set of operators (V. &..| 1 <i,j<n}, and we set
m = max{m_, m_}. In view of {5) and (6),

U~Ass(VoyU° ¢ Ass(V°>.
Constider the set
' Mo = (U, v a. Vg polgaVoco o Vo
e={ «7.a0V a3 go o2 aotog gaV oo 00 Vng? agll
l:{‘-.i'f‘p‘Q'vD'""'\'k'}'ll!---kalgﬂ---!Ehnxt---|n[€n10gkais_gm}.

We denote by s, the degree of nilpotency of the associative algebra generated by the
set M,. and we write 5 = max(s,,s_}). [t is now easy to see that the algebra M(P)
generated by the set {U,,., V. gm0 =*11<ij<n} is nilpotent of degree not
greater than 2sm. This proves the theorem,

CoRrROLLARY. A simple Jordan pair without 6-torsion does not contain absolute zero
divisors. ~
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